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Lebesgue Measure

1.1 Motivation for the Course

We will consider some examples that show us some fundamental problems in analysis.

Example 1.1 (Fourier Series). Let f be periodic on [0, 2π]. Then if f is sufficiently nice, we can
write

f(x) =
∑
n

ane
inx,

where an = 1
2π
∫2π

0 f(x)einx dx. If this is possible, then we have Parseval’s identity:

∑
|an|

2 =
1

2π

∫2π

0
|f(x)|2 dx .

However, the function space we are working in on the RHS is not complete because there exist
sequences an such that the associated function |f|2 is not Riemann-integrable. This tells us that
we need a better notion of integration.

Example 1.2 (Dirichlet Function). Enumerate the rationals in the interval [0, 1] by rn. Then define

fN(x) =

{
1 x ∈ r1, . . . , rN
0 otherwise

.

Then the limit of fN is simply the indicator function f = χQ. Here, the fN are Riemann integrable,
but f is not.

Next, we can consider the problem of characterizing which functions are Riemann-integrable.

Theorem 1.3. A function f is Riemann-integrable if and only if the set of points where f is not continuous
has measure 0.

Fourth, we may consider lengths of curves. Suppose we have a fractal (this will remain
undefined) such as the Cantor set, a coastline, or broccoli. What is is the correct dimension for
such a set? When is the “length” of such a curve finite?

Finally, recall the fundamental theorem of calculus: For a differentiable function F,

F(b) − F(a) =

∫b
a
F ′(t)dt

3
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and for an integrable function f,

d
dx

∫t
a
f(t)dt = f(x).

When do these two results apply?

Question 1.4. All of these examples tell us that the fundamental problem in analysis is the exchange of
limits. We will see that many of the results in the course are of this form.

1.2 Basic Notions

First recall the very basic notions of set theory: unions, intersections, complements, relations, and
functions. We use the usual definitions of image, preimage, and partial and total orders.1 We will
also assume the axiom of choice, so in particular, we have the following results:

Hausdorff Maximal Principle: Every partially ordered set has a maximal totally ordered subset.

Zorn’s Lemma: If X is a partially ordered set where every chain has an upper bound, then X has
a maximal element.

Well Ordering Principle: Ever set admits a well-ordering.

Next, we will recall some basic properties of Euclidean space.

Theorem 1.5 (Bolzano-Weierstrass). Every bounded sequence in Rn has a limit point. Note that the lim
sup is an accumulation point.

Next recall that Rn with the Euclidean distance ρ is a metric space. In fact, Rn is a complete
normed metric space, and the triangle inequality is implied by Cauchy-Schwarz. Recall that
open balls are given by Br(x) = {y | ρ(x,y) < r} and closed balls are given by Br(X){y | ρ(x,y) 6 r}.
Then a set G is open if around any x ∈ G we can find an open ball Br(x) ⊂ G and a set F is closed if
Fc is open. We can then define the interior, closure, and boundary of a set in the usual way.

Example 1.6. Consider Q ⊂ R. Then Q◦ = ∅ and Q = R, so Q is a countable dense subset of R.
Therefore, R is separable.

Convergence is defined in the usual way.

Lemma 1.7. Let X be a metric space and E ⊂ X. Then the following are equivalent:

1. x ∈ E;

2. For all ε > 0, Be(x)∩ E 6= ∅;

3. There exists a sequence {xn} ⊂ E such that xn → x.

1The reader not familiar with these can refer back to their Math 300 materials.
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1.3 Rectangles

We now build towards defining the Lebesgue measure. First, we call any set of the form

R =

n∏
i=1

[ai,bi]

a closed rectangle. We define the volume |R| of any rectangle by

|R| =

n∏
i=1

(bi − ai).

It should be obvious what a cube and an open rectangle are.

Definition 1.8. A collection of rectangles is almost disjoint if their interiors are disjoint.

Lemma 1.9. If a rectangle R is an almost disjoint union R =
⋃
Rj, then |R| =

∑ ∣∣Rj∣∣.
Now let ε > 0 small enough. Then Rε =

∏
[ai + ε,bi − ε] ⊂ R◦ ⊂ R, As ε → 0, we obtain

|R◦| = |R|.

Corollary 1.10. Let R ⊂
⋃n
i=1 Ri, where the union is not necessarily almost disjoint. Then |R| 6

∑
|Ri|.

Our goal is to extend this notion of volume to open sets in terms of rectangles.

Lemma 1.11. In R, any open set G is a disjoint union of countable many open intervals.

Proof. Let x ∈ G. Then there is a maximal interval Ix ⊆ G. Then if y ∈ Ix, note that Ix = Iy. Thus
G =

⋃
x∈G Ix. However, each interval must contain a rational number, so there are only countably

many of them.

Therefore, if G ⊆ R is open, we can declare its measure to be µ(G) =
∑ ∣∣Ij∣∣, where G is a

disjoint union of the intervals Ij. Note that this is not convenient in higher dimension, so we use
closed rectangles instead. Note that any open set in R is a countable union of closed rectangles
G =

⋃
[aj + 1/n,bj − 1/n], but this union is not even almost disjoint.

Theorem 1.12. In Rd, any open set G can be written as an almost disjoint union G =
⋃∞
j=1 Fj of closed

rectangles. Given this, we expect m(G) =
∑∞
j=1

∣∣Fj∣∣.
Proof. Grid Rd by the points in Zd. Then each cube Q of length 1 satisfies either Q ⊆ G,Q ⊆ Gc,
or neither. At the first step, include all Q ⊆ G and exclude all Q ⊆ Gc. Then we reduce Zd to
1
2 Zd and proceed by induction.

Example 1.13 (Cantor Set). This is not really an example of rectangles, but is an important example
for this course. It is a closed, compact, totally disconnected set where every point is a limit point.
Define the sets

• C0 = [0, 1];

• C1 = [0, 1/3]∪ [2/3, 1];

• C2 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1],
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and then continue the process. Then we define the Cantor set to be C =
⋂∞
k=1 Ck.

First, note that C is an intersection of closed sets, so it is closed. Then given x,y ∈ C, note
that there exists k such that x− y > 2

3k , so x,y are in different intervals in Ck. Clearly there are
no isolated points. Finally, note that C is the set of all real numbers with no 1 in their ternary
expansions, so it is uncountable. However, note that Cc is a disjoint union of open intervals with
measure

m(Cc) =
1
3
+ 2

1
9
+ 4

1
27

+ · · · = 1
3

∞∑
k=0

(
2
3

)k
= 1.

Therefore, we expect m(C) = 0.

1.4 Outer Measure

It is reasonable to expect that if G is an almost disjoint union G =
⋃
jQj then m(G) =

∑
j

∣∣Qj∣∣.
Instead of imposing this inequality for general E, we will make it an inequality, so we drop the
condition of being almost disjoint. Define for any E ⊂ Rd the outer measure

m∗(E) = inf
E⊆

⋃
Qj

∑
j

∣∣Qj∣∣.
We can show that m∗(C) = 0 directly. Note that Ck is a union of 2k closed subintervals of

length 3−k, so we see that m∗(C) 6
( 2

3
)k

for all k. Therefore, m∗(C) = 0. For another example,
it is easy to show that if P is countable, then m∗(P) = 0. To see this, let ε > 0 and then take the
rectangle of width ε

2i centered at p. Then m∗(P) 6 2ε.
Properties of outer measure. Here are some properties of the outer measure:

1. (Monotonicity) If E1 ⊆ E2, then m∗(E2) 6 m∗(E2). As a corollary, bounded sets have finite
outer measure.

2. (Countable subadditivity) If E ⊆
⋃
j Ej, then m∗(E) 6

∑
jm∗(Ej).

Proof. Assume that each m∗(Ej) <∞. Then for all j, there exist countably many cubes Qj,k
such that Ej ⊆

⋃
kQj,k, so we have

m∗(Ej) 6
∑
k

∣∣Qj,k∣∣+ ε

2j
.

Then any E ⊆
⋃
j Ej ⊆

⋃
j,kQj,k, so

m∗(E) 6
∑
j,k

∣∣Qj,k∣∣ 6∑
j

∑
k

∣∣Qj,k∣∣ 6∑
j

m∗(Ej) +
ε

2j
6
∑
j

m∗(Ej) + ε.

3. For any E ⊆ Rd, we can write

m∗(E) = inf
G open
E⊆G

m∗(G).

Proof. It is easy to see that m∗(E) 6 infm∗(G). In the other direction, assume m∗(E) is finite.
Then E ⊆

⋃
Qj, so

∑ ∣∣Qj∣∣− ε 6 m∗(Ej) 6∑ ∣∣Qj∣∣. Choose Gj open such that Qj ⊆ Gj and∣∣Gj∣∣ 6 |Qi|+
ε
2k .
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Now E ⊆
⋃
Gj and G =

⋃
Gj, so

m∗(G) 6
∑(∣∣Qj∣∣+ ε

2j
)
6
∑ ∣∣Qj∣∣+ ε 6 m∗(E) + 2ε.

4. (Wannabe additivity) If E = E1 +E2 and d(E1,E2) > 0, then m∗(E) = m∗(E1)+m∗(E2). Here
d(A,B) = inf {d(x,y) | x ∈ A,y ∈ B}.

Proof. Choose 0 < δ < d(E1,E2) and choose Qj such that E ⊆
⋃
Qj, m∗(E) >

∑ ∣∣Qj∣∣− ε,
and diam(Qj) < δ. If E1 ∩Qj 6= ∅, then E2 ∩Qj = ∅. Therefore, there exist J1, J2 such that
E1 ⊆

⋃
j∈J1

Qj and E2 ⊆
⋃
i∈J2

Qi, so

m∗(E1) +m∗(E2) 6
∑
j∈J1

∣∣Qj∣∣+∑
i∈J2

|Si| =
∑ ∣∣Qj∣∣ 6 m∗(E) + ε.

5. If E is a countable union of almost disjoint cubes, then m∗(E) =
∑ ∣∣Qj∣∣.

Proof. For each j, pick Q̃j ⊆ Q◦j such that
∣∣∣Q̃j∣∣∣ > ∣∣Qj∣∣− ε

2j . Then
⋃
Q̃j ⊆ E and are disjoint

and a finite distance apart, so for each N, we have
∑N

1 m∗(Q̃j) 6 m∗(E), and therefore∑n
j=1

∣∣Qj∣∣− ε 6 m∗(E), and thus
∑∞
j=1

∣∣Qj∣∣ 6 m∗(E).
Note we cannot conclude finite additivity for general disjoint sets E1,E2.

1.5 Measurable Sets

Definition 1.14. A subset E ⊆ Rn is measurable if for all ε > 0, there exists G ⊇ E such that
m∗(G \ E) < ε.

If E is measurable, define its Lebesgue measure as m(E) = m∗(E). Here are some properties of
measurable sets:

1. Open sets are measurable;

2. If m∗(E) = 0, then E is measurable;

3. Countable unions of measurable sets are measurable;

4. Closed sets are measurable;

5. If E is measurable, then so is Ec;

6. Countable intersections of measurable sets are measurable.

This says that measurable sets form a σ-algebra. In addition, we should note that if F is closed
and K is compact such that F∩K = ∅, then d(F,K) > 0.2

Theorem 1.15. If Ej are measurable and disjoint, then m(
⋃
Ej) =

∑
m(Ej).

