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1 Introduction

Quantum computing has proven to have an enormous potential for completely
revolutionizing computer science and crypotgraphy, which also has practical im-
plication in national security.

However, these quantum calculations are very sensitive to imperfections,
which aren’t uncommon with the decoherences that arise from quantum states
interacting with the environment, or with the computer hardware itself. Be-
cause quantum computing relies on such precision, we need a way to correct
these errors. Many have developed methods that are able to correct for specific
interactions, and the authors, Knill and Laflamme, were thus able to develop
this general theory of quantum error correction.

2 An intuitive approach

There are two main cases where manipulating coherent quantum states is im-
portant: in quantum communication and in quantum computation. Quantum
communication focuses on the transmission of states over potentially noisy chan-
nels, often involving multiple parties with limited communication capabilities.
Quantum computation instead focuses on the unitary transformations resulting
in the final state, involving only one part. However, in both of these cases result
in the loss of coherence while executing operations or transmitting or storing in-
formation. This loss of coherence directly reduces the probability of getting the
correct final result, so it’s important to avoid such errors. There are two main
methods: (1) for short distances or rather simple computations, one can mini-
mize errors by isolating the quantum state and improving the accuracy of the
unitary transformation used, and (2) for long distances or complex calculations,
error-correction is much more important, as these errors become inevitable with
the longer, more complex quantum tasks.

In classical communication and computation, it is possible to introduce re-
dundancy to restore corrupted information. But this doesn’t work for quantum
states due to the "no-cloning theorem". This theorem shows that because you
cannot clone a photon, it is not possible to use redundancy in quantum states.
The reasoning is as follows: First, take an incoming photon with polarization
state |s⟩: |A0⟩|s⟩ → |As⟩|ss⟩, where |A0⟩ is the ’ready’ state, |As⟩ is the final
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state, which may or may not depend on the polarization of the original pho-
ton, and |ss⟩ is the state of the radiation field where there are two photons,
each with polarization |s⟩. Then, assume we can clone a photon, with a vertical
polarization | ↕⟩ and with a horizontal polarization | ←→⟩:
|A0⟩| ↕⟩ → |Avert⟩| ↕↕⟩
|A0⟩| ←→⟩ → |Ahor⟩| ⇐⇒⟩

We should be able to represent this with a unitary operator. Therefore, we
can say the incoming photon’s polarization is the following linear combination:
α| ↕⟩ + β| ←→⟩. If we assume the photon is linearly polarized 45◦ such that
α = β = 2−1/2, we get the superposition:
|A0⟩(α| ↕⟩+ β| ←→⟩)→ α|Avert⟩| ↕↕⟩+ β|Ahor⟩| ⇐⇒⟩

If the apparatus states, |Avert⟩ and |Ahor⟩ are equivalent, then the two photons
are in the pure state

α| ↕↕⟩+ β| ⇐⇒⟩
But this doesn’t match to final state if both photons were to have the same
polarization α| ↕⟩+ β| ←→⟩, as this would have to be

21/2(αa+vertβa
+
hor)

2|0⟩ = α2| ↕↕⟩+ 21/2αβ| ↕←→⟩+ β2| ⇐⇒⟩
which is a pure state that differs from that found using the superposition. There-
fore, no apparatus can clone a photon perfectly, and no quantum system can use
redundancy as is useful in classical error-correction.

Rather than relying on duplication, quantum systems must spread informa-
tion over many qubits through an encoding to correct errors. If we know how
an encoding behaves under evolution by the interaction superoperator, then we
can use this information to recover the original state.

Let’s look at an example of encoding a single qubit, with general state |Ψ⟩ =
α|0⟩+ β|1⟩. Then, we map |Ψ⟩ into a higher dimensional Hilbert space:

(α|0⟩+ β|1⟩)|000...⟩ → α|0L⟩+ β|1L⟩
where |0L⟩ is the logical zero and |1L⟩ is the logical one of the qubit. Therefore
any errors induced by a computer malfunction maps it into one of a family of
two-dimensional subspaces which preserve the relative coherence of the quantum
information. Then, you perform a measurement by projecting the state into
one of the subspaces and then recover the original state by using a unitary
transformation.

Now we want to understand what kinds of error can occur. We take the initial
state as Ψi, which then endures an interaction with the environment. Then, we
get the reduced density matrix

ρf = $(|Ψi⟩),
where $ is the superoperator associated with the interaction. If the environment
is not initially entangled with the system, we can say

ρf =
∑

aA0ρiA
†
a.

