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Overview

The goal of the minimal model program is to classify smooth projective complex varieties X ⊆ Pn.
Let TX be the tangent byndle and ΩX be the cotangent bundle. Then ωX = ΩnX is called the
canonical bundle, and can be written as OX(KX) for some Cartier divisor KX.

Question 1.0.1. Can we understand the geometry of X using numerical properties of KX?

For a curve C ⊆ X and a line bundle L on X, then L.C = degC(i
∗L). Then KX is ample (resp.

antiample) if KX.C > 0 (resp < 0) for all curves C ⊆ X. Similarly, KX is numerically trivial if
KX.C = 0 for all curves C ⊆ X.

Definition 1.0.2. We say that X is Fano if KX is antiample, Calabi-Yau if KX is numerically trivial,
and canonically polarized if KX is ample.

Example 1.0.3. If C is a Fano curve, then C ' P1. If C is a CY curve, then C is an elliptic curve. If
C is a canonically polarized curve, then g(C) > 2.

Example 1.0.4. Let X ⊆ Pn be a smooth hypersurface of degree d. Then by the adjunction formula,
we have KX ' (KPn +X)

∣∣
X
' (d−n− 1)H

∣∣. Therefore, X is Fano if d 6 N, CY if d = n+ 1, and
canonically polarized if d > n+ 2.

Remark 1.0.5. If E is an elliptic curve, then E×P1 has KX.C = 0 for some curves and KX.C < 0 for
others.

Now we consider various properties of different varieties:

Table 1.1: Properties of varieties of different classes

Fano CY Canonically polarized

π1 trivial ? generally infinite
Automorphisms linear algebraic groups ? finite groups

Birational automorphisms monstrous ? finite groups
Geometry simple geometry ? complicated, rich

Arithmetic a lot of Q-points ? Q-points in a proper closed

We have said nothing about Calabi-Yaus, but of course by the Beauville-Bogomolov decompo-
sition, we can reduce to pure Calabi-Yaus (hi,0 = 0 for 0 < i < dimX), hyperkählers, and abelian
varieties up to taking a finite cover.
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Now let x be a closed point on X. Then there is a variety Blx X→ X that is an isomorphism
away from x where the fiber above x is an exceptional divisor E parameterizing tangent directions
at x.

Example 1.0.6. Consider points p1, . . . ,pn, . . . ∈ P2. Then if we blow up these points in a sequence,
we obtain a sequence of varieties X1, . . . ,X2, . . . ,Xn, . . . Over P2 \ {p1, . . . ,pi−1}, the morphism
Xi → P2 is an isomorphism. For i 6= j, clearly Xi is not isomorphic to Xj (they have different
Picard ranks), but they are birational. We say that X1 ∼bir X2 if they have isomorphic dense open
subsets.

Now we can state the goal of the Minimal Model Program. If X is projective and has “mild
singularities” the goal is to prove that there exists a birational map π : X 99K X ′ and a fibration
(ϕ∗OX ′ = OZ and positive dimensional general fiber) X ′ ϕ−→ Z such that one of the following
holds:

1. F is Fano;

2. F is Calabi-Yau;

3. Z = Spec C and X ′ is canonically polarized.

The way we will construct this birational morphism is by studying the geometry of curves on X
which intersect KX negatively. If KX.C < 0 under some hypotheses (extremity on NE(X)), we can
find ϕC : X→ X1 contracting precisely the curves which are numerically equivalent to a positive
multiple of C.

1. If the curves numerically equivalent to a positive multiple of C cover X, then ϕC has positive-
dimensional fibers, is a contraction, and the general fiber F is Fano. This is called a Mori fiber
space.

2. If the curves numerically equivalent to a positive multiple of C cover a divisor on X, then
we say that ϕC : X → X1 is a divisorial contraction and thus ρ(X1) = ρ(X) − 1. X1 still has
nice singularities, so we can iterate this process.

3. The last case is called a small contraction. The curves which are numerically equivalent to a
positive multiple of C cover a set of codimension at least 2. In this case, X1 may have very
bad singularities (by this, we mean that KX1 is not Q-Cartier). We construct a new birational
morphism ϕ+

C : X+ → X1 which contracts KX+-positive curves.

Another type of surgery is a flip, which changes a locus of codimension at least 2. For example,
consider D = p∗1O(1)⊗ p

∗
2O(r) on P1 ×P1. Then write

X = Spec

⊕
m>0

H0(P1 ×P1,OP1×P1(mD))

.

Then X is (locally) a cone over P1 ×P1, so KX is not Q-Cartier. Therefore, we can blow up the
vertex, and the exceptional divisor is E ' P1 ×P1. Now the P1 ×P1 can be collapsed onto each
of the two factors, so we obtain a birational map π : X1 99K X

+
1 . Here, if C,C+ are the resulting

curves, we have KX1 .C < 0 and KX+
1

.C+ > 0.
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Figure 1.1: A Flip

This gives us the question:

Question 1.0.7. Do flips always exist?

Now either the algorithm given by iterating this process always terminates or it continues
infinitely. We are fine once we reach the Mori fiber space case, and there are only ρ(X) − 1
divisorial contractions, so the only possible problem is that there is an infinite sequence of flips.

Conjecture 1.0.8 (Termination of flips). This algorithm always terminates after finitely many flips with
either a Mori fiber space Xn → Z or a variety Xn such that KXn .C > 0 for every curve C (in other words,
KXn is nef).

Conjecture 1.0.9 (Abundance). X has mild singularities and KX is nef. Then |mKX| is basepoint-free for
some m� 0.

If this is true, and X ϕ−→ X1 contracts all KX-trivial curves, then either

1. The general fiber has positive dimension. In this case, KF ≡ 0.

2. dimX = dimX1. Then X→ X1 is birational and X1 is canonically polarized.

Therefore, the goal of the MMP is achieved if we can solve the conjectures of existence of flips,
termination of flips, and abundance. Existence of flips was proved by Birkar, Cascini, Hacon,
and McKernan in 2006 and termination is known in dimension at most 3 and in some cases in
dimension 4. Finally, abundance is known in dimension at most 3.
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MMP in Dimension 3

2.1 Rational Curves

Proposition 2.1.1 (Bend and Break). Let X be proper and C be a smooth proper curve. Let p ∈ C and
g0 : C→ X be nonconstant. Next, let 0 ∈ D be a pointed curve and G : C×D→ X such that

1. G
∣∣
C×{0} = g0.

2. G({p}×D) = g0(p).

3. G
∣∣
C×{t} is different from g0 for general t.

All of these imply that this is a nontrivial deformation of g0 fixing p. Then there exists g1 : C → X and
Z =
∑
aiZi a union of rational curves such that (g0)∗C is algebraically equivalent to (g1)∗(C) +Z and

g0(p) ∈
⋃
i Zi. In particular, there exists a rational curve through g0(p).

Proof. First, compactify D and let G : C×D 99K X be the rational map. This map is undefined at
{p}×D by the rigidity lemma, so let S be the normalization of the graph of G. So we have a map
π : S→ C×D and write GS : S→.

Then we define h : S → C ×D → D. Then there exist d ∈ C ×D such that π is not an
isomorphism over d. Then we know that h−1(d) = C ′ + E where C ′ is a birational transform of C
and E is π-exceptional. Then we set g1 : C→ X to be the restriction of GS to C ′ and Z = GS(E).

By a lemma of Abhyankar, we know that E is a union of rational curves, and then by the
Lüroth theorem, we know that Z is a union of rational curves and

(g0)∗C ∼alg (g1)∗C+Z.

Lemma 2.1.2 (Abhyankar). Let X have mild singularities and Y π−→ X be a proper birational morphism.
For any x ∈ X, either π−1(x) is a point or is covered by rational curves.

Here is an intuitive image of the bend-and-break process:
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Figure 2.1: Bend and Break

Proposition 2.1.3 (Bend and Break II). Let X be a projective variety and g0 : P1 → X be a nonconstant
morphism. Let D be a smooth pointed curve and G : P1 ×D→ X such that

1. G
∣∣
P1×{0D}

= g0;

2. G({0}×D) = g0(0),G({∞}×D) = g0(∞);

3. G(P1 ×D) is a surface.

Then (g0)∗P
1 is algebraically equivalent either to a reducible curve or a multiple curve.

Proof. Let S be a P1-bundle containing P1 ×D and consider the rational map G̃ : S 99K X. Then
we can resolve the basepoints to obtain G̃ : S̃→ S and induct on ρ(S̃/S) =: ρ.

Case 1: ρ = 0: Consider the sections C0,C∞ at 0 and∞. Then let H is ample on X and then we see

that (G̃∗H)
2
> 0 and (C0 · G̃∗H) = (C∞ · G̃∗H) = 0 by the projection formula. By the Hodge

index theorem, we see that C2
0 < 0,C2∞ < 0 (because G̃∗H,C0,C∞ are linearly independent).

But then we know that ρ(S) = 2, which is a contradiction.

Inductive step: Consider the diagram

S̃ X

S ′

S

D.

G̃

r ′

r̃

r

G
′

q

G

Then r is the first blowup in S̃ → S 3 P and y ∈ D will be a point such that P ∈ q−1(y).
Let F1 be the exceptional divisor of r and F2 be the strict transform of q−1(y) in S ′. Then
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F1, F2 intersect at a point Q. But then G ′ is a morphism around F2. But then (g0)∗P
1 ∼

G̃∗((q ◦ r)∗(y)), which is reduced and irreducible. If G is not defined at Q 6= P, then

G̃∗((q ◦ r)∗(y)) = G̃∗red(̃r−1(p)) + G̃∗red(̃r−1(Q)) + (effective),

which is a contradiction and thus G is defined at Q 6= P. Then if G ′ is not defined at Q0,
then after blowing up Q0, we see that (q ◦ r)∗(y) must contain a component of multiplicity
at least 2. Now contracting F2, we have the desired result by induction on ρ.

This tells us that to produce rational curves, we simply need to deform them with enough
fixed points and use bend and break. But now we need to actually find rational curves.

Theorem 2.1.4. Let X be smooth and projective and −KX be ample. For every x ∈ X, there exists a rational
curve C through x such that

0 < −KX.C 6 dimX+ 1.

Proof. Choose some curve C ⊆ X through x. Then the space of deformations of C on X fixing x
has dimension at least

h0(C, f∗TX) − h1(C, f∗TX) − dimX = −f∗C.KX − g(C)dimX.

We have several cases:

1. If g(C) = 0, then we are done.

2. If g(C) = 1, then we can replace f with the composition by an endomorphism of large degree
n, then we see that

−((f ◦ h)∗C ·KX) − dimX = −n2f∗C.KX − dimX > 0

whenever n is sufficiently large

3. Assume g(C) > 2. Then there are no endomorphisms of high degree, so assume X,C are
defined over Z. Then let Xp,Cp be the reduction to Fp. Now we apply the Frobenius map

Fp, which has degree p. By generic flatness, we know that (fp)∗Cp.KXp ,g(Cp),χ
(
TX
∣∣
Cp

)
are the same for almost all p, so by the same argument as in the genus 1 case, we see have a
rational curve Ap on Xp for almost all p. By bend and break II, we can find a rational curve
of the desired degree.