2This was proved in complex analysis.



8

Proof. Assume that the Ej are bounded. Then there exist Fj closed with Fj ⊆ Ej such that
m(Ej \ Fj) <

ε
2j for all j. Then for finite N,

⋃N
j=1 Fj is compact, so m

(⋃
Fj
)
=
∑
m(Fj). Therefore

m(E) >
∑N
j=1m(Fj) >

∑N
j=1m(Ej) − ε uniformly in N. Therefore, m(E) >

∑
m(Ej). The other

inequality is from subadditivity.
Next, if some of the Ej are unbounded, set Qj to be the cube with sides [−k,k]. Then set

S1 = Q1 and Sj+1 = Qj+1 \Qj. Finally, set Ej,k = Ej ∩ Sk. Then each Ej,k is bounded, so we have

m(E) =
∑
j,k

m(Ej,k) =
∑
j

∑
k

m(Ej,k) =
∑
j

m

(⋃
k

Ej,k

)
=
∑
j

m(Ej).

Corollary 1.16. 1. If Ek ↗ E =
⋃
Ek with Ek measurable, then m(E) = limm(Ek);

2. If Ek ↘ F =
⋂
Ek and some Ek has finite measure, then limm(Ek) = m(F).

Proof. 1. Set Dk = Ek+1 \ Ek. Then the Dk are disjoint and measurable, so E =
⋃
Dk. There-

fore,

m(E) =

∞∑
k=1

m(Dk) = lim
N→∞

N∑
k=1

m(Dk) = limm(Ek).

2. Set Bk = Ek \ Ek+1. Then Ek0 = (
⋂
Ek) ∪

(⋃
k>k0

Bk

)
. Then m(Ek0) < ∞ by assumption,

so

m(Ek0) = m
(⋂

Ek

)
+
∑
k>k0

m(Bk)

= m
(⋂

Ek

)
+ lim
N→∞

N∑
k=k0

m(Bk)

= m
(⋂

Ek

)
+m(Ek0) − lim

N→∞m(EN).

Therefore m(
⋂
Ek) = limm(EN).

Theorem 1.17. If E is measurable, then for all ε > 0:

1. There exists an open G ⊇ E such that m(G \ E) < ε;

2. There exists closed F ⊆ E such that m(E \ F) < ε;

3. If m(E) <∞, then there exists compact K ⊆ E such that m(E \K) < ε;

4. If m(E) <∞, then there exists F =
⋃N
j=1Qj such that m(E4F) < ε.

Proof. We only need to prove the last two, the first two are by definition.

3. There exist a closed F with m(E \ F) < ε/2. Then for all n, set Kn = Bn ∩ F. Then the
E \Kn are measurable, and converge down to E \ F, so there exists n such that m(E \Kn) <
ε/2 +m(E \ F) < ε.
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4. Note there exists G =
⋃∞
j=1Qj containing E such that m(G) < m(E) + ε/2. Then there exists

N such that
∑
j<N

∣∣Qj∣∣ < ε/2, so we can set F =
⋃N
i=1Qj. Then

m(E4F) = m(E \ F) +m(F \ E)

6 m

 ⋃
j>N

Qj

+m

 ∞⋃
j=1

\E


6
∑
j=N

∣∣Qj∣∣+m(G \ E)

< ε.

Corollary 1.18. E is measurable if and only if

1. E differs from a Gδ set by a null set;

2. E differs from an Fσ set by a null set.

Proof. 1. For all n there exists Gn open such that m(Gn \ E) < 1/n and Gn ⊇ E. Therefore, set
S =

⋂
Gn. Clearly E ⊆ S and m(S \ E) = 0 by Corollary 1.16.

2. The argument is the same.

Other Properties of Lebesgue Measure

1. m is translation invariant;

2. If E is measurable, then m(λE) = λdm(E);

3. m is reflection invariant.

Definition 1.19. A set Σ ⊂ P(X) is a σ-algebra if it is closed under complements and countable
unions.

The Borel Sets are the smallest σ-algebra containing the open balls.

Lemma 1.20. If E ⊆ R is measurable and m(E) > 0, then the set of differences E	 E = {x− y | x,y ∈ E}
contains an open interval around 0.

Proof. There exists an open set G ⊇ E such that m(G) 6 (1 + ε)m(E). Then G is a disjoint union
G =

⋃∞
k=1 of open intervals. Set Ek = Ik ∩ E. Then we know that

∑
|Ik| 6 (1 + ε)

∑
m∗(Ek),

so there exists k0 such that
∣∣Ik0

∣∣ 6 m∗(Ek0). Then for small δ if Ek0 and Ek0 + δ are disjoint,
then m(Ek0 ∪ Ek0 + δ) >

2
1+ε

∣∣Ik0

∣∣. However, if δ <
∣∣Ik0

∣∣, then Ik0 ∪ Ik0 + δ is an interval. Thus
m(Ek0 ∪ Ek0 + δ) 6

∣∣Ik0

∣∣+ δ. Finally, we see that δ > 1−ε
1+ε

∣∣Ik0

∣∣, so Ek0 ∩ Ek0 + δ 6= ∅ for small
enough δ.

Theorem 1.21 (Vitali). There is a non-measurable set S ⊂ [0, 1].

Proof. Enumerate the rationals in [0, 1] by rk. Now consider the set R/Q and choose one represen-
tative of each equivalence class using the axiom of choice.3 Call this set P. Next, note that P	 P
contains no interval because it contains no rationals. If m∗(P) = 0, then [0, 1] ⊆

⋃
r∈Q P+ r, which

would imply that m([0, 1]) = 0. Thus P must be non-measurable.
3If we assume choice is false, then every subset of the real numbers is measurable.
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Corollary 1.22. Any set with positive outer measure contains a non-measurable set.

Proof. Let P be as in Theorem 1.21. Then let Ar = A∩ (P+ r). At least one of these sets must be
non-measurable.

1.6 Measurable Functions

Our goal will be integration. We expect that if E is a measurable set, then
∫
χE = m(E). More

generally, we want ∫ N∑
k=1

akχEk =

N∑
k=1

m(Ek).

Functions of this form are called simple. We also want to have some results where the integral
of a limit is equal to the limit of the integral. Similar to continuity, we can try to define f to be
measurable if f−1(E) is measurable for all measurable E. However, this is too hard to check, we
find a minimal condition.

Definition 1.23. A function f : Rd → R is measurable if for all a, f−1(−∞,a) is measurable.

Here are some properties of measurable functions:

1. f is measurable if and only if f−1(G) is measurable for all open G. Alternatively, f−1(F) is
measurable for all closed F.

2. Continuous functions are measurable. In addition, if f is measurable and finite-valued and
Φ is continuous, then Φ ◦ f is measurable.

3. If {fn} is a sequence of measurable functions, then sup fn, inf fn, lim inf fn, lim sup fn, and
lim fn (if it exists) are all measurable.

4. If f,g are measurable, then f+ g, fg are both measurable.

5. Define f = g almost everywhere if the set on which they differ has measure 0. If f = g almost
everywhere, then f is measurable if and only if g is measurable.

We will now prove some approximation theorems for measurable functions. First, we attempt
to approximate them by simple functions.

Theorem 1.24. If f > 0 is measurable on Rd, then there exists an increasing sequence ϕk of simple
functions converging pointwise to f.

Proof. Define the sequence of functions

fN(x) =


f(x) x ∈ QN and f(x) 6 N
N x ∈ QN and f(x) > N
0 x /∈ QN

.

Clearly FN(x)↗ f(x) for all x and FN(R) ⊆ [0,N]. Now define the set

EN`,m =

{
x ∈ QN

∣∣∣∣ `m < FN(x) 6
`+ 1
m

}
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and the simple function

fN,M(x) =

MN∑
`=0

`

M
χEN`,M

.

Clearly fN,M is increasing in M. We also see that 0 6 FN(x) − FN,M(x) 6 1
M . Now set N =M =

2k. Then we see that
lim
k→∞ F2k,2k = f(x)

for all x.

Corollary 1.25. Suppose f is measurable. Then there exists a sequence ϕk simple such that |ϕk(x)| ↗
|f(x)| and limϕk(x) = f(x).

Proof. Write f(x) = f+(x) − f−(x), where f+(x) = max {0, f(x)} and f−(x) = max {−f(x), 0}. The
rest is left to the reader.

Theorem 1.26. If f is measurable, there exists a sequence ψk of step functions such that ψk → f almost
everywhere.

Proof. First, there exist ϕk simple converging to f everywhere. Write ϕk =
∑Nk
j=1 aj,kχEj,k . Then

for all Ej,k, there exists a finite collection of cubes Q` such that m(E4
⋃
Q`) < ε. Therefore, there

exist almost disjoint rectangles R̃p such that
⋃
Q` =

⋃
R̃p. Shrink the R̃p to obtain disjoint closed

rectangles Rp such that m(E4
⋃
Rp) < 2ε. Then there exist step functions ψk and measurable

sets Fk such that

1. m(Fk) <
1

2k ;

2. {ϕk 6= ψk} ⊆ Fk.

Then set F = lim sup Fk, so F has measure 0. Then for all x /∈ F, we have

lim
k→∞ f(x) −ψk(x) = lim

k→∞ f(x) −ϕk(x) = 0.

Theorem 1.27 (Egorov). Let fk be a sequence of measurable functions on E with m(E) <∞ and fk → f
pointwise. Then for all ε there exists a closed set Aε ⊆ E with m(E \Aε) < ε and such that fk → f
uniformly on Aε.

Proof. For given n,k, set

Ek,n =

{
x

∣∣∣∣ ∣∣fj(x) − f(x)∣∣ < 1
n

for all j > k
}

=

{
x

∣∣∣∣∣ sup
j>k

∣∣fj(x) − f(x)∣∣ < 1
n

}
.

If we fix n, then Enk ⊆ E
n
k+1 and Enk ↗ E. Therefore there exists kn such that m(E \ Enkn) <

1
2n .

Now choose N such that 21−N < ε
2 and set Ãε =

⋂
n>N E

n
kn

. Then

m(E \ Ãε) = m
(
E \
⋂
Enkn

)
= m

(⋃
E \ Enkn

)
6
∑
n>N

m(E \ ENkn) <
ε

2
.

Choose Aε ⊆ Ãε such that m(Ãε \Aε) <
ε
2 . Then m(E \Aε) < ε. To prove uniform convergence

on Aε, choose M such that M > N and 1
M 6 δ. Then if x ∈ Aε, x ∈ EMkn , so

sup
j<km

∣∣fj(x) − f(x)∣∣ < 1
m
< δ.
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Theorem 1.28 (Lusin). Let f be measurable and finite-valued on E and m(E) <∞. Then for all ε, there
exists Fε ⊆ E closed such that m(E \ Fε) < ε and f|Fε is continuous.

