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Kevin (Oct 28): Intro to mixed Hodge structures; Hodge
theory for smooth varieties

Throughout the seminar, we work over C like reasonable people.

1.1 Review of Hodge theory

Let X be a smooth projective variety. Then we have the Hodge decomposition

Hn(X, C) =
⊕

p+q=n

Hp,q(X).

Here, Hp,q contains forms of type (p,q). Deligne constructs a mixed Hodge structure on smooth
varieties in Théorie de Hodge II and on all varieties in Théorie de Hodge III.

Definition 1.1.1. Let A be one of Z, Q, R. A Hodge structure over A can be defined in several ways:

1. A Hodge structure of weight n is a finitely-generated A-module H with a decomposition

HC = H⊗C =
⊕

p+q=n

Hp,q

satisfying Hp,q = H
q,p.

2. A Hodge structure of weight n is a finitely-generated A-module H with a decreasing
filtration F ∗ •HC that is n-opposite in the sense that if p+ q = n+ 1, then Fp ∩ Fq = 0 and
Fp ⊕ Fq = HC.

3. A Hodge structure of weight n is a finitely-generated A-module H with an action of the
Deligne torus S := ResC

R C× on HR of weight n.

Remark 1.1.2. In our definition, p,q,n can all be negative.

To see that these definitions are equivalent, from a decomposition
⊕
p+q=nH

p,q we take the
filtration

FpH =
⊕
i>p

Hi,n−i.

In the other direction, for a filtration F, we take

Hp,q = Fp ∩ Fq.
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From now on, when we say Hodge structure we will take A = Z.

Definition 1.1.3. A morphism of Hodge structures of weight n (H, F) → (H ′, F ′) is a morphism of
modules that respects the filtration after tensoring with C.

Tensor products of Hodge structures are Hodge structures after adding the weights, and the
dual of a Hodge structure is still a Hodge structure after taking the negative of the weight.

Examples 1.1.4.

1. Let X be a smooth projective variety. Then by the Hodge theorem, Hn(X, Z) is a Hodge
structure of weight n.

2. Let X be a smooth proper variety. Then Hn(X, Z) is a Hodge structure of weight n by a
result of Deligne.

3. (Tate-Hodge structure) We will define a Hodge structure Z(1) of weight −2 where the
underlying Z-module is 2πiZ and Z(1)⊗Z C = H−1,−1. We will denote by Z(n) the n-th
tensor power of Z(1). We may twist Hodge structure by Z(n) to change the weight.

If Z ↪→ X is a subvariety of a smooth projective variety of codimension r, there are Gysin
maps

i! : H
n−2r(Z, Z)→ Hn(X, Z).

This is not a map of Hodge structures by weight reasons, but after twisting by Z(−r) we
obtain a morphism

i! : H
n−2r(Z, Z)(−r)→ Hn(X, Z)

that is a morphism of Hodge structures.

Now set U := X \Z. Then we have a long exact seqeunce

· · · → Hn−2r(Z)(−r)→ Hn(X)→ Hn(U)→ Hn−2r+1(Z)(−r)→ Hn+1(X)→ Hn+1(U)→ · · · .

We will introduce a new increasing filtration W on Hn(U) where

Wn−1(H
n(U)) = 0 Wn(H

n(U)) = Im(Hn(X)→ Hn(U)) Wn+1(H
n(U)) = Hn(U).

Taking the associated graded module

GrWi H
n(U) =


Im(Hn(X)→ Hn(U)) i = n

Im(Hn(U)→ Hn−2r+1(2)(−r)) i = n+ 1
0 otherwise.

Now W has allowed us to isolate the weight n part and the weight n+ 1 part, and now we
want to consider mixed Hodge structures.

1.2 Mixed Hodge structures

Definition 1.2.1. A mixed Hodge structure is a finitely-generated Z-module H together with two
filtrations:

• The weight filtraation W, which is an increasing filtration on HQ;

• The Hodge filtration F, which is a decreasing filtration on HC.
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These are required to be compatible in the sense that for all n, the associated graded piece

(GrWn HQ, F)

is a Hodge structure over Q.

Example 1.2.2. Let H be an ordinary Hodge strucure of weight n. This is a mixed Hodge structure,
where we take Wn−1HQ = 0 and WnHQ = HQ.

Definition 1.2.3. A morphism of mixed Hodge structures f : (H,W, F)→ (H ′,W ′, F ′) is a morphism
of Z-modules H→ H ′ that is compatible with both filtrations.

Theorem 1.2.4. Any morphism of mixed Hodge structures is automatically strictly compatible with both
filtrations, which means that if h ′ ∈ Im(f)∩W ′n(H ′), there exists h ∈Wn(H) such that f(h) = h ′. The
same result is true for F, F ′.

Remark 1.2.5. The category of mixed Hodge structures is an abelian category.

Theorem 1.2.6 (Main theorem of Hodge II). Let U be a smooth variety. Then Hn(U, Z) is functorially
a mixed Hodge structure.

1.3 Hypercohomology spectral sequences

Before we discuss the proof of the main theorem, we will discuss this important tool. Let X be a
smooth projective variety. Then recall that

Hn(X, C) =
⊕

p+q=n

Hq(X,ΩpX).

This implies that the Hodge-de Rham spectral sequence degenerates. Recall1 that the Hodge-de
Rham spectral sequence is given by

E
p,q
1 = Hq(ΩpX) =⇒ Hp+q(X, C).

This is a hypercohomoology spectral sequence.

Definition 1.3.1. Let (K, F) be a filtered complex of abelian sheaves with F decreasing and finite
on each component. Then the hypercohomology spectral sequence for (K, F) is given by

E
p,q
1 = Hp+q(X, GrpF K) =⇒ Hp+q(X,K).

In our case, the Hodge-de Rham spectral sequence is the hypercohomology spectral sequence
for (Ω•X, F), where F is the filtration bête and is defined by

Fp(K)n =

{
Kn n > p

0 n < p.

This gives us Ep,q
1 = Hp+q(X,ΩpX[−p]). Using the holomorphic Poincaré lemma, the map

C→ Ω•X is a quasi-isomorphism, and this gives us the Hodge-de Rham spectral sequence.
We will now say some things about filtered complexes.

1Or look up on
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1. If (K, F)→ (K ′, F ′) is a morphism of filtered complexes, there is an induced map of hyperco-
homology spectral sequences.

2. If (K, F)→ (K ′, F ′) is a filtered quasi-isomorphism (which means it induces quasi-isomorphisms
on all associated graded complexes), then the map of hypercohomology spectral sequences
is an isomorphism.

3. F induces a filtration on Hk(X,K) given by

FpH∗(X,K) = Im(H∗(X, Fp(K))→H∗(X,K)).

4. Every complex K carries a canonical filtration τ, which is an increasing filtration and is given
by

τp(K)
n =


0 n > p

ker dp n = p

Kn n < p.

In this case, the associated graded pieces are given by Grτp K = Hp(K)[−p]. If K → K ′ is a
quasi-isomorphism, then (K, τK)→ (K ′, τK ′) is a filtered quasi-isomorphism. Thus we can
discuss canonical filtrations of items in the derived category.

