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Disclaimer

These notes were taken during lecture using the vimtex package of the editor neovim. Any
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1.1 Course Description

Singular spaces arise naturally in many contexts, including algebraic geometry and representation
theory. Any singular space has a decomposition into manifolds (a "stratification"), and so the
study of them is a mixture of topology, geometry, and combinatorics. The goal of this course is to
present the basics of stratified spaces and to illustrate the general theory with some important
examples. Potential topics: general material, including stratifications, Whitney conditions, local
structures, intersection homology; isolated singularities of complex hypersurfaces (the Milnor
fibration and related topics), including connections to knot theory; and compactifications of locally
symmetric spaces.

1.2 Organization

This class has a webpage: www.math.umass.edu/~gunnells/singspc/singspc.html. Grading will
be based on an expository paper of around 10 pages. More information is on the website. He says
he does this because most grad students don’t do enough writing until the thesis.1 Occasionally
Paul will suggest exercises that we can think about.

1.3 Overview

Obviously this courses is about singular spaces, in particular stratified spaces. Recall that a nice
space is a smooth manifold, which is locally Euclidean. An example of this is a torus. However,
not all useful spaces are manifolds.

Example 1.1. Consider the nodal cubic given by collapsing a circle on the torus to a point.
Algebraically, this is given by y2 = x3 + x2. This is not a manifold, but it has a decomposition
(stratification) into manifolds (S1 × S1 \ S1, pt).

Example 1.2. Affine algebraic varieties have a natural stratification (take the smooth locus, then
repeat on the singular locus). For example, for a hypersurface (f = 0), the singular locus is given
by the vanishing of all partial derivatives of f.

1Hey, it’s good to get this in my undergrad.
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For a simple example, consider f = x3 − y2. This is singular at the origin. If we consider
S3 ∩ Vf, we obtain an S1. Viewing S3 = R3 ∪ {∞}, our S1 is a trefoil knot.2 The stratification into
manifolds is obvious.

Example 1.3. Consider a manifold M and topological group G acting on M. Sometimes the space
M/G is a manifold (for example when M = Sn,G = Z/2Z, M/G = Pn(R)). However, typically
the quotient is not a manifold. Sometimes the space is not even Hausdorff.3 If we suppose that
the action is proper (this is automatically satisfied if G is compact ((S1)k,SO(n))), then M/G will
be a stratified space. If G is finite, then M/G is a global orbifold.

Definition 1.4. Let G be a Lie group and K a maximal compact subgroup. For example, consider
G = SLn(R) and K = SO(n). Alternatively, consider G = SLn(C) and K = SU(n). The space
X = G/K is a contractible smooth manifold diffeomorphic to Euclidean space. This is a global
symmetric space. Now let Γ ⊂ G be a discrete group (for example SLn(Z)). Another example is
SLn(Z[i]) ⊂ SLn(C). Now Γ has a natural action on G/K. Thus a locally symmetric space is Γ\G/K.

Example 1.5. Consider G = SL2(R) and K = SO(2). Then X = G/K ' H, the upper half plane.
Now Γ = SL2(Z) acts by Möbius transformations. Then Γ\H ' C.

In general, locally symmetric spaces are orbifolds. However, they are not compact, so we want
to build good compactifications for these spaces. For this, we have a well-developed theory that
leads to very interesting singular spaces. In the previous example, we may consider principal
congruence subgroups Γ(N), and it turns out Γ(N)\H is a curve of some genus minus finitely
many points.

It should be apparent that this subject is all over the place. For this reason, Paul finds this
subject very interesting. Resources can be found on the course webpage.

Definition 1.6. Let M be a smooth manifold and Z be a subset of M. Then a stratification of Z is a
filtration by subsets Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Z such that:

1. Si = Zi \ Zi−1 is a locally closed regular submanifold of M of dimension i (possibly
disconnected or even empty).4 The connected components of the Si are strata.

2. If S, T are strata and S∩ T 6= ∅, then T ⊂ S. This gives a poset structure on the set of strata.

3. The stratification is locally finite. Equivalently, any point is contained in the closure of
finitely many strata.

Next lecture we will see the Whitney conditions, which guarantee that the geometry is locally
homogeneous.

2Andreas spoke for everyone and asked for justification, and Paul said he said the word overview, so he can say
whatever he wants without explaining anything.

3“I don’t know why you’d want to see an example of this. You must be a bad person”
4A special case of this is when Sn−1 is empty, a pseudomanifold.
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2.1 Basic Examples

Last time we defined what a stratification is. Here is an example that is not very exciting:

Example 2.1. A manifold with boundary has a very simple stratification. More generally, a
manifold with corners has a stratification given by the codimension of the corner. Note that
topologically, a manifold with corners is the same thing as a manifold with boundary. A
tetrahedron is an example of a manifold with corners, but an octahedron is not.

Example 2.2. Let V be a finite-dimensional vector space over R or C. Let Z be a finite collection of
affine subspaces. This defines a stratification of V . Note this works for any locally finite connection
of subspaces, e.g. a periodization of Z by some lattice.

Example 2.3. Let X be a smooth manifold and consider Xn. Then for some I ⊂ [n] with |I| > 2,
we can consider the set ∆I = {xj = xk iff j,k ∈ I}. We will consider the space

Z =
⋃

|I|>2

∆I.

This is related to configuration spaces. Locally this looks like a subspace arrangement.

Example 2.4. Let G be a finite group acting on X. X has a stratification given by the various
stabilizers. For example, we can obtain the previous example by considering the action of Sn on
Xn.

Example 2.5. Let M = Gr(k,n). For example, Gr(1,n) = Pn−1. Now choose a fixed flag in Rn.
We will obtain a stratification by looking at intersections with the flag. Considering Gr(2, 4),
we projectivize our setup and find six possible configurations. We can form a poset by taking
limiting configurations, and the closures of strata are called Schubert varieties. The strata are
called Schubert cells.

There is another construction (the matroid stratification) that we can perform on the Grass-
mannian. Fix a basis e1, . . . , en. Then consider the n! fixed flags that come from this basis. Now
take all possible intersections of all Schubert cells. This is not a stratification because the axiom of
the frontier fails.

Exercise 2.6. Figure out what the Schubert varieties of Gr(2, 4) look like.
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Example 2.7. Let Z be a complex projective variety. Z has a natural stratification given by
iteratively taking the singular locus. However, this is not always the best stratification. Consider
the Whitney cusp given by (x3 + z2x2 − y2 = 0). The singular locus is the z-axis. The generic
cross-section looks like a nodal curve, but the the cross-section at z = 0 is is cuspidal curve.

2.2 Some Geometry

Recall that two regular submanifolds M,N intersect transversely inside X if TpM+ TpN ⊂ TpX
has maximal possible dimension. We ran out of time, so next time we will define normal slices
and links.
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3.1 Normal Slices and Links

Let M ⊃ Z with S the set of strata. Then let p ∈ Z be contained in stratum S. Choose a small disk
N 3 p and transverse to all strata containing p with dimN+ dimS = dimM.

Definition 3.1. THe normal slice to p is N∩Z and the link is defined as ∂N∩Z.

Example 3.2. On the Whitney cusp, the normal slice of a generic singular point is an X-shape and
the normal slice of the origin is a V-shape. The links are four points and two points, respectively.

Example 3.3. Let p be contained in a codimension k corner. Then it is not difficult to see that
L(p) = ∆k, the (k− 1)-simplex.

Exercise 3.4. Stratify Cn by the coordinate subspaces. Compute the links. As a warm up, try this
with Rn, or if you feel ambitious, do this with Vn for any real vector space.

3.2 The Whitney Conditions

3.2.1 Condition A Let Z =
⋃
Sα be a stratification. Then

1. Suppose Sα ⊂ Sβ.

2. In addition, suppose that we have a sequence {xi} ⊂ Sβ and y ∈ Sα.

Then if TxiSβ → P, we have TySα ⊂ P. Here the limiting process of spaces takes place in the
Grassmannian.1

3.2.2 Condition B Suppose that conditions 1 and 2 hold has above. Additionally suppose
that for y ∈ Sα, {xi} ⊂ Sβ, {yi} ⊂ Sα with xi → y,yi → y, consider the secant lines `i through
xi,yi. Then if `i → `, we have ` ⊂ P.

Example 3.5. On the Whitney cusp, this condition fails at the origin.

1Note that Whitney originally came up with condition A, then realized it was strong enough. He then came up with
condition B, which implies condition A. For some reason, he presented them in this order and now every presentation of
the subject does this.

9
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Exercise 3.6. Prove that condition B implies condition A.

Definition 3.7. Let M ⊃ Z with S the set of strata. This is a Whitney stratification if it is a
stratification and satisfies Whitney’s condition B.

Example 3.8. If we make the origin a stratum on the Whitney cusp, then we obtain a Whitney
stratification.

Definition 3.9. Suppose Z is Whitney stratified. Then

1. The homeomorphism types of links and normal slices are uniquely determined as soon as
the disk N is sufficiently small.

2. The normal slice is homeomorphic to the cone on the link.

3. Locally near p, Z looks like S× cL(p) (local triviality along the strata). More precisely, given
S ⊂ Z, there exists a closed neighborhood TS ⊂ Z and a locally trivial fibration TS → S such
that f−1(P) ' cLp(S).

Proof of this theorem can be found in Mather’s notes.

Definition 3.10. A map f : X→ Y of spaces is a fibration if it satisfies the path lifting property: If
x ∈ f−1(y) and we have a closed loop in Y based at y, it can be lifted to a path in X based at x.

Definition 3.11. A fibration is locally trivial if there exists a covering {U} such that f−1(U) is
homeomorphic to a product U× F. Here F is called the fiber.

Example 3.12. Any fiber bundle is an example of a locally trivial fibration. If F is equipped
with the action of a topological group G, the fiber bundle is determined by a covering {U} and a
G-valued cocycle. Let F = T2 = R2/Z2 and γ ∈ SL2(Z). Then let M = T2 × I/(t, 0) ∼ (γt, 1). This
gives a torus fibration M over the circle.

Exercise 3.13. Compute the homology of M.