Proof. First, there exists a sequence of step functions fn such that fn → f pointwise. Then
remove thin boundaries of rectangles to find En such that m(En) <

1
2n and such that fn is

continuous off of En. By Egorov, there exists Aε/3 closed such that fn → f uniformly on Aε/3

and m(E \Aε/3) < ε/3. Next, let F ′ = Aε/n \
⋃
n>N En, where 21−N < ε

3 . Now if m > N, fn is
continuous on F ′ and fn → f uniformly, so f is continuous on F ′. Finally, approximate F ′ by a
closed set Fε ⊆ F ′ such that m(F ′ \ Fε) <

ε
3 .

Finally, we will construct a non-measurable function. First, we will define the Cantor function
fc : [0, 1]→ [0, 1] which is given by

fc(x) =


(

0.d1
2
d2
2 . . .

)
2

x = (0.d1d2 . . .)3 ∈ C(
0.d1

2 . . . dk2 0 . . .
)

2
x = (0d1 . . .dk1 . . .)3 /∈ C

.

Note that f is monotone and continuous on [0, 1] and constant on Cc.
Then define f(x) = fc(x) + x, so f : [0, 1] → [0, 2] is a continuous bijection. On any excluded

interval I, f sends I to I+ fc(I). Therefore, m(f(
⋃
I)) = 1, so m(f(C)) = 1. Then there exists a

non-measurable set S ⊆ f(C). Then χS is not measurable.
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Integration

2.1 Defining the Integral

Our goal is to integrate measurable functions. If f =
∑
akχEk is simple, then we define∫

f =
∑

akm(Ek).

To check that this is well-defined, if we can write f =
∑
b`χF` , then we can consider E1 ∩ E2,E1 \

E2,E2 \ E1. This gives a canonical representation of a simple function (where all of the Ej are
disjoint). It is easy to see that we have linearity, monotonicity, and the triangle inequality. We
want to extend this to a larger class of functions.

Next, we will consider bounded measurable functions on sets of finite measure. If f is
supported on a set of finite measure and f is bounded, we define∫

f = lim
n→∞

∫
ϕn

for some sequence ϕn of simple functions converging to f. We need to show this is independent
of the sequence.

Lemma 2.1. If ϕn → f pointwise on E with m(E) <∞, and f is bounded, then

1. The limit lim
∫
ϕn exists;

2. If f = 0 almost everywhere, then lim
∫
ϕn = 0.

Proof. For the first part, we use Egorov. There exists a closed set Aε ⊆ E such that ϕn → f
uniformly on Aε and m(E \Aε) < ε. Let In =

∫
Eϕn. Then

|In − Im| 6
∫
|ϕn −ϕm|dx

6
∫
Aε

|ϕn −ϕm|dx+
∫
E\Aε

|ϕn −ϕm|dx .

On Aε, we have uniform convergence, so∫
Aε

|ϕn −ϕm| 6 m(Aε) sup
Aε

|ϕn −ϕm|

6 2m(Aε) sup
Aε

|ϕn − f|,

13
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which clearly converges to 0. Then the second terms are
∫
E\Aε

|ϕn −ϕm|dx 6 2Mm(E \Aε),
which also converges to 0, where M = sup |f|. Thus In is Cauchy, so it converges.

If f = 0 almost everywhere, then

|In| 6
∫
Aε

|ϕn|+

∫
E\Aε

|ϕn|. 6 m(Aε) · ε,

so lim In = 0.

By Lemma 2.1, integration is well-defined. Again, we have the desired properties. Before we
extend the definition of the integral to all functions, we will prove a convergence theorem. This is
the first exchange of limits result.

Theorem 2.2 (Bounded Convergence Theorem). If fn is a sequence of functions, uniformly bounded
by M and uniformly supported on E of finite measure, and it fn → f pointwise almost everywhere, then f
is measurable and

∫
f = lim

∫
fn. In fact,

∫
|f− fn|→ 0 as n→∞.

Proof. The proof of this is the same as proof of the consistency of the definition of the integral.

Corollary 2.3. If f > 0 is bounded and supported on E with m(E) <∞, and if
∫
f = 0, then f = 0 almost

everywhere.

Proof. Set fk(x) = f(x)χ{f(x)>1/k}. Then fk is bounded, supported on E, and fk 6 f. Then

0 =

∫
f(x) >

∫
fk(x) >

1
k
m({f(x) > 1/k}),

so m({f(x) > 0}) = 0.

Theorem 2.4. If f is Riemann-integrable on [a,b], then it is Lebesgue integrable, and the integrals coincide.

Proof. Translate the condition about partitions into step functions ϕi 6 f 6 ψi, where ϕi ↗ f and
ψi ↘ f. Clearly the ψi,ϕi are uniformly bounded. Therefore, by bounded convergence, ϕ̃, ψ̃ are
both measurable and bounded, and

∫
ϕ̃ =

∫
ψ̃, so ψ̃ = ϕ̃ almost everywhere. Then clearly ϕ̃ = f

almost everywhere, so f is measurable, and by monotonicity,
∫R
f =
∫L
f.

Finally, we can define integration for all nonnegative functions. We define∫
f = sup

{∫
g

∣∣∣∣ 0 6 g 6 f,m{supp(g)} <∞,g bounded
}

.

For any measurable E, define
∫
E f =

∫
f · χE. Note that it is easy to check that the definition makes

sense. If
∫
f <∞, we say that f is integrable.

Properties of the Integral.

1. Linearity;

2. Monotonicity;

3. Additivity on disjoint sets;

4. If g is integrable and 0 6 f 6 g, then f is integrable;

5. If f is integrable, then f(x) <∞ almost everywhere;

6. If
∫
f = 0, then f = 0 almost everywhere.

Note that if fn → f almost everywhere, then
∫
fn does not necessarily converge to

∫
f. For

example, if we take fn = nχ[0,1/n], then
∫
fn = 1, but f = 0.
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2.2 Some Convergence Results

We will state some convergence results where we can swap limits and integrals. We will also give
the general definition of the integral here.

Lemma 2.5 (Fatou). If fn is a sequence of functions with fn > 0 and if f(x) = lim inf fn(x), then∫
f 6 lim inf

∫
fn.

Proof. Suppose g bounded satisfies m(suppg) < ∞ and 0 6 g < f. Then set gn = min {g, fn}.
Then

∫
g is bounded, so by bounded convergence,

∫
gn →

∫
g. Also,

∫
gn 6

∫
fn, so

∫
g 6

lim inf fn. Because
∫
f = sup

∫
g, we get the desired result.

Corollary 2.6. If fn 6 f with fn(x)→ f(x) almost everywhere, then lim
∫
fn =

∫
f.

Proof. By monotonicity, lim sup
∫
fn 6

∫
f 6 lim inf

∫
fn.

Corollary 2.7 (Monotone Convergence). If fn(x)↗ f(x) almost everywhere, then lim
∫
fn =

∫
f.

Corollary 2.8. Given ak(x) > 0 measurable, then
∫∑

ak(x) 6
∑∫

ak(x). Moreover, if
∑∫

ak(x)
converges,

∑
ak(x) converges almost everywhere.

Proof. Let fn be the partial sums. Then by monotone convergence, if
∑∫

ak converges,
∫∑

ak
also converges, so it is integrable. Thus

∑
ak converges almost everywhere.

Example 2.9 (Borel-Cantelli). Given Ek measurable with
∑
m(Ek) <∞, then m(limEk) = 0. To

see this, set ak = χEk and use the previous result.

Example 2.10. Let

f(x) =

{
1

|x|d+1 x 6= 0

0 x = 0
.

Then
∫
|x|=ε f(x)dx 6 c

ε for all ε > 0.
To see this, we will bound

∫
|x|>ε f. Consider the annulus Ak =

{
x | 2kε 6 |x| < 2k+1ε

}
. Then

set
ak = χAk sup

x∈Ak
f(x) = χAk

1
(2kε)d+1 .

Then set g(x) =
∑
ak(x). Clearly f 6 g, so

∫
f is finite if

∫
g is. However, we see that∫

g =

∫∑
ak

=
∑∫

ak

=
∑ 1

(2kε)d+1m(Ak)

=
∑ 1

(2kε)d+1m(A)

=
∑ 1

2kε
m(A)

=
2m(A)

ε
.
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We now give the general definition of the integral. Let f be a measurable function and write
f(x) = f1(x) − f2(x), where both f1, f2 are nonnegative. Then we want

∫
f =
∫
f1 −

∫
f2. Clearly

this is defined if at most one of the two integrals on the RHS is infinite.

Definition 2.11. f is integrable if both
∫
f1,
∫
f2 are finite.

Theorem 2.12. The integrable is linear, additive, monotone, and satisfies the triangle inequality.

Lemma 2.13. Let f be integrable. Then

1. Given ε > 0, there exists a ball B of finite measure such that
∫
Bc |f| < ε;

2. For all ε > 0, there exists δ such that whenever m(E) < δ, then
∫
E |f| < ε.

Proof. 1. We assume f > 0. The for each N consider BN = {|x| 6 N} and fn = χBn . Then we
see that fn ↗ f, so by monotone convergence,

∫
fn →

∫
f < ∞. Therefore, there exists N

such that ∫
BcNf =

∫
f(1 − χBN) =

∫
f−

∫
fN < ε.

2. Again assume f > 0. Then set En = {f(x) 6 n} and fn = f · χEn . Again, fn ↗ f and f is
integrable, so there exists N such that f− fn < ε

2 for all n > N. Then choose δ such that
Nδ < ε

2 . Now if m(E) < δ, we see that∫
E
f =

∫
E
f− fn +

∫
E
fN =

∫
E
f− fN +N ·m(E) < ε.

Theorem 2.14 (Dominated Convergence). If fn → f almost everywhere and |fn| 6 |g| almost every-
where for some integrable g, then f is integrable and

∫
|fn − f|→ 0 as n→∞.

Proof. For N > 0, set EN = {x | |x|g(x) 6 N}. Then define gn = g · χEn . As in the lemma above,
there exists N such that

∫
EcNg < ε.

Note that fkχEn 6 n for all k and is supported on En, which has finite measure. Also,
fkχEn → fχEn . By bounded convergence,∫

|fkχEn − fχEn | =

∫
En

|fk − f| < ε

for k large enough, so∫
|fk − f| =

∫
En

|fk − f|+

∫
Ecn

|fk − f| 6 ε+ 3
∫
Ecn

g < 4ε.

We now briefly consider functions f : Rd → C. Then note that f = u+ iv, so |f| =
√
u2 + v2.

Also, because
√
a+ b 6

√
a+
√
b, |f| 6 |u|+ |v|. We conclude that f is integrable if and only if u, v

are both integrable.

2.3 Vector Space of Integrable Functions

Let L1 denote the set of integrable functions. Define the L1 norm ‖f‖1 =
∫
|f|. Note that this is only

a seminorm, so we set f ∼ g if f = g almost everywhere.

Theorem 2.15. L1 is a normed vector space.
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Theorem 2.16 (Riesz-Fischer). L1 is a Banach space.1

Proof. Suppose {fn} is Cauchy in L1. Then for all k choose nk+1 such that
∥∥fnk+1 − fnk

∥∥ < 1
2k .

