Math Seminar note 2
14.0 Quantum error correction

We have seen a way of dealing with the computational errors introduced by the physical problem
of decoherence, namely the Shor [[9,1,3]] code, but this is just the start of the story. There is a
vast body of work on classical error correction, so it’s sensible to ask if we can adapt this to help
us in the world of quantum computation. As we shall see, we can actually use quite a lot of the
theory of classical error-correction codes, and in doing so we will start to really make use of the
stabiliser formalism introduced all the way back in Chapter 7. But note that this still isn’t the end
of the story: our goal is so-called fault-tolerant computation, which we come to in Chapter 15.

14.1 the Hamming code
A little background:

In the late 1940s, Richard Hamming, working at Bell Labs, was frustrated by the fact that the
machines running his punch cards (back then punch cards were used for data storage) were good
enough to notice when there was an error (and halting) but not good enough to know how to fix
it.

The challenge in designing efficient error-correcting codes resides in the trade-off between rate
and distance.
Ideally, both quantities should be high:
- A high rate signifies low overhead in the encoding process (i.e. requiring only a few
redundant bits),
- A high distance means that many errors can be corrected.

So can we optimize both of these quantities simultaneously? Unfortunately, various established
bounds tell us that there is always a trade off, so high-rate codes must have low distance, and
high-distance codes must have a low rate. (They have an inverse relationship). Still, there is a lot
of ingenuity that goes into designing good error-correction codes, and some are still better than
others!

Before looking at quantum codes in more depth, we again start with classical codes. For
example, in Section 13.6 we saw the three-bit repetition code, which has a rate of R=1/3 and
distance 3. However, the Hamming [7,4,3] code has the same distance, but a better rate of
R=4/7>1/3.

[7,4,3] code is [n, k, d] code

Definition:
1. Linear code: A code where the codewords for, a commutative group under addition
2. Linear code over F2: The code words are only composed of {0, 1}
3. [n, k] code:
- Let1 <k<n,a[nk] code over F: is a k-dimensional subspace of F-"n
4. [n, k, d] code:
- Letl<k<n,1<d,itisa[n, k] code where the hamming distance of the [n, k]
code is d
5. Hamming distance of a code C:
- It is the minimal distance between any two different code words.

Example of constructing a [n, k, d] code:

Omﬁvudiow-
leken 7ewewd’>1f matix (5 = [IE)H
> T 2108 = ek
=2 P= kx(rk) matax with 0»-#‘ n
&_ [81 5] 000‘&
- |l oo ¥ * x4
k2 n=% Do] / P[];
°o o | A S
3

R _[1loo o1 1D
LC'LP {IOI'OK%G‘—{O‘Olo |
o | © \ .

o1 |

M (MHM).,V‘S)‘ G Vi M“Mz/\/uéﬂ:l

There will be & wde words

(001):G=ool 0olol
(1e)-G=(notlon)
(o)) G=Ctoleoip)
(ot1)-6=(o V111109

(v00) 6= (v0000000)
(loo)- ¢ =(loeo llol)
et O),(.,;(g;alouo)

CLAv)-6= (0 1) 000\)

[7,4,3] code

[da

(|

\ p2 ys p3 //,“
\\,,, NS

Figure 14.1: Left: The Venn diagram for the Hamming [7, 4, 3| code. Right: The plaquette (or

finite projective plane) diagram for the same code. In both, d; are the data bits and the p; are
the parity bits. The coloured circles (resp. coloured quadrilaterals) are called plaquettes.

The idea is that we have a four-bit string d1d2d3d4 consisting for the four-data bits, and we
encode into a seven-bit string d1d2d3d4p1p2p3 by appending three parity bits p1, p2, and p3,
which re defined by:

p1:d1+dg+d4mod2
p2:d1+d3—i—d4mod2
p3:d2+d3+d4mod2.

We can also express this encoding in matrix notation, defining the data vector d by

and the generator matrix?%' G by

1000
0100
0010

G=|00 01
110 1
10 11

001 1 1)

The encoding process is then given by the matrix G acting on the vector d. Indeed, since the top
(4x4) part of G is the identity, the first four rows of the output vector Gd will simply be a copy
of; the bottom (3x4) part of G is chosen precisely so that the last three rows of Gd will be exactly

dy
dy d
ds

Gd = |d,| = Lﬁj :
P
Po |_p3J
| D3 |

By construction, the sum of the four bits in any single plaquette of the code sum to zero.

py+dy +ds+dy=dy +ds+dy+dp+dsg+dy
= 2(dy + ds + d4)
=0

and the same argument holds for the other two plaquettes. This incredibly simple fact is where
the power of the Hamming code lies, since it tells the receiver of the encoded string a lot of
information about potential errors.