1.4 Hodge theory for smooth varieties

Let U be a smooth variety. We will find a good compactification of U:

1. First we consider the Nagata compactification X ′.

2. Then resolve the Nagata compactification using resolution of singularities, and now we have
a good compactification X.

Definition 1.4.1. A compactification X of U is good if D = X \U is a simple normal crossings
divisor. This means that D locally analytically looks like a union of hyperplanes.

Now that we have a good compactification, we know D is a union of smooth irreducible
hypersurfaces

D =

S⋃
i=1

Di.

For all I ⊂ [s], write DI =
⋂
i∈IDi. If I is empty, then D∅ = X. Now write D(i) :=

⊔
|I|=iDi. Also

denote the inclusion j : U ↪→ X.
We want to study H∗(U, CU) = H∗(U,Ω•U) = H∗(X,Rj∗Ω•U). But now the higher pushfor-

wards vanish, and so we obtain H∗(X, j∗Ω•U). Our strategy will be to study the logarithmic de
Rham complex

Ω•X(logD) ⊂ j∗Ω•U,

which are defined as follows:

• Logarithmic 1-forms are locally spanned by dzi
zi

for 1 6 i 6 t and dzi for t+ 1 6 i 6 n.
Here, we choose coordinates such that D = {z1 · · · zt = 0}.

• Logarithmic k-forms are given by ΩkX(logD) =
∧kΩ1

X(logD).

In fact, the inclusion Ω•X(logD) ↪→ j∗Ω•U is a quasi-isomorphism, so we can instead study the
hypercohomology H(X,Ω•X(logD)).
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Kevin (Nov 04): Hodge theory for smooth varieties II

Recall that last time, we considered a smooth compactification X ⊇ U of a smooth variety, and the
boundary is a simple normal crossings divisor. We have this chain of quasi-isomorphisms

Rj∗CU → Rj∗Ω
•
U ' j∗Ω

•
U ← Ω•X(logD).

Therefore it suffices to study H∗(X,Ω•X(logD)). We are still atempting to prove Theorem 1.2.6.

2.1 Setting everything up

Definition 2.1.1. The weight filtration W on Ω•X(logD) is defined by

Wm(Ω•X(logD)) =

〈
α∧

d
dzi1

∧ · · ·∧ d
dzim

〉
,

where α is a holomorphic form on X and z1, . . . are the local equations for D.

Recall the definitions of DI,D(i) from last time. We will denote the natural maps aI : DI → X

and ai : D(i) → X.

Definition 2.1.2. Let I ⊂ [s] with |I| = m. The residue map resI : WmΩ•X(logD)→ aI∗Ω
•
DI

[−m] is
defined by

α∧
d

dz1
· · ·∧ d

dzm
+α ′ 7→ α|DI .

Here, α is holomorphic, DI = {z1 · · · zm = 0}, and α ′ has fewer poles.

The important fact is that resI vanishes on Wm−1 and therefore descends to a map

resI : GrWm Ω•X(logD)→ aI∗Ω
•
DI

[−m].

Lemma 2.1.3. Define

resm =
⊕

|I|=m

resm : GrWm Ω•X(logD)→ a∗mΩ
•
D(m) [−m].

This map is an isomorphism.

Corollary 2.1.4.

7
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1. We have the identity

Hi(GrWm Ω•X(logD)) ∼=

{
am∗CD(m) i = m

0 otherwise.

2. The map (Ω•X(logD),W)
id−→ (Ω•X(logD), τ) is a filtered quasi-isomorphism.

Now we want to upgrade our known quasi-isomorphisms to filtered quasi-isomorphisms. By
the previous discussion, we now have filtered quasi-isomorphisms

(Rj∗ZU, τ)⊗Z C = (Rj∗CU, τ)→ (j∗Ω
•
U, τ)← (Ω•X(logD), τ)→ (Ω•X(logD),W).

This identifies all of the hypercohomology spectral sequences. The final geometric fact that we
need is the following:

Lemma 2.1.5. The identification Rmj∗CU ∼= am∗CD(m) is in fact defined over Z. This means that the
diagram

Rmj∗CU am∗CD(m)

Rmj∗ZU am∗ZD(m)(−m)

∼

∼

commutes.

2.2 An exercise in homological algebra

The first thing we will do is consider the weight spectral sequence, which is just the hypercohomology
spectral sequence for (Ω•X(logD),W). Here, we have

E
−p,q
1 = H−p+q(X, GrWp Ω•X(logD)) =⇒ H−p+q(U, C).

But we can identify the E1-page with

H−2p+q(X,ap∗(Ω•D(p))) ∼= H−2p+q(D(p), C).

But now we see that everything is actually defined over Q, so we now have a spectral sequence

E
−p,q
1 = H−2p+q(D(p), Q)(−p) =⇒ H−p+q(U, Q).

Everything here actually has a Hodge structure. But now the bête filtration F induces filtrations
on the weight spectral sequence:

1. (first direct filtration) (Fd);

2. (second direct filtration) (Fd∗);

3. (inductive filtration) (Fr).

Some facts about these filtrations are:

1. Fd ⊂ Fr ⊂ Fd∗ ;

2. The differentials dr are compactible with the direct filtrations;
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3. If dr is strictly compatible with Fr for r ∈ {0, . . . , r0 − 3}, then Fd = Fr = Fd∗ for all
r ∈ {0, . . . , r0}. Here, f : (H1, F1) → (H2, F2) is strict if for all a ∈ Fp2 ∩ Im f, then f ∈ Im F

p
1 .

The important thing is that all morphisms of mixed Hodge structures are strict.

4. This is basically just the previous fact for r0 =∞.1

We are now ready to state the main theorem:

Theorem 2.2.1.

1. Fd = Fr = Fd∗ for all terms of the weight spectral sequence.

2. The filtration W on Hk(U, C) comes from a filtration on Hk(U, Q). Moreover, neither W nor F
depends on the choice of compactification X.

3. The filtrations W[k] defined by W[k]m =Wm−k and F make Hk(U, Z) a functorial mixed Hodge
structure.

Lemma 2.2.2. The hypercohomology spectral sequence for (GrWm Ω•X(logD), F) degenerates at the E1-page.
Moreover, the induced filtration on E−p,q

1
∼= H−2p+q(D(p), C) is q-opposite.

Proof. We know that (GrwmΩ•X(logD), F) ∼= am∗(Ω•D(m) , F)[−m]. By the Hodge decomposition for
D(m), we obtain degeneration at E1, and by the Hodge structure on H−2p+q(D(p), C) we obtain
q-oppositeness.

Lemma 2.2.3. The differential d1 is strictly compatible with F.

Proof. Because d1 is a morphism of Hodge structures, we are done.

Lemma 2.2.4. The filtration Fr on E−p,q
2 is q-opposite.

Proof. We know that E−p,q
2 = H(E−p−1,q

1 → E
−p,q
1 → E

−p+1,q
1 ). Because Fr is the induced

filtration, we are done by the previous lemma.

Lemma 2.2.5. For all r > 0, dr is strictly compatible with Fr. Moreover, for all r > 2, dr = 0.