Then we define

f = fn1 +
∑
k

(
fnk+1 − fnk

)
g =

∣∣fn1

∣∣+∑
k

∣∣fnk+1 − fnk
∣∣.

Note that g is nonnegative, so by monotone convergence,∫
|g| =

∫ ∣∣fn1

∣∣+∑∫ ∣∣fnk+1 − fnk
∣∣ <∞,

so by dominated convergence, f is integrable. In addition,
∥∥f− fnk+1

∥∥ → 0, so we have a
convergent subsequence. But then because the sequence is Cauchy and by the triangle inequality,
it converges to f.

Corollary 2.17. If fn → f in L1, there exists a subsequence fnk such that fnk → f almost everywhere.

Definition 2.18. We say fn converges to f in measure if m{x | |fn(x) − f(x)| > ε}→ 0.

Example 2.19. Write natural numbers n as n = k+ 2v, where 0 6 k < 2v. Set fn = χ[ k2v ,k+1
2v ].

Then this converges to 0 in measure but not pointwise anywhere.

Theorem 2.20. If fn → f in measure, there exists a subsequence fnk → f almost everywhere.

Proof. Given v, there exists nv such that m{x | |fn(x) − f(x)| > 2−v} 6 2−v for n > nv. Then
choose

Ev =
{
x | |fnv(x) − f(x)| > 2−v

}
.

Now if x /∈ Ev, then fnv(x) → f(x) for x /∈
⋂∞
k=1

⋃∞
v=k Ev. However,

∑
m(Ev) < ∞, so this is a

set of measure 0.

Remark 2.21. In Fatou’s lemma, monotone convergence, and dominated convergence, we can
replace pointwise convergence by convergence in measure.

Recall that in a topological space X, a set A is dense if A∩O 6= ∅ for all open O. In a normed
space, this is equivalent to saying that for all x ∈ X and ε > 0, there exists a ∈ A such that
‖a− x‖ < ε.

Theorem 2.22. The following classes of functions are dense in L1:

1. Simple functions;

2. Step functions;

3. Continuous functions of compact support.

Proof. Take f > 0.

1. We know that there exists a sequence of increasing simple functions ϕn ↗ f pointwise, but
f is integrable, so ‖f− fn‖ =

∫
f− fn → 0.

1We will define this in 624, but a Banach space is just a complete normed vector space.
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2. We approximate simple functions by step functions. Let ϕ =
∑
aiχEi be simple. Then there

exist disjoint closed rectangles Rj such that m
(
E4

⋃
Rj
)
< ε. This bounds

∫
χE − χRj .

3. It is easy to approximate χR by continuous functions. Just build side ramps.

2.4 Symmetries

First, note that the integral is translation invariant. To see this, we can translate step functions. In
addition, it is easy to see that nd

∫
f(nx)dx =

∫
f(x)dx.

Examples 2.23. First, note that ∫
|x|>ε

dx
|x|a

= ε−a+d
∫
x>1

dx
|x|a

.

Similarly, ∫
|x|6ε

dx
|x|a

= ε−a+d
∫
|x|61

dx
|x|a

.

Example 2.24 (Convolution). Given integrable f,g, define their convolution f ∗ g by

(f ∗ g)(x) =
∫
f(x− y)g(y)dy .

It is easy to see that f ∗ g = g ∗ f.

Now write d = d1 + d2, so Rd = Rd1 ×Rd2 . Then for fixed y write fy = f(−,y). Similarly, for
E ⊆ Rd, write Ey = {x | (x,y) ∈ E} ⊆ Rd1 . Define fx and Ex similarly. The main issue is that if E
is measurable, then Ey,Ex might not be.

Theorem 2.25 (Fubini). Suppose f(x,y) is integrable on Rd = Rd1 ×Rd2 . Then

1. For almost every y ∈ Rd2 , fy is integrable on Rd1 ;

2. The function
∫

Rd1 f
y(x) is integrable on Rd2 ;

3.
∫

Rd2

∫
Rd1 f

y(x)dxdy =
∫

Rd f(x,y).

Proof. Let F be the set of integrable functions where all three conditions hold. We show that
F = L1. First, we show that F 6= 0.

Given any rectangle R ⊆ Rd, it is easy to see that χR ∈ F. If we write R = R1 × R2, then
χ
y
R(x) = χR1(x) · χR2(y). Then the first condition holds everywhere. For the second condition, note

that ∫
χ
y
R(x)dx = m(R1) · χR2(y).

For the third condition, note that∫ ∫
χ
y
R(x)dxdy = m(R1) ·m(R2) = m(R) =

∫
χR.

Therefore, all step functions are in F.
Now we will show that
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1. F is closed under linear combinations;

To see this, let fk ∈ { and ak ∈ R. Then use linearity of the integral.

2. F is closed under limits.

We do this for monotone limits. Note that for all f ∈ F, there exists A of measure 0 such that
fy is not integrable for y ∈ A. If fk ∈ F and fk ↗ f and f is integrable, we want to show
that f ∈ F. Let Ak correspond to fk. Then their union has measure 0, so fy is integrable
almost everywhere.

Now set gk(y) =
∫
f
y
k ↗

∫
fy = g. Now each gx is integrable and gk ↗ g, so

∫
gk =

∫
fk ↗∫

f, so
∫
g <∞ and thus g <∞ almost everywhere. Thus fy is integrable almost everywhere,

so f ∈ F.

Recall that if f is integrable, there exists a set ϕk of simple functions converging up to f.
Each simple is a linear combination of χE for some measurable E of finite measure, so we
prove χE ∈ F.

This reduces the problem to measurable sets:

3. Gδ sets;

If E is contained in the boundary of a rectangle, the result is obvious. Next, suppose E is a
finite union of almost disjoint rectangles Rj. Then write χE as a linear combination of the χR
and the χP, where P ⊆ ∂R. Thus χE ∈ F.

Now if E is open and of finite measure, write E =
⋃
Qj, where the Qj are almost disjoint

cubes. Then write χE =
∑
χQj , which is a monotone limit. Finally, if E =

⋂
Gk for Gk open,

then χE is also a monotone limit.

4. Null sets;

Recall that there exists a Gδ set B of measure 0 such that E ⊆ B. Then χB ∈ F, so
∫ ∫
χ
y
B = 0,

so
∫
χ
y
B = 0 almost everywhere. Because Ey ⊆ By for all y, Ey is measurable and null almost

everywhere, so χE ∈ F.

5. Limiting procedure;

For any measurable E, E differs from a Gδ set by a null set.

Finally, for general f, write f = f+ − f−, which are both integrable and nonnegative.

Theorem 2.26 (Tonelli). Fubini extends to measurable functions for which
∫
f is defined but infinite.

Corollary 2.27 (Cavaleiri’s Principle). Let E be a measurable subset of Rd1 ×Rd2 . Then for almost
every y, the slice Ey is measurable, and m(E) =

∫
m(Ey).
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Differentiation

3.1 Integration and Differentiation

Recall the fundamental theorem of calculus:

1. For f continuous, the function F(x) =
∫x
a f(x)dx is differentiable and F ′ = f.

2. If F ′ is Riemann-integrable, then F(b) = F(a) =
∫b
a F
′(x)dx.

This roughly tells us that integration is anti-differentiation. We can replace differential
equations with formulations in terms of integrals. Then recall that

F ′(x) = lim
F(x+ h) − F(x)

h
= lim

1
h

∫x+h
x

f.

What happens when we generalize to higher dimensions and consider 1
m(B)

∫
B f? Define f∗(x) =

sup 1
m(B)

∫
|f|. Note that f∗ need not be integrable.

Theorem 3.1. 1. f∗ is measurable;

2. f∗ <∞ almost everywhere;

3. There exists A depending only on d such that for all α,

m({x | f∗(x) > α}) 6
A

α
‖f‖1.

Proof. 1. Define Eα =
{
x ∈ Rd | f∗(x) > α

}
. Then note that x ∈ Eα if and only if

1
m(B)

∫
B
|f| > α

for some ball B 3 x. In fact, for all y ∈ B, y ∈ Eα, so Eα is open.

2. This is a corollary of part 3.

20
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3. The proof of this relies on the Vitali Covering Lemma, which is stated below.

Let Eα = {x | f∗(x) > α}. Then we know x ∈ Eα if and only if there exists B 3 x such that
m(B) < 1

α

∫
B |f|. Given a compact K ⊆ Eα, write K ⊆

⋃
x∈K Bx and extract a finite subcover.

Then we use Vitali, so

m(K) < 3d
∑

m(Bi) 6
3d

α

∑∫
Bi

|f| 6
3d

α

∫
|f|.

Because K is arbitrary, we have the desired result.

Lemma 3.2 (Vitali’s Covering Lemma). Let B = {B1, . . . ,BN} be a finite set of open balls. Then there
exists a set of disjoint open balls

{
Bi1 , . . . ,Bik

}
⊂ B such that

⋃
Bj ⊆

⋃
3 ·Bik .

Proof. Inductively choose Bik to be the ball of largest radius not disjoint to thre previous balls and
not contained in

⋃
3 ·Bij . We started with a finite collection, so the process terminates.

Theorem 3.3 (Lebesgue Differentiation Theorem). If f is integrable, then for almost every x,

f(x) = lim
m(B)→0
x∈B

1
m(B)

∫
B
f(y)dy .

In R, this implies d
dxF(x) = f(x).

Proof. For α > 0, define the set

Eα =

x
∣∣∣∣∣ lim sup
m(B)→0
x∈B

∣∣∣∣ 1
m(B)

∫
f(y)dy− f(x)

∣∣∣∣ > 2α

.

We will show that m(Eα) = 0.
Let ε > 0. Recall that continuous functions of compact support are dense in L1, so choose

a continuous function with compact support g such that ‖f− g‖ < ε. Then g is uniformly
continuous, so 1

m(B)

∫
g(y)dy→ g(x) as m(B)→ 0. Now use the triangle inequality:

1
m(B)

∫
f− f(x) =

1
m(B)

∫
f(y) − g(y)dy+

1
m(B)

∫
g(y)dy− g(x) + (g(x) − f(x)).

Therefore, we have

lim sup
m(B)→0
x∈B

∣∣∣∣ 1
m(B)

∫
B
f(y)dy− f(x)

∣∣∣∣ 6 (f− g)∗(x) + |f(x) − g(x)|.

Let Fα be the set where (f− g)∗(x) > α and Gα where |f− g| > α. By Theorem 3.1, m(Fα) 6
A
α ‖f− g‖, and by Chebyshev, m(Gα) 6 1

α‖f− g‖.

Corollary 3.4. For almost every x, f∗(x) > |f(x)|.

Also note that we can replace integrability by local integrability in these results. If E is
measurable, define x to be a point of density of E if

lim
m(B)→0
x∈B

1
m(B)

∫
B
χE(y)dy = 1.
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Corollary 3.5. Let E be measurable. Then

1. Almost every x ∈ E is a point of density;

2. Almost every x /∈ E is not a point of density.

In a related notion, we can define the Lebesgue set L(f) of f as the set of all x such that f(x) <∞
and

lim
1

m(B)

∫
|f(y) − f(x)|dy = 0.

