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1. INTRODUCTION	–	Bell’s	theorem	
	

a. General	explanation	
	

In	 classical	 physics,	 there	 is	 an	 assumption	 that	 the	 properties	 of	 physical	 systems	 are	
determined	 by	measurable	 variables.	 These	 variables	 describe	 the	 system’s	 state	 at	 any	
given	time	and	predict	the	outcome	of	any	measurement	of	the	system	(“expected	value”).	
The	notion	of	"locality",	that	defines	classical	physics,	posits	that	a	particle	is	only	influenced	
by	its	immediate	environment	so	that	the	interactions	via	physical	fields	do	not	exceed	the	
speed	of	light	(consistent	with	the	theory	of	relativity	which	states	that	no	information	can	
travel	faster	than	the	speed	of	light).	
	
However,	 quantum	 mechanics	 introduces	 phenomena	 that	 challenge	 these	 classical	
intuitions.	 For	 instance,	 quantum	 entanglement	 describes	 a	 situation	 where	 particles	
become	interconnected	in	such	a	way	that	the	state	of	one	(no	matter	how	distant)	cannot	
be	 fully	 described	without	 considering	 the	 state	 of	 the	 other.	 This	 leads	 to	 correlations	
between	the	properties	of	entangled	particles	that	are	stronger	than	what	can	be	explained	
by	classical	physics	(see	6.2).	
	
Albert	Einstein	and	his	colleagues,	Boris	Podolsky	and	Nathan	Rosen,	in	their	EPR	paper	in	
1935,	 introduced	 the	 concept	 of	 “local	 hidden	 variables”	 to	 reconcile	 these	 quantum	
phenomena	 with	 classical	 physics.	 The	 theory	 suggests	 that	 quantum	 systems	 possess	
predetermined	properties	(the	"hidden	variables")	that	determine	the	outcomes	of	quantum	
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measurements.	These	hidden	variables	are	"local"	in	the	sense	that	they	obey	the	principle	
of	locality.	
	
The	most	significant	challenge	to	the	local	hidden	variable’s	theory	came	from	physicist	John	
Bell	 in	 1964,	 who	 formulated	Bell's	 theorem.	 This	 theorem	 shows	 that	 if	 local	 hidden	
variables	were	 responsible	 for	 quantum	 correlations	 then	 the	 results	 of	 certain	 types	 of	
quantum	experiments	would	be	subject	to	statistical	limitations	known	as	Bell	inequalities.	
However,	numerous	experiments	have	demonstrated	violations	of	Bell	 inequalities	which	
support	the	non-local	nature	of	quantum	entanglement	and	challenge	the	viability	of	local	
hidden	variables	as	an	explanation	for	quantum	phenomena	(see	6.3	and	6.4).	This	suggests	
that	 the	 quantum	mechanical	 description	 of	 nature	 -	 its	 inherent	 randomness	 and	 non-
locality	-	cannot	be	reproduced	by	any	theory	based	on	local	hidden	variables.	
	

b. Physics	explanation	–	polarization	of	light	paradox	
	

Before	 getting	 into	 the	mathematics	 of	 Bell’s	 theorem,	 it	 is	 important	 to	 understand	 the	
physical	interpretation,	and	how	things	work	in	the	real	world.	To	do	this,	let’s	begin	with	
the	polarization	of	light	paradox.	A	simplified	explanation	of	light	polarization	begins	with	
the	understanding	 that	 light	 consists	 of	 transverse	waves1.	 Transverse	waves	possess	 a	
unique	 characteristic	 referred	 to	 as	 "polarization,"	 which	 dictates	 their	 "direction."	 A	
polarizing	filter	is	designed	to	allow	only	waves	of	a	specific	polarization	to	be	transmitted.	
When	 two	 polarizing	 filters	 are	 positioned	 at	 right	 angles	 (90	 degrees)	 to	 one	 another,	
virtually	no	light	is	transmitted,	as	the	light	that	manages	to	pass	through	the	first	filter	is	
obstructed	by	the	second,	owing	to	their	mutually	perpendicular	polarizations.	