Theorem 3.14. Let X be a real or complex semianalytic semianalytic variety. Then X admits a filtration by
semianalytic varieties whose connected components form the strata of a Whitney stratification.2

A recent proof of this was given by Kaloshin.

2Most reasonable spaces are like this. The Cantor set is not like this, or the cone on the Cantor set, but is that really
what you want to be doing?



4

February 4

4.1 Whitney, Continued

Last time we discussed the Whitney conditions and their consequences. Here is an example of a
nontrivial link bundle.

Example 4.1. Recall the construction in Example 3.12. Then take the matrix

γ =

(
2 1
1 1

)
.

This is a torus bundle T2 →M→ S1 over the circle, but is not trivial. Now we will construct three
singular spaces:

• Set X =M× [0, 1). This is a manifold with boundary.

• In ∂X = M, collapse the fibers of M over S1. This is a stratified space with a circle glued
onto a four dimensional manifold. Call this X̂.

• Now collapse all of the boundary S1 to a single point. Call this X∗.

Now consider the boundary strata and the link of a point.

Boundary Stratum Link of point

X M pt
X̂ S1 T2

X∗ pt M

Remark 4.2. These singularities appear in the study of Hilbert modular surfaces.

4.2 Thom’s Presentation of Stratified Spaces

Our goal here is to explain how to assemble a stratified space from simpler ones (manifolds with
corners) by gluing them together. The main reference is a paper in the Liverpool Singularities
Symposium. This will allow us to compute links.

Consider a torus with an open slice taken out, so it has boundary two circles. Then if we glue
the two boundary components together and collapse them, we obtain the nodal cubic. Here, we
use

11
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Theorem 4.3 (Collar Neighborhood Theorem). Let ∂X = Y. Then there exists a neighborhood of Y in X
that locally looks like Y ⊃ U× [0, ε).

Now we generalize this to manifolds with corners.1 Suppose Mn is a manifold with corners.
Then let Mi,n be a codimension 1 corner where 0 6 i 6 n − 1. Now let Ui,n ⊂ M be a
neighborhood of Mi,n. Note that we have maps

Mi,n
πi←− Ui,n

ρi−→ [0,∞).

Choosing small ε, we set Uεi,n := ρ−1
i ([0, ε)). If ε is sufficiently small, we can ensure that:

1. Uεi,n
πi×ρi−−−−→Mi,n × [0, ε) is an isomorphism;

2. On Uεi,n ∩U
ε
j,n, we have πiπj = πjπi;

3. We also have ρjπi = ρj;

4. If S ⊂ {0, . . . ,n− 1}, set
UεS,n =

⋂
i∈S

Uεi,n.

Then MS,n is a corner of codimension |S|, and similarly to the above, we have UεS,n '
MS,n × [0, ε)|S|.

Given all of this data, we can recover the manifold with corners. We can see the links of corners.
If p is contained in a corner, then we can recover the link by

L(p) =
{
x | Π(x) = p,

∑
ρi(x) =

ε

2

}
.

4.2.1 Thom Presentation Let Mi be a manifold with corners for i = 0, . . . ,n. For j < i let
Mji be a codimension 1 boundary component of Mi. Define MS similarly for S ⊂ {0, . . . ,n} with
largest element i. Now suppose we have MSS ′ where every element of S ′ is larger than every
element of S. Then we have

• A proper fibration π :MSS ′ →MS;

• An inclusion MSS ′ ↪→MS ′ ;

Both the inclusions and fibrations satisfy the expected compatibility relations.

1“I hope everyone doesn’t mind these randomly generated abbreviations. This isn’t English class so we can do
whatever we want.”
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5.1 Thom, Continued

Last time we bagan the Thom presentation of stratified spaces. Recall that we have manifolds
with boundary Mi with MS boundary components for S with largest element i. Also recall we
have proper fibrations deleting on the right and inclusions deleting on the left. Also assume that
the fibrations and inclusions satisfy the expected compatibility relations. Now we will construct a
singular space from this as (⊔

M
(α)
S

)/
∼,

where ∼ is determined by the fibrations.

Theorem 5.1. Any Whitney stratified space has a Thom presentation.

We discussed the Whitney cusp, a picture of which is included. Now the strata are images
of open strata in the manifolds with corners. We now describe how to compute links. Suppose
p ∈ Si. Consider all sets {i} 6= S 3 i such that i is the smallest element. Then for each S let
M
p
S ⊂MS be the inverse image of p in MS. Then on this collection, we obtain an induced Thom

presentation. The link is the associated singular space.

Example 5.2. For the Whitney cusp, the link at a generic singular point is four points. At the
origin, the link is three circles.

Exercise 5.3. Do the same for C2 with the coordinate axes, do Cn, Rn, and then do the Whitney
cusp over C.

Example 5.4. Recall the space X in Example 4.1. This has the Thom presentation M0,M01,M1
where M0 =M01 = Y, the torus bundle over S1. Therefore the link at a boundary component is a
point.

For X̂, the presentation is now M0 = S1. Then the fibration is π : Y → S1, so the link at a point
is the torus.

Finally, for X∗, the presentation now has M0 = pt. Clearly here the link is now all of Y.

We will give a geometric explation of why the links work this way. The idea is that the link
parameterizes the directions we can move from the boundary component into the space.

13
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5.2 Thin Singularities

A modification of this scheme works for some singularities. The idea is that we know the links of
the corners in a manifold with corners. A codimension k corner has link ∆k−1. We will try to use
this in a nontrivial way. The resulting links will look like ∆× {spaces}/ ∼ on proper faces of ∆.

Example 5.5. For R2 stratified by the coordinate axes, our thin scheme is given by taking each of
the quadrants. We can recover the link from this presentation.

Next time we will define the thin presentation.
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Last time we began an overview of thin singularities. Recall that this is a variation of the Thom
presentation that uses knowledge of manifolds with corners.

6.1 Thin Singularities in Detail

We will consider manifolds with corners MS,T , where S, T are disjoint subsets of {0, . . . ,n− 1}.
Here, S tracks the depth of the corner and T tracks the codimension of this piece in the whole
picture.

• Clearly the top (N) dimensional manifold with corners is M∅,∅;

• Ma,∅ is a codimension 1 corner in M∅,∅;

• Similarly, MT ,∅ is a codimension |T | corner in M∅,∅;

• M∅,a is a (N− 1)-dimensional manifold with corners;

• MS,T is a codimension |S| corner in a manifold with corners of dimension N− |T |.

6.1.1 Fibrations For a /∈ S∪ T with S∩ T = ∅, then we have a fibrationMS∪{a},T →MS,T∪{a}.
In addition, we assume that all natural commutativity relations hold. In particular, if S, T ,A are
pairwise disjoint, we should obtain a unique fibration MS∪A,T →MS,T∪A.

6.1.2 Fullness Note that this is not some sort of alternative healing thing.1. Recall that the
fiber product of two maps is the limit X×Z Y of

X

Y Z

f

g

1It does have to do with fiber, so maybe it does

15
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Here, consider the diagram
MSab,T MSb,Ta

MSa,Tb MS,Tab

We will require that the map MSab,T →MSb,Ta ×MS,TabMSa,Tb is surjective. In addition, we
will require this for all such diagrams.

Now we can assemble our singular space.

Definition 6.1. Set
X =

⊔
MA,B/ ∼

where the equivalences come from the fibrations.

Example 6.2. We can do this for the plane stratified by the coordinate axes, where the closure of
each quadrant is an M∅,∅.

6.2 Constructing Links

Let p ∈M∅,T . We will consider the image of p in X. Then we consider the full inverse image of p
in MT ,∅ →M∅,T . Here, the link of p is the quotient

∆|T |−1 ×Mp
T ,∅/ ∼

where on the face where the coordinates corresponding to A ⊂ T are nonzero, we collapse the
fibers of Mp

T ,∅ →M
p
A,B.

Remark 6.3. Note that if the third coordinate is nonzero, that means you are moving towards the
point (0, 0, 1) because you are moving away from the opposite edge where the third coordinate is
zero.2

Example 6.4. In the plane stratified by the coordinate axes, the link of a generic point on a
coordinate axis is just a point. The link of the origin is a circle.

Example 6.5. Consider the product of the first quadrant and the torus. Then we can collapse
to obtain two cylinders, and then further collapse to a point. Then we have a four-dimensional
stratum, two two-dimensional strata, and a point. We want to compute the link of S0. Note that
the map from M01,∅ →M1,0 is collapsing vertically, so we have a solid torus and two circles. Paul
claims that the link is S3 and that this example is really C2 stratified by the coordinate axes. In
addition, S3 meets the two coordinate axes in circles, which form a Hopf link.

Remark 6.6. S3 is the union of two solid tori. To see this, note that

S3 = ∂B4

= ∂(B2 ×B2)

= ∂B2 ×B2 ∪B2 × ∂B2

= S1 ×B2 ∪B2 × S1.

Remark 6.7. In R2, the link of the point is S1 which contains two S0, which are linked in some
sense.3

2This is a geometric thing, so it’s best thought of in the privacy of your own home.
3Nobody will ever write a PHD thesis about this, so don’t get too excited.
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7.1 Toric Varieties

Recall Example 6.5 from last time. We can generalize this example in the following way: Let
P ⊂ Rn be a lattice polytope of dimension n. We will assume that P is simple, which means that
each vertex meets n facets.

Example 7.1. Both the cube and the tetrahedron are simple polytopes. However, each vertex of
the octahedron meets 4 facets, so it is not simple.

Note that for a simple polytope P, each vertex looks like a corner in Rn. In particular, any face
of codimension k is determined by k facets containing it.

We can consider the space X = P × Tn/ ∼. We will have to collapse certain things on the
boundary of P. For each facet F ⊂ P, choose a primitive normal vector vF ∈ Zn that points inward.
Then each vF determines a subgroup TF ⊂ Tn. Similarly, any face determines a subgroup, which
is the direct sum of the subgroups determined by the facets containing it.

Now for each p ∈ P, let F(p) be the face that contains it in its relative interior. Now we can
define the equivalence relation on P× Tn by (p,g) ∼ (q,h) if p = q and gh−1 ∈ TF(p). This gives
us a presentation of a stratified space with thin singularities, which happen to be projective toric
varieties attached to simple polytopes.