The possible operators Aa can be found from an orthonormal basis |µa⟩ of the
environment, the environment’s initial state |e⟩ and the evolution operator of
the whole system, U:

Aa = ⟨µa|U |e⟩
And therefore we can see that
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aA

†
aAa = I.

Thus, Aa are linear operators, called interaction operators, of the Hilbert space
of the system and describe the effect of the environment. A family of operators
Aa which satisfy the identity relation above defines the superoperator.

There are two conditions necessary for recovery of state |Ψ⟩:
⟨0L|A†

aAb|1L⟩ = 0,
⟨0L|A†

aAb|0L⟩ = ⟨1L|A†
aAb|1L⟩.

This first condition requires that logical zero and one must go to orthogonal
states under any error. The second condition shows that the length and inner
products of the projections of the corrupted logical zero and one should be the
same.

Now we will look at fidelity, which is the overlap between the final state ρf
of a system ρ and the original state |Ψi⟩. We define the combined superoperator
(containing the information regarding the interaction with the environment) and
then applying a recovery operation as A = A0, .... Then the fidelity is

F (|Ψi⟩, A) = ⟨Ψi|ρf |Ψi⟩ =
∑

a⟨Ψi|Aa|Ψi⟩⟨Ψi|A†
a|Ψi⟩.

The minimum, or worst case, fidelity is defined as
Fmin = min|Ψ⟩⟨Ψ |ρf |Ψ⟩.
Let’s look at an example of decoherence. For one qubit, the decoherence takes

the form

|Ψi⟩ = α|0⟩+ β|1⟩ → ρ

(
αα∗ αβ∗e−γ

α∗βe−γ ββ∗

)
,

where e−γ parameterizes the amount of decoherence. The decoherence can be
understood as the following interaction with the environment
|e⟩|0⟩ → |e0⟩|0⟩ |e⟩|1⟩ → |e1⟩|1⟩,

where ⟨e0|e1⟩ = e−γ . Then, using the environment bases |µ0⟩ = |e0⟩and|µ1⟩ =
(|e1⟩ − e−γ |e0⟩)/

√
1− e−2γ , we find the following interaction operators:

A0 =

(
1 0
0 e−γ

)
; A1 =

(
0 0

0
√
1− e−2γ

)
.

Therefore, the minimum fidelity of a corrupted single qubit is given by
F = 1+e−γ

2 ≈ 1− γ
2 + ..., where the approximation is valid for small γ.

We can extend this for different qubits with all independent environments.
We will now look at a one-qubit code that can correct for this error using
three qubits. Now, using the basis state of the environment as |µ+⟩ = (|e0⟩ +
|e1⟩)/

√
2(1 + e−γ and |µ−⟩ = (|e0⟩ − |e1⟩)/

√
2(1− e−γ yields the one qubit

interaction operators:

A+ = a+

(
1 0
0 1

)
; A− = a−

(
1 0
0 −1

)
,

where a+ =
√
(1 + e−γ)/2 and a− =

√
(1− e−γ)/2. Therefore, in this basis,

the environment either leaves the system alone or flips the sign if the qubit is in
state |1⟩. Thus, the encoding takes the form:
|0L⟩ = (|0⟩+ |1⟩)(|0⟩+ |1⟩)(|0⟩+ |1⟩)
|1L⟩ = (|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩).

So if one qubit is corrupted, it is possible to detect this by majority rule.
If there is at most one incorrect qubit, the result is one of the following:
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A+|0l⟩ = a
3/2
+ (|0⟩+ |1⟩)(|0⟩+ |1⟩)(|0⟩+ |1⟩)

A1
−|0l⟩ = a2+a

1/2
− (|0⟩ − |1⟩)(|0⟩+ |1⟩)(|0⟩+ |1⟩)

A2
−|0l⟩ = a2+a

1/2
− (|0⟩+ |1⟩)(|0⟩ − |1⟩)(|0⟩+ |1⟩)

A3
−|0l⟩ = a2+a

1/2
− (|0⟩+ |1⟩)(|0⟩+ |1⟩)(|0⟩ − |1⟩),

where the superscripts indicate which qubit is interacting with the environment.
A similar computation for |1L⟩ holds as well.

