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9.7 Composition of quantum channels

We mentioned that quantum channels are combinations of
1. Adding a physical system in a fixed state (via tensoring),
2. Unitary transformations, and
3. Discarding a physical system (taking a partial trace).

Each of these operations admits an operator-sum decomposition. This might be obvious for the
unitary transformations (second), but less so for the other two.

- Adding a system
Any quantum system can be expanded by bringing in an auxiliary system in a fixed state
∣a⟩. This transformation takes vectors in the Hilbert space associated with the original
system and tensors them with a fixed vector ∣a⟩ in the Hilbert space associated with the
auxiliary system:

In terms of density operators, we write this “expansion” transformation as

Where V = ∣a⟩ ⊗ 1
We notes that V†V = ⟨a∣a⟩ ⊗ 1 = 1 is the identity in the Hilbert space associated with the
system, and so V is an isometry. Indeed, this transformation is an isometric embedding.

Def: isometry: a mapping of a metric space onto another or onto itself so that the distance
between any two points in the original space is the same as the distance between their
images in the second space. (Necessary to keep?)

- Discarding a system



Conversely, given a composite system in state ρ, we can discard one of its subsystems.
The partial trace over an auxiliary system can be written in the Kraus representation as

where the vectors ∣i⟩ form an orthonormal basis in the Hilbert space associated with the
auxiliary system.

Any sequential composition of two quantum channels ε and F with Kraus operators {Ai}i∈I and
{Bj}j∈J (respectively) is another quantum channel described by the Kraus operators {BjAi}i∈I
& j∈J

So why did we call the above composition “sequential”? It’s how we always compose functions.
- There is another way of composition called parallel composition.
- If we have systems A and B with channels εA acting on A and εB acting on B, then the

parallel composition is denoted by εA ⊗ εB, acting on the joint system of A ⊗ B, and with
Kraus operators given by the Ai ⊗ Bj.



The normalization condition follows from a simple calculation:

Remark:When we compose quantum channels, each channel needs its own independent ancilla
- do not share ancillas between different channels.

What are the ps?

9.8 Completely positive trace-preserving map

Recall density operators ρ are positive (semi-definite) Hermitian operators that tr(ρ) = 1 where
“positive” means ⟨v∣ρ∣v⟩⩾0 for all ∣v⟩ (or, equivalently, that all its eigenvalues are non-negative
real numbers).

It is easy to verify that quantum channels preserve positivity and trace, but the converse is not
true! That is, there are linear maps that preserve positivity and the trace, but are not quantum
channels, and thus which are not “physical operations”.

- Ex: The matrix transpose operation ρ ↦ ρ T is a good example of such an unphysical
operation: it preserves both trace and positivity, and if ρ is a density matrix then so too is
ρT, but we will show that the transpose cannot be written in the Stinespring (or the
Kraus) form; it is not induced by a unitary operation on some larger Hilbert space, and it
cannot be physically implemented.

-



- So, the question becomes what is the class of physically admissible maps? That is, how
can we classify which maps are quantum channels and which are not?

1. We say that a linear operator f:H→H′between Hilbert spaces is bounded if there exists
some real number B>0 such that∥f(x)∥H′⩽ B∥x∥H for every vector x∈H. Given a
pair of Hilbert spaces H and H' , we denote the set of bounded linear operators from H to
H' by B(H, H'). We write B(H) as a shorthand for B(H,H).??

2. Then, a quantum channel ε is a specific type of map that ε: B(H) → B(H’)
3. Consider an ensemble of systems, with a fraction p1 of them in the state ρ1, and the

remaining p2 of them in the state ρ2. The overall ensemble is described by
ρ = p1ρ1+p2ρ2.

If we apply ε to each member of the ensemble individually, then the overall ensemble
will be described by the density operator ρ′ = ε(ρ), which should be given by

ρ′= p1ε(ρ1) + p2ε(ρ2)
We conclude that ε must be a linear map.

4. Next, since ε must map density operators to density operators, it has to be both positive
(ε(ρ)⩾0 whenever ρ⩾0) and trace preserving ( trε(ρ) =trρ for all ρ).

5. The final characteristic is complete positivity. Complete positivity of ε implies positivity,
but the converse does not hold: there are maps which are positive but not completely
positive. The matrix transpose operation ρ→ρ T is a classic example of such a map.
(WHY?)

Matrix transpose example:
- Consider the transpose operation on a single qubit: T:∣i⟩⟨j∣↦∣j⟩⟨i∣ (for i,j∈{0,1}). It

preserves both trace and positivity.
- However, if the input qubit is part of a two qubit system, initially in the entangled state

∣Ω⟩= 1/sqrt(2)(∣0⟩∣0⟩+∣1⟩∣1⟩), and the transpose is applied to only one of the two qubits
(say, the second one), then the density matrix of the two qubits evolves under the action
of the partial transpose 1⊗T as

- The output is known as the SWAP matrix, since it describes the SWAP
operation:∣i⟩⟨j∣↦∣j⟩⟨i∣



9.9 Chanel-state duality

Choi Matrix: denoted ε tilda
- Another way of representing the linear map: ε: B(H) → B(H’)



9.10 The math of “can” and “cannot”

So we have the convex-sum of expression of a linear map

Where 0 ≤ p ≤1

So we take the input state ρ and either
- (i) apply the transpose, with probability p
- or (ii) replace it with the maximally mixed state, with probability (1−p).

But because the transpose operation is not completely positive it is not physically admissible.

But this does not mean that the map ε itself cannot be implemented
- So there are 2 cases

1. P = 0, which correspond to (ii) - just replacing the input with the maximally
mixed state

2. P increases from 0 to 1: at some critical point the map switches from completely
positive to merely positive. In order to find this critical value of p, we first
calculate ε(∣i⟩⟨j∣) for i, j∈{0,1} as follows:

which lets us apply channel-state duality: ε is completely positive (and hence physically
realizable) if and only if ε~⩾0, and the latter is true only when p⩽1/3(note that the eigenvalues of
ε~ are ¼(1+p) and ¼ (1-3p)



9.11 Kraus operator

Channel-state duality gives us more than just a one-to-one correspondence between states ε~ and
channels ε - it also gives a one-to-one correspondence between vectors in the statistical ensemble
ε~ and the Kraus operators in the decomposition of ε.

So how many Kraus operators do we really need?
- Channel-state duality tells us that the minimal number of Kraus operators needed to

express ε:B(H)→B(H′) in the operator-sum form is given by the rank of its Choi matrix
ε~

- In fact, this minimal set of Kraus operators corresponds to the spectral decomposition of
E~.

Remark:



9.12 Remarks and exercises

The Markov approximation

States: environment has essentially no memory.
- For example, suppose that our system is an atom, surrounded by the electromagnetic field

(which serves as the environment). Let the field start in the vacuum state. If the atom
emits a photon into the environment, then the photon quickly propagates away, and the
immediate vicinity of the atom appears to be empty, i.e. resets to the vacuum state. In this
approximate model, we assume that the environment quickly forgets about the state
resulting from any previous evolution.

- Here the system, initially in state ρ, undergoes two stages of evolution, and the
environment, initially in state ∣e⟩, is not discarded after the first unitary evolution UA;
the environment persists and participates in the second unitary evolution UB. In this case
the evolutions ρ↦ρ′ and ρ↦ρ′′are both well defined quantum channels, but the evolution
ρ′↦ρ′′ is not

- In this case, all three evolutions are well-defined: if εA describes the evolution from
ρ↦ρ′, and εB from ρ↦ρ′′, then the composition εA ○ εB describes the evolution from
ρ′↦ρ′′


