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Preliminary Info
Notation

﻿: x is defined to be y

﻿: x is another name for y

﻿: Notates a quantum bit holding either ﻿ or ﻿

﻿: Notates an electron of either spin up or spin down

Complex Numbers
A complex number is a ﻿ where ﻿ and ﻿

Euclidean Vectors + Vector Spaces
Basis: Collection of vectors such that every vector in ﻿ can be written in exactly 
one way as a linear combination of the basis vectors

ie). Identity matrix

Complex Vector Space: set ﻿ such that any two vectors ﻿ in ﻿ and any two 
complex numbers ﻿ can form the linear combination ﻿

Must be communicative, associative, have identity, and inverse

Dimension: Number of elements in a basis

Bras & Kets
Ket: Column vector notated by ﻿

Bra: Row vector notated by ﻿

x =: y

x ≡ y

∣0 >, ∣1 > 0 1

∣up >, ∣down >

x + yi x,y ∈ R i = ​−1

V

V a, b V

α,β αa+ βb

∣a >

< a∣
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﻿: Result of matrix multiplication of row and column vectors

Daggers
Hermitian Conjugation: aka dagger operation ﻿

Anti-linear operation that maps a ket to a bra & vice versa. 

﻿ represents kets while ﻿ represents bras. 

Same thing as the conjugate transpose; interchanging rows and columns of ﻿ 
& then taking complex conjugates of each entry.

Geometry Background
Length of a vector given by ﻿

Two vectors are orthogonal if ﻿

Vector can be expressed as a linear combination of basis vectors:

﻿

Operators
Linear Map: Function ﻿ that maps from vector spaces ﻿ represents linear 
combinations ﻿

Hermitian Conjugate: denoted by ﻿ where ﻿ turns 
﻿ matrices into ﻿ matrices

Operator A is said to be:

Normal: if ﻿

Unitary: if ﻿

If unitary, then it must be normal

Hermitian/self-adjoint: if ﻿

Eigenvalues + Eigenvectors
Eigenvector: A non-zero vector ﻿ such that ﻿. 

Assumed length is ﻿, must be orthogonal, so can always be scaled.

< u∣v >

†

H H∗

A

∣∣v∣∣ = ​< v∣v >

< u∣v >= 0

∣v >= ​ v ​∣e ​ >∑i i i

A H ↦ K

A(c ​∣v ​ >1 1 +c ​∣v ​ >2 2 ) = c ​A∣v ​ >1 1 +c ​A∣v ​ >2 2

A , <t i∣A ∣j >=<t j∣A∣i >∗ t

(nxm) (mxn)

AA =t A At

A =t A−1

A =t A

∣v > A∣v >= λ∣v >

1
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Trace: Equal to the sum of eigenvalues

Determinant: Equal to the product of the eigenvalues

Identities

Probabilities
Sample Space: ﻿, set of all possible outcome values

Ex. rolling an odd number on a six sided die has ﻿

Mutually Exclusive: If ﻿

Cannot happen at same time

Independent: ﻿

Events do not depend on each other at all

Ω

Ω = {1, 3, 5}

P(A∧ B) = 0

P(A∧ B) = P(A) ∗ P(B)
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Chapter 1

Introduction

As quoted by the textbook, “information is physical”
“Any information/computation is a physical process”
Thus in order to understand this computation, we must look at the 
underlying physics
“The laws of physics are written in the language of quantum 
physics”

1.1 Probability

Q: What is the difference between a probability and a probability 
amplitude?
A: “Positive real number probabilities replaced with complex 
numbers 

﻿ such that ﻿ are the probabilities in quantum theory”

Probability Probability Amplitude

In classical probability theory, probability
is a measure of the likelihood of an
event occurring.

In quantum mechanics, probability amplitudes are
complex numbers associated with the quantum state
of a system. The square of the magnitude of a

z ∣z∣2
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probability amplitude gives the probability of finding a
particle in a particular state.

It is a real number between 0 and 1,
where 0 represents impossibility, 1
represents certainty, and values in
between represent degrees of likelihood.

Unlike classical probabilities, quantum probability
amplitudes can be added or subtracted with phases,
which leads to interference phenomena.

Classical probabilities are additive,
meaning the probability of either of two
mutually exclusive events occurring is
the sum of their individual probabilities.

Probability amplitudes allow for the description of
wave-particle duality and phenomena such as
superposition.