Then, the recovery operator is the superoperator determined by the interac-
tions

R+ = (|0L⟩⟨0L|+ |1L⟩⟨1L|)
R1

1 = (|0L⟩⟨0L|+ |1L⟩⟨1L|)σ1
z

R2
1 = (|0L⟩⟨0L|+ |1L⟩⟨1L|)σ2

z

R3
1 = (|0L⟩⟨0L|+ |1L⟩⟨1L|)σ3

z ,
where σr

z is the z Pauli matrix for the rth qubit.

3 Quantum error-correcting codes

3.1 Fundamentals of quantum error-correcting codes

The goal is to preserve a k -dimensional subspace against some known errors by
mapping the states into a larger, n-dimensional Hilbert space.

First let’s define a few key terms. (n, k) − quantumcode is a k -dimensional
subspace of an n-dimensional Hilbert space. This Hilbert space is also called a
coding space and is denoted by H. The encoding operator for a code, C, is a
unitary operator E from a k -dimensional Hilbert space Q onto C. To decode,
take the right inverse of the encoding operator.

A recovery (super)operator R is a superoperator on the coding space. This
recovery operator restores a state to the code after it’s been affected by an
interaction with the environment.

A quantum error-correcting code is a pair (C, R) consisting of a quantum
code and a recovery operator. We let A be a family of linear operators. Then,
the fidelity of the code is defined as

F (C,R,A) = min|Ψ⟩ϵC F (|Ψ⟩, R,A) = min|Ψ⟩ϵC
∑

r,a |⟨Ψ |RrAa|Ψ⟩|2,
where Rr are the interaction operators for the superoperator R.

The error of the code is defined as
E(C,RA) = max|Ψ⟩ϵC

∑
r,a |(RrAa − ⟨Ψ |RrAa|Ψ⟩)|Ψ⟩|2

In the ideal case, the code corrects all errors, or when we recover the initial
state for all operators in A. This means that E(C,RA) = 0, and the pair (C,R)
is called an A-correcting code.

Theorem 1. The operator Aa is in A(C,R) iff when restricted to C,RrAa =
λra for each RrϵR. The family A(C,R) is linearly closed and (C,R) is A(C,R)
correcting.

Proof. To be Aa-correcting requires that for |ψ⟩ϵC,
|(RrAa − (⟨Ψ |RrAa|Ψ⟩))|Ψ⟩| = 0.
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Therefore we can see that RrAa|Ψ⟩ = λra(|Ψ⟩)|Ψ⟩. And by the linearity of RrAa,
λra(|Ψ⟩) cannot depend on |Ψ⟩.

3.2 Characterizations of A-correcting Codes

Let |iL⟩ represent the elements of an orthonormal basis of C. Then, the following
theorem applies:

Theorem 2. The code C can be extended to an A-correcting code iff for all
basis elements |iL⟩, |jL⟩, i ̸= j and operators Aa, Ab in A
⟨iL|A†

aAb|iL⟩ = ⟨jL|A†
aAb|jL⟩

and
⟨iL|A†

aAb|jL⟩ = 0.

Proof. Assume that (C,R) is an A-correcting code. Then

⟨iL|A†
aAb|jL⟩ = ⟨iL|A†

aIAb|jL⟩ = ⟨iL|A†
a

∑
r

R†
rRrAb|jL⟩

=
∑
r

⟨iL|A†
aR

†
rRrAb|jL⟩

=
∑
r

⟨iL|λarλbrR†
rRrAb|jL⟩

= αabδij ,

where we have used Theorem 1.

Now, we are going to construct a recovery operator given that ⟨iL|A†
aAb|iL⟩ =

⟨jL|A†
aAb|jL⟩ and ⟨iL|A†

aAb|jL⟩ = 0 hold. Let V i denote the subspace spanned
by Aa|iL⟩ for all a. Let |νir⟩ be an orthonormal basis for V i. Therefore, there
exist unitary Vr which return |νir⟩ to the corresponding state |iL⟩:

Vr|νir⟩ = |iL⟩.
The recovery operator is given by the interaction operators: R = {O, R1, ...,
Rr, ...}, where O is the projection onto the orthogonal complement of ⊕iV

i,
which is also the part of the Hilbert space that isn’t reached by acting on the
code with Aa, and

Rr = Vr
∑

i |νir⟩⟨vir|.
To make sure that R recovers the state, we must find unitary operations Ui

such that Ui|ν0r ⟩ = |nuir⟩ and for all Aa, UiAa|0L⟩ = Aa|iL⟩. Now, we choose the
basis |ν0r ⟩ of V 0 and defining |νir⟩ = Ui|v0r⟩.