Concrete example. Say that Alice encodes her data string d1d2d3d4 and sends the result Gd to
Bob, who takes this vector and looks at the sum of the bits in each plaquette, and obtains the
following:

If we make the assumption that at most one error occurs then this result tells us exactly where the
bit-flip happened: it is not in the bottom-left (red) plaquette, but it is in both the top (blue) and
bottom-right (yellow) plaquettes. Looking at the diagram we see that it must be d2 that was
flipped, and so we can correct for this error by simply flipping it back before unencoding (where
the unencoding process is given by simply forgetting the last three bits of the received string).

We can describe the error location process in terms of matrices as well, using the parity-check
matrix H, given by

a8

I
O =
—_ O
=
e
oo -
oo
_ oo

Note that the rows of H are exactly the coefficients of the parity-check equations for each
plaquette, where we order them top—left-right (blue-red—yellow). For example, to get the sum
corresponding to the bottom-left (red) plaquette, we need to sum the first, third, fourth, and sixth
bits of the encoded string d1d2d3d4p1p2p3 and these are exactly the non-zero entries of the
second row of H. The columns of the parity-check matrix H are known as the error syndromes,
for reasons we will now explain.

The parity-check matrix H is defined exactly so that

He =0 <= cisacodeword.

Now we can see a bit more into how things work, since linearity of matrix multiplication tells us
that, if areceiver receives c + e where e is the error,
H(c +e)= Hc+ He
= He.

Decoding the message then consists of finding the most probable error e that yields the output
He. If e is a single bit-flip error, then He is exactly a column of H, which justifies us describing
the columns as error syndromes. We can construct a table describing all of the possible error
syndromes, and which bit they indicate for us to correct:

Syndrome 000 110 101 011 111 100 010 001

Correction - d; ds ds dy P1 P2 ps

14.4 Logical operators

- We have been slowly building up towards constructing quantum error-correction codes
using the stabilizer formalism, but there is one major detail that we have yet to mention.

- We haven’t written out what the stabilizer states actually are, nor what the encoding
circuits look like. There is a simple reason for this: at this point, we don’t actually know!

- There’s a little more work to be done — the stabilizers have provided us with a
two-dimensional space, but if we have |0) and | 1) to encode, how are they mapped
within the space? So far, it’s undefined, and there is a lot of freedom to choose, but the
structures provided by group theory are quite helpful here in providing some natural
choices.

Let’s start with a brief recap.

- The n-qubit Pauli group, denoted as Pn, includes all possible combinations (n-fold tensor
products) of Pauli matrices (1, X, Y, and Z), along with potential global phase factors of
+1 and +i. When we have an operator, s, from this Pauli group, and if this operator, when
applied to a non-zero n-qubit quantum state |y), results in the same state |y) (i.e., s|y) =
ly)), we say that the operator stabilizes the state [y). This means the state |y) is an
eigenstate of the operator s with an eigenvalue of +1.

- Stabilizer group: A stabilizer group is defined as the set of all operators that have the
property of stabilizing every state within a particular subspace, denoted as V.

- By applying some basic principles of group theory, we were able to identify all potential
stabilizer groups, showing that they correspond precisely to the abelian subgroups of the
n-qubit Pauli group (Pn) that exclude the element -1. Following this, we explored the
group structure of the Pauli group itself and examined the relationship between any
stabilizer group, S, and how it is incorporated within the Pauli group. We discovered that
the normalizer:

N(S)={9 € Pn|gsy 1 € Sforall s e S}
of S in Py, and the centraliser
Z(S) = {g S Pn ‘ gsg ! =gsforalls € S}

of S in P, actually agree, because of some elementary properties of the Pauli group. Furthermore,
we showed that the normaliser (or centraliser) was itself normal inside the Pauli group, giving us a
chain of normal subgroups

S« N(S) 4 Pn.
This lets us arrange the elements of PP, into cosets by using the two quotient groups
N(S)/S and Pn/N(S).

How does this help us with our stabiliser error-correction codes? Let’s look first at the former:
cosets of S inside its normaliser N (S).