Example 7.2. If P = I = [0, 1], then X = S2. If P = In, then X = (S2)n. Also, if P is the simplex,
then X = P2

C.

Remark 7.3. Note that toric varieties are compactification of the (algebraic) torus C×.1 The reason
that this is the same as our presentation is because C× ' S1 ×R.

Proposition 7.4. X is a manifold if and only if for each vertex p ∈ P, the associated normal vectors
v1, . . . , vn corresponding to facets F1, . . . , Fn form a Z-basis for Zn.

Remark 7.5. This condition guarantees that locally at each vertex we get the picture from Example
6.5. This also answers a question of Tetsuya about whether the space is uniquely determined by
the homeomorphism type of the polytope.

Example 7.6. Consider the triangle with vertices (0, 0), (1, 0), (1, 3). Then at the origin, X the two
normals do not generate Z2, so X is singular at the origin. Then the link at this point is a quotient
of S3 called a lens space.2

1This is different from the topological torus that we can buy at Dunkin Donuts.
2In algebraic geometry, we call these cyclic quotient singularities.
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7.2 Intersection Homology

Note that algebraic topology is not a prerequisite for this course, so students are not assumed to
know what homology is.3. The idea is to attach a collection of vector spaces that are topological
invariants. This type of construction is ubiquitous throughout mathematics.

7.2.1 Homology Crash Course We will define groupsHi(X,G), whereG is typically Z, Q, R

and where 0 6 i 6 dimX. We expect this to be an invariant under homeomorphism.4

Example 7.7. Hi(S1, Z) = Z for i = 0, 1. Similarly, Hi(Sn) = Z for i = 0,n and is zero otherwise.

Example 7.8. Hi(Tn) = Z(ni) for all i.

Example 7.9. Let L(p,q) be the lens space corresponding to the cyclic quotient singularity
determined by Z/pZ acting by character (1,q). Then Hk(L(p,q), Z) = Z for k = 0, 3 and
H1(L(p,q), Z) = Z/αZ.

The general formula5 for homology is as follows:

1. From X, produce a chain complex of abelian groups with boundary map ∂.

2. Compute the kernel Zi(X) = ker∂i.

3. Compute the image Bi(X) = Im∂i+1.

4. Compute the homology Hi(X, Z) = Zi/Bi.

3Although the note taker believes everyone does know what homology is
4The best we can actually do is homotopy type.
5Implementation details are left for the lowlife programmers.
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Last time we discussed homology. There are many ways to define homology, but we will use a
combinatorial approach in this course.

Pros Cons

Geometric meaning easy to understand Depends on extra data
Easy to compute Not clearly an invariant

The idea is to decompose our space X by simplices in a reasonable way. For example, the
tetrahedron i s a model of the sphere. Unfortunately, not all spaces (or even topological manifolds)
can be triangulated.1 Fortunately, smooth manifolds and Whitney stratified spaces can be
triangulated. We can require that the stratification is compatible with the stratification.

Remark 8.1. There is a class of triangularizable spaces between Top and Diff, namely the category
PL of piecewise-linear manifolds.

8.1 Piecewise Linear Manifolds

Definition 8.2. An abstract simplicial complex ∆ is a family of nonempty finite subsets of a set S
such that:

1. If A ∈ ∆ and ∅ 6= B ⊂ A, then B ∈ ∆;

2. Any B ∈ ∆ is only contained in finitely many A ∈ ∆.

The subsets are called faces and the dimension of face A is defined to be |A|− 1.

Definition 8.3. An abstract simplicial complex ∆ is pure if all facets have the same dimension.

We now define the geometric realization of a simplicial complex. Suppose A ∈ ∆ has dimension
n. Then F(A) is the standard n-simplex on Rn. If we choose a total ordering on S, then B ⊂ A
can be identified with a face F(B) ⊂ F(A). Then we can define the geometric realization to be the
colimit

|∆| = lim−→
A∈∆

F(A).

1They aren’t too bad. Maybe you wouldn’t go home with them, but you would have a drink with them.
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Definition 8.4. A triangulation of a space X is an abstract simplicial complex ∆ and a homeomor-
phism |∆|→ X.

Definition 8.5. An abstract simplicial complex ∆ ′ is a subdivision of ∆ if |∆ ′| ' |∆| and every
simplex of ∆ ′ lines in some simplex of ∆.

Definition 8.6. A morphism f : ∆→ ∆ ′ of simplicial complexes is a map f : |∆|→ ∆ ′ such that f|A
maps linearly onto a simplex of ∆ ′.

Definition 8.7. A piecewise-linear map f : ∆1 → ∆2 is a map f such that there exist subdivisions
∆ ′1 → ∆ ′2 such that f : ∆ ′1 → ∆ ′2 is a morphism.

Definition 8.8. A combinatorial n-manifold is a triangulated manifold such that links of p-simplices
are PL-isomorphic to the boundary of an (n− p)-simplex.

Definition 8.9. A PL-manifold is a manifold where the transition functions are PL.

Remark 8.10. Piecewise linear implies combinatorial, so PL-manifolds have triangulations.

8.2 Defining Homology

Given a simplicial complex ∆, we can make a chain complex C∗(∆). We consider a total ordering
on the set S and we consider symbols [v0, . . . , vn], where permuting v0, . . . , vn changes the sign of
the symbol. Now we define

Cn(∆) = ⊕A∈∆nZ[v0, . . . , vn]

and the boundary map ∂ : Cn(∆)→ Cn−1(∆) by

[v0, . . . , vn] 7→
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn].

For example, we can see that ∂([v0, v1]) = [v1] − [v0].

Exercise 8.11. Check that ∂2 = 0 (just check what happens when you delete two vertices in the
opposite order).

Remark 8.12. The purpose of the sign in the definition of δ is to respect the orientation of the
simplices.2

Example 8.13. Consider the circle S1 represented as a triangle with vertices 0, 1, 2. Then we see
that

C1(∆) = Z[01, 12, 02],C0(∆) = Z[0, 1, 2].

Then the boundary ∂ is defined by the matrix−1 −1 0
1 0 −1
0 1 1

 .

Then we see that H1(S
1) ' Z and H0(S1) ' Z.

Remark 8.14. In order to compute the homology, we need to use Smith normal form, which can be
found in musty old British algebra textboks.

2How to keep track of sign: work in characteristic 2.
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8.2.1 A Variation There is a variation which goes by various names (local coefficients, twisted
coefficients, local systems), where we have a nontrivial action on the coefficients G of the homology.

Definition 8.15. A local system G̃ is given by a representation π1(X, x)→ AutG.

There is a construction due to Steenrod of H∗(X, G̃) which is not seen in a first topology course
but is very important. Combinatorially, for each face B of a simplex A, choose a point xB in the
relative interior of the geometric realization. Then over each xB we place a copy GB of G. Then for
each face, we choose isomorphisms GA → GB. Then we require all natural compatibility relations
to hold.

Remark 8.16. Local systems are intermediate between ordinary homology and sheaf cohomology.
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9.1 Homology with Local Systems

Last time we began our discussion of homology with coefficient systems. Today we will define
this using simplicial homology.

Let ∆ be a triangulation of X. Over each simplex σ ∈ ∆, choose a point xσ in the relative interior
of σ. Now attach a copy Gσ of G at each xσ. If τ < σ, choose an isomorphism hτσ : Gσ → Gτ.
Then we require all compositions to commute.

For a reference, see Steenrod’s paper or Whitehead’s big book on homotopy theory.
We now need to create a homology theory out of this. Define the chains Cn(X, G̃) to be G-linear

combinations of symbols [x0, . . . , xn] with boundary map

∂(g[x0, . . . , xn]) =
n∑
i=0

(−1)ihi(g)[x0, . . . , x̂i, . . . , xn],

where hi is the isomorphism hσ ′σ obtained by deleting xi. Then we define H∗(X, G̃) as the
homology of the chain complex.

Example 9.1. Let X = S1 and G = Q2. Here the local system will be given by γ =

(
1 1
0 1

)
. Then

we can represent S1 as a triangle with the xσ of the edges being their midpoints. We choose all
maps to be the identity except for one, which is γ.

The 0-chain is C0(X, G̃) ' Q6 and C1(X, G̃) ' Q6. Now we need to understand the boundary
map. Now the boundary is given by

∂ =


−1 0 −1 0 0 0
0 −1 0 −1 0 0
1 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 1 0
0 0 0 1 0 1

 .

We can check the rank of ∂, which is 5, so H0 ' H1 ' Q.

Remark 9.2. If we replace γ is the identity matrix, then the rank of ∂ is now 4, so H0 ' H1 ' Q2. If

we set γ =

(
2 1
1 1

)
, then H1 ' H1 ' 0.
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Remark 9.3. Recall our manifold Mγ given by a T2-bundle over S1. Our question is: Given a fiber
bundle F ↪→ E→ B, can we compute H∗(E) in terms of H∗(B),H∗(F)? Recall that if E = B× F, then
H∗(E) = H∗(B)⊗H∗(F). In general, there is the Leray-Serre spectral sequence. Under favorable

circumstances, the E2 page will determine H∗(E). For Example 9.1, we computed Hp(S1, H̃1(T2)).
Then the homology of Mγ is determined by taking direct sums along the diagonals of the E2

page.1

9.2 Some Technical Remarks

Remark 9.4. There is a way to eliminate dependence on the triangulation, namely PL geometric
chains. Write C∆∗ (X) for the chain complex attached to the triangulation. Suppose that ∆ ′ is
another triangulation and that ∆,∆ ′ have a common refinement ∆ ′′. Then we can take the direct
limit of this system and call the elements PL geometric chains. This makes sense for any PL
manifold.

Remark 9.5. Simplicial homology is not the only way to work. It is the easiest way to work in the
elementary treatment, but there are others:

Regular Cell Complexes The closure of a cell must be homeomorphic to (B,∂B), and ∂B must
be a union of cells. The boundary map is slightly more complicated.

CW Complexes These are much more efficient and need very few cells, but writing down the
boundary is much more difficult.

Singular Homology Here, we work with maps ∆n → X.

Remark 9.6. Homology is a functor H∗ : HoTop → Ab. There is a similar construction for local
systems as long as the local systems are related.