Clearly if x ∈ L(f), then the Lebesgue differentation theorem holds. Also, if f is continuous at x,
then x ∈ L(f).

Corollary 3.6. For any f ∈ L1
loc, almost every x belongs to L(f).

Proof. For rationals r ∈ Q, consider hr = |f(x) − r|. Then there exists Er with m(Er) = 0 such that
the Lebesgue differentiation theorem holds for hr for all x /∈ Er. Thus if x /∈ E =

⋃
Er, then there

exists r such that |f(x) − r| < ε for all ε. For this ε, r, choose δ such that if m(B) < δ, then∣∣∣∣ 1
m(B)

∫
|f(y) − r|− |f(x) − r|

∣∣∣∣ < ε,
so 1
m(B)

∫
|f(y) − r| < |f(x) − r|+ ε. Therefore

1
m(B)

∫
|f(y) − f(x)| 6

1
m(B)

∫
|f(y) − r|+ |f(x) − r| < 2|f(x) − r|+ ε < 3ε.

Note that any locally integrable function has different representatives up to sets of measure 0.
We know that for almost every x, f(x) = lim 1

m(B)

∫
B f and if f = f almost everywhere,

∫
B f =

∫
B f,

but L(f) 6= L(f) up to a set of measure 0.
On the Lebesgue set, we can generalize average. Instead of balls, we can consider general sets

U. Note that 1
m(U)

∫
U f =

∫ 1
m(U)χUf, which is morally equal to

∫
Kf, where the kernel K satisfies∫

K = 1. We will actually consider families of such kernels Kδ.

3.2 Kernels

Consider sets U for which 1
m(U)

∫
U f converges.

Definition 3.7. A family of sets Uα shrinks regularly to x if there exists c > 0 such that for all B 3 x,
there exists α such that x ∈ Uα ⊆ B, and m(Uα) > c ·m(B).

Corollary 3.8. If f is locally integrable and Uα shrinks regularly to x ∈ L(f), then

lim
m(Uα)→0

1
m(Uα)

∫
Uα

f = f(x).

Proof. Note that

1
m(Uα)

∫
Uα

|f(y) − f(x)|dy 6
1

m(Uα)

∫
B
|f(y) − f(x)|dy 6

1
c

1
m(B)

∫
B
|f(y) − f(x)|dy→ 0.
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Note that E is measurable if and only if for all A, m∗(A) = m∗(A ∩ E) +m∗(A ∩ E)c. Also,
note that 1

m(B)

∫
B f =

1
m(B)

∫
Rd χB · f =

∫
f · 1
m(B)χB. Instead of multiplication, we will convolce.

We will show later that ∗ commutes with differentiation.
Note that f ∗ χ is a restriction of f. Far from x, f ∗ χ = 0 and f ∗ χ = f near x. However, χE is

not usually differentiable. Instead, we will convolve with different kernels.

Definition 3.9. A good kernel Kδ satisfies

1.
∫
Kδ = 1 for all δ > 0.

2.
∫
|Kδ| 6 A uniformly. Also, for all ξ > 0,∫

|x|>ξ
|Kδ(x)|dx→ 0

as δ→ 0.

Example 3.10. We will construct a smooth bump function. Let

f1(x) =


e−1/x 0 < x < 1
0 x 6 0
1
[ e] x > 1

.

Now set f2(x) = f1(x) · f1(1 − x). Then set ϕ(x) =
f2(x+1/2)∫

f2
. This is a smooth even function

with integral 1 supported on [−1/2, 1/2]. Now we will introduce scaling, to define a family
φε : Rd → R defined by

φε(x) = K ·ϕ
(
|x|

ε

)
,

where K is chosen such that
∫
ϕε(x) = 1. If we define fε = f ∗φε, then fε is a smooth approxima-

tion to f that is C∞. In addition, the derivative of fε is Dφε ∗ f.
The bottom line is that for all ε > 0, φε ∗ f is C∞. Also, (φε ∗ f)(x) → f(x) as ε → 0 for all

Lebesgue points of f.

We call a kernel Kδ an approximation to the identity if it satisfies

1.
∫
Kδ = 1;

2. |Kδ(x)| 6 Aδ−d for all δ > 0;

3. |Kδ(x)| 6
Aδ

|x|d+1 for all δ > 0, x ∈ Rd, x 6= 0.

Therefore, Kδ →∞ as δ→ 0 for x = 0. If x 6= 0, Kδ(x)→ 0 as δ→ 0. Note that the Dirac mass1 is a
“generalized function” which satisfies

∫
δ = 1, δ(x) = 0 for x 6= 0, and

∫
δ · f(x) = f(0).

Example 3.11 (Poisson Kernel). Consider the upper half plane (or equivalently the disk). Then
define

Py =
1
π

y

x2 + y2

1In 624, we will see that the Dirac mass is a distribution.
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for x ∈ R,y > 0. Then for x 6= 0, Py → 0 as y→ 0. On the disk, define

Pr(x) =

{
1

2π ·
1−r2

1−2r cosx+r2 |x| 6 π

0 |x| > π
.

Note that ∆P = 0 away from the origin. If we convolve u = P ∗ g, u solves ∆u = 0 on y > 0 and
u(x, 0) = g(x).

Example 3.12 (Heat Kernel). Define the heat kernel

Ht =
1

(4πt)d/2 e
−|x|2/4t.

Again, if x 6= 0, Ht(x)→ 0 as t→ 0. If x = 0, then Ht(0)→∞. Also, for t > 0,
∫

Rd Ht(x)dx = 1.
Note that for t > 0, the heat equation ut = ∆u with initial conditions u(0, x) = g(x) is solved by
u(t, x) = Ht ∗ g.

Because the heat equation is linear, since δ = limHt is a convolution identity, ∗ commutes with
∂x, so given f, set u = Ht ∗ f. Because differentiation commutes with ∗, we see that

∂t(Ht ∗ f) −∆(Ht ∗ f) = (∂tHt −∆Ht) ∗ f,

but at t = 0, then δ ∗ f = f.

Example 3.13 (Fejer Kernel). This kernal is defined by

1
2π
FN(x) =

 1
2πN

sin2 Nx
2

sin2 x
2

|x| 6 π

0 |x| > π
.

It is related to the Fourier transform. Recall that the Fourier transform f̃ is defined by

f̃(ξ) =

∫
f(x)e−2πixξ dx

and its inverse
f(x) =

∫
f̃(ξ)e2πixξ dξ .

Note that f(x)e2πixξ as a function of ξ is a wave.

Theorem 3.14. If f is measurable and x ∈ L(f), then (f ∗Kδ)(x)→ f(x) as δ→ 0.

Proof. We calculate

(f ∗Kδ)(x) − f(x) =
∫
f(x− y)Kδ(y)dy− f(x)

=

∫
(f(x− y) − f(x))Kδ(y)dy .

We will show that
∫
|f(x− y) − f(x)||Kδ(y)|dy → 0. We will use properties to Kδ and split the

integral into parts |y| 6 δ and |y| > δ. Define for x ∈ L(f),

A(r) =
1

Wdrd

∫
|y|6r

|f(x− y) − f(x)|dy ,
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where Wd = m(B0(1)). We then need Lemma 3.15, which is stated after this proof. This yields
boundedness on (0,R]. Then for large e, we use the triangle inequality:

A(r) 6
1

Wdrd
‖f‖+ 1

Wdrd

∫
|y|6r

|f(y)| 6
1

Wdrd
‖f‖+ |f(x)|.

Turning back to our original problem, note that∫
|f(x− y) − f(x)||Kδ(y)|dy 6

∫
|y|6δ

|f(x− y) − f(x)||Kδ(y)|dy+
∞∑
k=0

∫
2kδ<|y|62k+1δ

|f(x− y) − f(x)||Kδ(y)|dy .

The first term is given by∫
|y|6δ

|f(x− y) − f(x)||Kδ(y)|dy 6
c

δd

∫
|y|6δ

|f(x) − f(y)|dy

6 cA(δ)→ 0.

On the annulus, we will estimate |Kδ| 6
Cδ

|x|d+1 . Then we can write

∫
2kδ<|y|62k+1δ

|f(x− y) − f(x)||Kδ(y)|dy 6
cδ

(2kδ)d+1

∫
|y|62k+1δ

|f(x− y) − f(x)|dy

6 (2k+1δ)dA(2k+1δ)Wd
cδ

(2kδ)d+1

6 A(2k+1δ)Wdc2d−k

6 A(2k+1δ)(Wdc2d)2−k,

so ∫
|f(x− y) − f(x)||Kδ(y)|dy 6 cWd

(
A(δ) +

∞∑
k=0

2d2−kA(2k+1δ)

)
.

For large k, A(2k+1δ) 6M, so for any N, we see that

∫
|f(x− y) − f(x)||Kδ(y)|dy 6 cWd

(
A(δ) +

N∑
k=1

2d2−kA(2k+1δ) + 2dM2−N
)

.

Therefore, given ε, choose N such that cWd2dM2−N < ε
2 . Then for all sufficiently small δ,

cWd

(
A(δ) +

N∑
k+1

2d−kA(δ2k+1)

)
<
ε

2
.

Lemma 3.15. If f ∈ L1 and x ∈ L(f), then A(r) is continuous on (0,∞) and A(r)→ 0 as r→ 0.

Proof. Because the integral is absolutely continuous, A(r) is continuous: absolute continuity of the
integral means that for all ε > 0, there exists δ > 0 such that if m(U) < δ, then

∫
U |f| < ε.

Now consider small annuli. For r > 0 fixed, the annuli have measure Wd((r+ δ)d − (r− δ)d),
which is small. Then A(r)→ 0 is just the statement that x ∈ L(f).
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3.3 Differentiation

Let f : R→ R be monotone increasing. Given only two points xL, xR, for any increasing sequence
xL 6 · · · < x−1 < x0 < x1 < . . . < xR, we have

M∑
k=−N

f(xk+1) − f(xk) = f(xM) − f(xN) 6 f(xR) − f(xL).

In particular, this series converges absolutely, so there are only countably many discontinuities,
and moreover

∑
j f(xj,+) − f(xj,−) < ∞, where f(xj,+) = limx>xj f(x) and f(xj,−) is defined

similarly.
We know that f(x,−) 6 f(x) 6 f(x,+) for all x and that the three values are equal if and only if

f is continuous at x. Then
∑
f(xk,+)− f(xk,−) <∞ means that there are countably many jumps

and that their sum is finite. Now assume that f is continuous and increasing on [a,b].
Note that the Cantor function is continuous, monotone, and takes f : [0, 1]→ [0, 1]. Recall that

fc is constant on each excluded interbal, so f ′c = 0 almost everywhere. Therefore,
∫1

0 f
′
c(x)dx = 0,

but fc(1) − fc(0) = 1.

Theorem 3.16. If f is continuous and monotone on [a,b], then the derivative exists almost everywhere and

f(b) − f(a) >
∫b
a
f ′(x)dx .

