
Quantum Merlin-Arthur (QMA) Verification

Naomi Jiang

1 Introduction

Interactive proof systems and Arthur-Merlin games model the notion of compu-
tationally efficient verification. These systems involve a polynomial-time verifier
interacting with a computationally unbounded prover to validate claims about
input strings being part of a specific language.

1.1 Interactive Proof Systems

In an interactive proof system, a verifier with access to private random bits
interacts with a prover to verify claims. The interaction typically involves a
series of messages exchanged between the verifier and the prover, aiming to
ascertain the membership of an input string in a predetermined language.

1.2 Arthur-Merlin Games

The Arthur-Merlin game is a variant of the interactive proof system. It restricts
the verifier (Arthur) to using a public source of randomness that is also visible
to the prover (Merlin). Unlike traditional interactive proofs, where the verifier’s
random bits are private, in Arthur-Merlin games the random source is public,
which affects the interaction dynamics but not the computational performance.

2 Complexity Classes

Arthur-Merlin games and interactive proof systems, though structurally dif-
ferent, are computationally equivalent in terms of the complexity classes they
generate. This equivalence and the definitions of several important complexity
classes are discussed below.

2.1 AM and MA

• AM (Arthur-Merlin): This class is defined by games in which exactly
two messages are exchanged—the first from Arthur to Merlin, followed by
a response from Merlin back to Arthur. It is equivalent to any language
that has an interactive proof system with a constant number of message
exchanges.

1

• MA (Merlin-Arthur): A subset of AM, where the game involves only
one effective message being sent from the prover (Merlin) to the verifier
(Arthur). Typically, this class is seen as a probabilistic variant of NP,
where the verifier uses randomness in the decision process. MA can be
described using two-message Arthur-Merlin games where the second mes-
sage is not counted as it does not convey new information but merely uses
the random source.

3 QMA Verification Procedure

Definition 1 (QMA Verification Procedure). A QMA verification procedure A
is defined as a family of quantum circuits {Ax : x ∈ Σ∗} that is generated in
polynomial time. Associated with this is a function m ∈ poly, which specifies the
length of Merlin’s message to Arthur. It is assumed that each circuit Ax acts
on m(|x|) + k(|x|) qubits where k is a function indicating the number of work
qubits used by the circuit.

3.1 Simplification of Notation

In practice, when the input x is fixed or implicit in discussion:

• write m to mean m(|x|),

• write k to mean k(|x|).

We refer to A as an m-qubit QMA verification procedure when focusing on the
length of Merlin’s message.

3.2 Complexity Classes QMA(a, b) and QMAm(a, b)

Definition 2 (Class QMA(a, b)). The class QMA(a, b) consists of all languages
L ⊆ Σ∗ for which there exists a QMA verification procedure A for which the
following holds:

1. For all x ∈ L there exists an m-qubit quantum state |ψ⟩ such that
Pr[Ax accepts |ψ⟩] ≥ a.

2. For all x /∈ L and all m-qubit quantum states |ψ⟩, Pr[Ax accepts |ψ⟩] ≤ b.

Definition 3 (Class QMAm(a, b)). For any m ∈ poly, the class QMAm(a, b)
consists of all languages L ⊆ Σ∗ for which there exists an m-qubit QMA verifi-
cation procedure that satisfies the above properties. One may consider the cases
where a and b are constants or functions of the input length n = |x|. If a and b
are functions of the input length, it is assumed that a(n) and b(n) can be com-
puted deterministically in time polynomial in n. When no reference is made to
the probabilities a and b, it is assumed a = 2

3 and b = 1
3 .

2

3.3 Strong Error Reduction in QMA

3.3.1 Kitaev’s Error Reduction

Let a, b : N → [0, 1] and q ∈ poly satisfy the condition that a(n) − b(n) ≥ 1
q(n)

for all n ∈ N. Then, QMA(a, b) ⊆ QMA(1− 2−r, 2−r) for every r ∈ poly.
The proof’s central idea is as follows:

Consider a quantum verification procedure A with two key proba-
bilities:

• Completeness probability (a): Probability that A accepts if the
input is in the language.

• Soundness probability (b): Probability that A accepts if the
input is not in the language.

Procedure Construction:

1. Multiple Independent Runs: Run A several times independently
using copies of the potential solution (quantum state).

2. Acceptance Counting: Count how many times A accepts the
solution across these runs.

3. Threshold Comparison: Compare this count to a threshold set
at a+b

2 . If the count exceeds this threshold, the new procedure
accepts the solution.

Key Challenges and Insights:

• The new verification may involve complex quantum states (pos-
sibly entangled). However, entanglement does not increase the
cheating potential significantly.

• If the input is not in the language (x /∈ L), the probability of
a single run accepting the solution is at most b, regardless of
entanglement.

• This strategy improves reliability by using the law of large num-
bers, essentially averaging out the fluctuations in individual test
outcomes.

