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1 Introduction

This seminar talk will cover the following:

• Discussing the primary obstacle in quantum systems realization: decoher-
ence. Additionally, examining fundamental strategies for addressing this
challenge through introductory error correction approaches such as the
Shor quantum code, an expansion of the traditional three-bit repetition
code.

• Highlighting the discrepancy between theory and practical implementation
in quantum computing. Theoretical knowledge suggests starting with el-
ementary quantum logic gates and integrating them into more complex
quantum networks.

• Addressing the practical difficulties encountered when more quantum gates
are networked together, leading to significant operational challenges due to
increased qubit interactions. This makes it increasingly difficult to isolate
the qubits from environmental entanglement.

• Decoherence is identified as a critical issue that compromises the unique
interference abilities of quantum computers, thereby reducing their com-
putational power.

• Introducing error correcting codes as a solution to combat decoherence.
These codes are designed to protect data from errors by distributing the
information across a greater number of ancillary qubits.
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2 The Three-Qubit Code

Isometries and Quantum Error Correction:

– Isometric operators V map one Hilbert space to another and satisfy
V V † = I. These isometries can be reversed or corrected by applying
V †.

– A quantum channel E : B(H) → B(H′) is correctable if there exists
a recovery channel R : B(H′) → B(H) such that R◦E is the identity
on the input space of the channel.

Correctable Channels and Isometries:

– Only completely correctable channels are those equivalent to statis-
tical mixtures of isometries that are mutually orthogonal.

– Visualization of correctable (left) and non-correctable (right) chan-
nels, where each isometry Vi leads to different spaces with some prob-
ability pi.

The Three-Qubit Code Example:

– Encoding a qubit state α|0⟩ + β|1⟩ into three qubits by introducing
two ancilla qubits in state |00⟩ and applying a unitary operation that
entangles them, resulting in the state α|000⟩+ β|111⟩.

– This encoding is an isometric embedding of the original qubit’s Hilbert
space into the Hilbert space of the three qubits, and can be reversed
with the mirror image circuit.

Decoding and Error Detection:

– Given four isometries Vi which form the output of the channel, one
can reverse the encoding to retrieve the original state if the particular
isometry used is known.

– Projections on specific subspaces defined by the isometries allow for
error detection and correction by applying corresponding projections
in the respective subspace.

Visualizing Isometries and Correctable Channels:

– The illustration shows how four isometries can be implemented and
how to reverse these operations in the error correction process.
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3 Towards Error Correction

Inverting Quantum Channels:

– In quantum error correction, the act of choosing a random isometry
from a set can be considered as the encoding step, resulting in a
specific encoded state.

Expressing Isometries with Unitary Operators:

– Expressing four isometries Vi for encoding a single qubit into a three-
qubit state can be written using tensor products of unitary operators
and V00.

– The encoding process is then perceived as randomly picking between
four distinct noise processes, each represented by an isometry followed
by a noise operation.

Error Correction Process:

– Error correction involves identifying which specific error has occurred,
fixing it, and then reversing the encoding. This process is known as
decoding.

– Quantum error correction can be visualized as a three-step process:
encoding, noise introduction through a channel, and error detection
followed by decoding.

Stabilizer Formalism:

– The stabilizer formalism provides a natural way to describe error-
correcting codes, using stabilizers to define the code space.

– The correctable space (without error) and the error can be identified
by measuring the stabilizer values. Identifying the error involves
determining which of the possible errors (related to the stabilizers)
has occurred based on the measurement outcomes.

Generalizing Isometries for Error Correction:

– If a set of correctable isometries are related by Vi = UiV0 for some
set of unitaries {Ui} with UiUj = δij , then the encoding operation
V0 provides protection against the errors Ui.
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4 Understanding Quantum Errors as Discrete
Events

– The entanglement of a quantum computer with its environment re-
sults in a discernible trail of the computation within the environment,
which is pivotal in understanding quantum errors.

– Quantum computation can lead to distinct environmental outcomes,
represented by two states |0⟩env|0⟩c and |1⟩env|0⟩c, indicating which
computational path was taken.

– In the absence of decoherence, two final states are indistinguishable
unless the environment retains no information about the computa-
tional path.

– Decoherence is understood by tracing over the environment, evolving
the state |ψ(t)⟩ to a mixed state, which is achieved by observing the
environment’s influence on the quantum state.

– As the environmental interaction increases (as captured by a pa-
rameter ϵ), the system evolves from a pure state to a mixed state,
signifying the occurrence of decoherence.

– This process is conceptualized as quantum computation leaking into
the environment, transforming the computational process from a co-
herent superposition into discrete outcomes.

Mathematical Representation:

– The evolution of a quantum state influenced by the environment can
be expressed as:

|ψ(t)⟩ → α|0⟩c|f0(ϵ)⟩env + β|1⟩c|f1(ϵ)⟩env, (1)

where |fi(ϵ)⟩env are the environmental states correlated with the com-
putational basis states |i⟩c.