Theorem 9.7 (Poincare Duality). Let X be a compact oriented manifold. Then there exists a perfect
pairing

Hi(X)⊗Hn−i(X)→ Q.

This implies that Hi(X) ' Hn−i(X)∗. The pairing is called the intersection form on X.2

1Paul was always mystified by these kinds of computations as a grad student, and he wants us to see that it’s not so
bad.

2The modern way of thinking about this uses cohomology.
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Recall Poincare duality from last time. The classical picture is using dual cell decompositions. Let
∆ be a triangulation of X and let ∆ ′ be the barycentric subdivision. Then we can obtain the dual
cell decomposition by taking unions of simplices that are transverse to the original σ ∈ ∆. Note
that this is a regular cell complex Z, but not a simplicial complex. If we compute the homology
H∗(Z∗), we obtain the same result as if we compute H∗(∆∗).

Remark 10.1. This fails if we take integral coefficients. For example, if we take the lens space
Λ(a,b). This has homology groups Z, Z/aZ, 0, Z, so we see Poincare duality does not hold. This
is an example of a rational homology sphere.

10.1 Cohomology

Cohomology is the dual theory to homology. We will consider cochain complexes with maps
d : Ci → Ci+1. Here d is defined as the adjoint of ∂ with respect to the pairing Ci ⊗Ci → Z

given by1

〈dξ,η〉 = 〈ξ,∂η〉.

Then recall that cohomology has a cup product structure, which is dual to the intersection product
and turns cohomology into a ring.

If X is a compact oriented manifold, then we can phrase everything in terms of the cup product.
The reason cohomology is easier to define a product for is because the construction is local.

10.2 Intersection Homology

We want a homology theory for singular spaces that has as many nice properties of usual homology
as possible. The first problem is that Poincare duality fails for ordinary homology.

Example 10.2. Consider X = {xy = 0} ⊂ P2. Then X is a union of two P1. Then we can see that
H0(X) = Q, but H2(X) = Q2.

Example 10.3. Now consider the suspension ΣT2. Recall that H∗(T2) = Q, Q2, Q. It is a good
exercise to determine H∗(ΣT2). However, note that the suspensions of two independent cycles do
not intersect in a cycle, so we cannot define an intersection product.

1This is just Stoke’s Theorem.
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Now let α be a cycle on the torus and W ∈ H2 be the suspension of the other cycle β on T2.
Then α,W meet transversely and intersect in one point. Then we see that α is a boundary, so it
has no dual.

Remark 10.4. Returning to Example 10.2, if we do not allow chains to pass through the intersection
point, then we recover Poincare duality. Thus the main idea of intersection homology is to
introduce data to control how chains meet the singular locus. More generally, we will impose
conditions on how chains meet all strata.

Doing this will give the opportunity to both eliminate and create homology. This new data is
called perversity.2 This will allow us to pair cycles created with different perversities and recover
Poincare duality.

2“I suppose it was a quainter time when this was invented.”
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Note: I was away on this day, notes were provided by Arthur Wang.

Definition 11.1. A pseudomanifold is a stratified space with a singular locus of codimension at
least 2. Alternatively, a pseudomanifold has a triangulation where every (n− 1)-simplex is a face
of exactly two n-simplices.

Recall that a compact oridnted manifolds have a fundamental class, which generates the top
homology. This comes from the sum of all the n-simplices.

Example 11.2. Every complex projective variety is a pseudomanifold.

Note we want the stratification to be compatible with the PL structure. Recall that in a Whitney
stratification, we have a neighborhood of p that looks like Bi × co(L(p)). We need this to be
compatible with the PL structure. In particular, we need a filtered space V = Vn ⊃ · · · ⊃ Vi = pt
and a PL i-ball Bi such that we have a map V × Bi → X that is a PL homeomorphism onto a
neighborhood of p ∈ X. Fortunately, this can always be arranged for a Whitney stratified space.

To define intersection homology, we will use PL geometric chains. We work with chains
ξ ∈ C∆(X) for some triangulation in the direct system.

Definition 11.3. The support |ξ| of a geometric chain ξ js the union of the closures of the simplices
where the coefficient of ξ is nonzero.

Definition 11.4. A perversity p is a sequence p = (o2,p3, . . .) such that

1. p2 = 0;

2. pk 6 pk+1 6 pk + 1.

Example 11.5. If X = ΣT2, then p = (p2,p3), so there are two perversities: (0, 0) and (0, 1).

Remark 11.6. We always have two distinguished perversities:

t = (0, 1, 2, 3, . . .)(11.1)

0 = (0, 0, . . .).(11.2)

These are called the top and zero perversities.
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There are two other interesting perversities:

m = (0, 0, 1, 1, 2, 2, . . .)(11.3)
n = (0, 1, 1, 2, 2, . . .).(11.4)

Note that m+n = t.

Definition 11.7. If p+ q = t, then they are complementary.

For a complex projective variety, all strata have even dimension, so we can define p(2n) = n− 1.
This is called middle perversity and is most common in the literature.

The condition of slow growth is necessary to prove the topological invariance of intersection
homology. In particular, the result is independent of the stratification.

Example 11.8. Consider a homogeneous variety X (like a Grassmannian or flag variety). This has a
stratification into Schubert varieties. We get many interesting constructions from this stratification
going beyond the topology of X, which leads to perverse sheaves.

Definition 11.9. A subspace Y ⊂ X is called (p, i)-allowable if

1. dim Y 6 i;

2. dim(Y ∩Xn−k) 6 i− k+ pk for all k > 2.

Definition 11.10. The intersection chain complex consists of chains ξ such that both ξ,∂ξ are
allowable.

The intersection homology is defined exactly as expected.

Remark 11.11. The second condition in allowability controls how much a chain can meet the
singular locus and corresponds to a deviation from transversality.

Example 11.12. Consider the two lines xy = 0 in P2. This has intersection homology Q2, 0, Q2,
which satisfies Poincare duality. On the other hand, the ordinary homology is Q, 0, Q2.

Exercise 11.13. Do the same for the nodal cubic.
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Today we compute some examples of perversity. Last time, we considered the example xy = 0 in
P2, and we saw that the perversity is identically 0.

Example 12.1. Consider the nodal cubic. Then we see that the perversity is the zero vector, so
there are no allowable 0-chains and 1-chains that meet the singular point, but there is an allowable
2-chain. Note that each ordinary homology group is Q. Then we can see that the intersection
homology changes in dimension 1, where it is now zero.

12.1 Normal Spaces and IH

Let X be a stratified pseudomanifold with singular set Σ. Then we say X is normal if each point has
a fundamental system of neighborhoods U such that U \ Σ is connected. In algebraic geometry, a
space is normal if the local ring at each point is integrally closed.

If a space is normal, then IH with the top perversity recovers the usual homology. In general,
IH of a space with top perversity will recover the homology of its normalization.In addition, if X
is normal, IH with the zero perversity recovers the cohomology of X. In general, IH with zero
perversity is the cohomology of the normalization.

Example 12.2. Consider X = ΣT2. Then the possible perversities are the zero perversity and the top
perversity. First we note that the ordinary homology groups are H0 = Q,H1 = 0,H2 = Q2,H3 = Q.
This matches the intersection homology with the top perversity.

i i− k top zero

0 0 − 3 −2 −3
1 1 − 3 −1 −2

0 − 3 −2 −3
2 2 − 3 0 −1

1 − 3 −1 −2
3 3 − 3 1 0

2 − 3 0 −1

Table 12.1: Consitions for Allowable Chains.
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Now we can compute the intersection homology with the zero perversity, which is Q, Q2, 0, Q.
Then Poincare Duality1 says there is a pairing

IH
p
i (X)⊗ IH

q
n−1 → IHt0(X).

Our goal is to explain local properties of intersection homology groups. This is a key point in
the passage from IH1 (geometric) to IH2 (sheafy).2

Example 12.3. Consider an isolated point singularity. Then locally we obtain the open cone on
the link L of the singularity, so we obtain coL = X. When can a class survive? Only somewhere in
between pn ∈ {0, . . . ,n− 2}.

Exercise: Find answer.

1Goresky and MacPherson had a giant notebook with many examples, and they
2The story goes that MacPherson was at a party in France with Deligne, where this definition was written down.
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Note: I was not here on this day; notes were provided by Arthur Wang.
Consider the open cone on a link of an isolated singularity. Recall that this is the same as a

neighborhood of the singularity. Note: There was a probably incorrect calculation done, that is
not reproduced here.

We will consider two generalizations:

1. Suppose X has only isolated singularities. Then some discussion shows that

IH
p
i (X) =


Hi(X−X0) i < n− pn − 1
Hi(X) i > n− pn − 1
Im(Hi(X−X0)→ Hi(X)) i = n− pn − 1

.

2. Suppose L is an (n− 1)-dimensional stratified space. Then clearly cL = X is a stratified n
dimensional space with strata the cone point and the cones on the strata of L. Then we can
compute

IH
p
i (cL) =

{
IH
p
i−1(L) i > n− pn

0 i < n− pn
.

13.1 Local Coeffieicents for IH

Let X = Xn ⊃ Xn−2 ⊃ · · · . To specify a local system on X for IH, we only need to do it on X \ Σ.
For example, if X \ Σ is connected, then we only need a representation of π1(X \ Σ). Note this is
not true for regular homology (recall how regular homology with local systems worked).

Note that ICpi (X) ⊂ Ci(X). Then (p, i) allowability means that we only need the data for a
local system in X \ Σ. Suppose ∆ is an i-simplex in |ξ| and ∂∆ is an (i− 1)-simplex in |∂ξ|. Then
we require

dim∆∩Xn−k 6 i− k+ pk
dim∂∆∩Xn−k 6 i− 1 − k+ pk.

How large can these dimensions be? With the top perversity, then we have

dim∆∩Xn−k 6 i− 2
dim∂∆∩Xn−k 6 i− 3.
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Our goal is now to present Deligne’s definition, but we must beware of cheating. The key to
the definition are local intersection homology groups. These have very spevific structure involving
the links of strata.

