8.5 Subsystems of Entangled Systems

Given a quantum state of the composite system $A B$ described by $\rho_{A B}$, how can we obtain the reduced density operators ρ_{A}, ρ_{B} ?
\rightarrow Partial trace

$$
\begin{aligned}
& \rho_{A B} \longmapsto \rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right) \text { "partial trace over } B^{\prime \prime} \\
& \rho_{A B} \longmapsto \rho_{B}=\operatorname{tr}_{A}\left(\rho_{A B}\right)
\end{aligned}
$$

$t r_{B}(\cdot)$ denotes "tracing out" the B subs system kinda like taking Marginal distribution over joint prob. dist.
Def. (Partial trace)

$$
\begin{aligned}
& \operatorname{tr}_{B}(A \otimes B)=A \cdot(\operatorname{tr} B) \\
& \operatorname{tr}_{A}(A \otimes B)=(\operatorname{tr} A) \cdot B
\end{aligned}
$$

Ex. $R=\sum_{i} M_{i} \otimes N_{i}$ on $A B, \quad \operatorname{tr}_{B}(R)=\sum_{i} M_{i} \cdot \operatorname{tr}\left(N_{i}\right)$
EX. $\operatorname{tr}_{B}(100 \times 111)=\operatorname{tr}_{B}(10 \times 1|\otimes| 0 \times 11)=10 \times 11 \cdot \operatorname{tr}(10 \times 11)=10 \times 11 \cdot\langle 011\rangle=0$
Ex. Composite system $A B$ in a pure entangled state $\left|\psi_{A B}\right\rangle$.

$$
\begin{aligned}
& \left|\psi_{A B}\right\rangle=\sum_{i} c_{i}\left|a_{i}\right\rangle \otimes\left|b_{i}\right\rangle \\
& \sum_{i}\left|c_{i}\right|^{2}=1 \\
& \rho_{A}=\operatorname{tr}_{A B} \rho_{A B} \\
& =\operatorname{tr}_{B}\left|\psi_{A B} X \psi_{A B}\right|=\sum_{i, j} c_{i} c_{j}^{*}\left|a_{i} X \psi_{A B}\right| \\
& =\operatorname{tr}_{B} \sum_{i, j} c_{i} c_{j}^{*}|\otimes| b_{i} X a_{i} X b_{j} \mid \\
& =\sum_{i, j} c_{i} c_{j}^{*}|\otimes| b_{i} X b_{i} X a_{j} \mid \\
& =\sum_{i, j} c_{i} c_{j}^{*}\left|a_{i} X a_{j}\right| a_{i}|\underbrace{\left\langle b_{i} \mid b_{j}\right\rangle}_{\delta_{i j}}\rangle b_{j}| \rangle \\
&
\end{aligned}
$$

Ex. (Maximally mixed state)

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i}^{d}\left|a_{i}\right\rangle\left|b_{i}\right\rangle \quad\left(\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d\right)
$$

then $\rho_{A}=\rho_{B}=\frac{1}{d} I=\left(\begin{array}{ccc}1 / d & & \\ 0 & 1 / d & 0 \\ & & 1 / d\end{array}\right)$

$$
\begin{aligned}
\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \text { has } \rho_{A}=\rho_{B}=\frac{1}{2} I=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right) \\
\rho & =\frac{1}{2}(|00\rangle+|11\rangle)(\langle 001+\langle 111) \\
& =\frac{1}{2}(100 \times 00|+|00 \times 11|+|11 \times 00|+| 11 \times 111) \\
& =\frac{1}{2}(10 \times 0|\otimes| 0 \times 0|+|0 \times 1| \otimes| 0 \times 1|+|1 \times 0| \otimes| 1 \times 0|+|1 \times 1| \otimes| 1 \times 11) \\
\rho_{A} & =\rho_{B}=\frac{1}{2}(10 \times 01+\mid 1 \times 11)=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
\end{aligned}
$$