Then we use the fact that if a statement holds for all p large enough, then it holds for the
complex numbers, and we obtain a curve. This is analogous to the idea that if Z ⊆ PnZ, then
if the image of π : Z→ Spec Z contains a Zariski-dense subset, then it contains the generic
point.

Theorem 2.1.5. Let X be a smooth projective variety and let H be ample on X. Assume there exists C ′ ⊆ X
such that −(C ′.KX) > 0. Then there exists a rational curve E such that dimX+ 1 > −(E.KX) > 0 and

−(E.KX)
E.H

>
−C ′.KX
C ′.H

.

Theorem 2.1.6 (Cone Theorem). Let X be smooth and projective. Then there exist countably many curves
Cr ⊆ X such that 0 < −KX.Ci 6 dimX+ 1 and

NE(X) − NE(X)KX>0 +
∑
i

R>0[Ci].
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Proof. Choose Ci with 0 < −(C.KX) 6 dimX+ 1 and let W be the closure of NEK>0 +
∑
iR>0[Ci].

Now choose D positive on W \ {0} and negative somewhere on NE(X). Let H be ample and

µ = max
{
µ ′ | H+ µ ′D is nef

}
.

This means that H+ µD is nef. Then let Z ∈ NE(X) with (H+ µD).Z = 0 and KX.D < 0. Let Zk
be a sequence of curves approximating Z. Then we see that

max
j

−(Zkj .KX)
(Zkj .(H+ µ ′D))

>
−Zk.KX

Zk.(H+ µD)

is obtained by Zk0 . Now we will replace Zk with rational curves Ei(k) such that dimX+ 1 >
−Ei(k).KX > 0 and

−Ei(k).KX
Ei(k).(H+ µ ′D)

>
−Zk0 .KX

Zk0 .(H+ µ ′D)
>

−Zk.KX
Zk.(H+ µ ′D)

.

Because Ei(k).D > 0, we have

−Ei(k).KX
Ei(k).H

>
−Zk.KX

Zk.(H+ µ ′D)
.

Fixing M� 0 such that MH+KX is ample, then we see that (MH+KX).Ei(k) > 0, so

M >
−Ei(k).KX
Ei(k).H

>
−Zk.KX

Zk.(H+ µ ′D)
.

Taking k→∞,µ ′ → µ, we see that

M >
Z.KX

Z.(H+ µD)
−→∞,

a contradiction.

Example 2.1.7. Suppose KX is not nef. Then there are no rational curves on X. For example, there
are no rational curves of an abelian variety.

2.2 Singularities of the MMP

Consider pairs (X,∆) such that X is normal quasiprojective and KX +∆ is Q-Cartier. These are
called log pairs.

Definition 2.2.1. Let π : Y → X is a resolution of singularities, E ⊆ Y is exceptional, and π∗(KX +
D) +

∑
Ei has simple normal crossings. Define the log discrepancy

aE(X,D) := 1 + coeffE(KY − π∗(KX +D)).

Definition 2.2.2. We say that (X,∆) is

1. terminal if aE(X,∆) > 1 for every exceptional E over Y.

2. canonical if aE(X,∆) > 1 for every exceptional E over Y.
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3. Kawamata log terminal if aE(X,∆) > 0 for every E.

4. log canonical if aE(X,∆) > 0 for every E.

Now if X is smooth projective and KX is pseudoeffective, then there exists X 99K Xter such that
KXter is nef. By abundance, KXter is semiample. Then there is a morphism Xter → Xcan such that
KXcan is ample. Then terminal singularities are those that may appear in the terminal model, and
canonical singularities are those that may appear on the canonical model.

Recall the adjunction formula: If (X,D) is log smooth, then KX + D
∣∣
D

∼ KX. Usually, (X,D) is
log canonical but not klt. But then aD(X,D) = 0 but aE(X,D) > 0 for every E 6= D. Terminal
singularities are the smallest category of singularities that we need to understand to run the
minimal model program. On the other hand, log canonical is the largest class of singularities in
which we can expect the MMP to work.

Example 2.2.3 (Examples of klt singularities). Both cone singularities and quotient singularities
are klt.

Proposition 2.2.4 (Cones). Let (X,∆) be a log pair and A an ample Cartier divisor on X. Then define

C(X,∆) = Spec(
⊕
m>0

H0(X,OX(mA))).

Then C(X,A) is

1. terminal if and only if rA ∼Q KX +∆ with r < −1 and (X,∆) terminal;

2. canonical if and only if ra ∼Q kx + δ with r 6 −1 and (X,∆) canonical;

3. klt if and only if ra ∼Q kx + δ with r < 0 and (X,∆) is klt;

4. log canonical if and only if ra ∼Q kx + δ with r 6 0 and (X,∆) is log canonical.

In particular, the cone over a Fano is klt, the cone over a Calaby-Yau is log canonical, and cones over
canonically polarized varieties are terrible.

Example 2.2.5. Consider the cone Cn over a rational normal curve of degree n. Then resolving
Yn → Cn, we see that the exceptional En ' P1 and

π∗(KCn) = KYn +

(
1 −

2
n

)
En,

and therefore aEn(Cn) =
2
n .

Consider E ⊆ P3 and elliptic curve. Then π∗(KCE) = KYE + E, so aE(CE) = 0.

Now consider G ⊆ GLn a finite group. Then Cn/G = Spec C[x1, . . . , xn]G has klt singularities.

Example 2.2.6. In dimension 2, we have

1. terminal is equivalent to smooth;

2. canonical is equivalent to ADE;

3. klt is equivalent to quotient singularity;

4. log canonical is “equivalent” to quotient and/or elliptic cone.
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Example 2.2.7. In dimension 3, terminal singularities are classified as quotients of hypersurface
singularities, also known as hyperquotient singularities. Then are given by actions of finite groups
G acting on hypersurface singularities of the form

{
x2 + y2 + f(z,w) = 0

}
. Even for canonical

singularities, we have no idea what they look like.

Example 2.2.8. In dimension 4, there are examples of 4-fold terminal singularities with analytic
embedding dimension n for every n (Kollar, 2010). By contrast, terminal singularities in dimension
3 all have analytic embedding dimension 4.

Theorem 2.2.9 (Prokhorov, Xu, 2019). Any klt singularity deforms to a klt cone singularity. For x ∈ X,
there exists a flat morphism X

ϕ−→A1 such that ϕ(A1 \ 0) ∼ (A1 \ 0)×X and ϕ−1(0) = X0 is a klt cone
singularity. This is just a deformation to the normal cone.

We will apply the following philosophy:

Any theorem for smooth projective varieties should work with klt singularities.

Example 2.2.10. Let KX = 0. By Beauville-Bogomolov (1970s), there exists a cover X← Y, where
Y is a product of abelian varieties, irreducible Calabi-Yau varieties, and hyperkählers. There is an
analogue for klt singularities that was proved by Druel, Campana,. . . in 2020.

Example 2.2.11. Let X be smooth projective and −KX be nef. Then

X̃ ∼ Cq ×
∏

Yi ×
∏

Sk ×Z,

where Yi is strict Calabi-Yau, Sk is hyperkahler, and Z is rationally connected. There is a version
for klt singularities in progress.

We will now discuss localization of singularities. Suppose X is a variety with terminal
singularities and Z ⊆ X a subvariety of codimension 1. Then SpecOX,Z has terminal singularities
if and only if SpecOX,Z is a smooth local ring, and this is equivalent to smoothness at the generic
point of Z. In particular, if X is terminal, the singularities must appear in codimension at least 3.

2.3 Vanishing

Let C ⊆ X be a KX-negative curve. Then if KX ∼Q E > 0 for some E effective, we see that
KX.C = E.C < −, so C ⊆ E. Now if (X,D) is a log smooth pair, we have an exact sequence

0→ OX(KX)
⊗D−−→ OX(KX ×D)→ OD(KD)→ 0.

If H1(X,OX(KX)) = 0, then H0(KX +D)� H0(KD). This tells us that vanishing theorems help us
find sections of line bundles.

Theorem 2.3.1 (Kodaira Vanishing). Let X be smooth projective and L be ample. Then Hi(X,L−1) = 0
for all i < dimX.

Sketch of Proof. Let s ∈ H0(X,Lm) and D = (s = 0) be smooth. Then we have OX
s−→ Lm. Now we

have
L−i ⊗L−j ' L−i−kOX

id⊗s−−−→ L−i−j ⊗Lm = L−i−j+m.
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Setting Z = Spec
⊕m−1
i=0 L−i with projection p : Z → X, we note that if X,D are smooth,

then Z is smooth. Consider a morphism τ : Hi(Z, CZ) � Hi(Z,OZ) and its pushforward
p∗τ : Hi(X,p∗CZ)� Hi(X,p∗OZ). Now we consider the surjection

m−1⊕
r=0

Hi(X, C[ζr])�
m−1∑
r=0

Hi

(
X,
m−1⊕
r=0

L−r

)
.

Now we use the result that C[ζr] ↪→ L−r factors through C[ζr] ↪→ L−r(−kD) ↪→ L−r. By Serre,
we see that Hi(X,L−(r+mk)) = 0 for arbitrary k.

Theorem 2.3.2 (KV vanishing). Let X be a smooth projective complex and L be a line bundle on X such
that L ≡M+

∑
aiDi, whereM is a big and nef Q-divisor,

∑
Di is a snc divisor, and 0 6 ai < 1,ai ∈ Z.

Then Hi(X,L−1) = 0 for i < dimX.

Proposition 2.3.3. Let X be quasiprojective and normal, D Cartier, and m > 0 a positive integer. Suppose
Y
p−→ X is finite and D ′ Cartier such that p∗D ∼MD ′. If X is smooth and

∑
Fj is simple normal crossing,

then Y is smooth and
∑
p∗Fj has simple normal crossings.

Lemma 2.3.4. Let Y → X be finite. Then OX → f∗OY splits. If F is a coherent sheaf on X, then F is a
direct summand of f∗f∗F. Finally, Hi(X,F) is a direct summand of Hi(Y, f∗F).

Sketch of KV Vanishing. Consider
∑
aiDi and write a1 = b/m for some m > 0. Then consider

p1 : X1 → X such that p∗D1 ∼ mD. Then Hi(X,L−1) is a direct summand of Hi(X1,p∗1L
−1). Then

p∗1D1 is a section of OX(mD), so we can apply the index cover to obtain X2
p2−→ X with X2 smooth,

p∗2(Di) is smooth, and
∑
p∗2p
∗
1Di has simple normal crossings. Then

(p2)∗OX2 =

m−1∑
k=0

OX1(−jD),

so

Hi(X2,p∗2p
∗
1L

−1(bD)) =

m−1⊕
j=0

Hi(X,p∗1((b− j)D)).