This construction requires an increase in the length of Merlin’s mes-
sage to Arthur in order to reduce error

3.3.2 Error Reduction in QMA with Fixed Message Length

The main result of this section is the following theorem, which states that one
may decrease error without any increase in the length of Merlin’s message.

Statement: Let a, b : N→ [0, 1] and q ∈ poly satisfy

a(n)− b(n) ≥ 1

q(n)

3

for all n ∈ N. Then QMAm(a, b) ⊆ QMAm(1− 2−r, 2−r) for every m, r ∈ poly.
Proof: Assume L ∈ QMAm(a, b), and letA be anm-qubit QMA verification

procedure that witnesses this membership. We construct a new m-qubit QMA
verification procedure B that aims to drastically reduce the completeness and
soundness error for the language L.

Procedure Construction: The key to B’s construction is to simulate the
original procedure A repeatedly while managing a carefully tuned threshold for
acceptance based on the aggregated outcomes. Here are the detailed steps and
logic:

1. The input x is fixed (for simplification), and we consider A and B as Ax

and Bx, respectively.

2. We define a quantum register R that combines m message qubits and k
workspace qubits from A, making an m+ k qubit register.

3. We define projection operators Π1 = |1⟩⟨1| ⊗ Im+k−1, ∆1 = Im⊗ |0k⟩⟨0k|,
and similar for Π0 and ∆0. These are used to measure whether the first
qubit is in the state |1⟩ or |0⟩ and whether the last k qubits are all zeros,
respectively.

Operational Logic of B:

1. Initialization: Assume the initial state where the first m qubits contain
Merlin’s message |ψ⟩ and the remaining k qubits are set to |0k⟩.

2. Iteration Setup: Set y0 ← 1 and i← 1.

3. Repeat Process:

a. Apply A and Measure: Apply the verification procedure A to the
register R, and then measure R using the projections {Π0,Π1}. Let
yi denote the outcome of this measurement, and then increment i by
1.

b. Apply A† and Measure: Apply A† (the inverse of A) toR and measure
R using the projections {∆0,∆1}. Update yi with the outcome and
increment i by 1.

4. Termination Condition: Continue the above steps until i ≥ N , where
N = 8q2r.

5. Decision Rule:

a. For each i = 1, . . . , N , set zi as follows:

zi =

{
1 if yi = yi−1

0 if yi ̸= yi−1

b. Final Acceptance: The procedure B accepts if the sum of zi from 1
to N is at least N · a+b

2 , otherwise, it rejects.

4

3.4 Applications of strong error reduction

3.4.1 QMA ⊆ PP

Proof: Let L ⊆ Σ∗ be a language in QMA. According to the strong error
reduction, there exists a polynomial function m such that

L ∈ QMAm

(
1− 2−(m+2), 2−(m+2)

)
.

Let A be a verification procedure that witnesses this fact. Specifically, each
circuit Ax acts on k+m qubits, for some k in polynomial time, and satisfies the
following:

• If x ∈ L, then there exists an m-qubit state |ψ⟩ such that

Pr[Ax accepts |ψ⟩] ≥ 1− 2−m−2,

• If x /∈ L, then
Pr[Ax accepts |ψ⟩] ≤ 2−m−2

for every m-qubit state |ψ⟩.

For each x ∈ Σ∗, define a 2m × 2m matrix Qx as

Qx =
(
Im ⊗ ⟨0k|

)
A†

xΠ1Ax

(
Im ⊗ |0k⟩

)
.

Each Qx is positive semidefinite and ⟨ψ|Qx|ψ⟩ = Pr[Ax accepts |ψ⟩] for any unit
vector |ψ⟩ on m qubits. The maximum probability with which Ax can be made
to accept is the largest eigenvalue of Qx. Since the trace of a matrix is equal to
the sum of its eigenvalues and all eigenvalues of Qx are nonnegative, it follows
that:

• If x ∈ L, then tr(Qx) ≥ 1− 2−m−2 ≥ 3
4 ,

• If x /∈ L, then tr(Qx) ≤ 2m2−m−2 ≤ 1
4 .

Using a modification of the method of [FR99], we define polynomially-
bounded functions g and GapP functions f1 and f2 such that:

ℜ(Qx[i, j]) =
f1(x, i, j)

2g(x)
, ℑ(Qx[i, j]) =

f2(x, i, j)

2g(x)
,

for 0 ≤ i, j < 2m. Define

h(x) =

2m−1∑
i=0

f1(x, i, i).

Since GapP functions are closed under exponential sums, h ∈ GapP and

h(x) =
2

2g(x)
tr(Qx),

5

therefore,

x ∈ L⇒ h(x) ≥ 3

4
2g(x), x /∈ L⇒ h(x) ≤ 1

4
2g(x).

Because 2g(x) is an FP function, it follows that 2h(x)−2g(x) is a GapP function
that is positive if x ∈ L and negative if x /∈ L. Thus, L ∈ PP as required.