Now, we show that R does recover the state, as we can write:
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Aa|Ψ⟩ = Aa

∑
i

αi|iL⟩ =
∑
i

αia|iL⟩

=
∑
i

αiUiAa|0L⟩

=
∑
i,r

αiUiβ
0
ar|ν0r ⟩

= αiβ
0
ar|νir⟩,

where the identities define αi and β0
ar by expansion in terms of the corresponding

basis elements. Then, we can find that

RrAa|Ψ⟩ =
∑
i

Vr|νir⟩⟨vir|
∑
j,s

αjβ
0
as|νjs⟩ =

∑
i

αiβ
0
arVr|νir⟩

=
∑
i

β0
arαi|iL⟩

= β0
ar|Ψ⟩.

This therefore shows that RrAa is a multiple of the identity applied to C.
Now, let’s look at an example. Consider the code |0L⟩ = |00⟩, |1L⟩ = |11⟩ sub-

ject to the interaction operatorsA0 =


√
1− 2q 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
1− 2q

,A1 =


√
q/2 0 0 0

0 0 0
√
q/2√

q/2 0 0 0

0 0 0
√
q/2

,

A2 =


√
q/2 0 0 0

0 0 0
√
q/2

−
√
q/2 0 0 0

0 0 0 −
√
q/2

,

for some fixed 0 < q < 1. These operators form a superoperator, as they’re
linearly independent and cannot be reduced to smaller, equivalent interactions.
The Ai map the logical states as follows:
|0L⟩ →

√
1− 2q|00⟩,

√
q/2(|00⟩+ |10⟩),

√
q/2(|00⟩ − |10⟩)

|1L⟩ →
√
1− 2q|11⟩,

√
q/2(|01⟩+ |11⟩),

√
q/2(|01⟩ − |11⟩).

Interestingly, one of the states is linearly dependent on the other two states
in each case, so we only need two recovery operators to retrieve the initial state:

R0 = |00⟩⟨00|+ |11⟩⟨11|;R1 = |00⟩⟨01|+ |11⟩⟨01|
Next, the text lays out numerous theorems and their respective proofs.

Theorem 3. Let A be a superoperator. C is an A-correcting code iff the restric-
tion of A to C has a left superoperator inverse.

Proof. By Theorem 1, C is an A-correcting code iff there exists a superoperator
R such that on C,RrAa = λraI for all r and a. This means that RA is a
superoperator equivalent to the identity.
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Theorem 4. B has error 0 on C iff I ⊗ B
∑

i |iL⟩|iL⟩ = λ
∑

i |iL⟩|iL⟩.

Proof. Let Br be a member of B. Then, I ⊗Br is a member of I ⊗B. If B has
error 0 on C, then

I ⊗Br

∑
i |iL⟩|iL⟩ =

∑
i |iL⟩Br|iL⟩ =

∑
i |iL⟩λr|iL⟩ = λr

∑
i |iL⟩|iL⟩.

This shows that the ensemble I ⊗Br

∑
i |iL⟩|iL⟩ is the same as a scalar multiple

of
∑

i |iL⟩|iL⟩.

Theorem 5. C is an A-correcting code iff there is an isomorphism σ: H ≃
C ⊗ E ⊗D such that for all Aaϵ and |Ψ⟩ϵC, Aa|Ψ⟩ = σ(|Ψ⟩ ⊗ |E(a)⟩

Proof. Let C be an A-correcting code in H. We use the notation from Theorem
2. Let D denote the orthogonal complement of the subspace spanned by the
|νir⟩. Let E be the Hilbert space spanned by |νir⟩r. The isomorphism between
H and C ⊗ E ⊗D is established by letting σ(|iL⟩|ν0r ⟩ = |νir⟩ and defining σ to
be the identity map on D. Let AaϵA and |Ψ⟩ =

∑
j αj |jL⟩ϵC. Write Aa|0L⟩ =∑

r β
0
ra|ν0r ⟩. Applying properties discussed in Theorem 2 yields

Aa|Ψ⟩ =
∑

jr αjβ
0
ra|νjr⟩

= σ(
∑

j αj |jL⟩ ⊗
∑

r β
0
ra|ν0r ⟩)

= σ(|Ψ⟩ ⊗
∑

r β
0
ra|ν0r ⟩).

Theorem 6. Let A be a superoperator. Then C is an A-correcting code iff S(ρ)−
S(ρ) = log k.