Choosing j = b, we see that Hi(X1,p∗1L
−1) is a direct summand of Hi(X2,p∗2p

∗
1L

−1(bD)). There-
fore,

p∗2p
∗
1L

−1(bD) = p∗2p1 ∗M+
∑
i>1

a1p2 ∗ p1 ∗ (Di).

But now we have reduced the number of components of Di, so by induction, the cohomology of
the pullback vanishes. Now we need to consider M. We know M is big and nef, so M ∼Q A+ E,
where A is ample and E is effective. Then there exists f : Y → X projective and birational such that
f∗L = A+ E, where A is ample and E has simple normal crossings with E =

∑
aiEi, 0 6 ai < 1.

Now let H ⊆ X be an ample divisor. Then

Hi(X,L(rH)⊗ Rjf∗ωY)V Hi+j(Y,ωY ⊗ f∗L(rH)).

But then f∗L(rH) = (A+ rf∗H) + E, where A+ rf∗H is ample. But now we know that

Hk(Y, f∗L(rH)⊗ωY) = 0

for k > 0, so
H0(X,L(rH)⊗ Rjf∗ωY) = Hj(Y,ωY ⊗ f∗L(rH)) = 0
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and therefore Rjf∗ωY = 0 for j > 0. But now setting r = 0, we see that

Hi(X,L⊗ f∗ωY) ' Hi(Y, f∗L⊗ωY) = 0.

Theorem 2.3.5. Let (X,∆) be a proper klt pair with N a Q-Cartier divisor. Suppose that N = M+∆,
where M is big and nef. Then Hi(X,OX(−N)) = 0 for i < dimX. Equivalently, Hn−i(X,KX +N) = 0
for n− i > 0.

Remark 2.3.6. This philosophy fails for log canonical singularities.

2.4 Cone Theorems

Note that Kollar-Mori use outdated notation. What they call klt is actually sub-klt and what they
call klt with ∆ > 0 we call klt. This still confuses people today, so let’s blame the person with the
Fields medal.

Theorem 2.4.1 (Non-vanishing). Let X be proper with (X,∆) sub-klt1 and D be a nef Cartier divisor.
Assume aD− (KX +∆) is big and nef for some a > 0. Then for m� 0, we have

H0(X,mD− b∆c) 6= 0.

Theorem 2.4.2 (Basepoint-freeness). Let X be proper and (X,∆) be klt. Suppose D is a nef Cartier
divisor. Assume aD− (KX +∆) is big and nef for some a > 0. Then for m� 0, the linear sustem |mD|

is basepoint-free.

Theorem 2.4.3 (Rationality). Let X be proper and (X,∆) be klt. Suppose that KX + ∆ is not nef,
a(KX +∆) is Cartier, and H is a nef and big Cartier. Define

r := r(H) = max {t ∈ R | H+ t(KX +∆) is nef}.

Then r is rational and its denominator is at most a(dimX+ 1).

Theorem 2.4.4 (Cone Theorem). Let (X,∆) be a projective klt pair.

1. There are countably many Ci ⊆ X such that 0 < −(KX +∆).Ci 6 2 dimX and

NE(X) = NE(KX+∆)>0 +
∑

R>0[Ci].

2. For any H ample and ε > 0, we have

NE(X) = NE(KX+∆+εH)>0 +
∑
finite

R>0[Ci].

3. If F ⊆ NE(X) is extremal and (KX + ∆)-negative, then there exists a contraction morphism
contF : X→ Z such that C ⊆ X is mapped to a point if and only if [C] ∈ F.

4. Let contF : X→ Z be as above and L be a line bundle on X such that L.F = 0. Then there exists LZ
on Z such that L ' cont∗FLZ.

1The incorrect term was used initially
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The logical structure is this: We use non-vanishing to find sections, then use various techniques
(Kodaira vanishing) to lift enough sections to get basepoint-freeness, then we prove rationality by
studying linear systems of the form |pH+ qKX|, and finally we get the cone theorem as a formal
consequence of convex geometry. However, we will follow the order of Kollar-Mori.
Remark 2.4.5. The entire discussion will be carried out using klt singularities. However, these
results hold when (X,∆) is log canonical at the cost of replacing nef and big with ample and at
the cost of using significantly more machinery that was developed in the last 15 years.

Proof of basepoint-freeness. By non-vanishing, we know that H0(X,mD) 6= 0 for m � 0. If B(s) is
the base locus of |sD|, it suffices to prove that for Bs = B(m) 6= 0. Next, we may consider a log
resolution

f : Y → X KY = f∗(KX +∆) +
∑

ajFj aj > −1.

Now we may perturb KY such that

f∗(aD− (KX +∆)) −
∑

pjFj 0 < pj � 1,

is ample. Therefore f∗|mD| = |µ|+
∑
rjFj, so

∑
rjFj is the fixed part. Therefore Bs =

⋃{
f(Fj) | rj > 0

}
and f−1Bs|mD| = Bs|mf

∗D|.
We want to prove that there exists Fj with rj > 0 such that for all b� 0, Fj is not contained in

Bs|bf
∗D|. Let b > 0 be an integer, c > 0 be rational, and b > cm+ a. Then we define

N(b, c) = bf∗D−KY +
∑
j

(−crj + aj − pj)Fj

= (b− cm− a)f∗D+ c(mf∗D−
∑

rjFj) + f
∗(aD− (KX +∆)) −

∑
pjFj.

But now we see that the first term is is nef, the second term is basepoint-free, and the final two
terms form an ample divisor. Therefore N(b, c)is ample. By Kodaira vanishing, we see that
H1(Y, dN(b, c)e+KY) = 0 and dN(b, c)e = bf∗D+

∑
d−crj + aj − pjeFj −KY . Now∑

d−crj + aj − pjeFj = dAe− F,

where A > 0 is effective and F = F ′k is prime. Therefore

KY + dN(b, c)e = bf∗D+ dAe− F

and we have the exact sequence

0→ OY(bf
∗D+ dAe− F) ×F−−→ OY(bf

∗D+ dAe)→ OF(bf
∗D+ dAe)→ 0.

Therefore we have a surjection H0(Y,bf∗D+ dAe)� H0(F, (bf∗D+ dAe)
∣∣
F

)
for b > cm+ a. Now

dAe is f-exceptional, so

N(b, c)
∣∣∣∣
F

= (bf∗D+A− F−KY)

∣∣∣∣
F

= (bf∗D+A)

∣∣∣∣
F

−KF.

Now by non-vanishing, H0(F, (bf∗D+ dAe)
∣∣
F

)
6= 0, so H0(Y,bf∗D+ dAe) has a section not van-

ishing on F. Because dAe is f-exceptional,

H0(Y,bf∗D+ dAe) = H0(Y,bf∗D) = H0(X,bD)

by the negativity lemma. Here, if 0 6 E ∼ bf∗D + dAe, then E − dAe ∼ bf∗D ∼Q,X 0, so if
E− dAe > 0, then f∗(E− dAe) = f∗E = 0. However, F must be disjoint from E, so we have found a
section E of bf∗D disjoint from F. Therefore f∗E is a section of bD disjoint from W.
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Lemma 2.4.6 (Negativity lemma). Let h : Z → Y be birational and proper between normal varieties
and −B be h-nef. Then B is effective if and only if h∗B > 0. If B is effective, either h−1(Y) ⊆ suppB or
h−1(Y)∩ suppB = ∅.

Theorem 2.4.7. Let (X,∆) be a proper klt pair and KX +∆ be big and nef. Then the graded ring

∞⊕
m>0

H0(OX(mKX + bm∆c))

is finitely-generated over C.

This result holds even after dropping the big and nef assumption and was proved by Birkar,
Cascini, Hacon, and McKernan in 2006.

Conjecture 2.4.8 (Abundance). Let (X,∆) be projective and klt. If KX +∆ is nef, then it is semiample.

Conjecture 2.4.9 (Effectivity, folklore). Let (X,∆) be projective klt. If KX +∆ is pseudoeffective (in the
closure of the effective cone), then KX +∆ is effective.

2.4.1 Proof of the Cone Theorem We will now prove the cone theorem. This relies on the
following result from convex geometry.

Theorem 2.4.10. Let NZ ⊆ NQ ⊆ NR and NE ⊆ NR be a closed strictly convex clone. Let K ∈ N∗Q such
that (K.C) < 0 for some C ∈ NE. Assume there exists α(K) ∈ Z>0 such that for all H ∈ N∗Z with H > 0
on NE \ {0} and that

r := max
{
b ∈ R | H+ tK > 0 on NE

}
is rational of the form U/α(K). Then

NE = NEK>0 +
∑

countable

R>0[ξi]

with ξi ∈ NZ with (ξi.K) < 0 and such that R>0[ξi] do not accumulate in KX < 0.

Let H be ample and Cartier. Suppose L is nef and define FL = L⊥ ∩NE. Then for n ∈ Z>0, we
can set

rL(n,H) = max
{
t ∈ R | nL+H+

t

α(K)
K is nef

}
.

Then rK(n,H) ∈ Z>0 is non-decreasing with respect to n. Now if ξ ∈ FL \NEK>0, then

H · ξ+ rL(n,H)
α(K)

·K · ξ > 0 rL(n,H) 6 α(K) · H · ξ
−K · ξ

.

Therefore rL(n,H) is bounded above, integral, and non-decreasing, so this sequences stabilizes for
n large enough to rL(H). Now define the divisor

D(nL,H) = (nα(K)L+α(K)H+ rL(H)L) · ξ = 0,

so FD(nL.H) ⊆ NEK<0 ∪ {0}. To prove this, let ξ ∈ FD(nL,H) with ξ /∈ FL. Then we know

ξ.L > 0 ξ.(nα(K)L+α(K)H+ rL(H)L) = 0.
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For n ′ � n, we have
ξ.(n ′α(K)L+α(K)H+ rL(H)K) > 0,

so ξ /∈ FD(n ′L,H). Because L is nef, FD(n ′L,H) ( FD(nL,H). If FD(n ′L,H) ⊆ FL, then we stop. If not,
we can iterate the above process to decrease dim FD(n ′L,H) again, so the desired result eventually
holds. Now 0 6= FD(nL.H) ⊆ FL holds up to replacing n with a large multiple.

Now we will show that for some H, dim FD(nL.H) < dim FL. If Hi is a basis for F∗L, the linear
functions (

nL+Hi +
rL(Hi)

α(K)
K

)∣∣∣∣
FL

cannot all vanish, so dim FD(nL,Hi) < dim FL for some i. Now we can reduce to FL ′ ⊆ FL of
dimension 1. This implies that NE and NEK>0 +

∑
dimFL=1 FL have the same closure.