3.4.2 Remark 3.5: Extension to A0PP

A simple modification of the proof for Theorem 3.4 shows that QMA is also con-
tained within A0PP. Specifically, the GapP function 2h(x) and the FP function
2g(x) meet the necessary criteria for A0PP:

• If x ∈ L, then 2h(x) ≥ 2g(x),

• If x /∈ L, then 2h(x) ≤ 1
22

g(x).

3.4.3 QMAlog = BQP

Proof: The inclusion BQP ⊆ QMAlog is straightforward, hence we focus on
proving QMAlog ⊆ BQP . Assume a language L belongs to QMAm for m loga-
rithmic in size, and let A be the QMA verification procedure with completeness
and soundness errors less than 2−(m+2). Define the matrix Qx as:

Qx =
(
Im ⊗ ⟨0k|

)
A†

xΠ1Ax

(
Im ⊗ |0k⟩

)
.

From the prior proofs, we know:

x ∈ L⇒ tr(Qx) ≥
3

4
,

x /∈ L⇒ tr(Qx) ≤
1

4
.

We introduce a polynomial-time quantum algorithm B that decides L with
bounded error. This algorithm constructs a totally mixed state over m qubits
and utilizes the verification procedure A on this state instead of a specific mes-
sage from Merlin. The use of the totally mixed state simulates running A on
uniformly chosen standard basis states, achievable via Hadamard transforms
and reversible computation.

The density matrix for the totally mixed state on m qubits is 1
2m Im, leading

to:

Pr[B accepts x] = tr

(
Qx

2m
Im

)
=

1

2m
tr(Qx).

Given the logarithmic nature ofm relative to the size of x, the probabilities for B
accepting x ∈ L and x /∈ L are sufficiently separated to allow error amplification
by standard techniques, concluding that L ∈ BQP .

6

4 Quantum Arthur-Merlin (QAM) Complexity
Class

The Quantum Arthur-Merlin (QAM) model extends the QuantumMerlin-Arthur
(QMA) verification framework by integrating a sequence of interactions involv-
ing random bits, providing a more dynamic approach to quantum verification.

4.0.1 QAM Verification Procedure

A QAM verification procedure comprises:

• A polynomial-time generated family of quantum circuits {Ax,y : x ∈
Σ∗, y ∈ Σs(|x|)}, where:

– x represents the input string.

– y represents a sequence of coin-flips generated by Arthur.

– s ∈ poly dictates the length of y.

• Each circuit Ax,y operates on two sets of qubits:

– m(|x|) qubits received from Merlin.

– k(|x|) work qubits used by Arthur.

• The acceptance of a message |ψy⟩ by circuit Ax,y mirrors the QMA accep-
tance condition.

4.0.2 QAM Complexity Class Definition

Definition 4.1: The class QAM(a, b) consists of all languages L ⊆ Σ∗ satisfy-
ing:

1. Completeness: For all x ∈ L, there exists a set of states {|ψy⟩} on m
qubits such that the average acceptance probability across all y is at least
a:

1

2s

∑
y∈Σs

Pr[Ax,y accepts |ψy⟩] ≥ a.

2. Soundness: For all x /∈ L and any set of states {|ψy⟩}, the average
acceptance probability is at most b:

1

2s

∑
y∈Σs

Pr[Ax,y accepts |ψy⟩] ≤ b.

Parameters:

• a and b can be constants or functions of the input length n = |x|, with
polynomial-time computability.

• The default values are typically a = 2/3 and b = 1/3 for standard config-
urations.

7

5 Quantum Merlin-Arthur-Merlin (QMAM)

The Quantum Merlin-Arthur-Merlin (QMAM) model extends the QMA frame-
work by incorporating an additional message from Merlin to Arthur, which
allows for more dynamic and potentially more powerful quantum verification
processes.

5.0.1 QMAM Verification Procedure

The QMAM verification involves:

• A polynomial-time generated family of quantum circuits {Ax,y : x ∈
Σ∗, y ∈ Σs(|x|)}, reflecting interactions based on Arthur’s random bits
(y).

• Each circuit Ax,y interacts with qubits divided as follows:

– m1(|x|) qubits for Merlin’s first message.

– m2(|x|) qubits for Merlin’s second message after processing the coin-
flips.

– k(|x|) work qubits in Arthur’s workspace.

• Merlin’s strategy can involve complex actions such as transforming parts of
the quantum state based on the received coin-flips to generate the second
message.

5.0.2 Definition of the QMAM Class

Definition 5.1: A language L ⊆ Σ∗ belongs to QMAM(a, b) if:

1. Completeness: There exists a quantum state |ψ⟩ on m1+m2+ l qubits,
and a set of unitary operations {Uy} such that:

1

2s

∑
y∈Σs

Pr[Ax,y accepts (Im1
⊗ Uy)|ψ⟩] ≥ a.

2. Soundness: For all states |ψ⟩ and unitary operations {Uy}, the accep-
tance probability is bounded by b:

1

2s

∑
y∈Σs

Pr[Ax,y accepts (Im1
⊗ Uy)|ψ⟩] ≤ b.

8

