CHAPTER 2 -QUBITS
[Considering quantum bits and quantum circuits]

- Classical information theory \longrightarrow strings of Is and Os \rightarrow in this case, when considering on individual bit, it doesn't provide a huge amount of information and is not the most interesting
- Quantum world \rightarrow quantum bits ("quails")
\rightarrow These provide a whole range of different cases and matherratical scenarios
$L \stackrel{\leq . g}{\underline{L}}$ Single-qubit intefperle is the fundoreild building block for quantum computing

Now Let Us Investigate and Understand This In More Detail...
(1) COMPOS ING QUANTUM OPERATIONS

- To understand this in detail, let us consider the most simple case
ie Quantum interference in the simplest possible computing machine
\rightarrow Here, there ae two computational states: $|0\rangle$ and $|1\rangle$
\rightarrow The machine begins in state $|0\rangle$ before it "evolves" with a number of computational steps which transitions the machine between its states
\checkmark The output state, denoted as $|\psi\rangle$ can be seen as such:

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle
$$

ie two output states are reached according to the probability coefficients of α_{0} and α_{1}

- In the more general case, each computational step can be called U and sends state $|K\rangle$ to state $|l\rangle$ where $K, L=0,1$ with some amplitude $U_{1 K}$:

$$
|k\rangle \rightarrow \sum_{l} U_{1 k}|l\rangle
$$

ie The state K evolves into state L with probability amplitude $U_{l K}$ and probability $\left|U_{l K}\right|^{2}$ The whole event is the superposition of all these, hence the sum

- Considering this, any computational step U con be seen by matrix:

$$
U_{K L}=\left[\begin{array}{ll}
U_{00} & U_{01} \\
U_{10} & O_{11}
\end{array}\right] \quad \begin{gathered}
\text { considers all } \\
\text { transition amplititues }
\end{gathered}
$$

WHere, Uk represents amplitude of transition from the respective states $|k\rangle$ and $|l\rangle$ L Each entry is unitary \rightarrow since their moduli squared are probabilities

$$
\rightarrow \quad U^{+} U=U U^{\dagger}=1 \text {, whee } U^{+} \text {is a joint matrix }
$$

- This con also be represented by a diagram:

- NOW: Let us consider quantum interference with two steps, U and V

What amplitude that input $|K\rangle$ will gererale $|m\rangle$? We must consider every case, as on the diagram...

- This shows all the possible output examples with each combined computational path

$$
\begin{gathered}
\text { e.g } \left.|0\rangle \text { and }|1\rangle: \text { by route }|0\rangle \rightarrow|0\rangle \rightarrow|1\rangle \begin{array}{ll}
|0| & {\left[\begin{array}{ll}
V_{10} & U_{00}
\end{array}\right]} \\
& : \text { by route }|0\rangle \rightarrow|1\rangle \rightarrow|1\rangle
\end{array} \begin{array}{ll}
V_{11} & U_{10}
\end{array}\right] \\
\therefore \text { Total amplitude }=V_{10} U_{00}+V_{11} U_{10}
\end{gathered}
$$

where the interference term is $\left|V_{10} V_{00}+V_{11} V_{10}\right|^{2}$

- More generally therefore:

$$
|K\rangle \rightarrow \sum_{l} U_{l k}|l\rangle \quad|l\rangle \rightarrow \sum_{m} U_{m L}|m\rangle
$$

- And composing the two, we apply V and then V :

$$
\begin{aligned}
|K\rangle & \rightarrow \sum_{l} U_{l k}\left(\sum_{m} V_{m l}|m\rangle\right) \\
& =\sum_{m}\left(\sum_{l} V_{m l} U_{l k}\right)|m\rangle \\
& =\sum_{m}(V U)_{m k}|m\rangle
\end{aligned}
$$

in another way, we can multiply the matricies, which bakes care of the multiplication and addition of amplitudes corresponding to each path
(2) QUANTUM BITS (QUBITS)

- A two state machine as described con also be called a quit e.g for an atom $|0\rangle$ is ground state and $|1\rangle$ the excited state

4 Some pulses of light con take atoms between $|0\rangle$ and $|1\rangle$ states
\rightarrow Other pulses of light can take the atom into states with no classical analogue Δ These are coherant superpositions of $|0\rangle$ and $|1\rangle$ ie a quit in $|0\rangle$ with some amplitude α_{0} and in $|1\rangle$ with some amplitude in α_{1}

This con be seen as $|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \leftrightarrow\left[\begin{array}{l}\alpha_{0} \\ \alpha_{1}\end{array}\right]$

Therefore, a concluding set of scenarios car be seen as:

|0)

11)
$|\psi\rangle$

- We know from Born's rule that α_{0} and α_{1} cannot be arbitron complex numbers and must satisfy $\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1$
\rightarrow We con thus draw a state vector geometrically...