	
Figure	1:	polarizing	filters	at	different	angles	

	
What	you	are	observing	in	figure	1	is	that	the	photons	that	allow	them	to	pass	through	a	filter	
along	 one	 axis	 have	 a	much	 lower	 probability	 of	 passing	 through	 a	 second	 filter	 along	 a	
perpendicular	 axis	 –	 in	 other	words,	 a	 0	 probability.	 However,	 introducing	 a	 third	 filter	
between	these	two,	angled	at	45	degrees,	surprisingly	allows	more	light	to	pass	than	if	this	
middle	filter	were	absent.	Somehow	introducing	another	filter	allows	more	light	through.		
	

 
1 Transverse wave: wave that oscillates perpendicularly to the direction of the wave’s advance 
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More	 specifically,	 photons	 are	 waves	 in	 the	 electromagnetic	 field	 passing	 through	
polarization	filters	(90-degree	bend).	Photons	are	quantum	objects	so	they	either	pass	fully	
or	not	at	all	through	the	filters.	

	 	
Figure	2:	politizing	filters	at	different	angles	and	the	probabilities	of	the	photons	passing	
	
This	is	only	considering	the	angles	of	the	filters	and	no	other	hidden	variables	for	instance	
what	the	photon	did	before	(like	passing	another	filter).	What	is	interesting	also	is	that	when	
you	have	an	angle	smaller	than	45	degrees	then	it	becomes	increasingly	higher	probability	
(figure	2).	This	does	not	make	sense	as	you	would	expect	for	a	22.5-degree	filter	to	have	a	
75%	pass	not	85%.	Looking	at	 it	deeper	 to	show	how	this	does	not	make	sense,	another	
example	is	if	the	second	filter	B	is	absent,	and	C	is	at	45	degrees	then	there	is	a	50%	block.	If	
there	is	B,	there	is	85%	that	the	photons	pass	through	B	and	85%	that	they	pass	through	C	
so	15%	times	2	that	are	blocked,	how	does	that	=	50%	(figure	3).	
	

	
Figure	3:	differences	between	having	2	or	3	polarizing	filters	at	different	angles.		

	
To	 study	 this	 phenomenon	 further,	 Bell	 experimentation	 comes	 into	 play	 as	 it	 is	 an	
experiment	 where	 the	 interactions	 cannot	 affect	 each	 other	 without	 faster-than-light	
communication.	The	key	is	not	to	make	photons	pass	through	different	filters	at	different	
times	but	at	different	points	in	space	at	the	same	time	and	for	this,	we	need	entanglement2.	

 
2 Entanglement	is	a	phenomenon	where	the	quantum	states	of	two	or	more	particles	become	interconnected	in	such	a	
way	that	the	state	of	each	particle	cannot	be	described	independently	of	the	state	of	the	others,	even	when	the	particles	are	
separated	 by	 large	 distances.	 This	 interconnectedness	 leads	 to	 correlations	 in	 their	 observable	 properties	 (such	 as	
polarization	or	spin)	that	are	stronger	than	what	can	be	explained	by	classical	physics	or	by	any	theory	based	on	local	
hidden	variables.	
Entangled	means	here	that	if	you	were	to	pass	individual	photons	through	filters	in	the	same	orientation,	either	both	pass	
or	both	get	blocked,	they	behave	the	same	way	when	measured	along	the	same	axis,	they	have	a	correlated	behavior.	
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The	 idea	here	 is	 to	have	 two	entangled	photon	pairs	 pass	 through	 two	different	 filters	
randomly	at	the	same	time.	Doing	this	many	times	will	enable	you	to	collect	data	on	how	
often	both	photons	in	an	entangled	pair	pass	through	the	different	combinations	of	filters	
(Figure	4).	 	You	see	 the	same	results	as	above	which	confirms	 the	paradox	and	seems	to	
contradict	the	idea	of	“hidden	variable”	(Figure	5)3.		
	

	
Figure	4,5:	Entangled	sequel	diagram	and	results	

	
	
This	begs	the	final	question	of	how	does	the	active	passing	of	entangled	photon	pairs	through	
multiple	filter	combinations	(same	orientation	for	the	pairs)	simultaneously	correlate	with	
each	 other.	 Is	 this	 effect	 due	 to	 local	 hidden	 variables	 (like	 Einstein	 says)	 or	 nonlocal	
randomness	(like	Bell	says	by	defying	classical	physics?).	What	this	experiment	shows	is	that	
either	realism	is	not	how	the	universe	works	or	locality	or	a	combination	-	It	just	cannot	be	
locally	real4.	
	