Proof. The r = 0 case follows from the first lemma. For r = 1, this is the second lemma. Finally, to
prove degeneration, we can simply proceed by induction. We know that Fd = Fr = Fd∗ on Er. But
now by the second fact, we know that dr is compatible with Fr. Thus we have

dr(E−p,q
r ) = dr

 ∑
a+b=q

Fq(E−p,q
r )∩ Fb(E−p,q

r )


⊂
∑

a+b=q

Fa(E−p+r,q−r+1
r )∩ Fb(E−p+r,q−r+1

r )

= 0.

1Kevin did not give a precise statement because he ran out of space on the board.
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By the final fact, we see that

GrW[−p+q]
p H−p+q(U, C) ∼= E

−p,q
2

is a subquotient of H−2p+q(D(p), Q)(−r). Therefore, (Hk(U, Q),W[k], F) is a mixed Hodge
structure.

Finally, we discuss the functoriality of the mixed Hodge structure. To do this, we want the
filtrations

(Ω•X(logD),W, F)

to be functorial. For U→ V , we want to prove that Hk(U, C) is functorial. We also compactify the
morphism to X→ Y. But now we know that Hk(V , C)→ Hk(U, C) comes from

Hk(Y,Ω•X(logDX))→Hk(Y,Ω•Y(logDY)).

All we need to do is to show that there is a compactification that works, and this is given by
resolving X and taking Y to be the closure of the graph.

To prove independence of the compactification, suppose X1,X2 are compactifications. Then let
X ′ resolve X1,X2 simultaneously, and then X ′ → U ⊂ X1 ×X2 is a resolution of singularities. By
functoriality, the isomorphism

Hk(X,Ω•X(logDX)) ∼= Hk(X ′,Ω•X(logDX ′))

is an isomorphism of mixed Hodge structures.
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Caleb (Nov 11): Cohomological descent

Definition 3.0.1. A simplicial object in a category C is a functor ∆op → C, where ∆ is the category
with objects [n] for n > 0 and morphisms are order-preserving set maps. There are distinguished
functions di : [n− 1]→ [n] skipping i and si : [n+ 1]→ [n] repeating i.

The maps di, si induce maps di : Xn → Xn−1 and Si : Xn → Xn+1 on a simplicial object. We
will refer to simplicial objects in C by S(C) and denote Sn(C) := ∆

op
6n → C and S+(C) := ∆

op
>−1 →

C given by adding [−1] = ∅ to ∆.
For various reasons, we will assume that C has all finite products and fiber products. If this is

not sufficient, add assumptions until what is written here makes sense.

3.1 Coskeleta

Given a simplicial object X• ∈ S(C), let skn(X) ∈ Sn(C) be the n-th truncation of X•.

Definition 3.1.1. Let Y• ∈ Sn(C). Then the coskeleton functor is defined by

HomSn(C)(sk(X•), Y•) ' HomS(C)(X•, coskn(Y•)).

Example 3.1.2. Let n = 0 and Y0 ∈ C. Given X0 → Y0, consider

X2 X1 X0 Y0.f

We obtain maps X0 → Y0 × Y0 and X2 → Y0 × Y0 × Y0, and so on. Then we define

cosk0(Y0)n = Yn

and give it the natural simplicial structure.

For an example of a simplicial object, if Y−1 is a topological space and Y0 =
⊔
Ui, where Ui

form an open cover of Y−1, then the Yi are the i-intersections.
Now choose Y• ∈ Sm(C). Set

coskm(Y•)n = lim←−
skm(∆[n])

Yk = lim
[k]→[n]
k6m

Yk.

11
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Given a map skn(X•)→ Y•, we need to define a map Xn → lim[k]→[n] Yk. For every ϕ : [k]→ [n]
and k 6 m, we have a morphism

Xn
ϕ∗−−→ Xk → Yk

for k 6 n.

Proposition 3.1.3. The map X• ← skm(coskm(X•)) is an isomorphism.

The proof essentially follows from the construction. For n > m, the single copy of Yn
corresponding to [n]→ [n] determines everything.

Remark 3.1.4. The skeleton skm also has a left adjoint, which is the inclusion Sn(C)→ S(C).

The adjunction id = coskmskm is not generally an isomorphism, but is an isomorphism for
n-coskeleta when 0 6 n 6 m.

3.2 Hypercoverings

Definition 3.2.1. Let P be a class of morphisms containing all isomorphisms and stable under
base change and composition. Then a simplicial object X• of C is a P-hypercovering if for all n > 0
(or n > −1), the natural adjunction X• → coskn(skn(X•)) induces Xn+1 → coskn(skn(X•))n+1 is
in P.

Example 3.2.2. The map cosk0(S
′/S)→ S is a P-hypercovering if and only if S ′ → S is in P.

For example, if P is a surjective condition for topological spaces, then S ′ =
⊔
Ui � S obtains

the Čech construction.
We may compute cohomology using hypercoverings. Define Ȟi(S,F) = Hi(Moore(F(S))),

where the Moore complex was defined in a different seminar by Caleb. If we take the limit over
all hypercoverings, we recover the derived functor cohomology.

We are most interested in hypercoverings of singular schemes, which we will be used to
construct Hodge structures.

Definition 3.2.3. A simplicial object X• ∈ S(C) is split if there exist subobjects NXj with isomor-
phisms ⊕

[n]�[m]

NXm → Xn

Remark 3.2.4. In the case of simplicial abelian groups, we have

NXn =

n−1⋂
i=0

kerdi.

Under nice conditions, split objects have unique splittings. A nice fact is that given split
n-truncated objects skn(X) and NXn+1 → (coskn(skn(X)))n+1, we can recover Xn+1. This is
because we know that

Xn+1 =
⊕

[n+1]→[m]

NXm

and the map to the coskeleton tells us what the maps out of Xn+1 are.

Theorem 3.2.5. If skn X is split, then there exists f : X ′ → X with skn(f) an isomorphism and X ′ split.
Furthermore, if X is an augmented P-hypercover, so is X ′.
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From now on, to be safe, we will assume that we are in one of the following cases:

1. C = Top/B with P the proper surjective morphisms;

2. C is the category of schemes étale over some base with P the surjective étale morphisms;

3. C is a topos with P the epimorphisms.

Corollary 3.2.6. For m > 0 and an augmented m-truncated P-hypercovering Z in one of the first
two situations, the face and degeneracy maps for Z are proper or étale. If X• → S is a proper or étale
hypercovering, then all structure maps are proper or étale.

Theorem 3.2.7. Let S be a separated scheme over a field k. Then there exists a dense open immersion
S ↪→ S into a proper k-scheme and an augmented proper hypercovering X• → S such that Xn is a projective
regular k-scheme and the part of Xn lying over S \ S is a (strict) normal crossings divisor.

In de Jong’s alterations paper, he mentions that this result as an application. Of course, in
characteristic 0, we simply need resolution of singularities, but in positive characteristic, de Jong’s
alterations theorem is needed.

Proof. First, to construct the open immersion, we use Nagata’s compactification theorem. Of
course, if we are interested in quasiprojective varieties, then this is unnecessary. The upshot is
that now we have a dense open immersion S ↪→ S into a proper k-scheme.