We must take this with a pinch of salt since amplitudes ARE complex numbers

Therefore α_{0} and α_{1} cannot be drawn as 1 -dimensiond vectors, although it provides a good generd understanding

We can describe the new quit computation U with our matrix representation:
The quit state modification con be seen as:

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

Which we con write as:

$$
\left[\begin{array}{l}
\alpha_{0}^{\prime} \\
\alpha_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
U_{00} & U_{01} \\
U_{10} & U_{11}
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right]
$$

ie Operation U turns the state $|\psi\rangle$, with components α_{k} into $\left|\psi^{\prime}\right\rangle=U|\psi\rangle$
with components $\alpha_{l}{ }^{\prime}=\sum_{k} U_{1 k} \alpha_{k}$

AS A CONCLUDING THOUGHT:

- Qubit is a quantum system where boolean stales 0 and 1 are represented by a prescribed pair of states $|0\rangle$ and $|1\rangle$
- The coherent superposition can be written as:

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle
$$

such that $\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1$
(3) QUANTUM GATES AND CIRCUITS

- Qubits (e.g atoms, trapped ions, molecules, nuclear spins) can be used to implement simple quantum interference and thus computation
- Any manipulations on quits have to be performed by physically admissible operations which are represented by unary transformations

SOME DEFINITIONS:

- Quantum Logic Gate - Device which performs a fixed unitary operation on selected quits in a fixed period of time
- Quantum Circuit - Device consisting of quantum logic gates whose computational steps are synchronised in time
- Circuit Size - The number of gates it contains
- Circuit Depth - Number of layers of gates in a circuit
(gates can be layered where they operate simultaneously)
- Using these definitions, a unitary U acting on a single quit can be represented diagrammatically as:

This shows two gates acting on the same quit, U followed by V
\rightarrow con be described by matrix product VU
(4) SINGLE QUBIT INTERFERENCE
V. IMPORTANT

- Constructed as a sequence of three elementary operations:
(1) The Hadamard Gate
(2) A Phase -Shift Gate
(3) The Hadamard Gate (again)

$$
|0\rangle-H \quad H \quad \cos \frac{e}{2}|0\rangle-i \sin \frac{e}{2}|1\rangle
$$

- We have seen these before in the previous seminar:

Hadamard

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \rightarrow|+\rangle
$$

Phase-Shift $\quad P_{e}=\left[\begin{array}{ll}1 & 0 \\ 0 & e^{i \varphi}\end{array}\right] \quad \begin{aligned} & |0\rangle \rightarrow \\ & |1\rangle \rightarrow e^{i e}|1\rangle\end{aligned}$

- These gates ae FUNDAMENTAL \rightarrow They will prop up over again
- Quantum vs Classical Computers

Quantum computers are not necessarily quicker than classical computers BUT They can implement quantum algorithms, some faster than classical ones

They do not just "do all the computations at once"
BUT They rely on thoughtfully using interference, either destructive or constructive, to modify problems
i. The power of quantum computing comes from quantum intefferesce

- When considering this sequence HPeH, we can express this as the product of the three matricies to show the transition amplitwes between states $|0\rangle$ and $|1\rangle$:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \psi}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=e^{i \frac{\psi}{2}}\left[\begin{array}{cc}
\cos \psi / 2 & -i \sin \psi / 2 \\
-i \sin \psi / 2 & \cos \psi / 2
\end{array}\right]
$$

- We can say that the majority of the time the input state is $|0\rangle$. Therefore we con follow the interference circuit step by step:

$$
\begin{aligned}
& |0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \quad \begin{array}{l}
\text { Prepares equally weighted } \\
\text { superposition of }|0\rangle \text { and } \mid 1
\end{array} \\
& \xrightarrow{P_{\phi}} \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi}|1\rangle\right) \quad \begin{array}{c}
\text { controls entire evolution and } \\
\text { determines output }
\end{array} \\
& \xrightarrow{H} \cos \frac{\phi}{2}|0\rangle-i \sin \frac{\phi}{2}|1\rangle \\
& \text { closes interference by bringing } \\
& \text { paths together }
\end{aligned}
$$

