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1 Introduction

In contrast to classical channels, which simply convey information, quan-
tum channels are influenced by the principles of quantum mechanics, such as
superposition and entanglement. These channels don’t just carry informa-
tion; they do so in a way that can be affected by quantum noise and envi-
ronmental interactions, making the study of their properties and behaviors
both fascinating and crucial for the development of quantum technologies.
As we explore quantum channels, we must consider the concept of unitary
evolution—wherein quantum states evolve in a reversible manner in closed
systems—and how this ideal is challenged in open systems where noise is
inevitable. The implications of these concepts are profound, not only for
our theoretical understanding but also for practical applications in quantum
computing and secure communication.

2 Everything is Unitary

The Quantum Mantra is: there is only unitary evolution, and if there is
any other evolution then it has to be derived from a unitary evolution. All
evolutions become unitary when you make your system large enough! But
how? The short answer is: by adding (via tensoring) and removing (via
partial trace) physical systems. A typical combination of these operations is
shown in the following diagram:

The process for a quantum channel is as follows:
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1. Prepare the input state ρ.

2. Enlarge the system by tensoring ρ with an auxiliary state αα, forming
the extended state ρext = ρ⊗ αα.

3. Allow the extended system to undergo closed unitary evolution with a
unitary operator U , resulting in U(ρext)U

†.

4. Apply a trace operation to remove the auxiliary system, yielding the
final output state ρ′.

The transformation can be described by the equation:

ρ→ ρ′ =
∑
i

EiρE
†
i (1)

where {Ei} are the Kraus operators satisfying the completeness relation∑
iE

†
iEi = I. This defines a completely positive trace-preserving (CPTP)

map, also known as a quantum channel.
The essential properties of quantum channels are trace preservation and

positivity:
Trace preserving: For the trace-preserving property, the map must

satisfy the condition ∑
i

E†
iEi = 1. (2)

Given this, the trace of the output state remains unchanged:

tr

(∑
k

EkρE
†
k

)
= tr

(∑
k

E†
kEkρ

)
= tr(ρ). (3)

Positivity preserving: Since ρ is a positive operator, the channel must
also preserve this positivity. For any set of operators {Ek}, the following
holds: ∑

k

EkρE
†
k =

∑
k

(Ek
√
ρ)(

√
ρE†

k). (4)
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An operator is positive if it can be expressed as XX† for some X. Thus,
each term (Ek

√
ρ) contributes to the sum as a positive operator, ensuring

the map is positivity preserving.
Note: These conditions are necessary for density operators to maintain

physical legitimacy through the map. However, they are not sufficient. Quan-
tum channels require not only positive but completely positive maps.

Why this matters:

• Quantum Simulations and Cryptography: The unitary evolution prin-
ciple is crucial for simulating complex quantum systems and securing
information via quantum cryptography, leveraging quantum channels
to surpass classical limitations in computation and communication se-
curity.

• Enhancements in Quantum Sensing: It underpins advancements in
quantum sensing, where precision and accuracy are enhanced through
controlled quantum channels, leading to breakthroughs in fields ranging
from navigation to medical diagnostics.

• Quantum Networks and Entanglement: This concept is foundational
for the development of quantum networks, enabling robust quantum
communication and exploration of quantum entanglement, with quan-
tum channels acting as vital conduits for entangled state transmission
and quantum teleportation.

3 Random Unitaries

In the initial exploration of quantum systems, consider a two-qubit setup
with a controlled-NOT gate. The unitary operation for this gate can be

described as: U = 0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗X =

[
1 0
0 X

]
where 1 is the identity operator and X is the bit-flip operator.
The transformation of the target qubit is conditional on the state of the

control qubit:

• When the control qubit is in state 0, the target qubit experiences the
identity operation, evolving as 1

• When the control qubit is in state 1, the target qubit undergoes a
bit-flip, evolving as X.
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• For control qubit states that are superpositions of 0 and 1, the evolution
of the target qubit is not represented by a single unitary operator.

It is important to note that the behavior of the target qubit is inherently
linked to the state of the control qubit in a controlled-NOT operation.