Now we need to show that the FL do not accumulate in K<0. This is a formal argument in
linear algebra, so we skip it. Next, we need to prove that

NE(X) = NE(X)K+εH > 0 +
∑
finite

FL.

In the limit as ε → 0, we produce countably many FL (with a formal argument that is omitted
here).

The next step is to prove that if F ⊆ NE(X) is a (KX +∆)-negative face, then there exists a nef
Cartier divisor D such that FD = F. Let 〈F〉 be the linear span of F and V ⊆ N(X)∗ be the set of
linear functions vanishing on 〈F〉. Because the generators of F are defined over Q, then V is also
defined over Q. Take ε > 0 small enough such that KX +∆+ εH is negative on F. Because F is
extremal, we know 〈F〉 ∩NE(X) = F. Therefore,

WF := NE(X)KX+∆+εH>0 +
∑

dimFL=1
FL 6⊆F

FL

is a closed strictly convex cone intersecting 〈F〉 at the origin. We also note that NE =WF + F, so
we can find a lattice point p ∈ V such that (p = 0) ⊇ 〈F〉 and (p = 1)∩WF = 0. Therefore we can
find a Cartier divisor D which gives a supporting function of F ⊆ NE(X).

Now by assumption, −(KX +∆) is positive on F. This means that mD− (KX +∆) is strictly
positive on NE(X) \ {0} for m� 0, so |mD| is basepoint-free. Now let gF : x→ Z be the contraction
associated by the Stein factorization to the linear system |mD|. Because gF is not an isomorphism,
it constracts some curve C. Similarly to teh smooth case, we may assume that

0 < −(KX +∆).C 6 2 dimX.

Finally, we prove that any line bundle L on X such that L.F = 0 descends to Z, which means
there exists a line bundle LZ on Z such that L = g∗FLZ. Now let D be a Cartier divisor supporting
F. We know WF ⊆ NE(X) and that gF is defined by mD. Therefore, both mD and (m+ 1)D are
pullbacks of Cartier divisors on Z. Write mD = g∗FD1, (m+ 1)D = g∗F(D2), and therefore we see
that D = (m+ 1)D−mD = g∗F(D2 −D1). This implies that D is the pullback of a Cartier divisor
on Z. If L.F = 0, then L+mD also supports F, so L+mD = g∗FMZ for some Cartier divisor MZ
of Z. We simply set LZ = OZ(MZ −D1).

2.4.2 Nonvanishing and Rationality First we will prove rationality assuming non-vanishing
and basepoint-freeness and then we will prove rationality.
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Lemma 2.4.11. Let Y be a smooth projective variety and D1, . . . ,Dn be Cartier divisors. Then let A be a
normal crossing divisor with dAe > 0. Define

P(u1, . . . ,un) := χ
(∑

uiDi + dAe
)

.

Assume that for certain ui,
∑
uiDi is nef and

∑
uiDi +A− KY is ample. Then P(u1, . . . ,un) is a

nonzero polynomial of degree at most dim Y.

Proof. Form� 0, the sub
∑
muiDi+A−KY is still ample. Then we knowHi(

∑
muiDi + dAe) =

0 for i > 0 by KV vanishing. By non-vanishing, we know h0(
∑
muiDi + dAe) 6= 0 and thus

χ(
∑
muiDi + dAe) 6= 0 and thus P(mu1, . . . ,mun) 6= 0.

Lemma 2.4.12. Let P(x,y) 6= 0 be a polynomial of degree at most n. Assume P vanishes for all sufficiently
large integral solutions of 0 < ay− rx < ε for a ∈ Z>0 and ε ∈ R>0. Then r is rational and in reduced
form it has denominator at most a(n+ 1)/ε.

This is a purely arithmetic fact, so proof is omitted.

Proof of Rationality. First, we reduce to the case in which H is basepoint-free. Define

H ′ = m(vH+ da(KX +∆)).

By basepoint-freeness, we know that |H ′| is basepoint-free. For m � c � d > 0, we know
r(H) =

r(H ′)+mda
mc and thus rationality of r(H) is equivalent to r(H ′). If the denominator of

r(H ′) divides v, then the denominator of r(H) divides mcv. Replacing H with H ′, now H is
basepoint-free.

Now we need to study the base locus L(p,q), which is the base locus of |pH+ qa(KX +∆)|.
Then we know L(p,q) = X if and only if |pH+ qa(KX +∆)| = ∅. If p,q are large enough to be in
the strip between ay− rx = 0,ay− rx = ε, then L(p,q) stabilizes. To see this, the xH direction is
semiample and then the base locus stabilizes by Noetherian induction to some L0. Now define
I ⊆ Z×Z to be the set of (p,q) such that 0 < aq− rp < ε and L(p,q) = L0. Now I contains
arbitrary large lattice points.

Next, we will define the polynomial P(x,y) and prove that it does not vanish. Define p : Y → X
to be a log resolution of (X,∆). Then if D1 = p∗H,D2 = p∗(a(KX +∆)),KY = p∗(KX +∆) +A
where dAe > 0 is p-exceptional, then P(x,y) := χ(xD1 + yD2 + dAe) is a polynomial of degree at
most dim Y = dimX = n. Then note that if y = 0, x� 0, D1 is big and nef, so P 6= 0. Furthermore,
we know that

H0(Y,pD1 + qD2 + dAe) = H0(X,pH+ qa(KX +∆)).

From now on we will assume that r is not rational.
Now we show that L0 6= X. If 0 < ay− rx < 1, then

xD1 + yD2 +A−KX ≡ p∗(xH+ (ay− 1)(KX +∆))

is big and nef. Thus Hi(Y, xD1 + yD2 + dAe) = 0 for i > 9. For (p,q) large enough we
know P(p,q) 6= 0 by the first lemma, so h0(Y,pD1 + qD2 + dAe) 6= 0. But this implies that
|pH+ qa(KX +∆)| 6= ∅, so L0 6= ∅.

We show that L(p ′,q ′) ( L0 for (p ′,q ′) large in the strip. This will lead to a contradiction.
Fixing (p,q) ∈ I, let f : Y → (X,∆) be a log resolution satisfying:

1. The divisor f∗(pH+ (qa− 1)(KX +∆)) −
∑
pjFj is ample;

2. KY ≡ f∗(KX +∆) +
∑
ajFj for aj > −1.
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3. f∗|pH+ qa(KX +∆)| = |L|+
∑
rjFj, where |L| is the movable part and

∑
rjFj is the fixed

part.

Then we can choose c > 0 and pj > 0 such that∑
(−crj + aj − pj)Fj = A

′ − F,

where F is prime and dA ′e > 0 and A ′ does not contain F in its support. Now F maps to a

component B of L(p,q) = f
(⋃

rj>0 Fj

)
. Now define

N(p ′,q ′) = f∗(p ′H+ q ′a(KX +∆)) +A ′ − F−KY

≡ cL+ f∗(pH+ (qa− 1)(KX +∆))

−
∑

pjFj + f
∗((p ′ − (1 + c)p)H+ (q ′ − (1 + c)q)a(KX +∆)).

We can choose (p ′,q ′) with aq ′ − rp ′ < aq− rp. Then (q ′ − (1 + c)q)a < r(p ′ − (1 + c)p), so

(p ′ − (1 + c)p)H+ (q ′ − (1 + c)q)a(KX +∆)

is nef. We conclude that N(p ′,q ′) is ample because cL is nef and the second term in the sum is
ample. Therefore,

H0(Y, f∗(p ′H+ q ′a(KX +∆)) + dAe)� H0
(
F, (f∗(p ′H+ q ′a(KX +∆)))

∣∣∣∣
F

)
.

By the adjunction formula, we know

(f∗(p ′H+ q ′a(KX +∆)))

∣∣∣∣
F

= (f∗(p ′H+ q ′a(KX +∆)) +A ′)

∣∣∣∣
F

−KF.

Applying the lemmas, we conclude that

H0
(
F, (f∗(p ′H+ q ′a(KX +∆)) + dAe)

∣∣∣∣
F

)
6= 0

and thus H0(Y, f∗(p ′H+ q ′a(KX +∆))) contains a section Γ > 0 not vanishing at F. Running the
same argument using the negativity lemma implies that Γ actually is disjoint from F and thus
0 6 f∗Γ ∼ |p ′H+ q ′a(KX +∆)| is a section disjoint from B = f(F) ⊆ L0. Therefore L(p ′,q ′) ( L0
and thus r is rational.

Now we need to control the denominator of r. Assume the denominator is larger than the
constant given by the second lemma. Setting ε = 1, we choose (p,q) large with 0 < aq− rp < 1.
Then we have P(p,q) = h0(Y,pD1 + qD2 + dAe) 6= 0, so |pH+ qa(KX +∆)| 6= ∅ for all (p,q) ∈ I.
Now choose (p,q) such that aq − rp is the maximum, equal to d

v . Then we can show that
χ = h0 6= 0 for (f∗(p ′H+ q ′a(KX +∆)) + dA ′e)

∣∣
F

. Then there exist (p ′,q ′) large enough in
0 < aq ′ − rp ′ < 1 with ε = 1 and aq ′ − rp ′ < d

v = aq− rp. Running the same argument from the
previous paragraph gives us the desired conclusion.

Proof of non-vanishing. First we will reduce to the case where X is smooth and aD− (KX +∆) is
ample. Choose f : X ′ → X be a projective resolution and suppose f∗(KX + ∆) − KX ′ + ∆

′ and
(X ′,∆ ′) is a sub-klt pair. Then we know af∗D− (KX ′ +∆

′) = f∗(aD− (KX +∆)) is nef and big,
so af∗D− (KX ′ +∆

′) − F is ample, so (X ′,∆ ′ + F) is sub-klt. Writing ∆ ′′ = ∆ ′ + F, we see that
f∗(∆ ′′) 6 ∆ and

h0(X ′,mf∗D− b∆ ′′c) 6 h0(X,mD− b∆c).
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Replacing X,∆ with (X ′,∆ ′′), we have the desired reduction.
Next, we need to rule out the case that D is numerically trivial. By KV vanishing, we know

h0(X,mD− b∆c) = χ(X,mD− b∆c) = χ(X,−b∆c) = h0(X,−b∆c) > 1.

Thus we may assume that D is not numerically trivial.
Now we show that there exists q0 such that if x ∈ X is not in the support of ∆, then for q > q0

we can find M(q) ≡ (qD− (KX +∆)) with multiplicity greater than 2 dimX. For A ample and
e > 0, we have DeAd−e > 0, so we conclude that

(qD− (KX +∆))d = ((q− a)D+ aD− (KX +∆))d > d(q− a)(D · (aD− (KX +∆))d−1).

Because aD−(KX+∆) is ample, then (aD− (KX +∆))d−1 = C+ eff, where C is a curve satisfying
C ·D > 0. Therefore, (qD− (KX +∆))d →∞ as q→∞. Now

h0(e(qD− (KX +∆))) >
ed

d!
(qD− (KX +∆))d +O(ed−1).