Can	this	be	confirmed	mathematically?	
	
Bell's	theorem	provided	a	way	to	test	the	predictions	of	quantum	mechanics	against	those	of	
local	 hidden	 variables	 theories.	 The	 experiments	 that	 followed,	 many	 of	 which	 used	
entangled	 photons	 and	 polarization	 filters,	 have	 repeatedly	 confirmed	 the	 predictions	 of	
quantum	 mechanics	 which	 demonstrates	 the	 non-local	 correlations	 that	 exist	 between	
entangled	particles	and	thus	support	the	inherently	quantum	nature	of	these	correlations.	
	
	
	

 
3 You	use	filter	A	at	one	site	and	B	at	the	other,	among	all	photons	that	pass	filter	A,	among	15%	have	an	
entangled	partner	that	gets	blocked	at	B.	Likewise	if	they	are	set	to	be	in	C,	about	15	%	that	do	pass	through	B	
have	an	entangled	partner	that	get	blocks	at	C.	For	setting	A	and	C,	half	of	those	that	get	through	A	get	blocked	
at	C.	
4	Two	assumptions	in	science:	

1. Realism:	the	assumption	that	there	is	an	underlying	state	even	if	its	not	being	probed	is	called	realism	
2. Locality:	the	assumption	that	faster	than	light	influence	is	not	possible	is	called	locality		
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2. 6.1	Hidden	variables		
	
Applying	 this	 notion	 to	 quantum	 information	 theory,	 when	 measuring	 observables	
(quantifiable	properties)	of	a	qubit,	such	as	a	spin	along	different	axes	denoted	(𝜎!	for	the	x-
axis	and	𝜎"	for	the	z-axis),	quantum	mechanics	states	that	these	properties	do	not	have	
definite	values	until	they	are	measured.	Due	to	the	principle	of	quantum	superposition,	a	
qubit	can	be	in	a	state	where	it	has	a	probability	of	being	in	multiple	states	simultaneously.	
To	 resolve	 this	 and	 explain	 the	 contradiction	 explained	 above,	 the	 concept	 of	 "hidden	
variables"	was	developed	by	Einstein	due	to	his	concerns	regarding	quantum	theory's	
completeness.	 A	 hidden-variable	 theory	 proposes	 a	 deterministic	 framework	 aiming	 to	
account	 for	 the	 probabilistic	 nature	 of	 quantum	 mechanics	 through	 the	 introduction	 of	
additional	variables	that	may	not	be	directly	observable.	

Take	a	single	qubit	as	an	instance.	Looking	back	to	the	earlier	discussion	about	compatible	
operators	(referenced	in	Section	4.6	by	Raunak)	also	known	as	commutative	operators.	For	
recall,	consider	an	eigenbasis	of	A	(an	operator),	where	each	vector	|ek⟩	is	an	eigenvector.	If	
A	and	B	commute	(AB	=	BA),	any	vector	B	|e⟩	is	also	an	eigenvector	of	A,	meaning	A	and	B	
share	an	eigenbasis.	Conversely,	if	A	and	B	share	an	eigenbasis,	they	commute	(AB	=	BA).	We	
call	A	and	B	compatible	if	they	commute,	and	incompatible	otherwise.	Overall,	compatible	
operators	refer	to	operators	that	can	be	measured	simultaneously	without	interference,	
meaning	the	order	of	their	measurement	does	not	affect	the	outcome,		

It	is	understood	that	a	qubit's	quantum	state	cannot	simultaneously	be	an	eigenstate	of	two	
non-commuting	(incompatible)	operators,	such	as	𝜎!	and	𝜎" .	In	practical	terms,	this	implies	
that	if	a	qubit	possesses	a	definitive	value	of	𝜎! ,	then	its	𝜎"	value	remains	undefined,	and	the	
reverse	is	also	true.		
	