Before we prove the theorem, we need to define the Dini derivatives. Define

D+f(x) = lim sup
h→0+

∆hf(x) D−f(x) = lim sup
h→0−

∆hf(x)

D+f(x) = lim inf
h→0+

∆hf(x) D−f(x) = lim inf
h→0−

∆hf(x).

Then the Dini numbers are defined everywhere and that D− 6 D−,D+ 6 D+. Then f is
differentiable at x if and only if D+ 6 D− and D− 6 D+ and all these values are finite.

Lemma 3.17 (Rising Sun Lemma). LetG be continuous on [a,b]. Then the set {x | ∃h > 0(G(x+ h) > G(x))}
is a relatively open union of disjoint intervals

⋃
i(ai,bi), and for all x ∈ (ai,bi), G(ai) = G(bi) > G(x).

Proof. It is clear that the set is open. Now if G(bi) > G(ai), then we can extend the interval to the
left, and similarly to the right if G(ai) > G(bi).

Lemma 3.18 (Vitali’s Covering Lemma). A collection G of open/closed interbals is a Vitali cover of E if
for all ε > 0 and x ∈ E, there exists G ∈ G such that x ∈ G and |G| < ε. Let E be of finite measure and G a
Vitali cover. Then for all ε > 0, there exists a finite set of disjoint Gn ∈ G such that m(E) 6

∑ ∣∣Gj∣∣+ ε.
Proof. Assume without loss of generality that each G ∈ G is closed. Fine O of finite measure with
E ⊆ O. Now choose a series of intervals as follows. Suppose that G1, . . . ,Gn have already been
chosen. Then let

kn = sup
G⊆O,G∈G,G∩(

⋃
Gn)=∅

|G|.

Either E ⊆
⋃
Gi or there exists Gn+1 ∈ G contained in O and disjoint from the other sets such

that |Gn+1| >
1
2kn > 0. Continue the process. If this does not stop, then choose N such that∑∞

N+1
∣∣Gj∣∣ < ε

5 . Let R = E \
⋃N
j=1Gj.
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To show that m(R) < ε, choose x ∈ R. Because the Gj are closed, there exists G ∈ G such that

x ∈ G and |G| < 1
2d
(
x,
⋃N

1 Gj

)
. Thus G does not intersect any of the Gj. From our construction,

there exists n > N such that |G| 6 kn 6 2|Gn+1|. however, |Gn+1| tends to 0, so there exists a
smallest n > N such that G ∩Gn is nonempty. For this n, if mn is the midpoint of Gn, we see
that |x−mn| 6 |G|+ 1

2 |Gn|. However, |G| 6 2|Gn|, so |x−mn| 6 5
2 |Gn|. Therefore x ∈ Jn for some

Jn with |Jn| = 5|Gn|, so

m(R) 6
∑ ∣∣Jj∣∣ 6∑ 5

∣∣Gj∣∣ < ε.
Proof of Theorem 3.16. We want to show that D+F 6 D−F almost everywhere and D+F <∞ amost
everywhere. Fix γ and set Eγ = {x | D+F(x) > γ}. We will show that Eγ is measurable. Note that
∆hF is measurable and f is continuous, so replace h with 1/n. Set G(x) = F(x) − γx.

The idea is that on Eγ, D+F(x) > γ. Then there exists h0 such that F(x+h)−F(x)h > γ for
0 < h < h0. Thus F(x+ h) − F(x) > γh, so G(x+ h) > G(x). G is not monotone but is continuous.
We will now eliminate {D+F =∞} and {D+F > D−F}. Note that D+F(x) > γ if and only if
Gγ(x+ h) > Gγ(x) for some h. By rising sun, we know that Eγ = {D+F > γ} is open and of finite
measure, so m({D+F =∞}) = 0.

Now choose R > r rational and set E = {x | D+F > R > r > D−F}. We will show that m(E) = 0.
If not, then there exists an open O ⊇ E with m(O) < m(E)Rr . On some connected component
In of O, apply rising sun to G(x) = −F(−x) + rx on −In. Then we obtain intervals (ck,dk), so
wet (ak,bk) = (−dk,−ck). Then we see that −F(bk) − rbk = −F(ak) − rak > −F(x) − rx for
x ∈ (ak,bk).

To show that m(E) = 0, find an open O ⊇ E such that m(O) < m(E) + ε. Then for all x ∈ E,
there exists an interval [x− h, x] ⊆ O suchthat F(x) − F(x− h) < rh. This is a Vitali covering.

Now choose I1, . . . , IN such that m(E) 6
∑

|In|+ ε. Summing over this finite subcover, we see
that

N∑
j=1

[F(xj) − F(xj − hj)] < r
∑

hj < rm(O) < r(m(E) + ε).

Then if we set A to be the interior of
⋃
Ij, then for all y ∈ A there exists δ such that (y,y+ δ) ⊆ Ij

and F(y+ δ) − F(y) > Rδ. By Vitali, there exists J1, . . . , Jm of the form Ji = [yi,yi + δi] such that
m(
⋃
Ji) > m(A) − ε > m(E) − 2ε. For each Ji, we have F(yi + δi) − F(yi) > Rδi, so adding, we

get that
m∑
i=1

F(yi + δi) − F(yi) > R
∑

δi > R(m(E) − 2ε).

Each Ji is contained in an I`, so we can sum over i to see that

R(m(E) − 2ε) <
m∑
i=1

F(yi + δi) − F(yi) 6
N∑
j=1

F(xj) − F(xj − hj) 6 r(m(E) + ε).

Because ε is arbitrary and Rm(E) 6 rm(E), we see that m(E) = 0.

We now claim that F ′ is measurable. In addition, F ′ is integrable and∫b
a
F ′(x)dx 6 F(b) − F(a).
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To see this, note that F ′ is an almost everywhere limit of measurable functions. By Fatou, we see
that ∫b

a
F ′(x) 6 lim inf

n→∞
∫b
a
n[F(x+ 1/n) − F(x)]dx

= n

∫b+1/n

a+1/n
F(y)dy−n

∫b
a
F(x)dx

= n

∫b+1/n

b
F(y)dy−n

∫a+1/n

a
F(y)dy .

Because F is continuous,

n

∫b+1/n

b
F(y) − F(b)dy 6 n · 1

n
· ε

for n large enough, so n
∫b+1/n
b F(y)dy→ F(b). The same argument holds for the integral near a.

3.4 Bounded Variation

Given [a,b], create a finite partition a = x0 < x1 < · · · < xn = b. Then set

p =
∑

[f(xi) − f(xi−1)]+ n =
∑

[f(xi) − f(xi−1)]− t = n+ p =
∑

|f(xi) − f(xi−1)|.

Then define the increasing, decreasing, and total variations of f by

IV(f) = supp DV(f) = supn TV(f) = sup t.

We say f is of Bounded Variation if TV(f) is finite.

Lemma 3.19. If f is BV, then TV(f) = IV(f) +DV(f) and f(b) − f(a) = IV(f) −DV(f).

Proof. Choose a finite partition. It is easy to see that f(b) − f(a) = p− n, so for all partitions,
n+ f(b) − f(a) = p. Then n+ f(b) − f(a) 6 IV(f), but this means DV(f) + f(b) − f(a) 6 IV(f).
Similarly, if we take the supremum over n first, we get the inequality reversed. The first part of
the lemma should be easy.

Theorem 3.20. A function f is BV if and only if it is the difference of two bounded monotone increasing
functions.

Proof. If f is BV, set g(x) = IV[a,x](f) and h(x) = DV[a,x](f). Because f is BV, g,h are monotone
increasing and bounded, and by Lemma 3.19, f(x) − f(a) = IV[a,x](f) −DV[a,x](f) = g(x) − h(x).
On the other hand, if f = g− h with g,h monotone and bounded, then TV(f) 6 TV(g) + TV(h) is
finite.

Corollary 3.21. If f is BV, then f ′ exists almost everywhere.

Now we will consider jumps. Assume f is bounded and monotone increasing. At each
point, the limits f(x+) = limx→x+ f(x) and f(x−) (defined analogously) exist. By monotonicity,
f(x+) > f(x) > f(x−). Define the jump set to be the set J = {x | f(x−) < f(x+)}. We know that J is
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countable, so enumerate it by J = {x1, x2, . . .}. For each n, define [f]n = f(xn+)− f(xn−). At each
n, we have f(xn) = f(xn−)+ θ[f]n for some 0 6 θ 6 1. Now define

jn(x) =


1 x > xn

θn x = xn

0 x < xn

and define the jump function of f by Jf(x) =
∑
n[f]njn(x).

Lemma 3.22. 1. Jf is monotone increasing;

2. f− Jf is monotone increasing and continuous;

3. Jf is differentiable almost everywhere and J ′f(x) = 0 almost everywhere.

Proof. 1. This is obvious.

2. The series defining Jf converges uniformly and JF(x) 6 F(b) − F(a), so if x /∈ J, each jn(−)
is continuous at x, so Jf is continuous at x. If x is a jump, then Jf(x) =

∑
xk<x

[f]kjk(x) +∑
xk>x

[f]kjk(x) + [f]njn(x). In particular, Jf(x−) =
∑
xk<x

[f]k, Jf(x+) =
∑
xk>x

[f]k, and
Jf(x) = Jf(x−)+ θn[f]n.

Now f(x+)− Jf(x+)− (f(x−)− Jf(x−)) = 0 at x = xn. Also, f(x) − Jf(x) = 0 provided that
f− Jf is increasing, because it is continuous. If x < y, note that

Jf(y) − Jf(x) = Jf(y) − Jf(y−)+
∑

x<xn<y

[f]n + Jf(x−)− Jf(x)

6 f(y) − f(y−)+
∑

x<xn<y

[f]n + f(x+)− f(x−)

6 f(y) − f(x),

so we see that f− Jf is increasing.

3. Note that Jf is discontinuous on a countable set. Given any ε > 0, there exists a closed F
such that J ⊆ F◦ and m(F) < ε. Then Fc is open and Jf is constant on each component of Fc.
Therefore, the set where J ′f does not exist or is nonzero has measure less than ε for all ε.

Morally, we say that J ′f(x) =
∑

[f]nH
′
n, where H is the Heaviside step function, and H ′ = δ.

We now consider the question of which continuous monotone functions satisfy the Fundamen-
tal Theorem of Calculus. We consider properties of

∫x
a f(t)dt, where f is integrable on [a,b]. We

will refer to the integral as a function F(x).

Lemma 3.23. F is continuous and of bounded variation.

Proof. Continuity is easy. Use the fact that for all ε, there exists δ such that if m(E) < δ, then∫
E |f| < ε. To show that F is BV, choose a = x0 < x1 < · · · < xn = b. Then we see that

∑
i

|F(xi) − F(xi−1)| =
∑ ∣∣∣∣∣
∫xi
xi−1

f(t)dt

∣∣∣∣∣ 6∑
∫xi
xi−1

|f(t)|dt =
∫b
a
|f(t)|dt ,

which is finite.

