
Quantum Gates

Review:
A gate is a feature of a computer that performs some operation on a bit (either 1 or 0). A not
gate in particular flips the bit: if it is a 1, it becomes a 0. If it is a 0, it becomes a 1.
Quantum gates are devices that perform some unitary operation on a qubit over a certain
period. This means that there is some input and some output. Specifically, we are concerned
with the math behind the output. What exactly is possible?

We represent these gates with 2-by-2 matrices acting on the vector representation of a qubit.

Pauli operators represent special gates with specific nice properties:

Bit-flip is analogous to a NOT gate in classical computing. The rest have no analogs, but this

gives us an idea of what the gates should represent.

Beam Splitters:



A symmetric beam splitter is a cube that splits light into two beams: one that reflects, acting as

a sort of mirror, and one that absorbs, allowing the light to pass through.

Great. But what’s happening at the photon level?

Individual photons don’t split into two. Each photon hits the exits at the same probability: 0.5.

This makes sense based on classic physics and probability, but this general trend doesn’t really

carry on.

Recall the double slit experiment: the moral of the story is that qubits don’t generally follow

“basic” rules of physics and probability.



Consider the above beam splitter contraption. If we send a photon through, we’d expect there

to be an equal probability of hitting both the 0 and 1 outputs. The first splitter splits the

probability but the mirrors recombine it until it’s split again at the end, right? The Kolmogrov

additivity axiom says that we can add mutually exclusive events.



Take for example the above diagram: there are two ways for us to hit the 0 output. There are 4

possible routes for the photon to take. Each reflection happens with a probability of ½, as does

each transmission. We would think that if we fire a photon from the 0 input and check the

probability of it hititng the 0 output, we could add the probability of double transmissions

(½)(½) to the probability of double reflections (½)(½) and end up with a total probability of ½.

We would expect both the 0 and the 1 to be hit at ½ probability. However, this is not what

happens in reality!!! The input from 0 always hits 1 and the input from 1 always hits 0. Thus,

the beam splitter is essentially a gate (there are many different ways to implement such𝑁𝑂𝑇

a gate). We can describe the action of the beam splitter using a matrix. Consider the following:

Each represents a different path for the particle to take (the second number path first𝐵
𝑙𝑘

followed by the first number path). Reflections happen with amplitude , while𝑖/ 2

transmissions happen with amplitude . Let’s try to then figure out the amplitude of a1/ 2

particle from the input port 0 hitting the output port 0. We notice that multiplying the terms

with i results in -½ while the non i terms results in ½. Indeed, there is a 0 probability that the

photon goes along this path. It is the sum of both possible paths (two consecutive reflections

and two consecutive transmissions).



The textbook seems to think that it’s important to note that amplitudes can cancel each other

out, unlike probabilities. We actually have a negative amplitude because of the i terms, thus

resulting in that zero chance of going from input port 0 to output port 0. If we find the path

from 0 to 1, we find that there is a total amplitude of i, giving a probability of 1 (as |i|^2=1, as

discussed in the first lecture).

To finish showing that this is a gate, we do the following calculations𝑁𝑂𝑇



Note what has happened! Two beam splitters together function essentially as a NOT gate

does. In other words, the beam splitter action squared is equal to the NOT gate, and we have a

proper gate in mathematical terms. To summarize, a gate can be represented with𝑁𝑂𝑇 𝑁𝑂𝑇

the matrix B.

Quantum Interference:

A fun little beam-splitter system isMach-Zehnder Interferometer, which is essentially the

double beam-splitter we looked at earlier with phase shifters (this could be like glass or

something).

Here, the and represent the thickness of the phase shifters and are measured in the unitsϕ
0

ϕ
1

of the of the photon’s wavelength multiplied by . The phase shifters shift the probability2π

amplitude by a factor of and respectively. The other difference between a𝑒
𝑖ϕ

0 𝑒
𝑖ϕ

1

Mach-Zehnder Interferometer and the beam splitter that we looked at earlier is the probability



split: these splitters can be non-symmetric, meaning that they don’t split at an equal

probability. They now reflect with some fixed probability of and transmit at probability ,𝑖 𝑅 𝑇

and we can check that the absolute values of these numbers squared equals 1.

Let’s now look at an example of the following interferometer. Say we call a probability

amplitude where j represents the value of the input port and i represents the value of the𝑈
𝑖𝑗

output port. For . We note that as before, there are two different paths for which a photon𝑈
00

can begin at the 0 input and end at the 0 output. There is the double reflection and path andϕ
1

the double transmission and path. So when we multiply by the correct phase shifters, weϕ
0

end up with:

we square the absolute value of the amplitude to find the overall probability:

Let’s take a closer look at this equation: the part is exactly what we would𝑇2 + 𝑅2

expect from classic physics. There are either 2 consecutive transmissions or 2𝑇2

consecutive reflections . However, this is not what happens in reality: the𝑅2



term is very very important. We define the relative phase as2𝑇𝑅𝑐𝑜𝑠(ϕ
1

− ϕ
2
)

, and depending on the value of this, our probability can range fromϕ =  ϕ
1

− ϕ
2

to 1, as this term affects the cosine value:(𝑇 − 𝑅)2

Let’s consider what this interferometer looks like using a familiar diagram:

Let’s try to caclulate the probability amplitude and corresponding probability of .𝑈
10

(reminder, we start at 0 and end up at 1 and thus calculate the two paths that get us there,

multiplying all the terms along the way). We find that the probability ends up being:



Again, the term without the cosine is what we’d expect in classic physics, while the second

term makes things weird, We can add up both of our probabilities to find that

as a little sanity check. The probability does equal 1 as expected. Oftentimes, Mach-Zehnder

interferometers are symmetric, meaning that reflects and transmissions both happen at a

probability of ½ . We can represent them as follows:

Pauli Matrices:

In mathematics, we use matrices to represent vector spaces. If we have a 2x2 vector space, its

basis can be represented with four matrices, each having a 1 in one of the four spots. Using

linear combinations of these four matrices, we can represent any 2x2 matrix. However, we can

also use the Pauli matrices;



These matrices are Hermitian, meaning that the transposes of the conjugates are equal to the

matrices. They are also unitary (quantum operations are reversible), square to the identity

matrix, and anti-commute (AB = -BA).

Cool. What does this look like? If we add linear combinations of the matrices, we end up with:

This looks like a dot product! And indeed, we can simplify the above matrix representation to:

=  𝑎
0
1 +  𝑎

→
 *  σ

→



Next, we have to review the trace of a matrix, i.e, the sum of the diagonals. We find that tr(ab

+cd) = atr(b) + ctr(d). , and that trace is invariant under cyclic permutation, meaning that

tr(ABC) = tr(BCA) = tr(CAB).

Finally, we define an inner product (generalization of the dot product) that will become

important later on.

This weird cross thing refers to the Hermitian.