Accepting	 quantum	 theory	 as	 a	 comprehensive	 explanation	 of	 reality	 necessitates	 the	
conclusion	that	it's	impossible	for	both	𝜎!	and	𝜎"	values	to	be	definite	for	the	same	qubit	
concurrently.	Einstein	was	notably	uneasy	with	this	notion,	suggesting	that	quantum	theory	
might	 not	 be	 all-encompassing	 and	 that	 observables	 𝜎!	 and	 𝜎" ,	 can	 have	 concurrent	
definitive	values,	albeit	we're	only	aware	of	one	at	any	given	 time,	 thus	 introducing	 the	
concept	of	hidden	variables.	
	
In	 his	 EPR	 paper,	 Einstein	 presented	 several	 persuasive	 arguments	 in	 favor	 of	 “hidden	
variables”	and	it	remained	a	significant	critique	of	quantum	theory’s	completeness	for	nearly	
three	 decades.	 From	 this	 perspective,	 the	uncertainty	observed	 in	quantum	 theory	 is	
simply	 due	 to	 our	 lack	 of	 knowledge	 about	 these	 "hidden	 variables"	 that	 exist	 in	
nature	but	are	not	acknowledged	by	the	theory.	However,	as	mentioned	above,	in	1964,	
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John	Bell	demonstrated	that	the	hypothesis	of	local	hidden	variables	could	be	experimentally	
tested	and	disproven.	It	is	crucial	to	clarify	that	this	discussion	pertains	specifically	to	what	
are	termed	local	hidden	variable	theories,	further	elaborated	in	Section	6.7.	
	

3. 6.2	Quantum	correlations		
	
A	 quantum	 correlation	 is	 a	mathematical	 description	 of	 how	 correlations	 between	
measurements	 of	 physical	 properties	 in	 quantum	 systems	 can	 be	 quantified,	
particularly	in	the	context	of	entangled	states.	It	is	the	expected	value	of	the	product	of	
the	possible	outcomes,	i.e.	the	expected	change	in	physical	characteristics	when	a	quantum	
system	passes	through	an	 interaction	site.	We	will	now	evaluate	 the	expected	value	 for	a	
specific	quantum	state	known	as	the	singlet	state5,	under	the	measurement	of	observables6	
A	and	B	(by	two	parties	Alice	and	Bob).		

Consider	two	entangled	qubits	in	the	singlet	state:		

∣ψ⟩	=	 #
√%
	(∣01⟩−∣10⟩)	

and	note	that	the	projector7	∣ψ⟩⟨ψ∣	can	be	written	as:			
	

∣ψ⟩⟨ψ∣=	#
&
	(1⊗1−𝜎!⊗𝜎!−𝜎'⊗𝜎'−𝜎"⊗𝜎")	

	
where	𝜎! , 𝜎(	and	𝜎"	are	the	previously	discussed	Pauli	matrices.	

Also	recall	that	any	single-qubit	observable	with	values	±1	can	be	represented	by	the	
operator:	

a'⃗ ⋅ �⃗� = 𝛼!𝜎! + 𝛼'𝜎' + 𝛼"𝜎"	
	

 
5	Singlet	state:	denoted	∣ψ⟩,	is	a	particular	entangled	state	of	two	particles	where	the	measurements	of	certain	
properties	(like	spin	along	any	axis)	are	perfectly	anti-correlated.	The	expectation	value	⟨ψ∣	A	⊗	B	 ∣ψ⟩	 	 	 	 is	
calculated	to	determine	the	average	outcome	of	measuring	observables	A	and	B	on	this	entangled	state.	

6 6	An	observable	A	represents	a	measurable	physical	property,	such	as	spin,	position,	momentum,	or	energy,	
with	a	numerical	value.	It	extends	to	any	basic	measurement	where	each	outcome	has	an	associated	numerical	
value.	If	λk	is	the	numerical	value	associated	with	outcome	|ek⟩,	then	the	observable	A	is	represented	by	the	
operator	𝐴	 = ∑ 𝜆𝑘	|𝑒𝑘⟩⟨𝑒𝑘|! 	= ∑ 𝜆𝑘𝑃𝑘! ,		

7	A	projector	is	a	Hermitian	operator	which	is	idempotent	(P	2	=	P	).	Reminder:	Hermitian:	(P	=	P	†)	The	rank	
of	P	is	given	by	tr(P	).	
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where	a'⃗ 	is	a	unit	vector	in	the	three-dimensional	Euclidean	space.		
	