Lemma 3.24. If f is integrable and
∫x
a f(t)dt = 0 for all x, then f(x) = 0 almost everywhere.
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Proof. Set E = E+ ∪ E−, where E+ − {f > 0} and E− = {f < 0}. If m(E+) > 0, then there exists
closed F ⊆ E+ with m(F) > 0. Then G = Fc is relatively open. Either we have

∫b
a f(t)dt 6= 0 or

0 =
∫b
a f(t)dt =

∫
G f(t)dt+

∫
F f(t)dt. Then

∫
G f 6= 0, so write G =

⋃
(ai,bi). Therefore, at least

one of the
∫bi
ai
f(t)dt is nonzero, so either

∫ai
a f(t)dt or

∫bi
a f(t)dt is nonzero.

Theorem 3.25. If f is integrable and if F(x) = F(a) +
∫x
a f(t)dt, then F ′(x) = f(x) almost everywhere.

Proof. If f is bounded by K, then we know F is BV, so F ′ exists almost everywhere. Let fn(x) =
∆1/nF(x), so

fn(x) = n

∫x+h
x

f(t)dt 6 K.

Also, fn → F ′ almost everywhere. By bounded convergence, we then have∫c
a
F ′(x)dx =

∫c
a

lim
n→∞ fn(x)dx

= lim
n→∞

∫c
a
fn(x)dx

= lim
h→0

1
h

∫c
a
F(x+ h) − F(x)dx

= lim
h→0

[∫c+h
c

F(x)dx−
∫a+h
a

F(x)dx

]
= F(c) − F(a)

=

∫c
a
f(x)dx ,

so F ′(x) = f(x) almost everywhere.
For the general case, assume that f > 0. Then set fn(x) = min {f(x),n}. Then f− fn > 0, so

Gn(x) =
∫x
a f(x) − fn(x)dx is monotone increasing. Thus it has nonnegative derivative almost

everywhere. By the above, we know that

d
dx

∫x
a
fn(t)dt = fn(x)

almost everywhere. Therefore

F ′(x) =
d

dx
Gn(x) +

d
dx

∫x
a
fn(t)dt > fn(x)

almost everywhere. Thus
∫b
a F
′(x)dx >

∫b
a fn(x)dx, so

∫b
a f(x)dx 6 lim inf

∫b
a fn(x)dx 6∫b

a F
′(x)dx, so then ∫b

a
F ′(x)dx > F(b) − F(a).

3.5 Absolute Continuity

Definition 3.26. A function f : R → R is absolutely continuous if for all ε > 0, there exists δ > 0
such that if xi, x ′i for a finite set of non overlapping intervals and if

∑
i

∣∣x ′i − xi∣∣ < δ, then∑
i

∣∣f(x ′i) − f(xi)∣∣ < ε.
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Note that absolute continuity implies uniform continuity. From the previous lemma, then
integrability of f means that

∫x
a f is absolutely continuous.

Lemma 3.27. If f is absolutely continuous, then it is also BV.

Proof. Let f be absolutely continuous and choose ε = 1. Then given any partition x0 < x1 < · · · <
xn, choose K > 1 + b−a

δ . Add in many partition elements so that [a,b] is covered by K sets of
subinterbals each of length less than δ. Now∑

|f(yi+1) − f(yi)| 6 K
∑

∑
|yi+1−yi|<δ

|f(yi+1) − f(yi)| 6 K.

Therefore TV(f) 6 K.

As a consequence, if f is absolutely continuous, then its derivative exists almost everywhere.

Lemma 3.28. If f is absolutely continuous on [a,b] and if f ′ = 0 almost everywhere, then f is constant.

Proof. Fix t ∈ (a,b) and set E = (a, t) ∩ {f ′ = 0}, so m(E) = t− a. Let two parameters be given:
ξ an upper bound for f ′ on E and ε a bound for m((a, t) \ E). Use absolute continuity on
m((a, t) \ E): Choose δ according to the definition of f depending on ε.

If x ∈ E, then f ′(x) = 0. Thus there exists h such that [x, x+h] ⊆ [a, t] and |f(x+ h) − f(x)| < ξh,
so E ⊆

⋃
x∈E[x, x+ h]. Now use Vitali’s covering lemma, so there exists a finite non-overlapping

set of interals and B such that m(B) < δ and

E ⊆
n⋃
k=1

[xk,yk]∪B.

Order the xk,yk and set y0 = a, xn+1 = t. Now we have

|f(t) − f(a)| 6
n∑
i=1

|f(yi) − f(xi)|+ |f(x1) − f(a)|+

n∑
i=1

|f(xi+1) − f(yi)|+ |f(t) − f(yn)|

6
n∑
i=1

|f(xi + hi) − f(xi)|+ ε

6
∑
i

ξhi + ε

6 (b− a)ξ+ ε.

Theorem 3.29 (Fundamental Theorem of Calculus, Part 2). A function F has integrable f such that

F(x) = F(a) +

∫x
a
f(t)dt

if and only if F is absolutely continuous.

Proof. Suppose that F is absolutely continuous. Then F is BV, so F(x) = F1(x) − F2(x) for monotone
increasing F1, F2. Therefore F ′ = F ′1 + F

′
2 exists almost everywhere and F ′1 · F

′
2 = 0. Therefore∫ ∣∣F ′(x)∣∣ = ∫ F ′1(x) + F ′2(x) = F1(b) + F2(b) − F1(a) − F2(a).

Set G(x) =
∫x
a F
′(t)dt and h(x) = F(x) −G(x). Then h is also absolutely continuous and G ′(x) =

F ′(x) almost everywhere from the definition of G, so h ′ = 0 almost everywhere. Thus h is constant
and must be equal to F(a).
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We will now characterize functions of bounded variation.

1. If F is BV, then F = IV(F) −DV(F).

2. F has a jump part JF =
∑
k[F]kjk(x), where [F]k = F(xk+)− F(xk−).

3. Fc = F− JF is continuous and the difference of two monotone continuous functions. Thus
F ′c exists almost everywhere. If we set

Fac(x) =

∫c
a
F ′c(t)dt ,

then Fac is absolutely continuous. Then the function Fsc = Fc − Fac is monotone increasing,
but F ′sc = 0 almost everywhere, so it does not satisfy FTC (behaves like the Cantor function).

In conclusion, we can write F = JF + Fac + Fsc.
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General Measures

Let X be a set and Σ be a σ-algebra of X. Then M is a measure on (X,Σ) if M is a nonnegatie
σ-additive function on Σ.

Examples 4.1. 1. The Lebesgue measure as defined previously;

2. The counting measure;

3. The discrete measure on Σ = P(X) where each element is assigned a weight;

4. Let X be an uncountable set, set Σ to be the countable or cocountable sets, and then let
µ(E) = 0 when E is countable and µ(E) = 1 otherwise.

Lemma 4.2. The following properties hold for all measures:

1. Monotonicity;

2. Countable subadditivity;

3. If Ei ∈ Σ and µ(Ei) <∞, then µ(
⋂
Ei) = limµ(En) if the Ei are nested.

Proof. 1. Observe that B = A∪ (B \A) and then use additivity and nonnegativity.

2. Let Fi = En \ (
⋃
i<n Ei). Then µ(

⋃
Ek) =

∑
µ(Fk) 6

∑
µ(Ek).

3. Note that E1 = E∪
⋃∞
k=1 Ek \ Ek+1, so

µ(E1) = µ(E) +

∞∑
k=1

µ(Ek \ Ek+1)

= µ(E) +

∞∑
k=1

µ(Ek) − µ(Ek+1)

= µ(E) + µ(E1) − lim
n→∞µ(En+1).

We say that µ is finite if µ(X) < ∞ and that µ is σ-finite if X is a countable union of sets of
finite measure.

Example 4.3. 1. The Lebesgue measure is σ-finite (just take [a,a+ 1] for a ∈ Z).

2. The counting measure is finite if and only if S is finite.
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3. Then discrete measure if finite if and only if countably many points have positive weights
and the sum of the weights is finite. It is σ-finite if and only if only countably many points
have positive weight and each weight is finite.

4. This is a finite measure. In fact, any measure such that µ(X) = 1 is a probability measure.

4.1 Outer Measures

An outer measure is a countable subadditive function defined on P(X) such that m∗(∅) = 0. Our
main question is to extract a measure from an outer measure when we have no recourse to open
sets, unlike in the Lebesgue case.

Definition 4.4. E is (Caratheodory)-measurable if for all A ⊆ X, µ∗(A) = µ∗(E∩A) + µ∗(Ec ∩A).

Note that

1. This condition is equivalent to µ∗(A) > µ∗(A∩ E) + µ∗(A∩ Ec);

2. The condition holds for the emptyset;

3. E is measurable if and only if Ec is.

This tells us that Σc = {E | E is measurable} is a σ-algebra and that µ∗ is a measure on Σc.
To prove the last claim, we need to show countable additivity. First, we will do it for finite

unions:

m∗(A) > m∗(A∩ E1) +m∗(A∩ Ec1 )
> m∗(A∩ E1 ∩ E2) +m∗(A∩ E1 ∩ Ec2 ) +m∗(A∩ Ec1 ∩ E2) +m∗(A∩ Ec1 ∩ E

c
2 )

> m∗(A∩ E1 ∩ E2 ∪A∩ E1 ∩ Ec2 ∪A∩ Ec1 ∩ E2) +m∗(A∩ Ec1 ∩ E
c
2 ).

Also, additivity on disjoint sets is easy. Now we will consider countable disjoint unions. Set
Fn =

⋃n
j=1 Ej and F =

⋃∞
i=1 Ej. Then

m∗(Fn ∩A) = m∗(En ∩ (Fn ∩A)) +m∗(Ecn ∩ (Fn ∩A)) = m∗(En ∩A) +m∗(En−1 ∩A).

Therefore, m∗(Fn ∩A) =
∑n
j=1m∗(Ej ∩A), so m∗(A) >

∑n
j=1m∗(Ej ∩A) +m∗(Fcn ∩A), so if we

allow n→∞, then

m∗(A) =
∞∑
i=1

m∗(Ej ∩A) +m∗(Fc ∩A)

> m∗
(⋃

Ej ∩A
)
+m∗(F

c ∩A)

= m∗(F∩A) +m∗(Fc ∩A).

Now let X be a metric space. As before, the Borel sets are the smallest σ-algebra containing all
open balls. An outer measure is a metric outer measure if it has the separation property.

Theorem 4.5. If m∗ is a metric outer measure, then the Borel sets are measurable and m∗|BX is a measure.

Proof. We show that closed sets are measurable. Assume F is closed and m∗(A) <∞. Then set

An =

{
x ∈ Fc ∩A | d(x, F) >

1
n

}
.
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Then clearly the An are increasing. We will show that limm∗(An) = m∗(Fc ∩A).
Set Bn = An+1 ∩Acn. Then d(Bn+1,An) > 1

n − 1
n+1 . Then we see that

m∗(An ∪Bn+1) = m∗(An) +m∗(Bn+1) 6 m∗(An+2).

Then we see thatm∗(A) >
∑

oddm∗(Bn) andm∗(A) >
∑

evenm∗(Bn), so in particular,
∑
nm∗(Bn) 6

2m∗(A). Then we obtain

m∗(An) 6 m∗(F
c ∩A) 6 m∗

An ∪ ⋃
k>n

Bk

 6 m∗(An) +
∑
k>n

m∗(Bn).