To justify this last point, note that, if the control qubit is in the state
α0|0⟩+α1|1⟩ and the target qubit is in some state |ψ⟩, then the output state
can be written as

α0|0⟩ ⊗ 1|ψ⟩+ α1|1⟩ ⊗X|ψ⟩

which shows that the control and the target become entangled. The target
qubit alone ends up in the statistical mixture of states |ψ⟩ with probability
|α0|2 and X|ψ⟩ with probability |α1|2.

We can verify this by expressing the above output state of the two qubits
as the density matrix

|α0|2 |0⟩⟨0| ⊗ 1|ψ⟩⟨ψ|1 + |α1|2 |1⟩⟨1| ⊗X|ψ⟩⟨ψ|X
+α0α

⋆
1|0⟩⟨1| ⊗ 1|ψ⟩⟨ψ|X + α⋆

0α1|1⟩⟨0| ⊗X|ψ⟩⟨ψ|1

and then tracing over the control qubit, which gives

|α0|2 1|ψ⟩
〈
ψ|1+ |α1|2X | ψ

〉
⟨ψ|X.

Then we can say that the input state of the target qubit evolves either
according to the identity operator (with probability |α0|2 ) or according to

the X operator (with probability |α1|2
)
.

In quantum control systems, it’s possible to extend the analysis of con-
ditional dynamics to more than two qubits. Consider a system where each
state |i⟩ in a control system’s orthonormal basis is associated with a distinct
unitary operation Ui acting on a target system. The combined operation for
the system can be represented by a block-diagonal matrix:

U =
∑
i

|i⟩⟨i| ⊗ Ui

Given the initial state of the control system as
∑

i αi|i⟩ and the target
system in state |ψ⟩, the final combined state is:∑

i

αi|i⟩ ⊗ Ui|ψ⟩
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From this, we can deduce the target system’s evolution. The target’s final
state ρ′ evolves according to:

ρ′ =
∑
i

|αi|2 UiρU
†
i

Here, Ui modifies the state of the target system, selected randomly with
a probability pi = |αi|2.

One key point of interest is that each unitary Ui is reversible. This re-
versibility offers a way to undo the action of the channel. If we know which Ui

was applied by measuring the control system in the |i⟩ basis, we can reverse
the evolution using U−1

i .
If access to the control system is unavailable, we face a limitation: we can’t

discern which unitary was applied by only examining the target system. In
this case, we can guess and apply the inverse of the most likely unitary to
try and recover the input state, though this method only offers a chance of
success. For improved results, one must consider different quantum channels.

First though, a fundamental example of a random unitary evolution:
A single-qubit Pauli channel applies one of the Pauli operators, X, Y or Z,
chosen randomly with some prescribed probabilities px, py and pz, giving

ρ 7−→ p01ρ1+ pxXρX + pyY ρY + pzZρZ.

The Pauli operators represent quantum errors: bit-flip X, phase-flip Z,
and the composition of the two Y = iXZ.

Why this matters:

• Quantum Error Correction: Random unitaries provide the mathemat-
ical backbone for understanding and developing quantum error cor-
rection techniques. By modeling how quantum systems interact with
their environment through stochastic processes, we can design quan-
tum channels that correct errors introduced by noise, a crucial step for
realizing fault-tolerant quantum computing.

• Quantum Communication Protocols: The study of random unitaries
paves the way for more robust quantum communication protocols. By
leveraging the randomness in unitary evolution, quantum channels can
be optimized for secure transmission of information over long distances,
enhancing the reliability of quantum key distribution (QKD) and other
quantum cryptography methods.
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• Quantum Computing Algorithms: Understanding random unitaries
is essential for the development of novel quantum computing algo-
rithms. By exploiting the probabilistic nature of quantum mechan-
ics, researchers can design algorithms that perform tasks with greater
efficiency or solve problems that are currently intractable, thereby ex-
panding the frontier of computational possibilities.

4 Random Isometries

Isometries are pivotal in various quantum mechanics applications, including
quantum communication and quantum error correction, as they enable en-
coding the quantum state from a smaller system into a state within a larger
system. They can be thought of as a generalization of unitaries. Isometries
maintain inner products, thus also conserving the norm and the metric in-
duced by the norm, even when mapping between Hilbert spaces of different
dimensions.