a. Tensor	product		

Let’s	say	that	Alice	and	Bob	both	choose	observables	that	we	can	characterize	by	
vectors	a'⃗ 	and		b'⃗ 	,	respectively.	If	Alice	measures	the	first	qubit	in	our	singlet	state	∣ψ⟩	,	and	
Bob	the	second,	then	the	corresponding	observable	is	described	by	the	tensor	product:	

𝐴⊗ 𝐵 = (a'⃗ 	 ⋅σ''⃗ ) ⊗ (b'⃗ ⋅σ''⃗ )	

The	eigenvalues	of	A⊗B	are	the	products	of	eigenvalues	of	A	and	B.	Thus,	A⊗B	has	two	
eigenvalues:	+1,	corresponding	to	the	instances	when	Alice	and	Bob	registered	identical	
outcomes,	i.e.	(+1,+1)	or	(−1,−1);	and	−1,	corresponding	to	the	instances	when	Alice	and	
Bob	registered	different	outcomes,	i.e.	(+1,−1)	or	(−1,+1).	

This	means	that	the	expected	value	of	A⊗B,	in	any	state,	has	a	simple	interpretation:	

⟨𝐴 ⊗ 𝐵⟩ = 𝑃𝑟(𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒) − 𝑃𝑟	(𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠	𝑎𝑟𝑒	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡)	

This	 expression	 can	 take	 any	 real	 value	 in	 the	 interval	[−1,1],	 where	−1	means	 we	
have	perfect	 anti-correlations,	0	means	 no	 correlations,	 and	+1	means	perfect	
correlation.		
	

b. Trace8		

We	can	evaluate	the	expectation	value	in	the	singlet	state:	

⟨ψ∣	A	⊗	B	∣ψ⟩		=	tr	[	(a'⃗ 	 ⋅σ''⃗ ) ⊗ Db'⃗ ⋅σ''⃗ E ∣ψ⟩⟨ψ∣]	

=−#
&
	tr	[(a'⃗ 	 ⋅σ''⃗ )𝜎! ⊗Db'⃗ ⋅σ''⃗ E𝜎! + (a'⃗ 	 ⋅σ''⃗ )𝜎' ⊗ Db'⃗ ⋅σ''⃗ E𝜎' +	(a'⃗ 	 ⋅σ''⃗ )𝜎" ⊗ Db'⃗ ⋅σ''⃗ E𝜎"]			9																																																																																																				

=− #
&
	tr[4(𝑎!𝑏! +	𝑎'𝑏' + 𝑎"𝑏")1⊗1]	

=−	a'⃗ 	·	b'⃗ 		
	

where	we	have	used	the	fact	that	tr	(a'⃗ 	 ⋅σ''⃗ )𝜎) = 2𝑎) 	(for	k=x,	y,	z).		So,	if	Alice	and	Bob	choose	
the	 same	 observable	a'⃗ 	=	 b'⃗ 	(meaning	 they	 measure	 along	 the	 same	 direction),	 then	 the	

 
8	The	trace	(tr)	operation	sums	up	the	diagonal	elements	of	a	matrix,	which	is	a	step	in	calculating	the	
expectation	value.		
9	Simplification	using	Pauli	Matrices:	The	Pauli	matrices	properties	are	used	to	simplify	the	expression	which	
leads	to	a	formula	that	depends	on	the	dot	product	of	the	vectors	a.⃗ 		and	b.⃗ 		which	represent	the	directions	
along	which	Alice	and	Bob	measure	spin.	
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expected	value	⟨	A	⊗	B	⟩	will	be	equal	 to	−1,	and	 their	outcomes	will	always	be	opposite:	
whenever	Alice	registers	+1	(resp.	−1)	Bob	is	bound	to	register	−1	(resp.	+1).		
	
This	mathematical	description	shows	how	quantum	mechanics	allows	for	the	prediction	of	
measurement	 outcomes	 in	 entangled	 systems	 as	 it	 highlights	 the	 non-classical	 quantum	
correlations	(entanglement)	that	defy	classical	intuition.	The	singlet	state's	perfect	anti-
correlation	is	a	hallmark	of	quantum	entanglement	as	 it	 leads	 to	phenomena	 like	 the	
violation	 of	 Bell's	 inequalities,	 which	 challenge	 local	 realism10	 and	 classical	 notions	 of	
correlation.	
	