Quantum physics is essentially a new probability theory that can be summarized in 3 
basic rules:

1. Born’s Rule: For a complex number alpha representing the probability amplitude, 

﻿

2. Product Rule: Totally probability amplitude is the product of two consecutive 
probability amplitudes, ﻿

3. Addition Rule: For a mutually exclusive event where two configurations lead to the 
same end state (alternatives), probability of the end state is the sum of the 
probability amplitudes, ﻿

1.2 Kolmogorov Axioms

Andrey Kolmogorov (1903-1987): Soviet mathematician mainly 
involved in probability theory + information theory. Proposed the 
relativity axiom in “Foundations of Probability Theory”.

1. Once you identify all elementary outcomes/events, you may assign probabilities to 
them where:

2. A probability is a number between ﻿ and ﻿, an event which is certain has probability.

3. Kolmogorov Relativity Axiom: If something can happen in two mutually exclusive 
ways, you add up the probabilities associated with each wave. ﻿

p = ∣α∣2

α = α ​ ∗1 α ​2

α = α ​ +1 α ​2

0 1

P = p ​ +1 p ​2



1/29 Chapter 1 Notes: 6

Though probability theory is ubiquitous in today’s world, it fails to describe many 
quantum phenomena.

1.3 Double Slit Experiment + Interference

There is no fundamental reason why nature should conform to the 
additivity axiom.
Instead, we can “find out how nature works” through 
experimentation.

Particle (in this example, it is a photon) emitted from source ﻿ and can reach the 
detector ﻿ through ﻿ different paths. The results are inconsistent with the predictions of 
probability theory.

Upper slit is taken with probability ﻿, lower slit is taken with probability 
﻿

These two events are mutually exclusive.

Probability theory states that particle should reach detector with probability 

﻿, but this doesn’t happen in experimentation

S

D 2

p ​ =1 ∣z ​∣1
2

p ​ =2 ∣z ​∣2
2

p ​ +1

p ​ =2 ∣z ​∣ +1
2 ∣z ​∣2

2
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Classical probability sum ﻿ is modified by the interference term 
﻿

Relative phase ﻿ determines if interference is positive or negative

Positive: constructive interference

Negative: destructive interference

Can either suppress or enhance total probability ﻿

Proof to obtain quantum interference term:

Where ﻿ are the classical terms and ﻿ are the quantum 
inference terms and * represents the complex conjugate.

Example in the classical case: 

ie. this will work with probabilities, not probability amplitudes

p ​ +1 p ​2

2 ​cos(phi ​ −p ​p ​1 2 2 phi ​)1

phi ​ −2 phi ​1

p

z ​ =1 ∣z ​
∣e1
iϕ ​1

z ​ =2 ∣z ​∣e2
iϕ ​2

p = ∣z∣ =2 ∣z ​ +1 z ​∣2
2

= ∣z ​∣ +1
2 ∣z ​∣ +2

2 z ​z ​ +1
∗

2 z ​z ​1 2
∗

= p ​ +1 p ​ +2 ∣z ​∣∣z ​∣(e +1 2
i(ϕ ​−ϕ ​)2 1 e )−i(ϕ ​−ϕ ​)2 1

= p ​ +1 p ​ +2 2 cos(ϕ ​ −p ​p1 2 2 ϕ ​)1

p ​ +1 p ​2 2 ​cos(ϕ ​ −p ​p ​1 2 2 ϕ ​)1
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Key:

Complex Conjugate: ﻿ (ie. ﻿)

Phase Factor: ﻿

The first part of the equation ( ﻿) is the classical part of the equation

The second part of the equation is the quantum interference (can be positive or 
negative depending on the cosine result being ﻿, & thus can increase or 
decrease probability).

Interpretation by most physicists: the system enters a state where it follows both paths 
at the same time, this challenges Kolmogorov Relativity Axiom.

1.4 Superpositions

“According to quantum theory, a particle that goes through the 
upper and the lower slit with certain amplitudes does explore both 
of the two paths, not just one of them.”

Basis States: particle is either in the upper slit or the lower slit

Superposition States: ﻿

∗ a+ bi ↦ a− bi

ϕ

p ​ +1 p ​2

+ − 1

∣ψ >= α∣upper slit > +β∣lower slit >



1/29 Chapter 1 Notes: 9

aka. particle goes thru upper slit with amplitude alpha & lower slit with amplitude 
beta

Dirac Notation: Using ﻿ to specify whatever the vector represents

ie. spin up/down via ﻿ , or ﻿ for the quantum bit holding ﻿

1.5 Interferometers
Ramsey Interferometry: Generic name for an interference experiment in which 
atoms are sent through two separate Ramsey Zones

Ramsey Zones: “resonant interaction” zones separated by an intermediate 
“dispersive interaction” zone.