For two Hilbert spaces H and H′ where the dimension of H is less than
or equal to that of H′, an isometry V is a linear transformation from H to
H′ satisfying V †V = IH, where V

† is the adjoint of V , and IH is the identity
operator on H.

A full isometry V from H to H′ effectively maps the entire space H onto
a subspace of H′. The representation of an isometry in matrix form is a
rectangular matrix obtained by choosing a subset of columns from a unitary
matrix. For instance, starting with a unitary matrix U , an isometry V can
be constructed by selecting appropriate columns from U .

U =


U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

 7−→ V =


U12 U14

U22 U24

U32 U34

U42 U44


Isometries are key in preserving the inner product structure of quantum

states, defined by the condition V †V = IH for a Hilbert space H. This
condition is sufficient for isometries and does not necessitate that V V † = IH,
which would imply that V is unitary. The operator V V † is in fact a projection
onto the image of H under V .

Expressed in Dirac notation, an isometry V takes the form:

V =
∑
i

|bi⟩ ⟨ai|
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where {|ai⟩} is an orthonormal basis forH and {|bi⟩} are orthonormal vectors
in H′, which do not necessarily span H′. When V is unitary, {|bi⟩} spans
H′. It is evident from this representation that V †V is the identity on H and
V V † is a projection on the subspace of H′ spanned by {|bi⟩}.

Despite isometries being more general than unitaries, they are physically
realizable operations. They can be implemented by tensoring two systems
together and applying unitary operations to the enlarged system. For in-
stance, combining a system A in state |ψ⟩ with another system B in a fixed
state |b⟩, and then applying a unitary U to A⊗B, creates an isometry from
H to H⊗HB defined by the transformation:

V : |ψ⟩ 7→ U(|ψ⟩|b⟩)

Isometries also act as quantum channels, transforming any quantum state
|ψ⟩ or density operator ρ according to:

|ψ⟩ 7→ V |ψ⟩

ρ 7→ V ρV † with the normalization condition for isometries being V †V = 1.
The significance of isometries is particularly pronounced in quantum error

correction, as they allow for precise manipulations of quantum information
without altering the underlying quantum state’s integrity.

Why this matters:

• Quantum State Transfer and Communication: Random isometries play
a crucial role in the encoding and transmission of quantum states across
quantum channels. This process is foundational for quantum commu-
nication, enabling the transfer of quantum information with minimal
loss, which is essential for the development of quantum internet.

• Quantum Computing Scalability: The concept of random isometries
is key to scaling quantum computers. By embedding quantum states
from smaller to larger Hilbert spaces without losing information, ran-
dom isometries facilitate the design of scalable quantum architectures,
ensuring that quantum computers can handle increasingly complex cal-
culations as they evolve.

• Enhancing Quantum Error Correction: Random isometries contribute
to the advancement of quantum error correction schemes by allowing for
the embedding of logical qubits into higher-dimensional spaces. This
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capability is critical for protecting quantum information against errors
and decoherence, thus maintaining the integrity of quantum computa-
tions and communications.

5 Evolution of Open Systems

In the broader context of quantum systems, not all interactions can be neatly
described as control-target relationships. Instead, let’s consider two interact-
ing quantum systems, A and B, without this assumption. System A will act
as an auxiliary system or ancilla, and we’ll concentrate on the evolution of
system B.

An orthonormal basis |i⟩ for the ancilla’s Hilbert space HA can be cho-
sen. With this, any unitary operation on the combined system AB can be
described by:

U =
∑
i,j

|i⟩⟨j| ⊗Bij

Here, the Bij terms are operators acting on HB, the Hilbert space of
system B. These operators need not be unitary, but to ensure U is unitary,
they must satisfy: ∑

i

B†
kiBil = δklIAB

∑
i

BikB
†
ll = δklIB

where IAB and IB are the identity operators onHA⊗HB andHB, respectively.
These conditions ensure that the matrix columns and rows formed by the
operators are orthonormal, analogous to the elements in a unitary matrix.