4. 6.3	The	CHSH	inequality	
	
So,	Bell’s	theorem	asserts	that	no	theory	of	nature	that	relies	on	local	realism	can	reproduce	
all	the	predictions	of	quantum	mechanics	(=	Bell	claims	that	the	world	must	be	nonlocal11	
and	challenges	local	realism).	To	formalize	his	theorem,	Bell	derived	inequalities	that	any	
local	 realistic	 theory	 must	 satisfy.	 Situations,	 specifically	 measurements	 on	 entangled	
quantum	states,	are	predicted	by	quantum	mechanics	and	he	proves	that	these	inequalities	
are	violated.	Introduced	in	1969	by	John	Clauser,	Michael	Horne,	Abner	Shimony	and	Richard	
Holt	(CHSH),	we	will	now	describe	the	most	popular	version	of	Bell’s	argument.	
	
Firstly,	we	begin	by	making	two	very	important	assumptions:	

1. Hidden	 variables.	We	 assume	 that	 the	 outcomes	 of	 any	 measurement	 on	 any	
individual	system	are	predetermined.	This	suggests	that	any	probabilities	we	assign	
to	 describe	 the	 system	 simply	 indicate	 our	 lack	 of	 knowledge	 about	 these	 hidden	
variables.	In	other	words,	that	observables	have	definite	values.	
	

2. Locality.	Alice’s	 choice	 of	 measurements	 (choosing	 between		𝐴#	and	𝐴%)	 does	 not	
affect	the	outcomes	of	Bob’s	measurement,	and	vice	versa.	

Secondly,	we	 imagine	 a	 scenario	where	 our	 two	 characters,	 Alice	 and	 Bob,	 have	 precise	
measuring	devices	and	are	stationed	at	two	distant	locations.	They	each	have	the	option	to	
measure	one	of	two	specific	observables,	which	can	result	in	either	+1	and	-1	outcome.	Alice	
can	choose	between	observables	𝐴#	and	𝐴%	and	Bob	between	𝐵#	and	𝐵%.	There	is	a	source	
that	emits	pairs	of	qubits	that	fly	apart,	one	towards	Alice	and	the	other	towards	Bob.	They	
indecently	and	randomly	decide	which	observable	to	measure.	This	scenario	allows	us	to	

 
10	Local	realism:	The	idea	that	information	about	a	system	is	localized	to	the	system	and	that	distant	events	
cannot	have	instantaneous	(faster	than	the	speed	of	light)	effects	on	it	
11	Nonlocal:	This	means	that	particles	can	instantaneously	affect	each	other's	state,	no	matter	the	distance	
separating	them	in	ways	that	cannot	be	explained	by	signals	traveling	at	or	below	the	speed	of	light. 
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treat	observables	as	random	variables	𝐴) 	and	𝐵) 	(where	k	=	1,2)	that	can	take	on	the	value	
±1.	We	can	thus	introduce	a	new	random	variable,	the	CHSH	quantity:	

S =𝐴#	(𝐵# −	𝐵%) +𝐴%(𝐵# +	𝐵%)	

There	are	four	potential	outcomes	for	the	pair	(𝐵#	, 𝐵%)	and	after	examination,	it	becomes	
apparent	that	either	(𝐵#	±𝐵%)	 	will	result	in	0	or	±2	(depending	on	if	𝐵#	=	𝐵%	or	not).	This	
means	that	looking	at	the	four	possible	outcomes	for	the	pair	(𝐴#	, 𝐴%),	it	is	determined	that	
𝑆 = ±2.	 But	 the	 average	 value	 of	S	must	 lie	 in	 between	 these	 two	possible	 outcomes,	 i.e.	
−2 ⩽ ⟨𝑆⟩ ⩽ 2.		

	

The	assumptions	are	important	here.	