8.6 Mixtures and Subsystems

Consider the joint state of a bipartite system $A B$

$$
\begin{aligned}
&\left|\psi_{A B}\right\rangle= \sum_{i, j} c_{i j}\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle \\
&= \sum_{j}\left|\widetilde{\psi}_{j}\right\rangle\left|b_{j}\right\rangle \quad \text { where }\left|\widetilde{\psi}_{j}\right\rangle=\sum_{i} c_{i j}\left|a_{i}\right\rangle \\
&= \sum_{j} \sqrt{p_{j}} \underbrace{|\underbrace{}_{\text {normalized version of } \mid}| \tilde{\psi}_{j}\rangle\left|b_{j}\right\rangle} \\
& \qquad p_{j}=\left\langle\tilde{\psi}_{j} \mid \widetilde{\psi}_{j}\right\rangle
\end{aligned}
$$

Then the partial trace over B gives the reduced density operator of subsystem A.

$$
\begin{aligned}
\rho_{A} & =\operatorname{tr}_{B}\left(\sum_{i, j}\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{j}\right| \otimes\left|b_{i} X b_{j}\right|\right) \\
& =\sum_{i, j}\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{j}\right|\left(\operatorname{tr}_{B}\left(\left|b_{i} X b_{j}\right|\right)\right) \\
& =\sum_{i, j}\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{j}\right|\left\langle b_{i} \mid b_{j}\right\rangle \\
& =\sum_{i}\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{i}\right|=\sum_{i} p_{i}\left|\psi_{i} X \psi_{i}\right|
\end{aligned}
$$

P_{A} describes subsystem A; is it ever affected by what happens to subsystem B ?
Say A, B are in separate labs.
Bob measures in basis $\left|b_{j}\right\rangle$ and get $k w /$ probability p_{k}.

$$
\sum_{i=1} \sqrt{p_{i}}\left|\psi_{i}\right\rangle\left|b_{i}\right\rangle \mapsto\left|\psi_{k}\right\rangle\left|b_{k}\right\rangle
$$

Subsystem A is then in state $\left|\psi_{k}\right\rangle$
Bob doesn't communicate his result
Alice's perspective: Bob prepares a mixture of $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{m}\right\rangle w /$ prob. p_{1}, \ldots, p_{m} Alice's density matrix: $\rho_{A}=\sum_{i} p_{i}\left|\psi_{i} X \psi_{i}\right|$

Now suppose Bob measures in some other basis $\left|d_{i}\right\rangle$
We can write $\left|b_{i}\right\rangle=U\left|d_{i}\right\rangle$

$$
\begin{aligned}
\left|\psi_{A B}\right\rangle & =\sum_{i}\left|\widetilde{\psi}_{i}\right\rangle\left|b_{i}\right\rangle \\
& =\sum_{i}\left|\widetilde{\psi}_{i}\right\rangle\left(\sum_{j} u_{i j}\left|d_{j}\right\rangle\right) \\
& =\sum_{j}(\underbrace{\sum_{i} u_{i j}\left|\widetilde{\psi}_{i}\right\rangle}_{\left|\widetilde{\phi}_{j}\right\rangle})\left|d_{j}\right\rangle=\sum_{j}\left|\widetilde{\phi}_{j}\right\rangle\left|d_{j}\right\rangle
\end{aligned}
$$

Alice's perspective: mixture of states $\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{m}\right\rangle w / p_{k}=\left\langle\widetilde{\phi}_{k} \mid \widetilde{\phi}_{k}\right\rangle$ But this mixture has the same density operator as the previous one.

$$
\begin{aligned}
\sum_{j}\left|\widetilde{\phi}_{j} X \widetilde{\Phi}_{j}\right| & =\sum_{i, j, \ell} u_{i j}\left|\tilde{\psi}_{i} X \tilde{\psi}_{i}\right| u_{l j}^{*} \\
& =\sum_{i, \ell} \underbrace{\left(\sum_{j} u_{i j} u_{l j}^{*}\right)\left|\tilde{\psi}_{i} X \tilde{\psi}_{l}\right|}_{\delta_{i \ell}} \quad \begin{array}{c}
\sum_{k} u_{i k} u_{j k}^{*}=\delta_{i j} \\
\\
\end{array}=\sum_{j}\left|\tilde{\psi}_{j} X \tilde{\psi}_{j}\right|=\rho_{A} \quad \text { unitary }
\end{aligned}
$$