The evolution of system B not only depends on the unitary operation
U but also on the initial state of the ancilla A. Assuming the ancilla is
in a pure state, which can be represented by a basis state |k⟩, the unitary
transformation of system B for any state |ψ⟩ is:

U : |k⟩ ⊗ |ψ⟩ →
∑
i

|i⟩ ⊗Bik|ψ⟩

To find the resulting density operator for system B, we consider the den-
sity operator of the joint system AB after transformation and then trace out
the ancilla:

trA

∑
i,j

|i⟩ ⟨j |⊗Bik|ψ⟩ ⟨ψ|B†
jk

 =
∑
i

Bik|ψ⟩⟨ψ|B†
ik
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This operation gives the final state of system B after considering the
effects of the unitary operation and the initial state of the ancilla.

Generalizing quantum state evolution, for any input density operator ρ,
subsystem B undergoes the transformation:

ρ→ ρ′ =
∑
i

BikρB
†
ik

We’ve omitted the index k in the last term as it was initially included
to track the ancilla’s state. Since U is a unitary operator, the operators Bi

fulfill the normalization condition:∑
i

B†
iBi = I

This ensures that the trace, or the total probability, remains constant.
To conceptualize this process, consider a sequence of three operations: 1.

Attach an ancilla in a fixed state to the system (ρ → |k⟩⟨k| ⊗ ρ). 2. Evolve

the combined system and ancilla unitarily
(
U(|k⟩ ⊗ ρ)U †

)
. 3. Discard the

ancilla, leaving the subsystem in state ρ′.
Describing the process in steps: - Begin with a quantum system of in-

terest, typically in a mixed state ρ, possibly entangled with other degrees of
freedom which remain passive. - Introduce an ancilla to encompass all po-
tential interactions, ensuring it’s large enough for the combined system to be
considered isolated and then apply a unitary evolution U . - Post-evolution,
the ancilla is discarded, focusing on the subsystem alone. Notably, discard-
ing can be partial, affecting only a portion of the ancilla or any other part of
the expanded system.

It’s the addition and subsequent removal of the ancilla that enables the
non-unitary appearance of the system’s evolution.

Moving forward, we apply our understanding of isometries, which are like
unitaries but can change dimensionality, to combine the first two operations
(adding an ancilla and applying unitary evolution) into one. This leads
to Stinespring dilation theorem and its ancilla-free counterpart, the Kraus
decomnosition

Why this matters:

• Bridging Theory and Real-world Quantum Systems: The study of open
systems’ evolution provides a critical link between ideal quantum me-
chanics and the realities of quantum systems interacting with their
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environments. This understanding is essential for designing quantum
channels that can operate effectively in real-world conditions, where
noise and decoherence are unavoidable.

• Foundation for Quantum Thermodynamics: Exploring the dynamics
of open quantum systems lays the groundwork for quantum thermo-
dynamics, offering insights into energy transfer, entropy, and the fun-
damental limits of quantum computing and sensing technologies. It
shapes the design of quantum channels that can harness these processes
for energy-efficient quantum computations and thermal management.

• Enabling Quantum Control and Feedback: The evolution of open sys-
tems underpins the development of quantum control techniques and
quantum feedback mechanisms. By understanding how quantum sys-
tems interact with their surroundings, engineers can create quantum
channels that dynamically adjust to external disturbances, enhancing
the stability and performance of quantum computers, sensors, and com-
munication networks.

6 Stinespring’s Dilation and Kraus’s Ambi-

guity

In the realm of quantum mechanics, as we begin to consider more complex
systems with higherdimensional Hilbert spaces, it becomes practical to tran-
sition our focus from unitary transformations to isometries. This shift is
primarily for the sake of mathematical convenience, and while it may not
add to our physical understanding, simplifying our equations is generally
beneficial.