While	the	specifics	of	the	locality	principle	will	be	further	discussed	only	in	6.7	by	Tasmim,	
a	quick	observation	is	important.	In	a	universe	governed	by	hidden	variables,	a	prediction	
like	"Bob	will	observe	a	+1	if	he	measures	𝐵#		must	hold	a	definitive	truth	value	(true	or	false)	
before	the	actual	measurement	by	Bob.	Absent	to	the	principle	of	locality,	such	predictions	
become	murky	because	the	outcome	for	𝐵#	might	be	influenced	by	Alice’s	choice	to	measure	
	𝐴#	or	𝐴%.	This	scenario	is	undesirable	as	it	suggests	the	possibility	of	instantaneous	signal	
exchange,	implying	that	Alice’s	decision	could	instantly	affect	Bob’s	measurement	outcomes	
which	allows	Bob	to	“see”	Alice’s	actions	immediately.		

5. 6.4	Bell’s	theorem	via	CHSH		
	

In	the	realm	of	quantum	mechanics,	the	story	of	Alice	and	Bob	continues	as	they	explore	the	
behavior	of	qubits	through	observables.	To	understand	their	experiments	in	the	context	of	
quantum	 mechanics,	 we	 translate	 their	 observations	 into	 a	 more	 formal	 language.	 The	
observables	 in	 question,	 denoted	 as	 	𝐴#	𝐴,%, 𝐵#, 𝐵%		are	 represented	 as	 2x2	 Hermitian	
matrices.	Each	of	these	matrices	possesses	two	eigenvalues,	+1	and	-1.	The	expected	value	
of	the	outcome,	denoted	⟨S⟩,	is	calculated	using	4x4	CHSH	matrix,	defined	as:	
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⟨𝑆⟩ = 𝐴#⊗ 	(𝐵# −	𝐵%) + 𝐴%⊗ (𝐵# +	𝐵%).	

This	equation	sets	the	stage	for	evaluating	⟨S⟩	using	quantum	theory,	leading	to	what	is	
known	as	a	CHSH	test	or	Bell	test.	
	

a. CHSH	Test	and	Quantum	Measurements	
	
The	CHSH	test	involves	measurements	on	a	pair	of	qubits	described	by	S.	If	the	qubits	are	in	
the	singlet	state	∣ψ⟩	=	 #

√%
	(∣01⟩−∣10⟩),	then	as	previously	seen,	the	measurement	outcome	

⟨𝐴 ⊗ 𝐵⟩		equals	−	a'⃗ 	·	b'⃗ 	.	By	choosing	specific	vectors	a'⃗ #, a'⃗ %, b'⃗ #, b'⃗ %		(as	shown	in	the	figure	
below)	the	corresponding	matrices	satisfy		
	

⟨A1⊗B1⟩	===	⟨A2⊗B1⟩	=	⟨A2⊗B2⟩	=	− #
√%
		

	
	

⟨	A1⊗B2	⟩			=	=	 #
√%
	

	
 

	

	
	

b. CHSH	test	Outcomes	
	
Through	 this	method,	 it’s	 discovered	 that	 the	 outcome	 ⟨S⟩ = 	 ⟨𝐴#𝐵#⟩ − ⟨𝐴#𝐵%⟩ + ⟨𝐴%𝐵#⟩ +
⟨𝐴%𝐵%⟩	=	-2√2,	a	result	that	starkly	violates	the	CHSH	inequality	as	it	is	strictly	less	than	
-2.	This	inequality	suggests	that	no	local	hidden	variable	theories	can	explain	the	observed	
behavior	 of	 entangled	 quantum	 system	 and	 indicates	 that	 the	 outcomes	 in	 quantum	
mechanics	are	inherently	random	and	not	merely	a	product	of	our	ignorance.		
	

c. Experimental	Verification	and	Significance	
	
The	 violation	 of	 the	 CHSH	 inequality	 is	 not	 just	 a	 theoretical	 prediction	 but	 has	 been	
confirmed	 through	 complex	 experiments.	 Initially,	 these	 experiments	 were	 monumental	
undertakings,	 but	 they	 have	 since	 become	 routine.	 Such	 experimental	 verifications	
underscore	 Bell's	 theorem:	 entangled	 quantum	 systems	 exhibit	 behaviors	 that	 defy	
explanation	 by	 local	 hidden	 variables,	 thereby	 reinforcing	 the	 randomness	 inherent	 in	
quantum	mechanics.	
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d. 	Ensuring	Quantum	Security	through	CHSH	Tests	