13.2 Local Homology

We present some more facts about regular homology. Let X ⊃ Y and suppose X is triangulated
so that Y is compatibly triangulated. Then Ci(X) ⊃ Ci(Y). We can make a quotient Ci(X, Y) :=
Ci(X)/Ci(Y). Then we obtain a boundary map making C∗(X, Y) into a complex. Then H∗(X, Y) is
defined to be the homology of that complex.

Note that cycles in Ci(X, Y) are chains in X with boundaries in Ci−1(Y). Also if Y = ∅, then
H∗(X, ∅) = H∗(X).

Example 13.1. Let X = S2 and Y be the two poles. Note that we have a new class joining the two
poles. Thus Hi(X, Y) 6= 0. We can compute things using the long exact sequence of a pair:

· · · → Hi(Y)→ Hi(X)→ Hi(X, Y)→ Hi−1(Y)→ Hi−1(X)→ · · · .

Definition 13.2. The local homology group at x ∈ X is H∗(X,X \ {x}).
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Because of the coronavirus, we moved lectures online. Paul says he practiced, so hopefully things
go well. All lectures will go on YouTube and a link will be sent later today. In an email, Paul
asked that we do not share the link, so the link will not be in the notes.

14.1 Cleaning up Loose Ends

Last time we computed the intersection homology on the link of an isolated singularities. Paul
took information from different sources and there was conflicting information. After discussing
this, we will go back to local systems in IH.

Recall that for compact manifolds there is only one homology theory that is really useful to
think about. For noncompact manifolds, there are two different useful theories: usual homology,
which is compactly supported, and HBM∗ (M), which is called Borel-Moore homology or homology
with closed support. Here we allow infinitely supported chains. For noncompact manifolds, these
usually give different answers.

Example 14.1. Recall that the usual homology of Rn is Q is degree 0 and 0 everywhere else. On
the other hand, the Borel-Moore homology of Rn is Q is degree n and 0 everywhere else.

Remark 14.2. Recall that Hi(X) ' Hi(X×R). On the other hand, HBMi (X) ' HBMi+1 (X×R). Thus
Borel-Moore homology does not introduce new information, but is not truly homotopy invariant.

Let L be a compact (n− 1)-dimensional compact manifold and X = cL, the open cone on L.
Then we have X = Xn and X0 is the cone point. Then, the usual intersection homology of X is

IH
p
k(X) =

{
Hk(L) k 6 `− 2
0 k > `− 1

.

Here, pn = n− `.
In the Borel-Moore situation, we can compute

ĨH
p

k(X) =

{
0 k 6 `− 1
Hk−1(L) k > `

.

Remark 14.3. Nobody else uses this tilde notation. Please do not use it ever when you talk to other
people.
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Remark 14.4. What happens when L is itself a stratified space and not a manifold? Then we should
have the same story but replacing normal homology with intersection homology. We have

ĨH
p

k(X) =

{
0 k < n− pn

IH
p
k−1(L) k > n− pn

.

There is a similar statement for the usual intersection homology, which is left as an exercise.

14.2 Local Homology

Recall the definition of relative homology H∗(X, Y). If Y = X \ {x}, this only makes sense in
dimX = n, and we have Hn(X,X \ {x}) = Hn(B

n,Bn \ {0}) by the excision theorem. By the long
exact sequence of a pair, this becomes Hn−1(B

n \ {0}) ' Z.

We can now consider relative intersection homology ĨH
p

∗ (X,X \ {x}). Suppose x ∈ Sk. We
should still have some form of excision and we expect some information about the link of x. Recall
that a neighborhood of x ∈ Sk looks like Rk × cL. We have

ĨH
p

i (X,X \ {x}) =

{
0 i < n− pn−k

IH
p
i−k−1 i > pn−k.

.

A remark of this is in IH2, Borel seminar volume. Our goal is to motivate Deligne’s construction
of IH via sheaf theory. Note this will involve a lot of lying as Paul will not tell us what a sheaf is,
what a theory is, or motivate anything.

Remark 14.5. Sheaves are nice because there are many canonical operations we can do with them
without really thinking about what is going on geometrically.

Our goal is to construct a complex computing IH. We begin with the nonsingular part X \ Σ.
Then set Si = Xi \Xi−1 and Ui = X−Xn−i.

We have a complex
0← 0← Q← 0← 0

attached to the open set U2. We denote this by P(Q)•2 . Then we grow this to U3 by

P(Q)•3 := τ6p(2)R(i2)∗(P(Q)•2).
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15.1 Sheafy Stuff (with caveats)

Let X = Xn ⊇ Xn−2 ⊇ · · · ⊆ X0 be a stratified space and Si = Xi \Xi−1 be the strata. Consider the
open sets Ui = X \Xn−i. Recall that we defined P(Q)•2 to be the complex with Q at degree 0 and
is 0 everywhere. Then we define P(Q)•3 to be

P(Q)•3 = τ6p(2)R(i2)∗P(Q)•2 .

Here

• (i2)∗ is the pushforward from U2 to U3 along the inclusion.1

• R means to take the derived version of the pushforward.2 What this means is to replace
P(Q)•2 with an injective resolution and then apply (i2)∗.

• The τ6p(2) truncates the complex, killing anything in degree above p(2) and replacing the
object in degree p(2) with kerdp(2).

Then we turn this into an inductive process:

P(Q)•k+1 = τ6p(k)R(ik)∗R(Q)•k.

Once we finish, we have a complex that computes intersection homology after taking the derived
functor of global sections of the complex.3 In fact, the two complexes are quasi-isomorphic. This
is different from the complex we obtained from the other definition, but it computes the same
homology.

Remarks 15.1. 1. We could start with a local system instead of Q.

2. This definition makes sense in a broader setting because it uses definitions that make sense
whenever we have the six functors formalism.

3. A good reference for this is the IH2 paper, where they explain what they did and how it
relates to what came before.

1Note that there are various operations associated to a morphism of schemes f : X→ Y: f∗, f∗, f!, f!.
2“Even though it looks like there are three things happening, there are only two.”
3Up to degree shifts and multiplying the degree by −1.
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15.2 Isolated Singularities of Complex Hypersurfaces

Now we make a shift in the course to discussing examples and applications of this theory. The first
example, isolated singularities, does not rely on intersection homology. The standard reference for
this is the book by Milnor.

Let f ∈ C[x1, . . . , xn] and suppose that ∇f = 0 only at the origin. Assume f(0) = 0. Then V(f)
is a hypersurface in Cn which has an isolated singularity at the origin.

Example 15.2. Take n = 2 and f ∈ C[x,y]. The link of 0 in C2 is S3. The link of the singular point
is simply V(f)∩ S3. This has real dimension 1, so L is a link in S3. If the hypersurface is smooth,
then the link is the usual circle in S3.

If V(f) is singular, then the link can have arbitrarily many connected components and can be
arbitrarily complicated. For example, if f = xy, then the link is the Hopf link. If f is a product of
independent linear forms, then L is a collection of circles. Each circle is standardly embedded,
but the components are typically linked in a complicated way. This depends on the actual linear
forms.

Example 15.3. Let f = x3 − y2. Let (a,b) be a fixed real solution. Then for all angles θ,
(ae2iθ,be3iθ) is also a solution. Every solution of this form, so we can see what L looks like. First
note that all points sit on a torus |x| = a, |y| = b. We can see that we obtain a line of slope 3/2 in
the torus. Thus L is a trefoil knot embedded in the torus.

More generally, if we have f = xp − yq, then we get the (q,p) torus knot if (p,q) = 1.

Question 15.4. What kinds of knots and links can we obtain can arise as links of isolated singularities of
hypersurfaces in C2? Do those that arise have special properties? Classify the ones that arise.

Question 15.5. How do we compute the link given f?

We will discuss these question in more depth later.
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16.1 More Examples of Isolated Singularities

We will continue our discussion of isolated singularities and links of complex hypersurfaces.
Recall that we suppose ∇f = 0 only at the origin and that L = S2n−1 ∩ V(f).

Example 16.1. Consider f = x2 + y3 + z5 ∈ C[x,y, z]. The link is a 3-manifold inside S5, which is
known as the Poincare dodecahedral space. This is an interesting object in geometric topology
which has the same integral homology as S3.1 The fundamental group of L turns out to be a
perfect group, which means that it has trivial abelianization.
L can be realized as the configuration space of the regular dodecahedron in R3. Thus L can

be realized as L = SO(3)/A5, which is the same as SU(2)/Ã5, where Ã5 is the preimage of A5
under the covering map SU(2)→ SO(3).2 The fundamental domain for the action of the binary
icosahedral group on S3 is actually one of the facets of the 120-cell.

Example 16.2. Consider f = x2
1 + x

2
2 + x

2
3 + x

2
4 + x

6k−1
5 . The link is a 7-manifold in S4. In fact, we

actually get exotic spheres.

Definition 16.3. An exotic sphere is a manifold that is homeomorphic but not diffeomorphic to a
sphere.

Remark 16.4. The first 14 examples were due to Milnor. By a result of Kervaire-Milnor, there are
28 different smooth structures on S7. The examples are all obtained by setting k = 1, . . . , 28.

16.2 Links of Plane Curve Singularities

We will study the links that appear in the two-dimensional case. First, L is the trivial knot (isotopic
to S1 ⊂ S3) if and only if V(f) is smooth at the origin. For a proof of this, see Milnor’s book.

For example, if f = x3 −y2, we can rewrite this as y = x3/2. Then we write y = aeiθ1 , x = beiθ2 ,
and we can obtain θ1 = 3

2θ2. We want to generalize this to see similar information with more
complicated polynomials. The technique we will use is Puiseaux series.

1Poincare’s conjecture initially concerned integral homology, and this example shows that version is false.
2We went into a discussion of regular polytopes in dimension 4: simplex, hypercube, cross-polytope, 24-cell, 120-cell,

600-cell.
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Consider the field C((t)) of Laurent series over C. Then Puiseaux series are elements of the
algebraic closure of C((t)). It turns out adding all roots of t is enough, so all Puiseaux series have
the form ∞∑

k=k0

akt
k/N

for some fixed N.
Given f ∈ C[x,y], we can find solutions of the form y =

∑
aµx

µ in Puiseaux series. In fact,
there is an algorithm to compute them due to Newton. We will use this expression to compute
the type of the link.