Remember that any unitary transformation U for a combined system AB
can be expressed as a sum involving an orthonormal basis |i⟩ of system A
and operators Bij acting on the Hilbert space of system B :

U =
∑
i,j

|i⟩⟨j| ⊗Bij

These operators Bij are not required to be unitary. However, to ensure
that U is unitary, they must satisfy the following conditions:∑

i

B†
kiBil = δklIAB

∑
i

BikB
†
ll = δklIB
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Additionally, if we consider the initial state of system A to be |k⟩, the
action of U can be represented by:

U : |k⟩ ⊗ |ψ⟩ →
∑
i

|i⟩ ⊗Bik|ψ⟩

for an arbitrary state |ψ⟩ of system B.
From here, we define an isometry V that maps from HB to HA ⊗HB as

follows:
V : |ψ⟩ 7→

∑
i

|i⟩ ⊗ Ei|ψ⟩

where Ei corresponds to Bik and satisfies the condition:∑
i

E†
lEi = IB

The matrix representation of an isometry is a rectangular matrix given
by selecting only a few of the columns from a unitary matrix; here, with |k⟩
fixed, it is only the k-th column of the block matrix U that determines the
evolution of B, as shown in Figure 9.1.

U =


B11 B12 B13 · · ·
B21 B22 B23 · · ·
B31 B32 B33 · · ·
...

...
...

. . .

 7−→ V =


E1

E2

E3
...


Figure 9.1: For k = 2, the second block column is selected. The matrix

representation of the isometry V on the right-hand side look like a column
vector, but remember that the entries Ei := Bik are matrices.

We can streamline our understanding of the evolution of a quantum sys-
tem B by utilizing isometries. An isometry V, depicted in a figure not shown
here, acts by transforming a state |ψ⟩ according to:

V |ψ⟩V † =
∑
i,j

|i⟩ ⊗ Ei|ψ⟩⟨j|E†
j

By tracing out the ancilla, we capture the evolution of system B, trans-
forming an input state ρ into an output state ρ′, described by:

ρ→ ρ′ = trAV ρV † =
∑
i

EiρE
†
i
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Here, the Kraus operators Ei meet the normalization condition
∑

iE
†
iEi =

1, allowing for two interpretations of quantum evolutions: the Stinespring
dilation and the Kraus representation.

In the Stinespring dilation, a quantum channel E arises from unitary
evolution on a dilated system, encapsulating both the adding of an ancilla
and its removal after evolution. This is synonymous with the ’Church of the
Larger Hilbert Space’ in quantum information science.

The Kraus representation, or operator-sum decomposition, offers a more
direct approach by dealing with operators that map directly from the input
to the output Hilbert space, without invoking an ancilla. This yields:

ρ→ ρ′ =
∑
i

EiρE
†
i

where the Ei ’s are the Kraus operators satisfying the completeness relation.
These two methods are equivalent, offering two perspectives of the same

quantum process. Transitioning from a unitary evolution U to an isometry
V , we ’select’ a set of Kraus operators Ei. Conversely, starting with a Kraus
representation, we can ’build up’ an isometry and then extend it to a full
unitary transformation U , although the latter step involves some arbitrary
choices as long as the end result is unitary.

It’s important to note that the set of Kraus operators is not unique-
different sets related by a unitary transformation describe the same physical
process. This is due to the fact that the choice of basis in the ancilla’s
Hilbert space influences the form of the Kraus operators. To illustrate, let
V =

∑
i |ei⟩ ⊗ Ei and let |ei⟩ and |fj⟩ be two orthonormal bases. Then:

V =
∑
j

|fj⟩ ⊗ Fj

with Fj =
∑

iRjiEi, where R is the unitary matrix relating the two bases.
This shows the unitary equivalence of different Kraus operator sets. Chan-
nels described by different Kraus operators are identical if the operators are
related by a unitary matrix R.

In summary, two sets of Kraus operators describe the same quantum
channel if they can be related by a unitary transformation. For instance, an
identity channel can only have Kraus operators that are proportional to the
identity operator.

Why this matters:
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• Versatility in Quantum Channel Representation: This section illu-
minates how the Stinespring dilation and Kraus representations pro-
vide flexible and powerful frameworks for describing quantum channels.
These mathematical tools allow for a deeper understanding of quantum
processes, offering multiple perspectives for modeling quantum noise
and interactions, which is fundamental for quantum algorithm opti-
mization and error correction.