Because the sum is finite, we have the desired result.

Theorem 4.6. Let µ be a Borel measure that is finite on compact sets. Then for every E ∈ B and ε > 0,
there exists an open G ⊇ E and closed F ⊆ E such that µ(G \ E) < ε and µ(E \ F) < ε.

Proof. Let b be a collection of sets satisfying both properties. We show this is a σ-algebra containing
B. Clearly, it is closed under complements. Thus suppose Ek ∈ b for each k. First, there exist
Gk ⊇ Ek open such that µ(Gk \ Ek) < ε

2k , so their union is open and µ(G \ E) < ε.
Similarly, there exists Fk ⊆ Ek suchthat µ(Ek \ Fk) <

ε
2k , but the union F∗ =

⋃
Fk is not

closed. We prove that there exists a closed F ⊆ F∗ such that µ(F∗ \ F) < ε. Assume that Fk are
increasing, so choose x0 and set Bn. Then let An = Bn \Bn−1, so write F∗ =

⋃
n(F
∗ ∩An), where

F∗ ∩An = limk Fk ∩An =
⋃
k(Fk ∩An).

For each n, there exists k(n) such that µ(F∗ \ Fk(n) ∩An) < ε
2n with µ(Bn) <∞. Then we see

that F =
⋃
n>1(Fk(n) ∩An), so µ(F∗ \ F) < ε and each F∩Bk is closed, so F is closed.

Finally, we show that open G ∈ b. Set Fk =
{
x ∈ Bk | d(x,Gc) > 1

k

}
. Then we use the

argument above.

4.2 Results and Applications

Definition 4.7. A premeasure is a measure-like function on an algebra A (closed under complement
and finite union).

We see that a premeasure defines an outer measure. Define f to be measurable if the preimage
of any open set is a Borel set and define f to be simple if

f =
∑

anχEn

for En measurable. Then given a measure µ, definee∫
fdµ = sup

ψ6f simple

∫
ψdµ ,

where
∫
ψdµ =

∑
anµ(En).

Theorem 4.8. µ∗|ΣA is a measure where ΣA is the smallest σ-algebra containing A.

We have the following results, in analogy with the Lebesgue case.

Theorem 4.9 (Egorov). Let fk be defined on E with µ(E) <∞. Then for all ε > 0, there exists Aε ⊆ E
with µ(E \Aε) < ε and such that fk → f uniformly on Aε.
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Lemma 4.10 (Fatou). If f is nonnegative, then
∫

lim inf fn dµ 6 lim inf
∫
fn dµ.

As before, if f = f+ − f− with both f+, f− > 0, then
∫
fdµ is defined provided that not both∫

f+ dµ and
∫
f− dµ are infinite. Then f is

1. Integrable if
∫
X |f|dµ <∞. We say f ∈ L1(X,µ);

2. Square-integrable if
∫
X f

2 dµ <∞. We say that f ∈ L2(X,µ).

Theorem 4.11 (Monotone Convergence). If fn > 0 and fn ↗ f almost everywhere, then
∫
fdµ =

lim
∫
fn dµ.

Theorem 4.12 (Dominated Convergence). If fn → f almost everywhere and |fn| 6 g for some integrable
g, then

∫
X |fn − f|dµ→ 0.

Example 4.13. Consider the Stieltjes integral. Recall that the Riemann integral is
∫
fdx, and

the Stieltjes integral is
∫
fdg for some monotone g. Finally, the Lebesgue integral is the correct

definition of integration.

To construct a measure associated to a monotone function F, first normalize by changing F at
the jumps to ensure right continuity.

Theorem 4.14. Given a monotone, right-continuous F, there exists a unique Borel measure µF such that
µF([a,b]) = F(b) − F(a) for all a < b. Moreover, if µ is a Borel measure that is finite on compact sets,
there exists a unique F (up to constants) such that µ = µF.

Proof. The first part is straightforward, but painful (Robin’s words), so it is not given here. On the
other hand, if µ is a given Borel measure and is finite on compact sets, how do we define F? We
want µ((a,b]) = F(b) − F(a). If x > 0, then we must have µ((0, x]) = F(x) and similarly for x < 0.
It is easy to see that this function is monotone, so we show right continuity:

F(0+) = lim
ε→0

F(ε)

= lim
ε→0

µ(0, ε]

= µ

(
lim
ε→0

(0, ε]
)

= µ(∅)
= 0.

4.3 Signed Measures

Note that we can add measures and multiply them by nonnegative constants. How can we obtain
full linearity?

Definition 4.15. A function ν on a σ-algebra Σ is a signed measure if

1. ν(∅) = 0;

2. ν does not take on both ±∞;

3. ν is additive on disjoint sets. In particular, if ν(E) is finite and E =
⋃
Ej, then

∑
ν(Ej)

converges absolutely.
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We say that A ⊆ X is positive with respect to ν if A ∈ Σ and for each E ⊆ A with E ∈ Σ, we have
ν(E) > 0. Define similar for negativity. Then a set N is null if it is both positive and negative.
However, having measure 0 does not imply that a set is null.

Lemma 4.16. Subsets and countable unions of positive sets are positive.

Proof. Subsets of positive sets are positive by definition. For the second part, if E ⊆
⋃
An, set

En = E∩An ∩Acn−1 ∩ · · · ∩A
c
1 . Then ν(En) > 0 and ν(E) =

∑
ν(En) > 0.

Lemma 4.17. If E satisfies 0 < ν(E) <∞, then there exists a positive A ⊆ E with ν(A) > 0.

Proof. If E is positive, we are done. Otherwise, let n1 be the smallest integer such that there
exists E1 ⊆ E with ν(E1) < − 1

n . Inductively, choose nk to be the smalles integer such that there

exists Ek ⊆ E \
(⋃

j<k Ej

)
with ν(Ek) < − 1

nk
. This process may or may not terminate, so set

A = E \
⋃
Ek. Then clearly A has positive measure because ν(A) = ν(E) −

∑
ν(Ek) > 0 and∑

ν(Ek) converges absolutely. Therefore
∑ 1
nk
< −
∑
ν(Ek) is finite, so either the process stops

or nk →∞, so ν(A) <∞.
To show that A is positive, it is clear if the process stops. Otherwise, for all ε > 0, there exists k

such that 1
nk−1<ε . Then A ⊆ E \

⋃nk
j=1 Ej, so A contains no subset with measure less than −ε.

Theorem 4.18 (Hahn Decomposition Theorem). Given a signed measure ν, there exists A positive and
B negative such that X = A∪B and A∩B = ∅.

Proof. Assume that ν does not take the value ∞. Define λ = supA positive ν(A). Note that λ > 0.
Then choose Ai positive such that λ = limν(Ai) and set A =

⋃
Ai is positive and that λ > ν(A).

Also, A \Ai ⊆ A, so each ν(A \Ai) > 0. Thus ν(A) > ν(Ai) for all i, so ν(A) = λ. Set B = Ac.
We will show that B is negative. To see this, if E ⊆ B with ν(E) > 0, then A∪ E is positive with
measure strictly greater than λ.

Note that this A,B are not unique. Then define the positive and negative parts of ν by ν+(E) =
ν(E∩A) and ν−(E) = −ν(E∩B). These are both measures. Then we see that ν = ν+ − ν−. This
decomposition is unique. Also, define the total variation of ν as |ν| = ν+ + ν−.

Note that |ν| is defined because ν+,ν− cannot both be infinite. If |ν| < ∞, we say that
ν is finite. If two measures µ1,µ2 have sets A1,A2 such that A1 ∩ A2 = ∅,A1 ∪ A2 = X and
µ1(A2) = µ2(A1) = 0, then we call them mutually singular and write µ1 ⊥ µ2.

Example 4.19. The discrete measure is mutually singular with the Lebesgue measure. The Cantor
measure is also mutually singular with the Lebesgue measure.

The opposite notion is absolute continuity of measures.

Definition 4.20. We say that ν is absolutely continuous with respect to µ, written ν� µ, if for all E
with µ(E) = 0, ν(E) = 0.

Example 4.21. If E is measurable and f is integrable, then νf(E) =
∫
E fdµ is absolutely continuous

with respect to µ.

Theorem 4.22 (Radon-Nikodym). Let (X,B,µ) be a measure space with Borel sets and suppose µ is σ-
finite and ν� µ. Then there exists a nonnegative µ-measurable f such that for all E ∈ B, ν(E) =

∫
E fdµ.

Here, f is called the Radon-Nikodym derivative of ν, sometimes written f =
[

dν
dµ

]
.

Before we prove this result (following Royden), we need two lemmas:
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Lemma 4.23. If Bα is a collection of Borel sets ordered by some countable α ∈ D satisfying Bα ⊆ Bβ for
α < β, then there exists a measure f such that f 6 α on Bα and f > α on Bcα.

Proof. Given x ∈ X, set f(x) = inf {α | x ∈ Bα}. Then if x ∈ Bα, f(x) 6 α. Then if x /∈ Bα, f(x) > α
because x /∈ Bβ for β < α. To show that f is measurable, note that

{x | f(x) < α} =
⋃
β<α

Bβ,

which is measurable.

Lemma 4.24. Let α ∈ D countable and Bα ∈ B such that if α < β, then µ(Bα \Bβ) = 0. Then the same
conclusion as in Lemma 4.23 holds.

Proof. Let C =
⋃
α<β Bα \Bβ. Set B ′α = Bα ∪C. Note that C has measure 0. Then apply Lemma

4.23 to the B ′α.

Proof of Radon-Nikodym. Assume µ is finite. For all rational α, consider the signed measure ν−αµ.
By the Hahn decomposition theorem, there exist Aα,Bα = Acα with ν − αµ > 0 on Aα and
ν−αµ 6 0 on Bα. Then set A0 = X,B0 = ∅ and note that Bα \ Bβ = Bα ∩Aβ, so ν−αµ 6 0 on
Bα and ν− βµ > 0 on Aβ. Therefore, if β > α, then µ(Bα) \ Bβ = 0, so by Lemma 4.24, there
exists f such that f > α on Aα and f 6 α on Bα. Because B0 = ∅, f > 0.

We now show that
∫
E fdµ = ν(E). Fix n and set

Ek = E∩
(
Bk+1

n
\B k

n

)
,Eα = E \

⋃
k

B k
n

.

Then E is the disjoint union E =
⊔∞
k=0 Ek ∪ E∞, so

ν(E) =
∑

ν(Ek) + ν(E∞).
Now Ek ⊆ Bk+1

n
∩A k

n
, so k

n 6 f 6 k+1
n on Ek, so

k

n
µ(Ek) 6

∫
Ek

fdµ 6
k+ 1
n

µ(Ek).

By definition of B,A, we know that knµ(Ej) 6 ν(Ek) 6
k+1
n µ(Ek), so

ν(Ek) −
1
n
µ(Ek) 6

∫
Ek

fdµ 6
1
n
µ(Ek).

Then add and take n→∞.
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