Thus if M(q, e) ∈ |e(qD− (KX +∆))|, imposing that M(q, e) has multiplicity greater than 2de at x
imposes at most e

d

d! (2d)
d +O(ed−1) conditions. As q→∞, then we know (qD+ (KX +∆))d >

(2d)d, so for q large enough, some section satisfies the condition. Now we define M(q) :=
M(q, e)/e, so M(q) ∈ |qD− (KX +∆)| has multiplicity at least 2d at x.

Next, consider a log resolution of (X,∆+M(q)) that dominates Blx X. Then

1. KY ≡ f∗(KX +∆) +
∑
bjFj, bj > −1;

2. f∗(aD− (KX +∆)) −
∑
pjFj is ample for 0 < pj � 1;

3. f∗(M(q)) =
∑
rjFj where F0 corresponds to the exceptional divisor of the blowup at x.

Now we will perturb the coefficients and lift from lower dimension. Set

N(b, c) := bf∗D+
∑

(−crj + bj − pj)Fj −KY .

This is ample as long as c 6 1
2 and b > a+ c(q− a). Because we can choose b arbitrarily large,

the second condition is always achievable. But now because x /∈ Supp(∆), we know b0 = d− 1
and r0 > 2d, so c < 1+(d−1)−p1

2d < 1
2 . Therefore we can write N(b, c) = bf∗D+A− F−KY , so

H0(Y,bf∗D+ dAe− F) = H0(Y,bf∗D− f∗b∆c) = H0(X,bD− b∆c).

Because N(b, c) is ample, then

H1(Y,bf∗D+ dAe− F) = H1(Y,bf∗D+ dA− Fe) = 0,

so H0(X,bD− b∆c) 6= 0 as long as H0(F, (bf∗D+ dAe)
∣∣
F

)
6= 0. But by the non-vanishing theorem

in lower dimension, this is true.

2.4.3 The Relative Case We will state a relative version of the cone theorem. The proof is
essentially the same as in the absolute case.

Theorem 2.4.13 (Relative Cone Theorem). Let X ϕ−→ Z be a projective contraction of varieties over an
algebraically closed field k of characteristic 0. Let (X,∆) be a klt pair.
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1. There are countably many curves Cj ⊆ X such that ϕ(Cj) = pt, 0 < −(KX+∆).Cj < 2 dimX, and

NE(X/Z) = NE(X/Z)(KX+∆)>0 +
∑

R>0[Cj].

2. For any ε > 0 and ϕ-ample H, we have

NE(X/Z) = NE(X/Z)(KX+∆+εH)>0 +
∑
finite

R>0[Cj].

3. Let F ⊆ NE(X/Z) be a (KX + ∆)-negative extremal face. Then there is a unique contraction

X
contF−−−→ Y commuting with the structure morphisms to Z such that C ⊆ X is mapped to a point if

and only if [C] ∈ F.

4. Let L be a line bundle on X such that L.C = 0 for every curve C with [C] ∈ F. Then there exists a
line bundle LY on Y such that L = cont∗FLY .

Remark 2.4.14. So far everything is a “formal” consequence of Kodaira vanishing and resolution of
singularities (along with various classical arguments).

Remark 2.4.15. Bhatt and Lurie proved a version of the Riemann-Hilbert correspondence in
positive characteristic. Bhatt proved the Cohen-Macaulayness of the integral closure of an excellent
Noetherian domain. Using these techniques and results, the Minimal Model Program has recently
been generalized in two different directions:

1. In dimension 3 in mixed characteristic (essentially over Spec Z) by Bhatt-Ma-Patakfalvi-
Schwede-Tucker-Waldron-Witaszek.

2. In characteristic 0, most of the MMP works over an excellent Q-scheme by Murayama-Lyu.

Of course one may wonder why we need to run the MMP relative over a base. Consider a
smooth projective family X→ C∗ such that KX is ample over C∗. We want a good compactification,
but naively compactifying gives us an arbitrary central fiber that may not even be normal. Using
the resolution of singularities, we may consider a log resolution. This has many components and
KX is not ample over C in general. Then we can try to run the MMP over the base, and we expect
a commutative diagram

X X

C∗ C

such that KX is nef over the base and the singularities of X0 are slc. Here, slc means that the
normalization is log canonical and has nodal singularities at codimension 1 points.

We may also use the relative MMP to study singularities. Here, let z ∈ Z and consider a log
resolution X ϕ−→ Z. Then we write ϕ∗(KZ) = KX +∆. We may then perturb the coefficients of ∆:

• If c > 1, we may decrease to c = 1;

• If c < 0, we can increase to c = ε > 0;

This obtains a new boundary B with the same support as ∆. If we run the MMP for KX +B over
Z, we obtain a partial resolution of singularities which has the singularities of the minimal model
program. Therefore, by studying the exceptional divisors of the previous partial resolution and
the singularities of the MMP, we can understand the singularities of Z 3 z.
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2.5 Running the Minimal Model Program

2.5.1 Flipping Contractions and Flips

Definition 2.5.1. A map X ϕ−→W is a flipping contraction if X is klt and Q-factorial, ρ(X/W) = 1,
and ϕ is a small birational contraction, and −KX is ample over W.

Remark 2.5.2. When we work with log pairs we assume −(KX +∆) is ample over W.

Remark 2.5.3. W is never Q-factorial. Even worse, KW is not Q-Cartier.

Definition 2.5.4. Let X ϕ−→ X be a flipping contraction. We say that X
π
99K X+ is a flip if it is a small

birational map, KX+ +∆+ is Q-Cartier, and there is a projective morphism ϕ+ : X+ → W such
that KX+ +∆+ is ample over W.

Lemma 2.5.5. Let f : X 99K Y be a small birational map between normal varieties and let D be a Weil
divisor on X. Then H0(OX(D)) ' H0(OY(f∗D)).

Lemma 2.5.6. Let X ϕ−→W be a flipping contraction and let X
π
99K X+ be a flip. Then ρ(X) = ρ(X+) and

X+ is Q-factorial.

Proof. Let D+ be a divisor on X+ and D on X be the pushforward. We will find r such that
R · (D+ r(KX +∆)) = 0, where R is the extremal ray defining the flipping contraction. We know X
is Q-factorial, so m(D+ r(KX +∆)) is Cartier for m� 0. Then we see that

m(D+ r(KX +∆)) ∼ ϕ∗(DW)

for some Cartier divisor DW on W. Then

mD+ = mπ∗D ∼ (ϕ+)
∗
DW − (mr)(KX+ +∆+)

is Cartier, so D+ is Q-Cartier. For equality of ρ, we prove that π∗ induces an isomorphism between
Weil divisors modulo linear equivalence.

Lemma 2.5.7. Let X ϕ−→ Y be a projective contraction between normal varieties with ρ(X/Y) = 1. Assume
that the exceptional locus of ϕ contains a divisor. Then ϕ is the contraction of a unique irreducible divisor.

Proof. Suppose there are two divisors E1,E2. We can find Ci covering Ei with Ci.Ei < 0. Then
we can find a such that E1 + aE2 ≡Y 0. We will show that a is positive. Assume that C1 does
not intersect E2. Then C1.(E1 + aE2) = C1.E1 < 0. Choosing a general C1 inside E1, we may
assume E2.C1 > 0. Therefore C1.E1 + aE2.C1 = 0, so a = −C1.E1

E2.C1
> 0. But E = E1 + aE2 =: E is an

effective divisor which is contracted, so it must be covered by E-negative curves, which gives a
contradiction. We conclude that E1 must be the only component.

Proposition 2.5.8. Let ϕ : X→W be a flipping contraction for (X,∆) klt. Then the flip exists if and only
if ⊕

m>0

ϕ∗OX(m(KX +∆))

is a finitely-generated OZ-algebra. If this is the case, then

X+ := ProjZ

⊕
m>0

ϕ∗OX(m(KX +∆))

.
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Proof. Assume the flip

X X+

Z

π

ϕ

ϕ+

exists. We know that π is small, so⊕
m>0

ϕ∗OX(m(KX +∆)) '
⊕
m>0

ϕ+
∗ OX(m(KX+ +∆+)).

Moreover, KX+ +∆+ is ample over W, so

ProjW

⊕
m>0

ϕ+
∗ OX(m(KX+ +∆+))

 ' X+.

Now assume that A :=
⊕
m>0ϕ∗OX(m(KX + ∆)) is a finitely-generated OW-algebra and

define X+ = ProjA. Then X
π
99K is an isomorphism in codimension 1. It could happen that the

indeterminancy locus is a divisor. We know ϕ is an isomorphism over X \ Ex(ϕ). Then A is just a

sum of copies of the structure sheaf on X \ Ex(ϕ). Therefore, X+ π−1

99K X is an isomorphism over
X \ Ex(ϕ) and suppose D is mapped to a higher codimension cycle by ϕ+. Then

ϕ+
∗ OX+(1) ' ϕ∗OX(m(KX +∆)) ' OW(m(KW +ϕ∗∆))

for some m > 0. Because E is exceptional over W, we have

OW(tm(KX +ϕ∗∆)) = ϕ
+
∗ OX+(t) ( ϕ+

∗ OX+(t)(E).

We have a natural inclusion ϕ+
∗ O

+
X(t)(E) ↪→ OW(tm(KX + ϕ∗∆)), so there are no contracted

divisors. Thus π is small. Then the property that ρ(X/W) = ρ(X+/W) = 1 is by Lemma 2.5.6.

2.5.2 Finite generation of the canonical ring

Conjecture 2.5.9. Let X→ Z be a projective morphism and (X,∆) be a klt pair. Then⊕
m>0

ϕ∗OX(m(KX +∆))

is a finitely-generated OZ-algebra.

Remark 2.5.10. If X is a smooth projective variety, then
⊕
m>0H

0(X,OX(mKX)) is finitely generated
over the base field k.

2.5.3 Running the MMP Now we may finally discuss the process of actually running the
Minimal Model Program.

1. Let (Xi,∆i) be a klt pair and Xi → Z be a projective morphism. If KXi +∆i is nef over Z,
then we stop and call this a minimal model over Z. If KXi +∆i is not nef over Z, we consider
an extremal ray R in NE(Xi/Z) which is (KXi +∆i)-negative.

2. Let Xi →W be the contraction define by R.
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(a) We have dimW < dimXi, −KXi is ample over W, and the general fiber is klt. Hence
the general fiber is klt Fano. In this case, we stop the algorithm and call this a Mori fiber
space.

(b) We have dimW = dimXi and Xi →W contains a divisor in its exceptional locus. This
is a divisorial contraction. Then W is Q-factorial and ρ(W/Z) = ρ(X/Z) − 1. Write
Xi+1 :=W and ∆i+1 := f∗(∆i). Return to step 1.

(c) We have dimXi = dimW and Xi →W is a small birational map. We find the flip X
π

X+

and define Xi+1 = X+ and ∆i+1 = π∗∆i. We know that Xi+1 is Q-factorial provided
that Xi is Q-factorial and ρ(Xi/Z) = ρ(Xi+1/Z). Return to step 1.