• Clarifying Quantum Operations: The exploration of ambiguity in Kraus
representations highlights the nuanced nature of quantum operations,
emphasizing that different sets of Kraus operators can describe the
same quantum channel. This understanding is crucial for quantum in-
formation theory, revealing the complexity of quantum state transfor-
mations and guiding the development of more efficient quantum com-
munication protocols.

• Implications for Quantum Computing and Simulation: Understanding
the interplay between Stinespring dilation and Kraus operators aids in
the simulation of quantum systems and the design of quantum comput-
ing architectures. By effectively capturing the effects of environmen-
tal interactions on quantum states, these concepts enable more accu-
rate simulations and potentially more powerful quantum computational
models, pushing the boundaries of what’s computationally feasible.

7 Single-Qubit Channels

Now let’s delve into single-qubit channels, which allow us to visualize their
effects as changes to the Bloch sphere.

Any single qubit’s state can be represented by a density matrix:

ρ =
1

2
(1 + s⃗ · σ⃗) = 1

2
(1 + sxX + syY + szZ)

Here, s⃗ is the Bloch vector, and X, Y, Z are the Pauli matrices. While
unitary operations rotate the Bloch sphere, general quantum channels can
deform the sphere into spheroids or displace it.

Examples include: 1. Bit-flip Channel: It flips the qubit’s state with a
probability p. The transformation is:

ρ→ (1− p)ρ+ pXρX
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The corresponding Kraus operators are
√
1− pI and

√
pX, leading to a

prolate spheroid aligned with the x-axis. At p = 1
2
, the Bloch sphere collapses

to a line segment along the x-axis. Phase-flip Channel: It flips the phase of
the qubit’s state with a probability p. The transformation is:

ρ→ (1− p)ρ+ pZρZ

The Kraus operators for this channel are
√
1− pI and

√
pZ, resulting in a

prolate spheroid along the z-axis. At p = 1
2
, it also collapses to a line segment,

but along the z-axis. Depolarizing Channel: It maintains the qubit’s state
with probability 1 − p and applies any of the three Pauli operations with
equal probability, leading to:

ρ→ (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ)

This channel uniformly contracts the Bloch sphere when p < 3
4
, and

inverts the Bloch vector for p > 3
4
. At p = 3

4
, the sphere shrinks to a point

at the center, and for p = 1, it flips to the opposite direction, increasing the
magnitude up to 1

3
.

In quantum mechanics, the way we describe the action of quantum chan-
nels with Kraus operators can offer different narratives for the same physical
process. For instance, consider the phase-flip channel with a probability
p = 1

2
. We can represent the channel with two different sets of Kraus opera-

tors:E1 =
1√
2
I, E2 =

1
√
2
Z

 or

{
F1 =

1√
2
(E1 + E2) , F2 =

1√
2
(E1 − E2)

}

These translate to:

{F1 = |0⟩ ⟨0 |, F2 =| 1⟩ ⟨1|}

Both sets of operators describe the same phase-flip channel, but the story
they tell is different. The first set suggests a random, probabilistic choice
between letting the qubit be or applying a phase flip. The second set suggests
the channel is akin to a measurement in the standard basis without revealing
the outcome.

This exemplifies that describing quantum channels solely in terms of
Kraus operators can sometimes lead to ambiguity.
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Another point is the limitation on how quantum channels transform the
Bloch sphere. Not all conceivable shape deformations are possible; for exam-
ple, you cannot flatten the Bloch sphere into an oblate spheroid, or ’pancake’
shape. Such restrictions are due to the requirement of complete positivity in
quantum channels, a stronger condition than mere positivity. This concept
ensures that quantum evolutions remain physically viable when applied to
part of a larger, entangled system.

Why this matters:

• Core of Quantum Error Processes: This section demystifies how single-
qubit channels model basic quantum errors (bit-flip, phase-flip, and
depolarizing), foundational for understanding quantum error correc-
tion. By grasping these error mechanisms, researchers and engineers
can design quantum channels that mitigate such errors, enhancing the
reliability and performance of quantum computing systems.