By Johan, we obtain a regular X0 → S wich is a proper surjection, where the preimage of
S \ S is a strict normal crossings divisor. Now given X6m, we know that coskm Xm is a proper
hypercovering of S. We know that each term is S-proper. By Johan applied to (coskn X6m)m+1,
we obtain X ′ proper over (coskm X6m)m+1 such that the part over S \ S is a normal crossings
divisor.

Now set NXm+1 = X
′ and take the construction

Xn+1 =
⊕

[n+1]�[m]

NXm,

and here we obtain an (m+ 1)-truncated solution. By induction, we are done.

3.3 Cohomological descent

Let C be a site with the topology generated by E-morphisms for some class of morphisms E. Let
X• be a simplicial object of C. Set X̃• to be the category sheaves on the following site:

• The objects are E-morphisms U→ Xn;

• The morphisms are commutative squares

U U ′

Xn X ′n

f

where f is any morphism in C;

• A covering of [Ui → Xn] is given by any covering of Ui.



14

This is meant to formalize the notion of sheaves on X•. A map U• : X• → Y• induces maps
U•∗ : X̃• → Ỹ• and U∗• : Ỹ• → X̃•.

Now let a : X• → S. We have a∗ : S̃• → X̃•. Here, we have (a∗F)n = a∗nF. Also, we have
a∗ : X̃• → S̃•, and a∗F• is the equalizer of

a0∗F
0 ⇒ a1∗F

1.

On the level of derived categories, we obtain a∗ : D+(S)→ D+(X•) and Ra∗ : D+(X•)→ D+(S).

Definition 3.3.1. A morphism a : X• → S is a morphism of cohomological descent if the natural
transformation id→ Ra∗ ◦ a∗ on D+(S) is an isomorphism.

Note that the adjunction of (a∗,Ra∗) means that equivalently, a∗ : D+(S) → D+(S•) is fully
faithful.

Definition 3.3.2. A morphism a is universally of cohomological descent if every base change
aS ′ : X• ×S S ′ → S ′ is of cohomological descent.

Definition 3.3.3. A map of spaces a0 : X0 → S is a map of cohomological descent if cosk0(a0) : cosk0(X•/S)→
S is of cohomological descent.

Theorem 3.3.4. Morphisms universally of cohomological descent form a Grothendieck topology.

We now discuss some properties and applications. Unfortunately, because of time reasons, we
cannot review any descent theory.

First, the condition that id → Ra∗ ◦ a∗ is an isomorphism on D+(S) is equivalent to the
isomorphism

F ∼= a∗a
∗F = ker(a0∗a

∗
0F → a1∗a

∗
1F)

and Ria∗(a∗F) = 0. Note that this is a derived version of ordinary descent theory.

Theorem 3.3.5. Let X• be a simplicial space. For any complex K ′ in D+(X•), there exists a spectral
sequence

E
p,q
1 = H1(Xp,K ′|Xp) 7→Hp+q(X•K

′).

On the 0-skeleton, we have

Theorem 3.3.6. Let X → S be a proper surjective of either topological spaces or schemes with the étale
topology. Then X→ S is univerally of cohomological descent.

Theorem 3.3.7. Let X• → S be a proper hypercovering. Then it is universally of cohomological descent.

All of these theorems have extremely long proofs.
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Kevin (Nov 18): Applications and examples of mixed
Hodge structures; Hodge theory for all varieties

4.1 End of Hodge II

The main theorem is as follows:

Theorem. The weight spectral sequence

E
−p,q
1 = H−2p+q(D(p), Q)(−p) =⇒ H−p+q(U, Q)

degenerates at the E2 page. The Hodge structures on E2 induce a mixed Hodge structure on H−p+q(U, Q).

Corollary 4.1.1. If Hk(U, C) has nonzero weight (p,q), then 0 6 p,q 6 k and k 6 p+ q 6 2n.

Proof. We consider the spectral sequence. All terms that do appear must lie above a line of slope
−2.1 The lines of slope −1 are the cohomology, and so by staring at this for long enough, we
obtain the desired result.2

Corollary 4.1.2.

1. If X is any smooth compactification of U, then Im(Hk(X, Q)→ Hk(U, Q)) is the bottom weight part
Wk(H

k(U, Q)).

2. If Y → U ↪→ X is any morphism with Y smooth and proper, then

Im(Hk(U, Q)→ Hk(Y, Q)) = Im(Hk(X, Q)→ Hk(Y, Q)).

Proof.

1. We will use the rising sea (Grothendieck) fact that Im(Hk(X, Q) → Hk(U, Q)) does not
depend on the choice of X. Therefore we may assume that X \U is a simple normal crossings
divisor. Now the weight spectral sequence for X maps to the weight spectral sequence for U.
But recall that the weight spectral sequence for X only consists of Hk(X) in the rightmost
column, while the weight spectral sequence for U has nontrivial things to the left. Therefore,

Im(Hk(X, Q)→ Hk(U, Q)) = E0,k
2 =Wk(H

k(U, Q)).

1Kevin didn’t type this, so I’m not typing it either.
2Kevin said he was not going to do this, and then he confused me.

15
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2. Recall that maps of mixed Hodge structures are strict. This implies that

Im(Hk(U, Q)→ Hk(Y, Q)) = Im(Wk(H
k(U, Q))→ Hk(Y, Q)).

By the previous part of this corollary, we are done.

Theorem 4.1.3 (Global invariant cycles theorem). If f : U→ S is smooth and proper with S smooth and
separated, and X is a smooth compactification ofU, then Im(Hk(X, Q)→ Hk(Us, Q)) = Hk(Us, Q)π1(S,s).

Proof. We will only prove the projective case. First, we use the fact thatHk(U, Q)� Hk(Us, Q)π1(S,s).
This follows from the degeneration of the Leray spectral sequence for smooth projective mor-
phisms, which gives

Hk(U, Q)� H0(S,Rkf∗QU) ∼= Hk(Us, Q)π1(S,s).

Using the second corollary for Us ↪→ U ↪→ X, we obtain

Hk(Us, Q)π1(S,s) = Im(Hk(U, Q)→ Hk(Us, Q))

= Im(Hk(X, Q)→ Hk(Us, Q))

using the previous corollary. In the general case, we dominate U by something projective.

Remark 4.1.4. Using the theorem, we can prove the degeneration of the Leray spectral sequence
for smooth proper morphisms.

Now we will do some computations.

1. Consider U = C× ↪→ X = P1. Then D = ptt pt. The only nonzero differential is

Q2 = H0(D)(−1)→ H2(P1) = Q,

and by the cohomology of C×, we obtain a Q in the (0, 0) position and a Q in the (−1, 2)
position. Thus H0 is a pure Hodge structure, but the first cohomology H1(C×, Q) =

GrW2 H1(U, Q) actually lives in weight 2.

2. Consider a punctured Riemann surface3 U = Rg \D, where D is a disjoint union of p points.
There is only one nontrivial differential, which is surjective, so

GrW1 H1(U, Q) = Q2g, GrW2 H1(U, Q) ∼= Qp−1.

4.2 Hodge III

Kevin claims that despite the paper being 70 pages, the actual content is only two pages. Today,
we will discuss the other 68 pages.