Remark 2.5.11. Using the negativity lemma, we can prove that (Xi+1,∆i+1) is klt in step 2b.

The possible outcomes for the MMP are either a minimal model, which assuming abundance
maps to the canonical model, or a Mori fiber space.

2.6 More about singularities

2.6.1 Surface singularities

Theorem 2.6.1.

1. A point x ∈ X is a surface klt singularity if and only if is the quotient of 0 ∈ C2 be a finite subgroup
of GL2(C).

2. A point x ∈ X is a canonical surface singularity if and only if it is the quotient of 0 ∈ C2 by a finite
subgroup of SL2(C).

3. A point x ∈ X is a terminal surface singularity if and only if it is a smooth point.

The idea of the proof is as follows: If KX is Q-Cartier, we can take its index one cover. This is a
finite Galois morphism Y

π−→ X that is quasi-étale (étale in codimension 1) such that KY is a Cartier
divisor. Then we can write X = Y/G. Because Y is klt and KY is Cartier, its log discrepancies are
positive integers, so it is canonical. Therefore it suffices to study canonical singularities.

For canonical singularities, we obtain the following:

Theorem 2.6.2. Let x ∈ X be a canonical surface singularity. Then x ∈ X has embedding dimension 3.
Moreover, up to analytic change of coordinates, the following is a complete list of possible singularities:

Type A: For n > 0, the An singularity has equation x2 + y2 + zn+1 = 0 and dual graph

◦ ◦ . . . ◦

Type D: For n > 4, the Dn singularity has equation x2 + y2z+ zn−1 = 0 and dual graph

◦

◦ ◦ . . . ◦ ◦
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Type E: The E6 singularity has equation x2 + y3 + z4 = 0 and dual graph

◦

◦ ◦ ◦ ◦ ◦

The E7 singularity has equation x3 + y3 + yz3 = 0 and dual graph

◦

◦ ◦ ◦ ◦ ◦ ◦

The E8 singularity has equation x2 + y3 + z5 and dual graph

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

The idea of the proof is to study the dual graph of the resolution and use the Weierstrass
preparation theorem to write down the equations.

2.6.2 Geography of singularities The geography of singularity types with implications
looks like this:

Figure 2.2: Map of singularities

We will now define some of these singularity classes and prove some of the implications.

Definition 2.6.3. Let (R,m) be a Noetherian local ring and N be a finite R-module. Write dimN =
dim suppN. Then N is called Cohen-Macaulay of one of the following equivalent conditions holds:

1. There exists x1, . . . , xr ∈ m, where r = dimN such that xi is not a zero divisor inN/(x1, . . . , xi−1)N
for all i. Here, x1, . . . , xr is called a N-regular sequence.
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2. If x1, . . . , xr ∈ m for r = dimN and dimN/(x1, . . . , xr)M = 0, then x1, . . . , xr is an N-regular
sequence.

A coherent sheaf F on a scheme X is Cohen-Macaulay if Fx is Cohen-Macaulay over OX,x for every
x ∈ X. Finally, a scheme X is Cohen-Macaulay if its structure sheaf OX is Cohen-Macaulay.

There is a condition of Serre, which is slightly weaker than being Cohen-Macaulay. We say
that a ring R satisfies the properties

(Rk): For all p ∈ SpecA such that ht(p) 6 k, then Ap is regular.

(Sk): For all p ∈ SpecA, depth(Ap) > inf(k, ht(p)).

Examples 2.6.4. Normality is equivalent to R1 and S2, so all normal surfaces are Cohen-Macaulay.
If R is Cohen-Macaulay and a group G acts on R, then RG is Cohen-Macaulay by Hochster-Roberts.
This means that quotient singularities are Cohen-Macaulay. The rings k[x]/x2 and k[t2, t3] are
Cohen-Macaulay. However, the scheme X = Speck[x,y]/(x2, xy) is not Cohen-Macaulay at the
origin.

Definition 2.6.5. Let Y be a variety over a field of characteristic 0 and X f−→ Y be a resolution of
singularities. We say that f is rational if

1. f∗OX = OY (here, Y is normal).

2. The higher derived pushforwards are given by Rif∗OX = 0 for i > 0.

We say that Y has rational singularities if every resolution is rational.

Equivalently, the morphism OY → Rf∗OX is a quasi-isomorphism in the derived category.

Examples 2.6.6. All singularities of the form An are rational. If X→ Y = An, then f∗(KY) = KX,
so Y is rational. However, the cone over an elliptic curve is not rational.

Definition 2.6.7. A point y ∈ Y is symplectic if Y is normal at y and there exists a symplectic form
ω on Yreg which extends to the exceptional divisor over y on any resolution.

Definition 2.6.8. Let X ⊆ Y be an embedding of a scheme into a regular scheme and Z→ Y be a
log resolution of X which is an isomorphism outside X. Let E be the reduced preimage of X in Z.
Then we say X has Du Bois singularities if OX → Rπ∗OE is a quasi-isomorphism.

Remark 2.6.9. Du Bois singularities commonly appear in Hodge theory.

Remarks 2.6.10.

• Serre duality for Cohen-Macaulay sheaves

• If H ⊆ X is Cartier and H is Cohen-Macaulay, then so is X.

Proposition 2.6.11. Let Y be a variety over a field of characteristic 0 and f : X→ Y be a resolution. The
following are equivalent:

1. f is rational.

2. Y is Cohen-Macaulay and f∗ωX = ωY .
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Proof. Let Y be projective and D be an ample Cartier divisor on Y. Then Hi(X,ωX(rf∗D)) = 0 for
r > 0, r > 0. By Serre duality, we have Hn−i(X,OX(−rf∗D)) = 0 for i > 0 and r > 0. Then the
Leray spectral sequence

E
i,j
2 = Hi(Y,Rjf∗OX(−rD))⇒ Hi+j(X,OX(−rf∗D)).

Assuming that f is rational, we then obtain

Hi(Y,OY(−rD)) ' Hi(X,OX(−rf∗D)) i > 0.

Now we will prove that Hi(Y,OY(−rD)) = 0 for i < n and r� 0 only if Y is Cohen-Macaulay.2

Let H ⊆ |r ′D| be a general element. We obtain the exact sequence

0→ OY(−(r+ r ′)D)
·H−−→ OY(−rD)→ OH(= rD)→ 0.

By vanishing, we see that Hi(H,OH(−rD)) for i < n− 1 and r� 0. Therefore by induction, H is
Cohen-Macaulay and thus Y is Cohen-Macaulay. Taking the case of i = 0, we obtain

h0(Y,ωY(rD)) = h0(X,ωX(rf∗D)) = h0(Y, f∗ωX(rD))

for all r > 0. This implies that f∗ωX = ωY by a result in Hartshorne.
Now assume that Y is Cohen-Macaulay and f∗ωX = ωY . We will induct on the dimension,

and CM curves are smooth, so we proceed to the inductive step. We will prove that Rif∗OX is
supported in some 0-dimensional locus. Let H ⊆ Y be general and H ′ = f−1H, so f : H ′ → H is a
resolution. Then

f∗ωH ′ = f∗(ωX(H
′)⊗OH ′) = OH(H)⊗ f∗ωX = OH(H)⊗ωY = ωH.

By induction, we see that OH ⊗ Rif∗OX = Rif∗OH ′ = 0 is trivial outside a zero dimensional set.
Therefore H0(Y,Rqf∗OX(−rD)) = 0 for p,q > 0 or if p < n and q = 0. By the spectral sequence,
we obtain H0(Y,Rqf∗OX ⊗OY OY(−rD)) = 0 for q < n− 1 and

H0(Y,Rn−1f∗OX(−rD)) ∼= ker
[
Hn(Y,OY(−rD))

α−→ Hn(X,OX(−rf∗D))
]
.

This implies that Rqf∗OX = 0 for q < n− 1. When q = n, α is the dual to the morphism

H0(Y,ωY(rD))→ H0(X,ωX(rf∗D)) = H0(Y, f∗ωX(rD))

because ωY ' f∗ωX. Thus α is an isomorphism and thus Rnf∗OX = 0.

Lemma 2.6.12. Let (X,∆) be a klt pair, H be basepoint free, and Hg ∈ |H| be a general element. Then
(H, δH) is klt.

Lemma 2.6.13. Let Y f−→ X be finite with KY +∆Y = f∗(KX +∆). Then if both (X,∆), (Y,∆Y) are log
pairs, then (X,∆) is klt (resp. log canonical) if and only if (Y,∆Y) is klt (resp. log canonical).

The idea of the proof is to use the Riemann-Hurwitz formula on a log resolution to compare the
discrepancies and observe that aE(X,∆) = raE(Y,∆Y) for some positive integer r (a ramification
index).

Theorem 2.6.14 (Elkik 1981). If (X,∆) is dlt, then X has rational singularities.

2The other direction is true, but we do not need it right now.
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Proof. Write KY ≡ f∗(KX + ∆) +A− B, where Y → X is a log resolution, SuppB ⊆ Ex(f), and
bAc = 0. By KV vanishing, Rjf∗OY(dBe) = 0 for j > 0. Now let L be an ample Cartier divisor on
X. WE have a commutative diagram

Hi(OY(−rf
∗L)) Hi(OY(dBe− rf∗L))

Hi(OX(−rL)) Hi(OX(−rL)).

β

Therefore we have

Hi(X,OX(−rL)⊗ Rjf∗OX(dBe))V Hi+j(Y,OY(dBe− rf∗L))

and Hi(OY(−rf
∗L)) = 0 for i < n and r > 0 by KV vanishing. We want to conclude that

Hi(OX(−rL)) = 0 for r > 0, i < n. Using vanishing and the spectral sequence, we see that β is an
isomorphism. But then by vanishing again, the top left corner is 0, and thus everything in the
diagram must vanish. Therefore X is Cohen-Macaulay.

Now if we take j = 0, we obtain an injection Hn(OX(−rL)) ↪→ Hn(OY(−rf
∗L)). By Serre

duality, the map H0(Y,ωY(rf∗L)) = H0(X, f∗ωY ⊗OX(rL))� H0(X,ωX⊗OX(rL)) is a surjection,
and surjectivity for r � 0 implies that f∗ωY � ωX, and they are isomorphic because they are
both rank 1 reflexive sheaves. Therefore X has rational singularities.

Proposition 2.6.15. If X is Gorenstein (this means KX is Cartier), then rational is equivalent to canonical.

Proof. We know canonical implies dlt implies rational. Now suppose that X is rational and
Gorenstein and let Y π−→ X be a resolution. Then π∗(KX) = KY + E− F, where E, F are integral and
effective with no common support. To prove that X is canonical, we need to prove that E = 0. If
we push-forward KY + E− F and E 6= 0, then we get associated primes on the image of E, and this
contradicts π∗ωY = ωX. Therefore E is trivial, so X is canonical.