Example 16.5. Consider f = y4 − 2x3y2 +x6 − 4x5y−x7. We want to solve for y. This is an iterative
algorithm, but where do we begin? We use the Newton polygon, which is simply everything
above the segment between (0, 4) and (6, 0). Then if we consider the equation α+ 3

2β = 6, this
gives us a notion of the weighted degree of xαyβ. Thus all monomials along the segment have
weighted degree 6, and others have higher weighted degree.

Assume that y has a solution that to first approximation is y = tx3/2. Then we obtain

f(x,y) = (t4 − 2t2 + 1)x6 + (other stuff).

If t is a root of t4 − 2t2 + 1, then this gives a good approximation. If we take t = 1, then we see
that y = x3/2 is a good approximation to the solution.

We continue, setting x1 = x1/2, so y = x3
1(1 + y1). Then we obtain

f(x1,y1) = x
12
1 (y4

1 + 4y3
1 + 4y2

1 − 4x1 − x
2
1).

Our new line segment is α+ 1
2β = 1. We set y1 = tx

1/2
1 and compute t = 1. Then we can see that

f(x1,y1) = 0. Therefore we have

y = x3
1(1 + x

1/2
1 ) = x3/2(1 + x1/4).

Next time we will discuss the general process and how to interpret the result.
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17.1 Puiseaux Series

We will discuss the algorithm due to Newton to compute Puiseaux series. This is an iterative
algorithm that starts with an initial approximation and then refines it. All of these intermediate
steps are computed using Newton polygons.

The steepest nonvertical edge of the Newton polygon will be α+µ0β = ν. Then we can rewrite

f =
∑

α+µ0β=ν

aαβx
αyβ +

∑
α+µ0β>ν

aαβx
αyβ.

If we set y = txµ0 , then the first terms become xνg(t). Choose a root t0 of g. This kills the first
terms, so write µ0 = p0

q0
. Then we write x = xq0

1 and y = x
p0
1 (t0 + y1). Then we substitute this into

f and obtain something of the form

f = xνq0f1(x1,y1).

Apply the method again to f1 and continue. There are a few issues with this:

1. The procedure may not terminate. Fortunately, this is why we have power series.

2. The denominators may not be bounded. This will be explained later, but apparently
denominator growth is controlled by the geometry of the Newton polygon.

To find the answer, we have something like

y = xµ0(t0 + x
µ1
1 (t1 + x

µ2
2 (t2 + · · · )))

= t0x
µ0 + t1x

µ0x
µ1
1 + t2x

µ0x
µ1
1 x

µ2
2 + · · ·

= t0x
µ0 + t1x

µ0+µ1/q0 + t2x
µ0+µ1/q1+µ2/q0q1 + · · · .

We claim that the denominators are bounded, so we really get a Puiseaux series. If ui is the
height of the lowest point of the Newton polygon on the y-axis, then ui > ui+1 and ui = ui+1
if and only if µi+1 ∈ Z. By the well-ordering principle, we cannot have indefinite denominator
growth. Suppose the solution looks like

y =
∑

aλx
λ
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and assume that not all λ are integers.
Let λ1 be the smallest nonintegral exponent and write it as λ1 = n1

m1
. Then if λ2 is the next

exponent not of the form α/m1, write it as λ2 = n2
m1m2

. We keep goiny and get a sequence of pairs
(m1,n1), (m1,n2), . . . , (mg,ng). These are known as Puiseaux pairs and are uniquely determined
by the series. A set of pairs gives rise to a standard Puiseaux series

y = xn1/m1 + xn2/m1m2 + · · ·+ xng/m1···mg .

17.2 Computing the Knots

Consider the map (x,y) 7→ x from C2 → C. Then let x(θ) be the small circle δeiθ about the origin
and consider its inverse image.

Example 17.1. Consider y = x3/2. The inverse image has two branches:

y1 = δ3/2ei
3
2θ

y1 = −δ3/2ei
3
2θ

We can graph this on a cylinder as θ goes from 0 to 2π. The ends will join together to give us a
knot.

Example 17.2. Consider y = x3/2 + x7/4. We have four branches in our map C2 → C. If δ is very
small, then the δ3/2 term will dominate.

The four branches will correspond to the two branches of the previous example (two new
branches for each old one), but we will have a small perturbation and there is nontrivial motion
as we move along the cylinder. Recall that the trefoil knot is the torus knot for x3/2. Then if we
thicken the trefoil to a torus, the new knot is simply a perturbation.

Example 17.3. Consider y = x3/2 + x37/2. There is a single Puiseaux pair, so we get a perturbation
but no new branches.

In general, we get an iterated torus knot. The depth of the iteration is the number of Puiseaux
pairs. Unfortunately, this description does not make clear what knot we actually obtain. We know
that the torus knot (p,q) is simply the the image of the line of slope qp . We will understand the
iterated torus know by an interative procedure:

Order 0: Standard S1 ⊂ S3.

Order 1: T2 ⊂ S3 the boundary of a tubular neighborhood of S1.

Order k: Body of closure of tubular neighborhood of order k− 1 torus.

Definition 17.4. A K ⊂ S3 is admissable embedded if

1. K ⊂ S1 ×D2.

2. π : K→ S1 is a covering map.

Let T be a tubular neighborhood of K such that for each t ∈ S1 the intersection T ∩ {t}×D2 is a
union of disjoint discs around the points K∩ ({t}×D2). Let the first S1 inside T be the boundary
of any one of these distinct discs. To get the other circle, choose a curve on ∂T such that the
direction from the curve to the knot is constant when measured in each disc.
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18.1 Plane Curve Singularities

Last time we discussed a way to generate Puiseaux pairs from a function f ∈ C[x,y].

Theorem 18.1. Suppose V(f) is irreducible at 0. Then let (m1,n1), . . . , (mg,ng) be the sequence of
Puiseaux pairs. Then L = L(0) is an iterated torus know of type given by the Puiseaux pairs.

Recall from last time how we trivialized the tubular neighborhood of a torus knot. Now, it
makes sense to discuss the (m2,n2) cable on the (m1,n2) torus knot. We can continually iterate
this construction until we have exhausted all Puiseaux pairs.

Remark 18.2. Now a natural question is to ask whether all sequences of relatively prime pairs arise
from this process. Unfortunately, this is not true, and there are some conditions:

• m1 < n1;

• nj−1mj < nj.

For example, (2, 3), (2, 5) cannot arise from this process.

When the singularity is not irreducible, we get a link, not just a knot. We can ask what kinds
of links can appear. The invariant we consider is the linking number lk(J,K) of two components
J,K of a link.

1. If the two knots are unlinked, then lk(J, ,K) = 0;

2. Otherwise, we consider crossings where J goes under K, signed by orientation, and then
take the sum.

Remark 18.3. The definition of linking number is invariant under Reidemeister moves.1

Theorem 18.4. The topology of a curve singularity is determined by the Puiseaux pairs for each branch
and the pairwise linking numbers.

Remark 18.5. Suppose we have two curves C,C ′ in P2 of degrees m,n. Then the linking number
of C,C ′ at an intersection point is exactly their intersection multiplicity. In particular, there cannot
be unlinked components or negative linking numbers.

1There are also many equivalent definitions.

40



41

Remark 18.6. Linking numbers do not determine a link. For example, consider the Borromean rings
compared to the trivial link. In fact, a similar configuration exists for any number of components.

Remark 18.7. Some references are Plane Algebraic Curves by Brieskorn and Knörrer and Walter
Neumann’s survey paper.

18.2 Higher-Dimensional Hypersurface Singularities

The main reference for this is Milnor’s book. While it is somewhat old-fashioned, it does a lot
with very little technology and accomplishes a lot.

Let f ∈ C[z0, . . . , zn] and that V(f) is singular at the origin. Then recall L = V(f)∩ S2n+1.

Theorem 18.8 (Milnor Fibration). For ε sufficiently small, the map p : S2n+1 \ L→ S1 given by

z 7→ f(z)

|f(z)|

is a locally trivial fibration.

Now we want to study the fiber of this map. If the singularity is isolated, then each fiber is a
manifold whose closure is a manifold with boundary L. If we go around the circle, we obtain a
monodromy map F0 → F0, and we have an induced automorphism of H∗(F0).

Example 18.9. Consider the case of a plane curve singularity. Then L is a knot in S3, and p gives
us a collection of surfaces (over R) in S3. These are called Seifert surfaces.

Definition 18.10. A Seifert surface for a link L is a bicollared surface with boundary L. Here,
bicollared means the boundary has two collar neighborhoods.

To construct a Seifert surface from a link, we can trivialize crossings, fill the circles into discs,
and then untrivialize the crossings again.

Figure 18.1: Seifert surface of the trefoil knot.

Here are some more properties of Milnor fibers:
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1. Each fiber is parallelizable;

2. Each fiber has the homotopy type of a cell complex of dimension n.
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Paul used GP/Pari to force Zoom to record at a higher resolution.

19.1 More Milnor Fibration

Recall the definition of the Milnor fibration from last time. Then recall that F is parallelizable
and has homotopy type of an n-dimensional cell complex. We give some more properties of the
fibration:

1. One can show that π1(L), . . . ,πn−2(L) are all trivial.

2. Each fiber is diffeomorphic to an open (in the analytic topology) subset of a nonsingular
complex hypersurface of the form f = c, where c is a nonzero constant.

3. Suppose that 0 is an isolated singularity. Then F has the homotopy type of a bouquet of
n-spheres.

Proof of these claims can be found in Milnor’s book, but they are too long for Paul to give them
in class.

The key invariant of an isolated singularity is the Milnor number.

Definition 19.1 (Milnor number). Let Jf be the ideal generated by the partial derivatives of f.
Then the Milnor number is simply

µ := dim C[z0, . . . , zn]/Jf.

Definition 19.2 (Milnor number, second definition). Let J : Cn+1 → Cn+1 be given by the ∂f
∂zi

.
This induces a map on a smapp sphere S2n+1

ε → S2n+1. The degree of the map is the induced
map on H2n+1(S

2n+1).

Theorem 19.3. The Milnor number µ is the number of spheres in the bouquet attached to the isolated
singularity. In particular, Hn(F) = Zµ.