– When ϵ→ 0, the system tends toward no environmental interaction,
preserving quantum coherence.

– The limit of this process as ϵ approaches zero relates to the idea of
discretizing quantum errors and how we perceive them in computa-
tional operations.

Stabilizer Formalism:

– The stabilizer formalism provides insight into error correction, where
errors are identified by their impact on the stabilizers of the quantum
state.

– In practice, we measure stabilizers to detect and correct errors, en-
suring the quantum state remains in the correct computational sub-
space.
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Concluding Thoughts:

– Decoherence showcases how quantum computation shifts from an
ideal, coherent state to an error-prone, discretized state due to envi-
ronmental interactions.

– Understanding these discrete errors is essential for developing effec-
tive quantum error correction techniques.
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5 Digitizing Quantum Errors

– The interaction between a qubit and its environment can be repre-
sented by a general transformation, which impacts the qubit’s state
by entangling it with the environment’s states.

– When environmental states are neither normalized nor orthogonal,
decoherence arises, leading to a mixed state of the quantum system.

Representing Environmental Impact:

– The effect of the environment on a qubit in a superposition state
|ψ⟩ = α|0⟩+ β|1⟩ can be modeled as:

|ψ⟩ → |ψ⟩|e0⟩+ Z|ψ⟩|e1⟩+X|ψ⟩|e2⟩+ Y |ψ⟩|e3⟩
2

, (2)

where X,Y, Z are the Pauli matrices representing bit-flip, phase-flip,
and both errors respectively, and |ei⟩ are the environmental states.

Types of Quantum Errors:

– Four primary events can occur to the qubit due to environmental
interaction: no change, phase-flip, bit-flip, and both bit and phase
flip.

– Accurate error identification and correction depend on the distin-
guishability of the environmental states.

Simplifying Error Correction:

– Quantum errors can be reduced to two fundamental types: bit-flip
and phase-flip errors.

– Pauli error correction is pivotal as it implies that correcting Pauli
errors is sufficient to correct all possible errors.

Quantum Error Evolution:

– For n qubits in a state |ψ⟩, and an environmental state |e⟩, the evolu-
tion can be expressed as a sum over tensor products of Pauli operators
and environmental states:

|ψ⟩ →
∑
i

Ei|ψ⟩|ei⟩, (3)

where Ei are tensor products of the Pauli operators acting on n-
qubits.

Kraus Operators and Quantum Channels:

– Quantum channels can be described using Kraus operators Ei, trans-
forming a state ρ into a mixed state through their action.
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– The probability of each error occurring is related to the square of the
norm of the corresponding environmental state in the mixture.

Closing Remarks:

– The discretization of quantum errors is crucial for quantum error cor-
rection and can be described using the formalism of quantum chan-
nels and Kraus operators.

– Understanding these concepts allows us to devise strategies to miti-
gate the effects of decoherence and maintain the fidelity of quantum
computations.
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6 Recoherence in Quantum Systems

– Recoherence aims to undo the entanglement caused by decoherence
between a quantum system and its environment.

– If we could observe the environment without disturbing the system,
we could revert to the original state before decoherence. In practice,
we work with a subsystem that we control, called an ancilla.

Coupling to an Ancilla:

– We manage decoherence by coupling our quantum system to an an-
cilla that we control, which then interacts with the environment. This
process prepares the ancilla in a specific state, attempting to reverse
the decoherence.

Decoherence and Recoherence Process:

– The combined action of decoherence and subsequent recoherence can
be expressed as:

R(E(|ψ⟩⟨ψ|)) =
∑
i,j

RijEj |ψ⟩⟨ψ|E†
iR

†
ij , (4)

where Ei are error operators due to decoherence, and Rij are reco-
herence operators.

Ideal Outcome:

– The desired outcome is to disentangle the qubits from the environ-
ment and have the ancilla entangled with nothing else, achieving a
state like |a⟩ (a pure ancilla state).

Practical Challenges:

– Achieving this ideal disentanglement for all states is too challenging.
We focus on a subset of recoverable states belonging to the codespace.

Error Correction via Recoherence:

– The recoherence operator is designed to correct certain errors. If it
can correct Pauli errors, it can also correct a combination of such
errors.

Correcting Quantum Errors:

– A successful quantum error correction method that corrects errors
Ei and Ej will also correct their combination.
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– For example, a three-qubit encoding corrects single-bit errors. If
a system can correct these, it can correct a wider range of errors,
demonstrated by the relationship:

Ra,b = δa,bA1 (5)

where A1 is a recovery operator that acts on the codespace.

Closing Notes:

– Recoherence is the counterpart to decoherence, providing a pathway
to recover information and maintain the integrity of a quantum state.

– Understanding and implementing recoherence is a pivotal step to-
wards reliable quantum computation and error correction.
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