Proposition 2.6.16. Symplectic singularities are rational and Gorenstein.

Proof. Let π : Y → X be a resolution. If ϕ be a 2-form, then ϕr generates the line bundle ωXreg .
The fact that π∗ϕ extends to a regular holomorphic form implies that π∗ϕr extends. Thus
π∗ωY = π∗(π∗ϕr) = ϕr = ωX. In addition, we see that π∗ωX = ωY − F.

We can characterize the condition of being Gorenstein as follows: A local ring (R,m) is Goren-
stein if and only if there exists a regular sequence x1, . . . , xr such that R/(x1, . . . , xr) is Gorenstein
and 0-dimensional. By Nakayama’s lemma, this implies that R/(x1, . . . , xi)R is Gorenstein for
every i.

Lemma 2.6.17. Let (0 ∈ X) be an index 1 canonical threefold singularity and 0 ∈ H ⊆ X be a general
hyperplane section. Then either (0 ∈ H) is a Du Val singularity or an elliptic singularity.

The idea of the proof is that if H ′ π−→ H is a resolution, then π∗ωH ′ = mωH. If m = 1, we have
a Du Val singularity, and if m > 1, then we have an elliptic singularity.

Theorem 2.6.18. All terminal threefold singularities of index 1 are cDV (compound Du Val), which means
a one-parameter deformation of a Du Val singularity.

Example 2.6.19. Let G ⊆ GLn(C) be a finite group. We know Cn/G is a quotient singularity and
thus klt. If G ⊆ SLn(C), then Cn/G is symplectic.

Example 2.6.20. If x ∈ X is a cone and is symplectic, then it is isomorphic to a Lie group quotient
by the smallest nonzero nilpotent orbit.
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2.7 Duality Theory

Given a projective variety X, we want a sheaf ωX such that Hi(X,F) = Hn−i(X,Hom(F,ωX))
∨

for every Cohen-Macaulay sheaf. Recall that Serre duality establishes this duality for Hn(Pn,F) =
Hom(F,KPn) for any quasicoherent sheaf. Moreover, if F is locally free, then

Hi(Pn,F) = Hn−i(Pn,KPn ⊗F∗)
∨

.

Definition 2.7.1. A dualizing sheaf ωX is a coherent sheaf with a surjection

TrX : Hn(X,ωX)→ k

such that for all coherent F, TrX induces an isomorphism

Hom(F,ωX) = Hom(Hn(X,F,k)).

The pair ωX, TrX is unique if it exists.

Proposition 2.7.2. Let f : X → Y be a finite morphism, F ∈ Coh(X),G ∈ Coh(Y). Let f!G :=
HomOY (f∗OX,G),

1. There exists an isomorphism f∗Hom(F, f!G) = HomOY (f∗F,G). In particular, there is a natural
isomorphism HomX(F, f!G) = HomY(f∗F,G).

Proof. Assume X = SpecA, Y = SpecB and F = M̃,G = Ñ. Then we have reduced to the identity

HomA(M, HomB(A,N)) = HomB(M,N),

but this is obvious. Simply write ψ(m)(a) = φ(am) for some φ ∈ HomB(M,N).

Proof. Let f : X→ Y be a finite morphism of proper schemes of pure dimension m. If ωY exists,
then ωX exists and ωX = f!ωY .

Proof. We simply compute

HomX(F,ωX) = HomX(F, f!ωY)

= HomY(f∗F,ωY)

= Hm(Y, f∗F)
∨

= Hn(X,F)∨.

Here, finiteness gives us Rif∗F = 0 for i > 0 and thus the Leray spectral sequence applies.

Corollary 2.7.3. The sheaf ωX exists and is an S2-sheaf for projective varieties X over k.

Proof. We always have a finite surjective morphism X → Pn (embed in large projective space,
then project down). Then ωPn exists, so ωX does also. Also ωX is S2 if and only if f∗ωX is, but
f∗ωX = Hom(locally free).

Corollary 2.7.4. If X is a projective scheme of pure dimension m over k, F a coherent sheaf such that
suppF has pure dimension m, then

1. If F is Cohen-Macaulat, so is Hom(F,ωX). The converse holds if F is S2.
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2. If X is S2, then OX is Cohen-Macaulay if and only if ωX is.

Proof. Let f : X → Pm be surjective and finite. Then F is Cohen-Macaulay if and only if f∗F is
locally free, so HomOX(F,ωX) is Cohen-Macaulay if and only if

f∗HomOX(F,ωX) = HomOPn
(f∗F,ωPn),

and f∗F is locally free if and only if F is S2.

Theorem 2.7.5. Let X be a projective scheme of pure dimension m, F a Cohen-Macaulay sheaf such that
suppF has pure dimension. Then

Hi(X,F) = Hn−i(X,HomOX(F,ωX))
∨

.

Proof. As before, let f : X→ Pm be finite and surjective. We know that Hi(X,F) = Hi(Pm, f∗F).
Then f∗F is locally free, so by Serre duality, we have

Hi(Pm, f∗F) = Hm−i(Pm,HomOPm
(f∗F,ωPm))

∨
,

and therefore we obtain

Hm−i(Pm,Hom(f∗F,ωPm)) = H
m−i(Pm, f∗HomOX(F,ωX)) = Hm−i(X,HomOX(F,ωX)).

Proposition 2.7.6. Let X be a projective Cohen-Macaulay scheme of pure dimension m, D ⊂ X a Cartier
divisor. Then ωD = ωX(D)⊗OD.

Proposition 2.7.7. Let X be a normal projective variety of dimension m. Then ωX = OX(KX).

These two facts tive the classical adjunction formula.

Proposition 2.7.8. Let X be smooth and D ⊂ X be a smooth Cartier divisor. Then (KX +D)
∣∣
D

= KD.

Next, we want to compare singularities of (X,B+ S) with
(
S, B

∣∣
S

)
.

Remark 2.7.9. If S is Cartier in codimension 2, then (KX +B+ S)
∣∣
S
= KS+ B

∣∣
S

. If there are quotient

singularities in codimension 2, then (KX +B+ S)
∣∣
S
= KS + B

∣∣
S
+
∑
Pi

(
1 − 1

mi

)
Pi, where Pi is a

codimension 2 point of X, orbifold of order mi.

The idea of adjunction is that if (X,B+ S) has nice singularities, then so does
(
S, B

∣∣
S

)
. The

convsers is called the inverse of adjunction.

Proposition 2.7.10. Let X be normal and S be a normal Weil divisor that is Cartier in codimension 2. Let
Z ⊆ X be closed and B =

∑
biBi > 0. Assume that KX + S+B is Q-Cartier. Then

tot.disc
(

center ⊆ Z,S, B
∣∣∣∣
S

)
> discrep(center ⊆ Z,X,S+B) > discrep(center∩ S ⊆ Z,X,S+B).

Proof. Let f : Y → X be a log-resolution of (X,S+B) and write S ′ = f−1
∗ S and f−1

∗ (S+B) is smooth.
By doing more blowups, we may assume that if Ei ie exceptional such that Ei ∩ S ′ 6= ∅, then the
center of Ei is contained in S. We have

KY + S ′ ≡ f∗(KX + S+B) +
∑

eiEi
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and KS ′ = (KY + S ′)
∣∣
S ′ , and therefore

KS ′ ≡ f∗
(
(KS +B)

∣∣∣∣
S

)
+
∑

ei(Ei ∩ S ′).

Now S ′ is distinct from f−1
∗ B, so if Ei ∩ S ′ 6= ∅, then Ei is f-exceptional and the center of Ei is

contained in S. this shows that every log discrepancy that happens in S ′ → S also happens in
Y → X in such a way that the center lies inside S.

Therefore, if (X,B+ S) is plt, then
(
S, B

∣∣
S

)
is klt. The inverse of adjunction is more difficult.

Suppose that
(
S, B

∣∣
S

)
has nice singularities, but (X,B+ S) has bad singularities. In particular,

there exist exceptional E over X such that aE(X,B+ S) < 0. This contradicts the philosophy that
in a Fano object, the locus where it’s more singular is contracted. The theorem that realizes this is
called Kollàr-Shokurov connectedness.

Definition 2.7.11. Let (X,B) be a log-canonical. We say that Z ⊆ X is a log-canonical center if
there exists E over X with aE(X,B) = 0 and cE(X) = Z. We denote by lcc(X,B) the union of all
log-canonical centers. This is a closed subset.

Theorem 2.7.12 (Kollaàr-Shokurov connectedness). Let f : X→ Z be projective, (X,B) be log-canonical,
and −(KX +B) be ample over Z. Then lcc(X,B) is connected over Z.

Example 2.7.13. Let P1 → pt be the structure morphism and note that degKP1 = −2. The
coefficients of the dropped points must have sum stricly less than 2.

Remark 2.7.14. Big and nef suffices in place of ample.

Theorem 2.7.15. Let g : Y → X be a proper birational mapping with Y smooth and X normal. Let
D =

∑
diDi be a smooth normal crossings Q-divisor on Y such that g∗D > 0 and −(KY +D) is g-nef.

Write
A =

∑
i,di<1

diDi, F =
∑
i,di>1

diDi.

Then supp F = suppbFc is connected in any neighborhood of any fiber of g.

Remark 2.7.16. A field K is C1 if every homogeneous f(x0, . . . , xn) ∈ K[x0, . . . , xn] of degree at most
n has a nontrivial zero. A field is pseudo-algebraically closed if every geometrically integral k-variety
has a k-point.

Conjecture 2.7.17 (Ax). Every pseudo-algebraically closed field of characteristic 0 is C1.

This is true and proved by Kollàr.

Proof of Theorem. Note that d−Ae− bFc = KY − g∗(KX +D) + {A}+ {F}. By KV vanishing, we have
R1g∗OY(d−Ae− bFc) = 0. Then we have the exact sequence

0→ OY(d−Ae− bFc)→ OY(d−Ae)→ ObFc(d−Ae)→ 0

so g∗OY(d−Ae) � g∗ObFc(d−Ae). Now d−Ae is g-exceptional, so g∗OY(d−Ae) = OXg∗D > 0.
Writing bFc = F1 ∪ F2 is a neighborhood of h−1(x), we obtain

g∗ObFc(d−Ae)(x) = g∗OF1(d−Ae)(x) + g∗OF2(d−Ae).

This will give a surjection OX,x → ObFc,x, which is not true by connectedness.
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Theorem 2.7.18. Let X be normal and S ⊆ X be a normal Weil divisor Cartier in codimension 2. Let
B > 0 be a Q-divisor such that KX + S+B is Q-Cartier. Then

1. (X,S+B) is plt near S if and only if
(
S, B

∣∣
S

)
is klt.

2. Assume B is Q-Cartier and S it klt. Then (X,S+B) is log canonical near S if and only if
(
S, B

∣∣
S

)
is

log canonical.