Example 19.4. The Milnor number of z2
0 + x

3
1 is 2. From the explicit drawing of the surface, we

can see a homotopy down to a graph with the same homotopy type as S1 ∧ S1.
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This is an example of something called a Brieskorn variety, which is a variety of the form
x
a0
0 + · · ·+ xann . In this case, we can simply compute

µ = (a0 − 1) · · · (an − 1).

Recall that we can consider the monodromy of the fibration. Then this gives an automorphism h
of F, and we can regard h∗ : Hn(F)→ Hn(F) as an element of GLµ(Z).

Theorem 19.5 (Deligne-Griffiths). h∗ is a unipotent matrix. This means here that h∗ is conjugate to an
upper triangular matrix with eigenvalues roots of unity. Moreover, all Jordan blocks of h∗ have dimension
at most n+ 1.

Example 19.6. Let f =
∑n
i=0 z

ai
i . Then we can explicitly compute the eigenvalues of the mon-

odromy map. In fact, they are all products of the form

ω0 · · ·ωn,

where ωi is a nontrivial ai-th root of unity. For example, in the case f = z2
0 + z

3
1, the two

eigenvalues are the primitive sixth roots of unity.

We will now sketch a proof of the formula. First, we can extend the fibration to all of
Cn+1 \ V(f). We can show that the fiber above y ∈ S1 is F ×R. We can now compute the
monodromy of this fibration, which is simply

z 7→
(
eit/a0z0, . . . , eit/anan

)
.

Then the monodromy is simply h2π. By a result of Pham, we see that the fiber above 1 deformation
retracts onto the iterated join of the Ωai . For example, the join of Ωp ∗Ωq is simply the complete
bipartite graph Kp,q.

Example 19.7. If we label some vertices on the Seifert surface we drew last time, then we can see
the graph.

We can now compute the reduced homology of F, and we see that the top homology is simply

H̃n(F) ∼=
⊗

H̃0(Ωqi).

Remark 19.8. Results extend to weighted homogeneous polynomials f. Here, f(x1, . . . , xm) is weighted
homogeneous of tope a1, . . . ,am if it is a linear combination of monomials zi11 · · · z

im
m where

i1
a1

+ · · ·+ im

am
.
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Paul calculated e and π in GP/Pari.

20.1 Globally Symmetric Spaces

Example 20.1. Let H be the upper half plane and Γ = SL2(Z) (or some finite-index subgroup),
and then we can consider the space Γ\H. This is a locally symmetric space, which is simply a
punctured Riemann surface. There are two obvious compactifications:

1. Fill in the missing points;

2. Fill in the missing points with a bounding circle.

Why is this a locally symmetric space? It is a quotient of a global symmetric space. Here, if
G = SL2(R) and K = SO(2), then H = G/K.

Definition 20.2. Let M be a Riemannian manifold with an involution sp for each p ∈M that fixes
p but reverses every geodesic through p. Then we call M a symmetric space. Note that any such
M is complete because we can extend geodesics by flipping. Also note that M has a transitive
isometry group.

Example 20.3 (Basic Examples). 1. Rn is always a symmetric space. Here the geodesics are
straight lines and the involutions are reflections.

2. Any sphere is a symmetric space.

3. Any hyperbolic space Hn is a symmetric space.

20.1.1 Classification These spaces were classified by Elie Cartan, which was one of the first
major results in the classification of Lie groups and Lie algebras. Here, M is a product of three
types of symmetric spaces:

• Euclidean type (Rn);

• Compact type;

• Noncompact type;
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These are characterized by conditions on their sectional curvature (identically zero, nonnegative,
nonpositive).

Next, any symmetric space can be factored into irreducible symmetric spaces. Therefore, we
simply need to classify the irreducible symmetric spaces. These were classified using algebra, and
are all G/K, where G is a connected Lie group and K is a maximal compact subgroup.

First, we classify all possible Lie algebras, then see which Lie groups have a given Lie algebra.
Finally, using the theory of root systems and weights, we obtain 8 classical families (A,B,C,D) of
symmetric spaces and 12 exceptional examples (E, F,G). Each one comes in a compact version and
a noncompact version. In fact, there is a duality between the compact spaces and noncompact
spaces.

20.1.2 Basic Examples

1. Let G = SLn(R) and K = SO(n). Then M = G/K and has dimension (n+2)(n−1)
2 . The

symmetry comes from the involution X 7→ (X−1)T .

2. Let G = Sp2n(R). Then K = U(n) and M = G/K has dimension n(n+ 1) and is called the
Siegel upper half-space. This space arises in the study of moduli spaces of abelian varieties.
In fact, this is a Hermitian symmetric space, which means M is a complex manifold.

3. Let G = SL2(C) and K = SU(2). Then G/K = H3, which is hyperbolic 3-space.

4. Now consider G = SL2(R)× SL2(R). Then K = SO(2)× SO(2) and H/K = H×H. This
example and the previous one arise when studying algebraic groups over number fields.
The upper half-plane corresponds to Q, H3 corresponds to imaginary quadratic fields, and
H×H corresponds to the real quadratic fields. Quotients of H3 give Bianchi manifolds,
quotients of H×H give Hilbert modular surfaces, and quotients of H give modular curves.

20.2 Locally Symmetric Space

Here, we only require involutions that reflect geodesics in neighborhoods of points. However,
every locally symmetric space arises as the quotient of a global symmetric space by a discrete
subgroup of G.

Example 20.4. We can consider G = SL2(R) and Γ = SL2(Z). Alternatively, we can consider
G = SL2(C) and Γ = SL2(K) where K is an imaginary quadratic field. If G = SL2(R)× SL2(R),
then we can take Γ = SL2(K), where K is a real quadratic field. Here, Γ acts by γ · g = γg on the
first factor and by γ · g = γg on the second factor.

We can understand the geometry of these space by interpreting them as configuration spaces.
We will focus on the case where G = SLn(R). Our goal is to understand compactifications of the
locally symmetric spaces geometrically. Here, points in Γ\X correspond to lattices in Rn modulo
equivalence relations and with some decorations.
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Paul computed some values of the Riemann Zeta function.

21.1 Compactifications of the Space of Lattices

Let G = SLn(R),K = SO(n), Γ = SLn(Z). Then consider the global symmetric space X = G/K.
note that any coset gK is a basis of g obtained by rotation. Therefore G/K corresponds to the set
of volume 1 ordered bases of Rn up to rotation.

Next, consider the locally symmetric space Γ\X. Here, Γg gives the lattice generated by the
rows of g, and thus Γ\X can be identified by the space of lattices in Rn up to rotation and scaling.

Remark 21.1. Double coset spaces like Γ\G/K are ubiquitous in geometry. Any double coset space
really corresponds to the set of G-orbits on pairs.

Proof. Let X1 = G/H1 and X2 = G/H2 for two subgroups H1,H2 of G. Then consider the diagonal
action of G by G : X1 × X2 diagonally. Then we can show that G-orbits are in bijection with
H1\G/H2.

Example 21.2. Let G = SLn(C) and B be the maximal Borel subgroup. Then G/B is the flag
variety, and B\G/B encodes the relative positions of two flags in Cn. The Bruhat decomposition
shows that this is actually a finite set, indexed by the Weyl group W.

Example 21.3. Consider G = SLn(R) and K = SO(n). Then we can encode X = G/K as the set
of volume 1 ellipsoids in Rn and the points give metrics on Rn. Then the space K\G/K, which
parameterizes ellipsoids of volume 1 up to rotation. By a result of Euler, this is paramaterized by
positive real numbers whose product is 1.

Therefore, we can consider Γ\G/K as the set of G orbits in G/Γ ×G/K = {lattices}× {metrics}.
We can consider the space of lattices in the presence of a fixed metric or the space of metrics in
the presence of a fixed lattice.

Remarks 21.4. The space Γ\X is very close to being a manifold. It has singularities, but they are
very mild (in fact just quotient singularities), so the space is an orbifold. The singularities come
from lattices with nongeneric symmetry (with symmetry that is more than just x 7→ −x).

1. We can give up and call this space an orbifold, stack, or some other new term, or we can
incorporate decorations with the lattices. We will take the second approach later. This
corresponds to replacing SLn(Z) with a finite index subgroup.
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2. This space is not compact. If we scale the x-axis up and the y-axis down, this sequence
of lattices clearly does not converge. In fact, a theorem of Mahler says that a sequence of
lattices diverges to infinity if and only if the length of the minimal nonzero vector converges
to 0.

21.1.1 Topology and Geometry for Small n Let n = 2. Then this gives lattices in R2

modulo rotation and scaling. We are looking for a fundamental domain for Γ acting on X together
with an identification on its boundary. This is known as explicit reduction theory.1

First, we will find a shortest nonzero vector v ∈ L. If we rotate and scale v onto e1, we can
choose the minimal length vector w from the row immediately above the x-axis. Then |w| > 1 and
lies in the strip between − 1

2 and 1
2 . This gives the famous picture of the fundamental domain in

the upper half plane. The two vertical lines are clearly identified, and then the arc the arc is folded
in half. Therefore, the space Γ\X is topologically equivalently to a disc.

1This supposedly has applications in the “real world,” whatever that is. There was a remark about how GPS is useless
now because we’re all sitting at home.
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Paul computed some values of L-functions of number fields in GP/Pari. He then mentioned the
class number formula.

Last time, we discussed the space of lattices modulo rotation and scaling. In addition, we
computed the fundamental domain of the action of SL2(Z) on the upper half-plane.

22.1 Geometry for n = 3

We now consider the space of lattices in R3. We can rescale to make the shortest nonzero vector
(1, 0, 0). Then we can rotate the next shortest vector to lie in the xy-plane, and we can assume that
v2 is in the right half of the fundamental domain of SL2. Finally, we choose a v3 lying above the
plane. To do this, consider the quotient of R3 by the plane, and we can choose v3 in the inverse
image of the shortest nonzero vector in the quotient lattice.

Remark 22.1. The image of a lattice in a quotient space is not necessarily a lattice.

Next, we consider where we can arrange v3 to be. We can move along the lattice and move v3
to lie over a polygon determined by v1, v2. In addition, v3 cannot lie inside the unit hemisphere.
Therefore, our configuration has dimension 5 and should have a deformation retract onto a
compact space of dimensnio 3.