Overall the probability of finding the qubit in either $|0\rangle$ or $|1\rangle$ are:

$$
\begin{aligned}
& \operatorname{Pr}(0)=\cos ^{2} \frac{\phi}{2} \\
& \operatorname{Pr}(1)=\sin ^{2} \frac{\phi}{2}
\end{aligned}
$$

Thus, the Hadamard - Phase Shit - Hadamard can be seen as a fundamental quantum computation
(1) We prepare different computational paths [Hadomard]
(2) We evaluate function which introduces phase shifts [Phace-Shits]
(3) We bring logeter computational paths [Hadamard]
(5) THE SQUARE ROOT OF NOT

- In this section, we must consider how quantum logic challenges conventional logic

Let us pose the question:
Design a gate that operates on a single bit which, when followed by an identical gate, the output is always the negation of the input.
We con denote the resulting logic gate as $\sqrt{\text { NOT }}$ so that...
$\sqrt{\mathrm{NOT}}-\sqrt{\mathrm{NOT}}$
NOT

- In conventional logic, considering truth tables, this is impossible \rightarrow no operation con exist BUT it does exist...

$$
\sqrt{\text { NOT }}=\frac{1}{2}\left[\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
e^{i \frac{\pi}{4}} & e^{-i \frac{\pi}{4}} \\
e^{-i \frac{\pi}{4}} & e^{i \frac{\pi}{4}}
\end{array}\right]
$$

This works since

$$
\frac{1}{2}\left[\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$\sqrt{\text { NOT }}$

NOT

As with previously, we con denote this as the evolution of states

$$
|0\rangle \stackrel{\sqrt{N O T}}{\longmapsto} \frac{1}{\sqrt{2}}\left[e^{i \frac{\pi}{4}}|0\rangle+e^{-i \frac{\pi}{4}}|1\rangle\right] \stackrel{\sqrt{N O T}}{\longmapsto}|1\rangle
$$

In any representation, quantum theory explains the behaviov/ of $\sqrt{\text { NOT }}$ \rightarrow Therefore, $\sqrt{\text { NOT }}$ must exist as thee exists a physical model for it in nature
(6) PHASE GATES GALORE

- We have seen the phase gate already in quit interference:

$$
P_{\psi}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \psi}
\end{array}\right] \quad \begin{array}{llr}
|0\rangle & \longmapsto & |0\rangle \\
|1\rangle & \longmapsto & e^{i \psi}|1\rangle
\end{array}
$$

However, there ore three specific examples of phase gates:

Phase-
flip

0 \& -1\end{array}\right]\)
$\begin{array}{ccc}|0\rangle & \longmapsto & |0\rangle \\ |1\rangle & \longmapsto & -|1\rangle\end{array}$
global phase factor $=e^{i \frac{\psi}{2}}$
$\begin{aligned} & \frac{\pi}{4}- \\ & \text { phase }\end{aligned} \quad S=\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$
$\begin{array}{llc}|0\rangle & \longmapsto & |0\rangle \\ |1\rangle & \longmapsto & i|1\rangle\end{array}$
Additionally, states which differ by a
$\begin{aligned} & \frac{\pi}{8}- \\ & \text { phase }\end{aligned} \quad T=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \frac{\pi}{4}}\end{array}\right]$
$\begin{array}{lll}|0\rangle & \longmapsto & |0\rangle \\ |1\rangle & \longmapsto & e^{i \frac{\pi}{4}}|1\rangle\end{array}$ global phase are indistinguishable

Note: Phase gates can be written as either

$$
\left.P_{\psi}=\left[\begin{array}{ll}
1 & 0 \\
0 & e^{i \psi}
\end{array}\right]=\left[\begin{array}{cc}
e^{-i \frac{\omega}{2}} & 0 \\
0 & e^{i \frac{\omega}{2}}
\end{array}\right]\right\}
$$

Whee the second version is useful as it has determinant of 1 and belongs to a group which is called SU(2)

Phase flip Z is arguably the most important since it is one of the Pauli operators...
\rightarrow Rimas will discuss this in the next talk

