
Math Seminar note 2
14.0 Quantum error correction

We have seen a way of dealing with the computational errors introduced by the physical problem
of decoherence, namely the Shor [[9,1,3]] code, but this is just the start of the story. There is a
vast body of work on classical error correction, so it’s sensible to ask if we can adapt this to help
us in the world of quantum computation. As we shall see, we can actually use quite a lot of the
theory of classical error-correction codes, and in doing so we will start to really make use of the
stabiliser formalism introduced all the way back in Chapter 7. But note that this still isn’t the end
of the story: our goal is so-called fault-tolerant computation, which we come to in Chapter 15.

14.1 the Hamming code
A little background:

In the late 1940s, Richard Hamming, working at Bell Labs, was frustrated by the fact that the
machines running his punch cards (back then punch cards were used for data storage) were good
enough to notice when there was an error (and halting) but not good enough to know how to fix
it.

The challenge in designing efficient error-correcting codes resides in the trade-off between rate
and distance.
Ideally, both quantities should be high:

- A high rate signifies low overhead in the encoding process (i.e. requiring only a few
redundant bits),

- A high distance means that many errors can be corrected.

So can we optimize both of these quantities simultaneously? Unfortunately, various established
bounds tell us that there is always a trade off, so high-rate codes must have low distance, and
high-distance codes must have a low rate. (They have an inverse relationship). Still, there is a lot
of ingenuity that goes into designing good error-correction codes, and some are still better than
others!

Before looking at quantum codes in more depth, we again start with classical codes. For
example, in Section 13.6 we saw the three-bit repetition code, which has a rate of R=1/3 and
distance 3. However, the Hamming [7,4,3] code has the same distance, but a better rate of
R=4/7>1/3.

[7,4,3] code is [n, k, d] code

Definition:
1. Linear code: A code where the codewords for, a commutative group under addition
2. Linear code over F2: The code words are only composed of {0, 1}
3. [n, k] code:

- Let 1 ≤ k < n, a [n,k] code over F2 is a k-dimensional subspace of F2^n
4. [n, k, d] code:

- Let 1 ≤ k < n, 1 ≤ d, it is a [n, k] code where the hamming distance of the [n, k]
code is d

5. Hamming distance of a code C:
- It is the minimal distance between any two different code words.

Example of constructing a [n, k, d] code:

[7,4,3] code

The idea is that we have a four-bit string d1d2d3d4 consisting for the four-data bits, and we
encode into a seven-bit string d1d2d3d4p1p2p3 by appending three parity bits p1, p2, and p3,
which re defined by:

The encoding process is then given by the matrix G acting on the vector d. Indeed, since the top
(4×4) part of G is the identity, the first four rows of the output vector Gd will simply be a copy
of; the bottom (3×4) part of G is chosen precisely so that the last three rows of Gd will be exactly

By construction, the sum of the four bits in any single plaquette of the code sum to zero.

and the same argument holds for the other two plaquettes. This incredibly simple fact is where
the power of the Hamming code lies, since it tells the receiver of the encoded string a lot of
information about potential errors.

Concrete example. Say that Alice encodes her data string d1d2d3d4 and sends the result Gd to
Bob, who takes this vector and looks at the sum of the bits in each plaquette, and obtains the
following:

If we make the assumption that at most one error occurs then this result tells us exactly where the
bit-flip happened: it is not in the bottom-left (red) plaquette, but it is in both the top (blue) and
bottom-right (yellow) plaquettes. Looking at the diagram we see that it must be d2 that was
flipped, and so we can correct for this error by simply flipping it back before unencoding (where
the unencoding process is given by simply forgetting the last three bits of the received string).

We can describe the error location process in terms of matrices as well, using the parity-check
matrix H, given by

Note that the rows of H are exactly the coefficients of the parity-check equations for each
plaquette, where we order them top–left–right (blue–red–yellow). For example, to get the sum
corresponding to the bottom-left (red) plaquette, we need to sum the first, third, fourth, and sixth
bits of the encoded string d1d2d3d4p1p2p3 and these are exactly the non-zero entries of the
second row of H. The columns of the parity-check matrix H are known as the error syndromes,
for reasons we will now explain.