 
In	practice,	 conducting	a	CHSH	 test	with	 careful	 control	over	 the	 locality	 conditions	 (e.g.,	
ensuring	Alice	and	Bob	are	sufficiently	distant	 to	prevent	any	causal	 interaction	between	
their	 measurements)	 provides	 a	 powerful	 method	 to	 verify	 the	 non-classical	 and	
unpredictable	 nature	 of	 quantum	 systems.	 This	 verification	 is	 crucial	 not	 only	 for	
understanding	 the	 fundamental	 aspects	 of	 quantum	 mechanics	 but	 also	 for	 securing	
quantum	protocols	against	potential	eavesdroppers.	Thus,	the	CHSH	test	plays	a	pivotal	role	
in	 both	 quantum	 theory	 and	 the	 practical	 implementation	 of	 quantum	 technologies,	 as	
further	discussed	in	subsequent	sections.	
	
	

6. CONCLUSION		
	
Bell’s	theorem	posits	that	the	behavior	of	entangled	quantum	systems	cannot	be	explained	
by	local	hidden	variables	as	we	saw	thanks	to	the	CHSH	inequality	that	was	violated.	In	other	
words,	outcomes	in	quantum	mechanics	really	are	random	and	it	is	not	simply	our	lack	of	
knowledge	about	some	background	process.		
In	the	words	of	the	physicist	John	Stewart	Bell,	for	whom	this	family	of	results	is	named,	"If	
[a	hidden-variable	theory]	is	local	it	will	not	agree	with	quantum	mechanics,	and	if	it	
agrees	with	quantum	mechanics	it	will	not	be	local.”	
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Definitions	
	
	

- Physician	language	vs	mathematician	language	
o Observable	vs	Hermitian	operator		
o Value	vs	eigenvalue		
o Measurable	physical	quantity	vs	observable	

	
- Operator	

o In	quantum	theory,	an	operator	is	a	mathematical	entity	that	acts	on	
elements	of	a	Hilbert	space,	which	represents	the	state	space	of	a	quantum	
system,	to	produce	other	elements	within	that	space	

o Operators	as	observables		
§ When	an	operator	that	represents	an	observable	acts	on	a	quantum	

state	(if	the	state	is	an	eigenvector	of	that	operator),	the	outcome	is	an	
eigenvalue	multiplied	by	the	original	state.	These	eigenvalues	are	the	
possible	results	of	measuring	the	corresponding	physical	quantity.	
For	instance,	measuring	the	energy	of	a	system	involves	the	
Hamiltonian	operator,	whose	eigenvalues	represent	possible	energy	
levels	

	
- Compatible	operators		

o Consider	an	eigenbasis	of	A	(an	operator),	where	each	vector	|ek⟩	is	an	
eigenvector.	If	A	and	B	commute	(AB	=	BA),	any	vector	B	|e⟩	is	also	an	
eigenvector	of	A,	meaning	A	and	B	share	an	eigenbasis.	Conversely,	if	A	and	B	
share	an	eigenbasis,	they	commute	(AB	=	BA).	We	call	A	and	B	compatible	if	
they	commute,	and	incompatible	otherwise		

- Eigenbasis		
o if	a	basis	{∣e1⟩,…,∣en⟩}{∣e1⟩,…,∣en⟩}	is	such	that	each	∣ek⟩∣ek⟩	is	an	eigenvector	

of	an	operator	AA,	then	we	call	it	an	eigenbasis	of	AA	
o 	

- An	observable	A	represents	a	measurable	physical	property,	such	as	spin,	position,	
momentum,	or	energy,	with	a	numerical	value.	It	extends	to	any	basic	measurement	
where	each	outcome	has	an	associated	numerical	value.	If	λk	is	the	numerical	value	
associated	with	outcome	|ek⟩,	then	the	observable	A	is	represented	by	the	operator		

𝐴	 =S𝜆𝑘	|𝑒𝑘⟩⟨𝑒𝑘|
)

	=S𝜆𝑘𝑃𝑘
)

,		

where	λk	now	corresponds	to	the	eigenvalue	of	the	eigenvector	|ek⟩	or	the	projector	Pk.		

- A	projector	is	a	Hermitian	operator	which	is	idempotent	(P	2	=	P	).	Reminder:	
Hermitian:	(P	=	P	†)	The	rank	of	P	is	given	by	tr(P	).	