Our goal is to construct a mixed Hodge structure on Hk(X, Q) for any complex variety X. Our
strategy is to take a proper hypercovering Y• → X such that each Yn is smooth. We will use
cohomological descent, which will tell us that

Hk(X, Q) ∼= Hk(Y•, Q).

The right hand side is approximated by Hk(Yn, Q) (in the sense that there is some spectral
sequence converging to Hk(Y•, Q)), and each of the terms has a mixed Hodge structure, which
will induce a mixed Hodge structure on Hk(Y•, Q).

Now recall the following from Caleb’s lecture:
3Kevin has been posessed by the spirit of D.H. Phong.
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• A simplicial variety is a sequence of varieties Y• with face and degeneracy maps (a simplicial
object in the category of varieties).

• An augmented simplicial variety Y• → X is simply a simplicial variety Y• with a map Y0 → X.

• A sheaf F• on a simplicial variety is a collection of sheaves Fn on each Yn equipped with
maps F•(p) : Fn → p∗Fm, where p : [n]→ [m] is a map in the simplex category. Of course,
these maps are required to be compatible.

Remark 4.2.1. If S• is a constant simplicial variety, then a sheaf on S• is a cosimplicial sheaf on S.

Given a map f : Y1
• → Y2

•, we can define f∗, f∗ pointwise. If we have an augmentation a : Y• → X,
then we define (a∗F)n = a∗nF, while we define

a∗G
• = ker(a0∗G

0 ⇒ a1∗G
1).

When X is a point, then a∗ = Γ is the global sections functor. We may then define the right derived
functors

RkΓ(−) = Hk(Y•,−).

Definition 4.2.2. A proper hypercovering Y• → X is a hypercovering such that

Yn+1 → (coskn skn Y•)n+1

is proper and surjective for all n > −1. For n = −1, this says that Y0 → X is a proper surjection.

Theorem 4.2.3 (SGA4). Proper hypercoverings satisfy cohomological descent. This means that F →
Ra∗a∗F is an isomorphism.

Corollary 4.2.4. If Y• → X is a proper hypercovering, then

Hk(X,F) ∼= Hk(X,Ra∗a∗F) ∼= Hk(Y•,a∗F).

Thus we can replace X by some simplicial resolution (proper hypercovering) Y• → X and then
do all of our computations on Y•. Then whatever structure we have on Y• will descends to X.

4.3 Mixed Hodge complexes

Apparently all of the homological algebra we did in Hodge II is very general, so we can rip it off.4

This is exactly what we will do now.

Definition 4.3.1. The filtered derived category DF(C) of an abelian category C is constructed by
taking the category of filtered complexes in C, identifying homotopic maps (that respect the
filtrations), and inverting filtered quasi-isomorphisms.

The bifiltered derived category DF2(C) is defined in the same way, except we have two filtrations.

Definition 4.3.2. For A ∈ {Z, Q, R}, an A-Hodge complex of weight n is the following data:

1. A complex KA ∈ D+(A) such that Hk(KA) is finitely generated;

2. A filtered complex (KC, F) ∈ D+F(C) (where F is a decreasing filtration) and an isomorphism
α : KA ⊗A C→ KC in D+(C).

4Kevin really felt like ripping things off today.
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This data must satisfy the following conditions:

1. The differential d on KC is strict with respect to F.

2. For all k, (Hk(KA), F) is a Hodge structure of weight n+ k.

Definition 4.3.3. Let X be a space. An A-Hodge complex of sheaves of weight n is the following data:

1. A complex KA ∈ D+(X,A);

2. A filtered complex (KC, F) ∈ D+F(X, C) and an isomrphism α : KA ⊗A C→ KC.

We also require that (RΓ(KA),RΓ((KC, F)),RΓ(α)) is a Hodge complex of weight n.

Example 4.3.4. If X is smooth and proper, then (ZX, (Ω•X, F),α) is a Hodge complex of sheaves of
weight 0. Here, α is the map CX ' Ω•X.

Definition 4.3.5. A mixed Hodge complex is the following data:

1. A complex K ∈ D+(Z) such that Hk(K) is finitely generated;

2. A filtered complex (KQ,W) ∈ D+F(Q) (with W an increasing filtration) and an isomorphism
α : K⊗Z Q ∼= KQ;

3. A bifiltered complex (KC,W, F) ∈ D+F2(C) and an isomorphism of filtered complexes
β : (KQ,W)⊗Q C→ (KC,W).

We require that for all n, (GrWn KQ, (GrWn KC, F),β) is a Q-Hodge structure of weight n.

Definition 4.3.6. A mixed Hodge complex of sheaves is the following data:

1. A complex K ∈ D+(X, Z) such that Hk(X,K) is finitely generated;

2. A filtered complex (KQ,W) ∈ D+F(X, Q) and an isomorphism K⊗Z Q ' KQ;

3. A bifiltered complex (KC,W, F) ∈ D+F2(X, C) and an isomorphism of filtered complexes
β : (KQ,W)⊗Q C→ (KC,W).

We require that for all n, (GrWn KQ, (GrWn KC, F),β) is a Q-Hodge complex of sheaves of weight n.

Here are some facts about these things:

1. If (K, (KQ,W),α, (KC,W, F),β) is a mixed Hodge complex of sheaves, then

(RΓ(K), (RΓ(KQ),W),RΓ(α), (RΓ(KC),W, F),RΓ(β))

is a mixed Hodge complex.

2. For a smooth variety U, the data (Rj∗ZU, (Rj∗QU, τ),α, (Ω•X(logD),W, F),β) is a mixed
Hodge complex of sheaves on X. Here, β is defined as the zigzag

(Rj∗QU, τ)⊗Q C (j∗Ω•U, τ) (Ω•X(logD), τ)

(Rj∗CU, τ) (Rj∗Ω•U, τ) (Ω•X(logD),W)

3. The main theorem of Hodge II says that (Hk(MHC),W[k], F) is a mixed Hodge structure.
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Kevin (Dec 02): Hodge theory for all varieties II

Recall our geometric setup, where we have a proper hypercovering Y• → X of X by smooth
varieties. We may assume that Y• ↪→ Y•, where Yn = Yn tDn and Dn is a simple normal
crossings divisor. Because proper hypercoverings satisfy cohomological descent, we can work on
Y•. Thus we need to do Hodge theory on simplicial varieties.

5.1 Existence of mixed Hodge structures

Definition 5.1.1. A mixed Hodge complex of sheaves on a simplicial space Y• is a tuple

(K••, (K••Q ,W),α, (K••C ,W, F),β)

of sheaves on Y• such that we have a mixed Hodge complex of sheaves on each Yn. Here, the first
grading is the degree in the complex and the second is the (co)simplicial degree.

Example 5.1.2. An example of a mixed Hodge complex of sheaves on Y• is given by

(Rj∗ZY• , (Rj∗QY• , τ6),α, (Ω•
Y•

(logD•),W, F),β).

Taking the derived functor of global sections on each Yn, we obtain a cosimplicial mixed Hodge
complex.

Now we wamt to obtain a complex (in the usual sense) with the same cohomology as a given
cosimplicial complex. Suppose we have a sheaf F• on Y•. We find some injective resolution
F• ↪→ K••. Next, we consider the cosimplicial complex

Kpq := Γ(Yq,Kpq),

and this gives us a double complex K•• using the Moore complex. Finally, from a double complex
we obtain an ordinary complex

sKn =
⊕

p+q=n

Γ(Xq,Kpq)

with differential
dxpq = dK(xpq) + (−1)p

∑
i

(−1)iδi(xpq).