First, let’s ignore the noncompact dimensions and focus on the compact part. To see this object,
we move v2 to the top of the semicircle and look at the possible polygons. Here, the polygon
is the set of points whose distance to the origin is smaller than the distance to any other lattice
points. This is called the Dirichlet-Voronoi domain.1 Then this three dimensional space is very
complicated, and it is easier to describe a finite version. This is simply a cube with four of the
vertices truncated. Note the center of the triangular face is the A1 ×A1 ×A1 lattice while the
center of a hexagonal face is the A2 ×A1 lattice.

1Paul discussed real-world applications of these things.
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Figure 22.1: Soulé’s cube. This was used to compute the cohomology of SL3(Z).

Exercise 22.2. Find the three remaining special lattices (names can be found in a crystollagraphy
book).

We will not consider the higher-dimensional analogues. The quotients are well-understood
up to n = 7, but the case n = 8 is unknown. In n = 8, we have the E8 lattice, which makes the
geometry of the polytope extremely complicated.2 We have no idea how many faces there are,
but we do have a few crude estimates. In addition, our algorithm for finding a nice basis of our
lattices fails in dimension greater than 3. It barely works for n = 4, but fails for n = 5.

Example 22.3. Consider the lattice L ⊂ R5 with basis e1, e2, e3, e4, 1
2 (e1 + · · ·+ e5). Note that Z5 is

a strict subset of L. However, if we run our algorithm, we only obtain the Z5 lattice, which is not
L.

Remark 22.4. Even worse, in high dimensions, there exist lattices such that no basis contains a
minimal vector (Conway-Sloane).

22.2 Singularities of the space of lattices

We can eliminate these singularities by introducing extra data. We will call these “marked lattices”
and our extra data will kill these automorphisms.

Definition 22.5. A marking on a lattice is a surjective map m : L→ S such that there exists a finite
index sublattice L ′ such that m is fixed by translation by L ′.

Example 22.6. We can mark L = Zn using S = (Z/pZ)n by reduction mod p. Here, L ′ = pZn.

Remark 22.7. We can think of markings as coming from coloring data on our lattices.

We can consider “Γ(p) markings.” Then the space of marked lattices is⊔
i finite

Γi\X,

where Γi is a finite-index subgroup.

Theorem 22.8. For p > 3, all Γ(p)-marked lattices have the same automorphisms. Therefore, the moduli
space of marked lattices is smooth. The analogous procedure for abelian varieties is taking a principal
polarization.

2Paul said that E8 is a legitimate excuse for not doing anything.
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23.1 Compactifications of Locally Symmetric Spaces

Example 23.1. Consider Rn. How do we compactify it? How do we add limit points for rays that
go off to infinity? If the lines are parallel, do we want them to have the same limit point? This is
one of the reasonable ideas, and we obtain a Sn−1 at infinity.

If we forget about rays and just consider lines, we obtain Pn(R), with a Pn−1(R) at infinity.
In both these examples, we see that points at infinity can be recorded via equivalence relations on
geodesics.

Example 23.2. Let Γ = Z/6Z act on R2 by rotation. Then note that any cone with angle π/3 is a
fundamental domain. How do we compactify this?

Method 1: We use what we did for R2. We can extend the action to the compactification of R2

(say the S1) at infinity, and we obtain an honest cone.

Method 2: We now have 6 distinguished rays. We can attempt to use the 1-parameter family of
parallel rays for each of these. Now we glue these 6 lines onto R2. We will dictate that the
two rays bounding one fundamental domain give lines that intersect at a single point. All
rays between the two distinguished rays will converge to that single point. In some sense,
this is dual to what we did before and we have a hexagon at infinity.

Why would we consider the second method?

1. We gain information that we lost in the first method.

2. This is what happens when we consider toric varieties.

3. When we consider Γ\X, we need something more like this method.

Now we will consider the space of lattices up to rotation and scaling. Here, our points have a
geometric interpretation, so we can try to leverage this. We have two tools to work with:

1. Geodesics in Γ\X. We can think of adding limit points for families of geodesics.

2. In configuration spaces and moduli problems, we want the points at infinity to have a
geometric meaning.1 For us, this means that lattices should degenerate to something more
general. There are other contexts:

1Note Taker: See for example the space Mg,n.
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a) Consider the moduli space of genus g curves Mg. When we go to infinity, we pass to
stable nodal curves with several components.

b) Consider the moduli space of abelian varieties. These degenerate to various geometric
objects.

Now if we consider lattices in R2, consider the family of lattices L(t) =
〈
2−tv1, 2tv2

〉
, this

should converge to the x-axis at infinity and the y-axis at −∞. The moral of the story is that
lattices degenerate to subspaces. This may not seem too complicated for n = 2, but it is very
complex when n = 3.

Remark 23.3. This approach does use geodesics! We are moving around in the upper half-plane.

Now we consider the space of lattices in R3. Recall this is isomorphic to a quotient of the
Soulé cube times (R>0)

2. If we start with the standard basis vectors, we can consider the family

L(t) = 〈2−te1, 2−te2, 22te3〉.

As t→∞, we simply obtain the xy-plane.
For another example, consider

L(t) =
〈

2−2te1, 2te2, 2te3

〉
.

In the limit at infinity, we simply obtain the x-axis. We can also see “in between” phenomena.
Consider the family

L(t) =
〈

2−3te1, 2−2te2, 25te3

〉
.

We can see that the x-direction collapses faster than the y-direction, so if we rescale by 22t, we see
that the limit is a flag 0 ⊂ (y = z = 0) ⊂ (z = 0).

Remark 23.4. We have seen all possible degeneration types. Now we can attempt to look for more
refined degeneration data. We observe that the image of the diagonal matrices in SL3(R)/SO(3) is
a maximal flat geodesic submanifolds. Therefore, the points at infinity should be parameterized
by flags with some extra data.

If we return to the first example L(t) = 〈2−te1, 2−te2, 22te3〉. Recall that we obtain the plane
as the limit. However, for t� 1, the images of e1, e2 give a lattice in the plane. This gives a point
in our space for n = 2! If we change e1, e2 to different v1, v2 (say the basis for the A2 lattice), then
we obtain a different lattice in our intermediate stage.
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April 28

Last time we discussed limits of lattices in Rn. We were able to obtain flags by degenerating
lattices. Unfortunately, not every flag can arise as the degeneration of a lattice family.

Example 24.1. Consider n = 2 with X = H. Then suppose Γ = SL2(Z). Suppose we head down
to α ∈ R along a geodesic. If α is rational, then we go off to infinity. However, if α is irrational,
the picture is much more subtle.

• If α is contained in a real quadratic field, then the path approaches a periodic geodesic.

• Otherwise, the path wanders around the quotient and does not escape to infinity. The
behavior here is completely unknown.

In terms of flags, only certain flags will arise as limit points, and in fact, we want rational flags.
These are flags whose subspaces are generated by lattice points. What about limiting shapes of
lattices?

When n = 3, we have three types of limiting flags: a plane, a line, and a line inside a plane.
When we have a plane, we have a shape inside the limiting plane. In the case of a line, we expect
a shape inside the quotient of R3 by the line. Finally, in the case of a full flag, we expect no shape
data. More generally, for a flag

0 = F1 ( F2 ( · · · ( Fk = Rn,

we can look at pairwise successive quotients and find lattice shapes there. Putting it all together,
we obtain the reductive Borel-Serre compactification. Strata are induced by rational flags in Rn

including the empty flag.
For example, we can add three different types of strata when n = 3. We can index them by

partitions of 3 where the order of the parts matters.

Table 24.1: Partitions and Strata

Flag Partition Strata

∅ 3 5-dimensional strata
R2 2 + 1 2-dimensional strata at infinity
R1 1 + 2 2-dimensional strata at infinity

R1 ⊂ R2 1 + 1 + 1 0-dimensional strata at infinity
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In fact, the strata at infinity are lower-rank locally symmetric spaces that are being compactified
themselves in this process. The space for n = 3 looks something like this:

Figure 24.1: Simplified picture of strata for n = 3

This space is singular. We have attached two-dimensional strata to a five-dimensional space.
We can compte links by realizing the space as a quotient of a manifold with corners. The bigger
space is called the Borel-Serre compactification.1 There will be a five-dimensional stratum and
two four-dimensional strata that meet in a three-dimensional corner. In fact, the four-dimensional
strata are fiber bundles over the locally symmetric spaces for n = 2.

Consider the case when n = 2. Suppose γ1,γ2 are parallel geodesics that go off to infinity.
Should they go to different limiting points or the same point? Recall our discussion about
compactifying Rn. There are two answers here:

1. We can send them to the same point because of the metric on the upper half plane. This is
because the two geodesics get arbitrarily close together.

2. The geodesics hit different points on various parallel horocycles.2 Thus sending them to
different points also makes sense.

To add this data in our lattice/flag description, we add a real transverse flag to the data. The
transverse flag corresponds to adding an S1 at infinity. This S1 is really the matrices of the form(

1 x
0 1

)
∈ SL2(R).

In the quotient, this circle is collapsed down to a point.
When n = 3, we add flags to the strata corresponding to the compositions 21, 12, 111. In the

Lie groups picture, the three strata correspond to parabolic subgroups. Then the fiber above each

1Apparently this was part of one of only two papers jointly written by Borel and Serre.
2Apparently electrical engineers use geodesics and horocycles on the hyperbolic plane as graph paper on a disc.
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point in the two dimensional strata is a torus. Then the three-dimensional stratum is the image of
the matrices of the form 1 ∗ ∗

0 1 ∗
0 0 1


and is called a nilmanifold of the Heisenberg manifold.

Exercise 24.2. Compute the links of points in the strata using the presentation as a space with
thin singularities.

Remark 24.3. It is an open question to generalize these constructions to the nonarchimedean
setting. Here, we want to replace real Lie groups with reductive groups over Qp and K with
the same group over Zp. For example, we replace SLn(R) with SLn(Qp) and K = SO(n) with
K = SLn(Zp). The analogue of X in this setting is called a building. Compactifications of X in this
setting have been studied, but locally summetric spaces have not been studied.
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