Proof. Take g : Y → X a log resolution of (X,S+B) and KY +D = g∗(KX+B+ S). Write S ′ = g−1
∗ S

and F = S ′ + F ′. Then F ′ contains a component of codimensino at least 1. By adjunction, we have

KS ′ = g∗

(
KX + B

∣∣∣∣
S

)
+ (A− F ′)

∣∣∣∣
S

,

so (K,B + S) is plt near S if and only if F ′ ∩ g−1(S) = ∅ and
(
S, B

∣∣
S

)
is klt if and only if

(F ′)>0 ∩ S ′ = ∅. By Kollàr-Shokurov connectedness, given x ∈ S, there exists Vx ⊆ X such that
(S ′ ∪ (F ′)>1) ∩ g−1(Vx) is connected. Here F ′ ∩ g−1(Vx) = ∅. Moving x around S finishes the
argument.

We will now consider adjunction for higher codimension centers. We know (X,S+B) is snc if
and only if

(
X, B

∣∣
S

)
is. For (X,B), let Z be a log-canonical center on (X,B). If Z has codimension 1

in X, do adjunction to Z and repeat. If Z has codimension at least 2, define (Z,BZ) such that the
singularities of (X,B) around Z can be compared to those of (Z,BZ).

This is indeed possible. First blow up enough so that g maps E to Z. Write g∗(KX + B) =
KY +BY + E. Then we have

g∗(KX +B)

∣∣∣∣
E

= (KY +BY + E)

∣∣∣∣
E

= KE +BE

and this is trivial over Z. We want to write KE + BE = g∗(KZ + BZ +MZ), where BZ measures
the singularities of the fiber MZ, the variation of moduli.

2.8 Terminal threefold MMP

Let X be a Q-factorial terminal projective threefold and X f−→W be a flipping contraction. Suppose
ρ(X/W) = 1, −KX is ample over W, and X has terminal singularities and is smooth in codimension
2. First, we want to construct a rational map π which is an isomorphism in codimension 1 such
that ρ(X+/W) = 1, KX+ is ample over W, and X+ has terminal singularities. Also, X+ is unique
and coincides with

ProjW
⊕
n>0

f∗OX(nKX)

provided that this ring is a finitely generated OW-algebra. Denote this ring by R(X).

Proposition 2.8.1. The ring R(X) is finitely generated as an OW-algebra if and only if it is finitely
generated locally over W (and this is even true locally analytically).

For a geometric picture, let X be a terminal threefold and suppose f contracts several curves.
Then W is not Q-factorial in general. In 1988, Mori proved that these curves can be contracted one-
by-one in the analytic category (in the algebraic category, this is clearly impossible by the previous
discussion). Now our terminal threefold flipping contractions lead us to studying extremal
neighborhoods. Here, we consider an analytic neighborhood of the fiber above w ∈W. We may
assume that (W,w) is a rational singularity. Now what happens if our extremal neighborhood is
smooth?
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Proposition 2.8.2. Let X ⊇ C = P1 be an extremal neighborhood. Then OC(KX) = OC(−1), IC/I2
C '

OC ⊕OC(1), and |−KX| has a smooth member.

Proof. We know that KX.C = −1 because KX.C < 0 and H1(OC(KX)) = 0. Now we have an exact
sequence

0→ IC/I
2
C → Ω1

X ⊗OC → O(KC)→ 0,

and thus we have an isomorphism
∧2(IC/I

2
C) ' O(KX)⊗OC(−K). Taking the degree, we conclude

that deg IC/I
2
C = (−KX.C) − degKC = 1. Now if we tensor with OC(−1), we obtain the exact

sequence
0→ IC/I

2
C ⊗OC(−1)→ OX/I

2
C ⊗OX(KX)→ OC(−1)→ 0.

Because H1(IC/I
2
C ⊗OC(−1)) = 0, we have IC/I

2
C ⊗OC(−1) ' OC(−1)⊕OC.

Now let x ∈ C and (D, x) be a smooth divisor on the germ (X, x). Then D extends naturally
to a divisor D ′ of X. We need to show that D ′ ∈ |−KX|. Here, we know that PicX = Z and the
isomorphism is induced by L 7→ L.C. Thus D ′ ∼ −KX.

Corollary 2.8.3. In the above case, X is the blowup of a smooth threefold (W,w) along a smooth curve
C0 3 w.

Corollary 2.8.4. Let X → W be a terminal threefold flipping contraction. For every w ∈ W, f−1(W)
contains a singularity.

By the classification of terminal threefold singularities, for any extremal neighborhood, there
are at most three singular points and there is a nice divisor D passing through some of them.

Theorem 2.8.5 (Mori 1988). Let X ⊇ C = P1 be an extremal neighborhood. Then one of the following
holds for |−aKX| (a = 1, 2):

1. Either |−KX| has a member D with Du Val singularities, or

2. |−2KX| has a member D such that the double cover Z of X branched over X with only Du Val
singularities.

Because D is Du Val, we know (X,D) is purely log terminal. Now the finite generation of the
ring R(X) is implied by the finite generation of the ring⊕

n>0

f

∣∣∣∣
D

OD(nKX).

This is now a problem about projective surfaces, and apparently this is doable by hand. Here, D
is a log-Calabi Yau surface with at most three singular points. Now we conclude the existence of
flips for terminal threefolds.

Now we need to prove termination of flips.

Theorem 2.8.6. An arbitrary sequence of three-dimensional extremal canonical (KX +∆)-flips is finite.

Lemma 2.8.7. Let φ : X 99K X ′ be a (KX +∆)-flip of a three=dimensional canonical pair (X,∆), where
∆ =

∑
aiDi. Let C ′ ⊆ X ′ be a flipped curve and EC ′ be the exceptional divisor obtained by blowing up

C ′. Then X ′ is smooth along C ′ and

0 6 a(EC ′ ,X,∆) < a(EC ′ ,X
′,∆ ′) = 1 −

∑
aimultC ′(D ′i),

where the multiplicities are of D ′ along C ′.
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Proof. Because C ′ is a flipped curve, X ′ is smooth along the generic point of C ′. Indeed, X ′ is
terminal along ηC ′ , so it is smooth. If there is a nonterminal valuation with center on C ′, then
there is a noncanonical valuation on (X,∆).

We will now define the difficulty function. Let (X,∆ =
∑
aiDi) be a canonical pair with Di

pairwise distinct prime divisors. Set a = max {ai} and S :=
∑
aiZ>0 ⊆ Q. Also write

d(X,∆) =
∑
x∈S
x>a

#{Exceptional divisors over X with a(E,X,∆) < 1 − x}.

For example, with compound Du Val singularities, we have d(cDv) = r.
Remark 2.8.8. The difficulty function measures the number of nonterminal valuations.

We are now ready to prove termination of canonical threefold flips.

Proof of termination of flips. Write ∆ =
∑
aiDi, where a1 6 · · · 6 ak. Then in the sequence of flips,

we have
(X,∆) 99K (X1,∆1) 99K (X2,∆2) 99K · · ·

If k = 0, then d(Xk−1, 0) > d(Xj, 0). Therefore, after finitely many flips, d(X`, 0) = 0 and thus
there are no more flips.

Now assume that k > 0. Then we know d(Xj,∆j) is nondecreasing. If Cj is the flipped curve
for φj−1, assume it is contained in Djk. Then ak < 1 and d(Xj−1,∆j−1) > d(Xj,∆j). Therefore for
j� 0, Djk contains no flipped curves.

Now denote by Djk the normalization of Djk. Then Dj−1
k → D

j
k is a birational morphism. The

exceptional curves of Djk → D
`
k for ` > k are linearly independent. At some point, we have

D
j
k ' D

`
k for ` � j. This means that both the flipping and flipped curves are disjoint from D

j
k.

Thus C.Djk = 0, so now flips for
(
X,∆ =

∑k
i=1 aiDi

)
induce flips on

(
X,∆ ′ =

∑k−1
i=1 aiDk

)
, and

by induction, these flips stop.

Conjecture 2.8.9 (Abundance). If X is klt and KX is nef, then KX is semiample.

This is proved for terminal threefolds by Kawamata. Now we have settled the minimal model
program for terminal threefolds. Existence and termination of flips were proved in 1988 by Mori
and later in a more general case by Kollár-Shokurov, and abundance was proved by Kawamata in
the 1990s. A historical sketch of more recent developments is as follows:

Table 2.1: Historical Sketch since 2000

Existence of Flips Termination of Flips

In the 2000s Kollár-Shokurov proved exis-
tence for (X,∆) log-canonical threefolds

In 2004, Alexeev-Hacon-Kawamata proved
termination for (X,∆) fourfolds with
−(KX +∆) effective.

In 2005, Hacon and McKernan proved flips
exist in dimension n provided the MMP
works in dimension n− 1.

In 2000, Fujino proved termination of flips
for (X,∆) a terminal fourfold.

In 2006, Birkar-Cascini-Hacon-McKernan
proved existence of flips for (X,∆) klt.

They also proved termination of flips for
(X,∆) klt and KX +∆ big.

In 2010, Hacon-Xu and Birkar proved exi-
etence of flips for (X,∆) log canonical.

In 2018, Joaquín proved termination of flips
for (X,∆) a log canonical fourfold with KX+
∆ pseudoeffective.
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Termination is unknown for klt uniruled fourfolds and in dimension at least 5. Abundance
is known for log canonical pairs in dimension 3 and log canonical pairs in dimension 4 with X
uniruled. It is unknown for log canonical pairs with KX +∆ pseudoeffective. Some people believe
that abundance should be tackled using different techniques from the minimal model program.

2.9 Applications to Singularities

Conjecturally, the MMP contracts or flips the locus Bs(KX) = Bs−(KX). This is known in dimension
3 and follows from termination and abundance. Recall that if D ⊆ X and A is an ample divisor on
X, then

Bs − (D) =
⋃
ε>0

Bs(D+ εA) ⊆ Bs(D).

This is a countable union of algebraic varieties. Then (someone) showed the existence of a divisor
on a certain blowup of P3 whose Bs− is a countable union of curves. Here, the dynamics of what
happens lead to something non-algebraic.

The first application we will give is terminalization. Let (X,∆) be a klt pair. Then there exists a
projective birational morphism Y → X such that Y is terminal and extracts exactly the divisors
with aE(X,∆) ∈ (−1, 0].

To prove this, let (Z,∆Z)
ϕ−→ (X,∆) be a log resolution of X. Then we know ϕ∗(KX +∆) =

KZ +∆Z. This is not necessarily a boundary, so write ∆ ′Z for the result of killing all negative
coefficients. By negativity, we see that Bs−(KZ +∆ ′Z) contains all divisors with aE(X,∆) > 0. Now
we run the minimal model program for KZ +∆ ′Z, and this contracts all of these divisors. Because
(Z,∆ ′Z) is terminal, it remains terminal after we run the minimal model program.
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