19
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Also, we have
Γ(Y•,K••) ' s(K••) = sΓ•(Y•,K••)

and also RΓ(Y•,F•) ' sRΓ•(Y•,F•).

Remark 5.1.3. There exists a filtration L on sK• given by Lr(sK)• =
⊕
q>r K

pq. This gives us a
spectral sequence

Est1 = Ht(Xs,Fs) =⇒ Hs+t(X•, F•).

Somehow all of the homological algebra we did applies to bounded below complexes of
sheaves. The good thing about this is that now sRΓ•Rj∗ZY• computes the cohomology of X. All
we need to do is to prove that this is a mixed Hodge complex, and this means that we need to
become Deligne.

Theorem 5.1.4 (Main theorem). Let K•• be a cosimplicial mixed Hodge complex. Then there exists a
natural filtration δ(W,L) on sK• such that (sK•, δ(W,L), F) is a mixed Hodge complex.

Proof. Define
δ(W,L)n(sK•Q) =

⊕
p,q

Wn+p(K
pq
Q

).

Then we can compute
Grδ(W,L)
n (sK•Q) =

⊕
p

GrWn+p K
•p
Q

[−p].

But now each K•p
Q

is a mixed Hodge complex, and thus each of the associated graded pieces is a
pure Hodge complex of weight n. This implies that sK• is a mixed Hodge complex.

Applying the main theorem to sRΓ•Rj∗ZY• , we see that Hn(X, Z) is a mixed Hodge structure.
This is functorial because it is possible to construct compatible proper hyperresolutions, and this
implies that it is unique.

If X is smooth, we can choose the proper hyperresolution to simply be X itself, so we have
the same mixed Hodge structure as before. From the mixed Hodge complex, we have a weight
spectral sequence

E−a,b
1 =

⊕
p+2r=b
q−r=−a

Hp(D
(r)
q , Q)(−r) =⇒ H−a+b(X, Q).

This spectral sequence degenerates at E2, and the differentials on E1 are sums of Gysin maps.

Proposition 5.1.5. All of the Hodge numbers hst that appear in Hn(X, Q) satisfy 0 6 s, t 6 n.

Proof. First, all of the E−a,b
1 have nonnegative Hodge components. To prove the upper bound, if

Hp(D
(r)
q , Q)(−r) contributes to Hn(X, Q), then p+q+ r = n. In particular, p+ r 6 n and any hs

′t ′

appearing in Hp(D(r)
q , Q) has 0 6 s ′, t ′ 6 p, so when we twist by (−r), we get s, t 6 p+ r 6 n.

Proposition 5.1.6. If X is proper, then all of the weights of Hn(X, Q) are at most n.

Proof. If X is proper, then each Yn is already proper, so each Dn = ∅. Therefore, considering the
spectral sequences, we only have nonzero terms for r = 0, so the spectral sequence becomes

E−a,b
1 = Hb(Y−a, Q) =⇒ H−a+b(X, Q).

If Hb(Y−a, Q) contributes to Hn(X, Q), then we must have b 6 n.
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5.2 Hodge characteristic

Given a variety X = UtZ, then
χc(X) = χc(U) + χc(Z).

For complex varieties, χ = χc, but here we use compactly supported cohomology. For example, if
X is compact, consider the long exact sequence

· · · → Hn(X, Z)→ Hn(X)→ Hn(Z)→ · · ·

and then use the fact that Hnc (U) = Hn(X,Z). Also note that

χc(X× Y) = χc(X)χc(Y).

This tells us that the compactly supported Euler characteristic is motivic and defines a ring
homomorphism

χc : K0(Var)→ Z.

Here, K0(Var) is the Grothendieck ring of varieties with relations [X] = [U] + [Z] and [X× Y] = [X][Y].
This loses a lot of information, however, so we construct something better.

Theorem 5.2.1. Let Y ⊂ X be a locally closed subvariety. There is a natural mixed Hodge structure on
each Hn(X, Y, Z) respecting the long exact sequence of the pair (X, Y).

Theorem 5.2.2. The (relative) Künneth theorem respects mixed Hodge structures.

Example 5.2.3. We would like to construct a mixed Hodge structure on Hnc (A1). We know this is
Q in degree 2 and vanishes everywhere else. There is an isomorphism of mixed Hodge structures
H2
c(A

1) ∼= H2(P1), and thus H2
c(A

1) is pure of type (1, 1). By the Künneth formula, H2n
c (An) is

pure of type (n,n).

Recall that any Hodge structure V defines an element [VQ] ∈ K0(HS) by taking graded pieces.
Now define

Phn([VQ]) =
∑
p,q

hp,qupvq.

Definition 5.2.4. The Hodge characteristic with compact support is the ring morphism

χcHdg : K0(Var)→ K0(hs) X 7→
∑
i

(−1)i[Hic(X, Q)].

Definition 5.2.5. The Hodge-Euler polynomial with compact support is the ring morphism

ecHdg : K0(Var)→ Z[u, v] X 7→ Phn(χ
c
Hdg(X)).

Remark 5.2.6. If X is smooth and proper, then the Hodge-Euler polynomial is a generating function
for the Hodge numbers of X.

Example 5.2.7. Let X be a torix variety and let sk be the number of torus orbits of dimension k.
Therefore, we know that

ecHdg(X) =
∑
k

ske
c
Hdg((C

×)k).

By the Künneth formula and the computation for A1, we have

ecHdg(X) =
∑
k

sk(uv− 1)k.

In the case when X is smooth and proper, the Poincaré polynomial is
∑
k sk(t

2 − 1)k.
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Example 5.2.8. Let X be proper irreducible nodal curve with geometric genus g. Assume that X
has p nodes. From topology, we know that H0(X, Q) = Q is pure of type (0, 0). Also, H2(X, Q) ∼= Q

is also pure of type (1, 1). It remains to compute the mixed Hodge structure on H1(X, Q). This
tells us that

ecHdg(X) = e
c
Hdg(Σg) − 2pecHdg(pt) + pecHdg(pt)

= (1 − gu− gv+ uv)02p+ p = (1 + uv) − (p+ gu+ gv),

and thus we have h00 = p,h10 = g,h01 = g.
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Caleb (Dec 09): The Ax-Schanuel conjecture for period
maps

Note: this lecture was given over the course of two seminars on two consecutive days.

6.1 Polarized Hodge structures

One motivating question is the one of when a complex torus Cg/Λ is an abelian variety, a Jacobian,
etc. When g = 1, this is always true because C/Λ is always an elliptic curve by the Weierstrass
℘-function (and is its own Jacobian). When g > 1, of course complex tori are not always algebraic.

Let C be a curve of genus g. Then the Jacobian of C is

Jac(C) = H1(C,OC)/H1(C, Z) ' H0(C,Ω1
C)
∗/H1(C, Z).