The parity-check matrix H is defined exactly so that

Decoding the message then consists of finding the most probable error e that yields the output
He. If e is a single bit-flip error, then He is exactly a column of H, which justifies us describing
the columns as error syndromes. We can construct a table describing all of the possible error
syndromes, and which bit they indicate for us to correct:

14.4 Logical operators

- We have been slowly building up towards constructing quantum error-correction codes
using the stabilizer formalism, but there is one major detail that we have yet to mention.

- We haven’t written out what the stabilizer states actually are, nor what the encoding
circuits look like. There is a simple reason for this: at this point, we don’t actually know!

- There’s a little more work to be done — the stabilizers have provided us with a
two-dimensional space, but if we have ∣0⟩ and ∣1⟩ to encode, how are they mapped
within the space? So far, it’s undefined, and there is a lot of freedom to choose, but the
structures provided by group theory are quite helpful here in providing some natural
choices.

Let’s start with a brief recap.

- The n-qubit Pauli group, denoted as Pn, includes all possible combinations (n-fold tensor
products) of Pauli matrices (1, X, Y, and Z), along with potential global phase factors of
±1 and ±i. When we have an operator, s, from this Pauli group, and if this operator, when
applied to a non-zero n-qubit quantum state |ψ⟩, results in the same state |ψ⟩ (i.e., s|ψ⟩ =
|ψ⟩), we say that the operator stabilizes the state |ψ⟩. This means the state |ψ⟩ is an
eigenstate of the operator s with an eigenvalue of +1.

- Stabilizer group: A stabilizer group is defined as the set of all operators that have the
property of stabilizing every state within a particular subspace, denoted as V.

- By applying some basic principles of group theory, we were able to identify all potential
stabilizer groups, showing that they correspond precisely to the abelian subgroups of the
n-qubit Pauli group (Pn) that exclude the element -1. Following this, we explored the
group structure of the Pauli group itself and examined the relationship between any
stabilizer group, S, and how it is incorporated within the Pauli group. We discovered that
the normalizer:

Remark:

The cosets of S inside N(S) are called logical operators, and any representative of a coset is an
implementation for that logical operator.

In general, the logical states will be superpositions of states, but we still sometimes refer to them
as codewords.

In our example of the three-qubit code, we have the two logical states logical 0 and logical 1,
which we denote by

The reason for these names comes down to two main points: first, |0⟩_L is the encoded form of
|0⟩, the actual zero state; second, this state |0⟩_L acts just like the zero state would when logical
operators are used on it. For instance, the operator X changes |0⟩ to |1⟩, so in the same way, the
logical X should change |0⟩_L to |1⟩_L.

14.6 Logical operators
We already know that the Pauli matrices provide a useful basis with respect to which we can
decompose the effects of any quantum channel300, so we should carefully understand how the
Pauli operators P∈Pn interact with any error-correcting code. For this, we introduce the
notation:

which reminds us of the fact that two anticommuting operators multiplied together produce a
commuting operator.

So the Pauli group is subdivided into error cosets. by the normaliser, and every Pauli in the same
coset has the same error syndrome. If we perform a syndrome measurement after passing
through some noisy channel and get the result e, then the effect of the channel collapses to being
a linear combination of the terms inside the error coset corresponding to the error syndrome e.
By applying any element of that error coset, we are mapped back to the normaliser.

Final

remark:
While we can measure the error syndrome (all the stabilizers commute), we cannot measure the
logical syndrome (not all the logical operators commute). Indeed, we must not even try —
measuring just one such value is equivalent to performing a measurement of the logical qubit,
destroying the superposition of the very state with which we’re trying to compute!

14.3 Quantum Codes from Classical

[Table in the reference]

14.5 Error families