• Visualizing Quantum State Transformations: The discussion on single-
qubit channels provides a vivid picture of how quantum states evolve,
using the Bloch sphere representation. This visualization is crucial
for intuitively understanding the effects of quantum operations and for
designing quantum algorithms and protocols that are robust against
noise and decoherence.

• Basis for Advanced Quantum Technologies: Single-qubit channels serve
as building blocks for more complex multi-qubit systems and channels,
laying the groundwork for advancements in quantum computing, secure
quantum communication, and quantum sensing. Understanding these
fundamental channels is essential for pushing the envelope in quantum
technology development, aiming for practical quantum applications in
cybersecurity, drug discovery, and beyond.computationally feasible.

8 Properties

The different characterizations we have obtained for quantum channels allow
to derive some basic properties.

Proposition 6.8. Let H be a separable Hilbert space and let L1,L2 be two
quantum channels on L1(H) with Krauss decompositions

L1( T) =
∑
i∈N

AiTA
∗
i and L2(ρ) =

∑
i∈N

Bi T B∗
i ,
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respectively. 1) The composition L2 ◦ L1 is a quantum channel on L1(H). It
admits a Krauss decomposition given by

L2 ◦ L1( T) =
∑
i,j∈N

Bj Ai T A∗
i B∗

j .

2) Any convex combination λL1 + (1− λ)L2 (with 0 ≤ λ ≤ 1) is a quantum
channel on L1(H) with Krauss decomposition

(λL1+ (1− λ)L2) (T) = =
∑
i∈N

(√
λAi

)
T
(√

λAi

)∗
+
∑
i∈N

(√
1− λBi

)
T
(√

1− λBi

)∗
.

Proof. 1) By definition, if L1 and L2 are quantum channels on L1(H),
this means that for i = 1, 2 there exists Hilbert spaces Ki, states ωi on Ki

and unitary operators Ui on Ki such that

Li( T) = TrKi
(Ui (ρ⊗ ωi)U

∗
i ) ,

for all T ∈ L1(H). We shall now consider the Hilbert space K = K1⊗K2, the
quantum state ω = ω1⊗ω2. We consider the natural ampliations Ûi of Ui to
H ⊗ K by tensorizing Ui with the identity operator on the space Kj where
it is not initially defined. Finally, put U = Û2Û1, it is obviously a unitary
operator on H⊗K. Now we have, using basic properties of the partial traces

TrK (U(T⊗ ω)U∗) = TrK1⊗K2

(
Û2Û1(T⊗ ω1 ⊗ ω2)Û

∗
1Û

∗
2

)
= TrK2

(
TrK1

(
Û2(U1(T⊗ ω1)U

∗
1 ⊗ ω2)Û

∗
2

))
= TrK2 (U2 (TrK1 (U1(T⊗ ω1)U

∗
1)⊗ ω2)U

∗
2)

= TrK2 (U2(L1(T)⊗ ω2)U
∗
2)

= L2 (L1(T)) .
We have obtained L2 ◦ L1 as the partial trace T 7→ TrK (U(T⊗ ω)U∗).

By definition, it is a quantum channel.
The unitary dilations of L1 and L2 can be chosen in such a way that ω1

and ω2 are pure states |ψi⟩ ⟨ψi| (Theorem 6.7). We are given orthonormal
bases (ei)i∈N and (fj)j∈N of K1 and K2 respectively. In the proof of Theorem
6.5 it is shown that the coefficients of a Krauss representation of L1 can be
obtained as

Ai = K1 ⟨ei |U1|ψ1⟩K1

and, in the same way, those of L2 are obtained as

Bi = K2 ⟨fj |U2|ψ2⟩K2
.
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Now if we compute those of L2◦L1 we get Mij = K1⊗K2 ⟨ei ⊗ fj|U|ψ1 ⊗ ψ2⟩K1⊗K2

= K2

〈
fj|K1

〈
ei
∣∣∣Û2Û1

∣∣∣ψ1

〉
K1

| ψ2

〉
K2

= K2

〈
fj

∣∣∣∣U2

〈
eK1

∣∣∣Û1

∣∣∣ψ1

〉
K1

∣∣∣∣ψ2

〉
K2

= K2 ⟨fj |U2|ψ2⟩K2K1
⟨ei |U1|ψ1⟩K1

= Bj Ai.
This gives the announced Krauss representation, together with a proof of

the strong convergence of
∑

i,j∈N A∗
i B∗

j Bj Ai. We have proved 1).
The property 2) is very easy to prove, using directly their Krauss decom-

positions.