If δ1, . . . , δ2g is an integral homology basis, we can send each δi to the map
∫
δi

−. Now let
ω1, . . . ,ωg be a basis of H0(C,Ω1

C). Then H1(C, Z) embeds as a period matrix
∫
δ1
ω1 · · ·

∫
δ2g
ω1

...∫
δ1
ωg · · ·

∫
δ2g
ωg

.

Now normalize ωi so that that the period matrix has the form
(
In Ω

)
. We want conditions on

Ω such such that our complex torus is the Jacobian of a curve. Now on

H1
dR(C)⊗C = H0(C,Ω1)⊕H0(C,Ω1),

consider the alternating bilinar form

Q(ω1,ω2) =

∫
C
ω1 ∧ω2.

Given two 1-forms ω,η with period vectors u = (u1, . . . ,u2g) and v = (v1, . . . , v2g), we can
compute ∫

C
ω∧ η = uT

(
0 In

−In 0

)
v.

23
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The proof is not completely trivial, but we can take the fundamental polygon of the curve and
then use Stokes to write the integral as a sum of products of periods. If ω1, . . . ,ωg is a basis for
H0(C,Ω1

C), then ωi ∧ωj = 0 because h2,0 = 0. If we write P =
(
In Ω

)
, we see that

P

(
0 In

−In 0

)
PT = 0.

This implies that Ω = ΩT . We also see that iQ(ω,ω) > 0. Therefore the imaginary part of Ω is
positive-definite. The two conditions we have obtained are called the Riemann bilinear relations.
These are the conditions for having a principal polarization, but of course not all principally
polarized abelian varieties are Jacobians.

Given a g × 2g matrix B, a polarization is a skew-symmetric form E with BEBT = 0 and
BEB∗ > 0.By linear algebra, there exists a diagonal matrix D such that

E =

(
0 D

−D 0

)
.

If D = In, then this is a principal polarization.
Remark 6.1.1. A polarization on H1(A, C) for A a complex torus gives us an element of H2(A, Z).
By the Lefschetz (1, 1)-theorem, this is c1(L) for some line bundle L. By the positive-definite
property of the polarization, L is ample.

6.2 Lefschetz decomposition

Recall that the Hodge decomposition is

Hn(X, Z)⊗C =
⊕

p+q=n

Hp,q(X).

By Dolbeault, we know that Hp,q(X) = Hq(X,Ωp). Also, Hp,q = Hq,p. If we consider a partition
of unity (considering X as a real manifold), we obtain a Hermitian metric h on any compact
complex manifold X. Then we know h = g− iω, where ω is a nondegenerate (1, 1)-form. We
know X is Kähler if and only if ω is closed.

We know that g induces an L2-metric on forms, so we obtain the Hodge star operator

∗ : Ωk → Ω2n−k 〈α,β〉L2 =

∫
X
α∧ ∗β.

Now assume that X is compact Kähler.

Definition 6.2.1. Define the operator L : Hk(X, R)→ Hk+2(X, R) by L(α) = α∧ [ω].

Theorem 6.2.2 (Hard Lefschetz). For k 6 n, Ln−k : Hk(X, R)→ H2n−k(X, R) is an isomorphism.

Definition 6.2.3. The primitive cohomology of X is defined to be

Hn=rpr (X, R) = ker(Lr+1 : Hn−r(X)→ Hn+r+2(X)).

This terminology is justified by the fact that

Hn−r(X, R) = Hn−rpr (X, R)⊕ L(Hn−r−2(X)).

This implies that
Hk(X) =

⊕
k−2r6min(n,2n−k)

Lr(Hk−2r
pr (X, R)).

Remark 6.2.4. This decomposition works also for complex coefficients because L has degree (1, 1)
and is thus compatible with the Hodge decomposition.



25

6.3 Polarizations

Define an integral form on Hk(X, R) for k 6 n by

Q(α,β) = (−1)
k(k−1)

2

〈
Ln−kα,β

〉
= (−1)

k(k−1)
2

∫
X
ωn−k ∧α∧β.

Q takes real values, and if [ω] is integral, it takes integral values on Hk(X, Z). Also, Q is
nondegenerate, bilinear, and (−1)n-symmetric. Also, Q(Hp,q,Hp

′,q ′) = 0 unless (p,q) = (q ′,p ′).
Extending to Hk(X, C), we have ip−qQ(α,α) > 0 for nonzero α ∈ Hp,q

pr (X). We know [ω] is
integral if and only if X is a smooth projective variety over C by the Kodaira embedding theorem.

Definition 6.3.1. An integral polarized Hodge structure of weight k is given by a Hodge structure
(VZ, FpVC) of weight k and an integer-valued (−1)k-symmetric bilinear form Q on VZ such that

1. Q(Hp,q,Hp
′,q ′) = 0 unless (p,q) = (q ′,p ′);

2. ip−qQ(α,α) > 0 for all nonzero α of type (p,q).

These are called the Hodge-Riemann bilinear relations. To see why they are true, consider the
following:

1. Integrating over X is the same as taking the cap product with [X], and of course [X] has type
(n,n). Because L has type (1, 1), we need p+ p ′ = q+ q ′.

2. The Hodge star is given by

∗ω = (−1)k(k+1)2ip−q
Ln−kω

(n− k)!
.

This implies that

ip−qQ(α,α) = ip−q(−1)
k(k−1)

2

∫
X
α∧ Ln−kα

= (n− k)!
∫
X
α∧ ∗α

> 0.

6.4 Unpolarized period domains

Let π : X→ B be a smooth proper map or projective varieties (or a proper holomorphic submer-
sion).

Theorem 6.4.1 (Ehresmann). In this case, π is a locally trivial fibration as smooth manifolds. Thus
X ∼= X0 × B locally, and the fibers of X → X0 are complex submanifolds. Thus the family of complex
structures varies holomorphically.

Consider the sheaf Rkπ∗C on B. This is a local system because in the diagram,

X0 X×B U X

0 U B

π
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X×B U ∼= X0 ×U, so Hk(X0, C) ' Hk(Xb, C) for all b ∈ U. If X0 is Kähler, we may assume U = B
and then Hk(X0, C) ' Hk(Xb, C) and the Hodge numbers are the same. However, the Hodge
filtration is not the same. If Ak is the k-differential forms, recall that

FpAk(X) =
⊕
r>p

Ar,k−r.

Then the Hodge filtration is given by

FpHk(X, C) =
ker(d : FpAk(X, C)→ FpAk+1(X, C))

Im(d : FpAk−1(X, C)→ FpAk(X, C))
.

If we write bp,k = dim FpHk(Xb, C), the period map

℘p,k : B→ Gr(bp,k,Hk(X0, C))

is defined by b 7→ FpHk(Xb, C) ⊂ Hk(Xb, C) ' Hk(X0, C). By a theorem of Griffiths, this map is
holomorphic. If we take all p for a fixed k, the period mappings send b to a complete flag of
Hk(X, C). Because Xb is Kähler, Hodge symmetry implies that

FpHk(Xb, C)⊕ Fk−p+1Hk(Xb, C) = Hk(Xb, C).

The open set D ⊂ Fl(Hk(X, C)) satisfying this condition is the period domain.