8.7 Partial trace, revisited

Given a density matrix of two quits in the standard basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$, how can we easily find the reduced density matrices?
$\rho_{A B}$ is a 4×4 matrix, which well write as $\rho_{A B}=\left[\begin{array}{l|l}P & Q \\ \hline R & S\end{array}\right]$

$$
\begin{aligned}
& \rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\left[\begin{array}{l|l|}
\operatorname{tr} P \mid \operatorname{tr} Q \\
\operatorname{tr} S
\end{array}\right] \\
& \rho_{B}=\operatorname{tr}_{A}\left(\rho_{A B}\right)=P+S
\end{aligned}
$$

$\operatorname{tr}_{\mathcal{A}} \rho$

$\operatorname{tr}_{\mathcal{B}} \rho$

Figure 8.1: Visualising the two partial traces of a matrix written in the tensor product basis.

Def. (Partial trace) The partial trace over B is the unique map $P_{A B} \mapsto \rho_{A} S . t$.

$$
\operatorname{tr}\left[X \rho_{A}\right]=\operatorname{tr}\left[(X \otimes I) \rho_{A B}\right]
$$

where X is any observable acting on X and I acts on B
Sanity check

$$
\begin{aligned}
\left|\psi_{A B}\right\rangle & =\sum_{i_{1} j} c_{i j}\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle \\
& =\sum_{j}\left|\tilde{\psi}_{j}\right\rangle\left|b_{j}\right\rangle=\sum_{j} \sqrt{p_{j}}\left|\psi_{j}\right\rangle\left|b_{j}\right\rangle
\end{aligned}
$$

Now Alice measures some observable X on her system. We can think of this as $(X \otimes I)$ acting on the entire system The expected value of this obs. in $\left|\psi_{A B}\right\rangle$ is

$$
\operatorname{tr}(X \otimes I)\left|\psi_{A B} X \psi_{A B}\right|
$$

$$
\begin{aligned}
\operatorname{tr}\left[(X \otimes I) \rho_{A B}\right] & =\operatorname{tr}\left[(X \otimes I)\left(\sum_{i, j}\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{j}\right| \otimes\left|b_{i} X b_{j}\right|\right)\right] \\
& =\sum_{i, j}\left[\operatorname{tr}\left(X\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{j}\right|\right)\right] \underbrace{\operatorname{tr}\left(\left|b_{i} X b_{j}\right|\right.}_{\delta_{i j}})] \\
& =\sum_{i} \operatorname{tr}\left[X\left|\widetilde{\psi}_{i} X \widetilde{\psi}_{j}\right|\right] \\
& =\operatorname{tr}\left[X \sum_{i} p_{i}\left|\psi_{i} X \psi_{j}\right|\right] \\
& =\operatorname{tr}\left[X \sum_{i} p_{i}\left|\psi_{i} X \psi_{j}\right|\right]=\operatorname{tr}\left[X \rho_{A}\right]
\end{aligned}
$$

WTS uniqueness.
Suppose \exists arbitrary map T st. $\operatorname{tr}\left[X T\left(\rho_{A B}\right)\right]=\operatorname{tr}\left[(X \otimes I) \rho_{A B}\right]-(*)$
\forall density matrices $\rho_{A B}$
\forall observables X acting on A.
Now take some orthonormal basis $\left\{M_{i}\right\}$ of the space of Hermitian matrices fined by Hilbert - Schmidt inner product $(A \mid B)=\frac{1}{2} \operatorname{tr} A^{\dagger} B$
Expand $T\left(\rho_{A B}\right)$ in this basis:

* any vector v in an inner product sp. w/ orthonormal basis $\left\{e_{i}\right\}$ can be expanded as $v=\sum_{i}\left(e_{i} \mid v\right) e_{i}$

$$
\begin{aligned}
T\left(\rho_{A B}\right) & =\frac{1}{2} \sum_{i}\left(M_{i} \mid T\left(\rho_{A B}\right)\right) M_{i} \\
& =\frac{1}{2} \sum_{i} \operatorname{tr}\left[M_{i} T\left(\rho_{A B}\right)\right] M_{i} \\
& \stackrel{(*)}{=} \frac{1}{2} \sum_{i} \operatorname{tr}\left[\left(M_{i} \otimes I\right) \rho_{A B}\right] M_{i}
\end{aligned}
$$

\longrightarrow indep. of choice of T, so we're done.