The first of these experiments were executed in Paris in the 90s. These 
experiments showed that the clear dependence of the atom’s outcome of either 

﻿ or ﻿ was dependent on the intermediary phase shift, not the Ramsey Zones.

Circle represents rubidium atoms traveling with fixed velocity through three areas with 
pre-selected states ﻿ or ﻿.

Rectangles are cavities containing arrangements of mirrors where you can trap an 
electromagnetic field.

∣ >

∣ ↑>, ∣ ↓> ∣0 >, ∣1 > 0/1

0 1

0 1
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Resonant Interaction: Two external cavities are tuned to the relative frequencies of 
the atom, so the atom exchanges energy with the cavities going back and forth 
between ﻿ and ﻿.

Dispersive Interaction: Central cavity does not induce transition, but instead phase 
shifts. The magnetic field is too off-resonance to exchange energy with the atom, 
but can still acquire a phase shift

1. Atom starts in the ground state & goes through the first cavity where it interacts with 
light there, moving it towards the excited state.

2. In the second cavity the atom undergoes phase shifts to alter the energy levels.

3. The third cavity is the same as the first.

First gate opens quantum inferences, 2nd gate controls action, third gate closes 
quantum interference

0 1
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Calculating the probability amplitude of the Ramsey Interferometer:

Where: ﻿ is the probability amplitude and ﻿ is the phase factor for the cavity

This is the overall probability that the atom enters excited state in cavity ﻿ and stays 
there for cavity ﻿ or that the atom remains grounded in cavity ﻿ and enters excited 
state in cavity ﻿.

We can then square this magnitude to calculate the probability:

α = ​e ​ +
​2

1 iϕ ​2

​2

−1
​e ​

​2

1 iϕ ​2

​2

1

α ϕ

1
3 1

3

p = ∣α∣ =2
​ +

4
1

​ −
4
1

​(cos(ϕ ​ −
4
1

2 ϕ ​)) =1 ​ −
2
1

​(cos(ϕ))
2
1

where ϕ is ϕ ​ −2 ϕ ​1

= ​

2
sin (ϕ)2
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For more detail into how we obtained the probability:

We can turn these probability amplitudes into a matrix:
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Optional Exercises:

1.1:
An old-fashioned incandescent lamp in the attic is controlled by one of three on–
off
switches downstairs labelled A, B and C. But which one? Your mission is to do
something with the switches, then determine after one trip to the attic which 
switch
is connected to the attic lamp.

Solution:

1. Turn switch A on and leave it on for a few minutes.

2. After some time, turn switch A off and turn switch B on.

3. Quickly go up to the attic.

Now, there are three possible scenarios:

If the lamp is on, then switch B controls the lamp.

If the lamp is off but warm to the touch, then switch A controls the lamp.

If the lamp is off and cool, then switch C controls the lamp.
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Here's the explanation:

If switch B is connected, it will be on since it was turned on by the switch

If switch A is connected, it will be on for a bit still since you left it on for a while 
before switching to B. Therefore, the residual heat in the filament will keep the 
lamp warm for a short period.

If switch C is connected, it will be off and cool in the attic.

This solution relies on the physical properties of the incandescent lamp (it retains 
heat even after being turned off) and cleverly uses the switches to determine the 
connection without directly observing the wiring.

1.2:
Mathematicians view computation as an operation on abstract symbols. Any finite set of 
symbols is called an alphabet. A string over an alphabet is a finite sequence of symbols 
from that alphabet. Here, without any loss of generality, we will use the binary alphabet 

﻿. The set of all possible binary strings of length ﻿ is written as ﻿. For 

example, ﻿ contains the strings ﻿ and ﻿. How many elements does 
the set ﻿ contain?

Solution:

﻿, because there are ﻿ possible choices for ﻿ possible digits.

Show that the Hamming distance is a proper metric on the set 
﻿

Solution:
To be a proper metric, we need to demonstrate that it satisfies three properties: non-
negativity, identity of indiscernibles, and the triangle inequality.
1. Non negativity: Hamming distance is non-negative
2. Identity of Indiscernibles: Hamming distance is zero iff the strings are identical

{0, 1} n {0, 1}n

{0, 1}2 00, 01, 10 11
{0, 1}n

2n 2 n

{0, 1}n
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3. Triangle Inequality: Hamming distance between direct route is always less than the 
indirect route

1.3:

1.4:
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