If |¢) € Vsisastateinthestabilised subspace, then any element g € S always satisfies
glY) = 1)

whereas any element g € N(S) \ S merely satisfies

glY) € Vs

and, for any such g, there are always states in Vs that are not mapped to themselves. However, if
we look at cosets of S inside N(S) then we discover an incredibly useful fact: all elements of a
given coset act on [¢) in the same way. To see this, take two representatives for a coset, say
g8 = ¢'Sforg, g’ € N(S). By the definition of cosets, this means that there exist s, s’ € S such
that gs = g¢'s’. In particular then,

gsl) = g's'[4)

butsince s, s’ € Sand i) € Vg, this says that

gl) = g'l)
as claimed.

Since the cosets of S inside N (S) give well defined actions on stabiliser states, preserving the
codespace, we can treat them as operators in their own right.

Remark:

The cosets of S inside N(S) are called logical operators, and any representative of a coset is an
implementation for that logical operator.

In general, the logical states will be superpositions of states, but we still sometimes refer to them
as codewords.

In our example of the three-qubit code, we have the two logical states logical 0 and logical 1,
which we denote by

|0) £, := |000)
1) = |111).

The reason for these names comes down to two main points: first, |0) L is the encoded form of
|0), the actual zero state; second, this state |0) L acts just like the zero state would when logical
operators are used on it. For instance, the operator X changes |0) to |1), so in the same way, the
logical X should change |0) L to |1) L.

The normaliser of S inside Pj is
N(S)={1,XXX,-YYY,ZZZ} x S

which we have written in such a way that we can just read off the cosets: there are four of them,
and they are represented by 1, XX X, —YYY, and ZZZ. These four (implementations of) logical
operators all get given the obvious names:

1, =1
X = XXX
Yy = —YYY

Z = ZZZ

14.6 Logical operators
We already know that the Pauli matrices provide a useful basis with respect to which we can
decompose the effects of any quantum channel300, so we should carefully understand how the
Pauli operators P < Pn interact with any error-correcting code. For this, we introduce the
notation:

0 P and o commute

1 P and o anticommute

c(P,o) = {

for any Pauli operator P and any other operator o. A particularly nice thing about this choice of
definition (as opposed to taking ¢(P, o) € {£1}, say) is that we can write

Po = (—-1)*Psp.

Furthermore, this function has a nice relation on products: writing @ to mean addition mod 2, we

can see that

¢(P,o1) =¢(P,0) ®c(P,T)

which reminds us of the fact that two anticommuting operators multiplied together produce a
commuting operator.

Now fix some stabiliser group®9' S = (g1, - -+, gn—k). We define the error syndrome ep of a Pauli
operator P to be the vector of all the values ¢(P, g;), i.e.

ep = (c(P,g1),...,c(P,gn-1)).

It follows from the the above relation of how ¢(P, —) turns products into sums that

€ps = Ep @ﬁo-

The set of Pauli operators that have zero syndrome are special, and form a set known as the

normaliser:

N(S):={P € Pn|c(P,g)=0forallo € S}.

So the Pauli group is subdivided into error cosets. by the normaliser, and every Pauli in the same
coset has the same error syndrome. If we perform a syndrome measurement after passing
through some noisy channel and get the result g, then the effect of the channel collapses to being
a linear combination of the terms inside the error coset corresponding to the error syndrome e.
By applying any element of that error coset, we are mapped back to the normaliser.

In fact, there is further substructure*°® within the normaliser, and this is also reflected in each

error family. Given a Pauli operator P € N(S) in the normaliser, we define its logical syndrometo Fipgl
be the vector £, of all the values ¢(P, o), where o ranges over N (&). Note that, forany 7 € S, we

have £, = £p_. Again, this splits the normaliser Pauli operators into sets, which we call the logical

cosets, each being defined by having the same logical syndrome.

remark:

While we can measure the error syndrome (all the stabilizers commute), we cannot measure the
logical syndrome (not all the logical operators commute). Indeed, we must not even try —
measuring just one such value is equivalent to performing a measurement of the logical qubit,
destroying the superposition of the very state with which we’re trying to compute!

14.3 Quantum Codes from Classical

We would like to use the insights gained from our study of classical codes to help us build quantum
codes. Let's start with a classical [n, k, d] code (such as the Hamming (7, 4, 3]), with parity-check
matrix H and generator G. Each row r of H is a binary string x, = 2, 12,5 ... %, », Where z; ; is
the (7, j)-th element of H.For1 < r < n, we define a stabiliser generator

G, = X,, = @7 X .

For example, in the case of the Hamming [7, 4, 3] code, we have

H =

O = =
=
== O
=
o o =
o= o
= o o

so the three rows define three generators

G1 - XllﬂllOD =XX1XX11
Gg — X1011010 =X1XX1X1
Gg — X0111001 =1XXX11X.