9 Examples of Quantum Channels

Here are some concrete physical examples of Quantum Channels
Spontaneous EmissionHere is the amplitude-damping channel or spon-

taneous emission. Here the environment is 2 dimensional and the unitary
evolution is given by

U(|0⟩ ⊗ |0⟩) = |0⟩ ⊗ |0⟩U(|1⟩ ⊗ |0⟩) =
√
1− p|1⟩ ⊗ |0⟩+√

p|0⟩ ⊗ |1⟩.

In other words, if the small system is in the ground state |0⟩ then nothing
happens, if it is in the excited state |1⟩ then it may emit this energy into the
environment with probability p. This is the simplest model of spontaneous
emission of an excited particle: the excited particle goes down to the ground
state, emiting a photon into the environment.

In this model there are only two Krauss operators for the associated
completely positive map:

M0 =

(
1 0
0

√
1− p

)
, M1 =

(
0

√
p

0 0

)
.

Successive applications of the associated completely positive map L make
any initial state ρ0 converge exponentially fast to the ground state

ρ∞ =

(
1 0
0 0

)
= |0⟩⟨0|.

That is, as we explained above, the system HA ends up emitting all its
energy into the environment and hence converges to the ground state.
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The Depolarizing Channel
The quantum channel that we describe here is part of the so-called noisy

channels in Quantum Information Theory. The noisy channels describe what
occurs to a qubit which is transmitted to someone else and which is affected
by the fact that the transmission is not perfect: the communication channel
has to undergo some perturbations (some noise) coming from the environ-
ment. Hence, the noisy channel tries to describe the typical defects that the
quantum bit may undergo during its transmission.

The noisy channel that we shall describe is the depolarizing channel. It
describes the fact that the qubit may be left unchanged with probability
q = 1 − p ∈ [0, 1], or may undergo, with probability p/3, one the three
following transformations: - bit flip: - phase flip: - both:

This channel can be represented through a unitary evolution U stak-
ing a four dimensional environment HE with orthonormal basis denoted by
{|0⟩, |1⟩, |2⟩, |3⟩}. More precisely, the small system is HA = C2, which we
identify to the subspace HA ⊗ |0⟩ of HA ⊗ HE. The operator U acts on
HA ⊗HE by

U(|ψ⟩⊗|0⟩) =
√
1− p|ψ⟩⊗|0⟩+

√
p

3
[σx|ψ⟩ ⊗ |1⟩+ σy|ψ⟩ ⊗ |2⟩+ ++σz|ψ⟩ ⊗ |3⟩]

and U is completed in any way as a unitary operator on HA⊗HE. The effect
of the transform U when seen only from the small system HA is then

L(ρ) = TrK (U(ρ⊗ |0⟩⟨0|)U∗) .

An easy computation gives the Krauss representation

L(ρ) =
3∑

i=0

MiρM
∗
i

with

M0 =
√
1− pI,M1 =

√
p

3
σx,M2 =

√
p

3
σy,M3 =

√
p

3
σz.

Another interesting way to see this map acting on density matrices is
to see it acting on the Bloch sphere. Recall that any qubit state can be
represented as a point (x, y, z) in the 3 dimensional ball:

ρ =
1

2
(I + xσx + yσy + zσz)
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with x2 + y2 + z2 ≤ 1. An easy computation shows that

L(ρ) = 1

2

(
I +

(
1− 4p

3

)
(xσx + yσy + zσz)

)
.

As a mapping of the ball, the depolarizing channel acts simply as an
homothetic transformation with rate 1− 4p/3.
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