Now consider a state |¢) that is stabilised by these generators, i.e. such that

Grlv) = |9).
What happens if a Z error occurs on a particular qubit: what measurement results do we get when
we measure the stabilisers? Well, writing Z; to mean a Z error on the j-th qubit, as usual,
GrZj|p) = (—1)" G, [¢)
= (1)).

So the measurement outcome directly corresponds to the (7, 7)-th entry z, ; of the parity check
matrix. Generally, if this Z; error occurs, then measuring for all rows r will give measurement
outcomes that directly correspond to the j-th column of the parity check matrix. This is just the
same lookup table as in the classical case: this codespace is a distance d error correcting code for
single Z errors. Using the Hamming (7, 4, 3] code as an example again, we get the following table
of error syndromes, where we write + to mean +1:

[Table in the reference]

We can figure out some key properties of combining an [n, k, d| code (G, H) for X -stabilisers and
an [n,k’,d'] code (G', H') for Z-stabilisers without too much difficult. Since our first code
encodes k bits, the generator G has k rows, and the parity-check matrix H has n — k rows. Thus
there are n — k of the X -type generators, and n — k' of the Z-type generators; in total there are
2n — (k + k') generators. Since each generator halves the dimension, the dimension of the
Hilbert space defined by the stabilisers is

2n—2n+k+k' — 2k+k'—n

i.e. it encodes k + k' — n qubits. The combined code has a distance k against Z errors, and &’
against X errors; since the two types of errors are correctly independently, the total distance is
simply min(d, d'). In summary then, we have created an

[[n,k + k" — n,min(d, d')]]

quantum error-correction code, and its decoding is well understood based on the classical
decoding methods applied independently for X errors and Z errors. This general construction of
quantum error correcting codes is known as the CSS construction, for its originators Robert
Calderbank®, Peter Shor®, and Andrew Steane®.

Givenan [n, k1, d;] code C; = (G, Hy) andan [n, ks, ds] code Cy = (G4, Hy) such that
range(HZI) C range(G;), the €SS code CSS(C,C») constructed as above is an
[[n, kl + kQ — n,min(dl, dg)” code.

14.5 Error families

Allin all, the chain of normal subgroups
SaN(S)<aP,

really does describe the full structure of the code: logical states, logical operators, and error
families.

codespaces stabilisers < normalisers < Paulis

logical operators error families

Figure 14.7: Avisualisation of how the stabilisers, normalisers, and arbitrary Pauli operators
act on the codespace decomposition: stabilisers act as the identity, normalisers move each
subspace around within itself, and Pauli operators swap subspaces around between one
another.

The quotient group N (§) /S gave us logical operators, so the next thing to ask is what we get from
the quotient group P,,/N (S).

The cosets of N(S) inside P, are error families on the codespace V. The individual
elements of any error family (i.e. the elements of P,,) are called physical errors.

Again, we can write P5 in such a way that we can immediately read off the cosets:
P;={1,X11,1X1,11X} x N(S) x {£1, xi}.

Ignoring the phases, the three (non-trivial) error families are single bit-flips: [X11], [1X 1], and
[11X]; these error families X; map the codespace C to the subspace C;, as shown in Figure 14.6.

Figure 14.6: The single bit-flip error family X; maps the codespace C to the subspace C;,
e.g. X»|000) = |010) € C,.

These errors also let us understand how the structure of the codespace is mirrored across each of
the cosets. In other words, we picked C to be our codespace, but what if we had instead picked C;?
Well, we would get exactly the same code, just expressed in a different way, and this “different
way” is described entirely by the error family [X 11]. What we mean by this is the following:

o We canwrite C; as the stabiliser space of S conjugated by X11, i.e.

(X11)(ZZ1,1ZZ)(X11)"! = ((X11)(ZZ1)(X11) "}, (X11)(12Z)(X11) 1)
=(-221,12Z)

and, indeed, |100) and |011) are both stabilised by this group.
 Thelogical states of C; are, by definition as our chosen basis, the elements |100) and [011),
but note that these are exactly the images of the logical states of C under the error X11, i.e.

[0)21 == |100) = X11|000)
[1)p1 = [011) = X11[111)

e Thelogical operators on C; are the logical operators on C conjugated by X11,i.e

X = (X11)(XXX)(X11)!
= XXX

Zp1 = (X11)(Z222)(X11)7}
=777

and, indeed, X1 1 and Z1 1 behave as expected on the new logical states, i.e.

X1 |0)p1— [1)ra
[Dra—10)za

Zpa:0)p1 = [0)z1
D1~z

as you can check by hand.