6.5 Polarized period domains

Consider X→ B. Then a polarized Hodge structure on Hkpr(Xb) is given by a bilinear form Q such
that

1. FpHk(Xb, C) = Fk−p+1Hk(Xb, C)⊥;

2. Hk(Xb, C) = FpHk(Xb, C)⊕ Fk−p+1Hk(Xb, C);

3. (−1)
k(k−1)

2 ip−qQ(α,α) for nonzero α ∈ FpprH
k(Xb)∩ FqHkpr(Xb).

Flags satisfying the first condition are the domain Ď ⊂ Fl(Hkpr(Xb)) called the compact dual. The
flags satisfying all three conditions form an open subset D ⊂ Ď.

Definition 6.5.1. Define G(R) = Aut(HR,QR), where R = Z, Q, R, C.

Definition 6.5.2. A variation of Hodge structures (VZ, F•) of weight k over B consists of a local
system VZ of finite rank and a finite filtration of VC ⊗OB by holomorphic subbundles Fp such
that

• The filtration F•b of (VC)b is a Hodge filtration;

• (Griffiths transversality) If ∇ is the Gauss-Manin connection of VC ⊗OB, then ∇(Fp) ⊆ Fp−1.

We now have a global period map ϕ : B→ G(Z)\D. In the case of X→ B, we have b 7→ [Hkpr(Xb)].
If Γ contains the monodromy representation on Hkpr(Xb), then ϕ can be lifted to Γ\D.

Definition 6.5.3. Let H be a Hodge structure. Then the special Mumford-Tate group MTH is the
algebraic Q-subgroup of End(HQ) such that for any tensor power H ′ = H⊗k ⊗ (H∨)⊗`, the
rational Hodge classes of H ′ are precisely the rational vectors fixed by MTH.
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Definition 6.5.4. The Deligne torus S is the group C× considered as a subgroup of GL2(R).

Now let z act on Hp,q by zpzq. This is a real representation, so R× ⊂ S acts on HR. We also
have S1 ⊂ C×, and these give different definitions of the Mumford-Tate group.

Definition 6.5.5. The Mumford-Tate group is the smallest algebraic group over Q whose real
points contain the image of S1.

Definition 6.5.6. The big Mumford-Tate group is the same thing but with R× in place of S1.

Example 6.5.7. Consider Q(n) = (2πi)n ⊂ C of type (−n,−n). Then the big Mumford-Tate group
is Gm if n 6= 0 and {1} if n = 0, and the special Mumford-Tate group is {1}.

Example 6.5.8. Consider X = Eτ and write V = H1(Eτ, Q). Then the special Mumford-Tate group
is Q(τ) if Eτ has complex multiplication and SL2(Q) otherwise.

Definition 6.5.9. Let D be the polarized period domain and suppose x ∈ D.

1. The orbit MTx(R)x is called a Mumford-Tate subdomain.

2. If M is a normal subgroup of MTx, then M(R)x is called a weak Mumford-Tate subdomain.

3. Let π : D → Γ\D be a quotient map. For D ′ ⊂ D a weak Mumford-Tate subdomain, then
π(D ′) ⊂ Γ\D is a complex analytic subvariety, called a weak Mumford-Tate subvariety. Also,
given a period map ϕ : X→ Γ\D, we call ϕ−1π(D ′) also a weak Mumford-Tate subvariety.

Now let X/C be smooth. Write MTHZ
= MTX. Let Γ be the image of the monodromy

π1(X)→MTHZ
(Q). Let G be the identity component of the Q-Zariski closure of Γ and D = D(G)

be the associated weak Mumford-Tate subdomain, ϕ : X→ Γ\D is the period map and Ď be the
compact dual of D. Now consider

XD D

X Γ\D.

Theorem 6.5.10 (Ax-Schanuel). Let V ⊂ X× Ď be an algebraic subvariety and U be an irreducible
analytic component of U∩XD such that

codimX×Ď(U) < codimX×Ď(V) + codimX×Ď(XD).

Then the projection of U→ X is contained in a proper weak Mumford-Tate subvariety.

6.6 o-minimality

Definition 6.6.1. A structure S is a collection of subsets {Sn}n∈N of Rn such that

1. Sn is closed under finite intersections, unions, and complements.

2. The collection (Sn) is closed under finite cartesian products and projection.

3. For every polynomial P ∈ R[x1, . . . , xn], the set of roots of P is an element of Sn.

Note that if P(x1, . . . , xn) is a polynomial, the vanishing sets of P(x1, . . . , xn) − x2
n+1 are in

Sn+1, and now projecting down, we see that {P(x1, . . . , xn) > 0} ∈ Sn. We call the elements U ∈ Sn
the S-definable subsets of Rn. For U ∈ Sn,V ∈ Sm, a map f : U→ V is definable if its graph is.
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Example 6.6.2. Let Ralg be the collection of real semialgebraic subsets of Rn (the Boolean algebra
generated by {P > 0}).

Definition 6.6.3. A structure S is o-minimal if S1 = (Ralg)1 is the set of finite unions of intervals.

Example 6.6.4. The o-minimal structure Rexp is the structure generated by the graph of exp : R→
R.

Example 6.6.5. The structure Rsin is not o-minimal.

Example 6.6.6. The structure Ran generated by graphs of restrictions of real analytic functions to
open balls B(R) is o-minimal.

Example 6.6.7. The structure Ran,exp generated by Ran, Rexp is o-minimal.

Definition 6.6.8. An S-definable topological space M i a topological space M with a finite covering
{Vi} of M and homeomorphisms ϕi : V − i→ Ui ⊂ Rn such that

1. All Ui and all intersections Uij are S-definable.

2. The transition functions ϕij : Uij → Uji are S-definable.

We can also define S-definable continuous maps, but it will not be helpful to write down this
definition.

Example 6.6.9. Consider C∗ ⊂ C and let e : C→ C∗ be the covering map. Then we want to put an
Ralg-definable structure on C∗. We can do it in more than one way:

1. Simply take C∗ ⊂ C = R2 and induce the structure from C∗.

2. Define Fa = {z ∈ C | a · Im z ⊂ Re z ⊂ (1 + ε) + a Im z}. Under the map e, this covers C∗.
Taking thinner strips, we obtain an open covering of C∗, and we obtain a different structure
for each a.

Example 6.6.10. Let X be a real variety. By covering X with affines, the induced Ralg-structures on
affines give us an Ralg-structure on X.

Definition 6.6.11. Let X be a complex variety. Let Xdef be the S-definable topological space with
underlying set X(C) and then use the previous example.

We will now discuss applications of o-minimality. The first is a counting theorem of Pila-
Wilkie. We will begin by recalling the elementary theory of heights that we should have learned
as undergrads (but didn’t).

Definition 6.6.12. For r ∈ Q, define H(r) = max {|a|, |b|} where r = a
b is reduced. Then for α ∈ Qn,

write H(α) = maxH(αi).

Note that there are only finitely many points of Qn with bounded height. Now let U ⊂ Rn be
a subset. Define N(U, t) = #{α ∈ U∩Qn | H(α) 6 t}. Then let

Ualg =
⋃

Zconnected semialgebraic

Z

and Utr = U \Ualg.

Example 6.6.13. Consider Z = exy. Then Ualg is given by y = z = 0.
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Theorem 6.6.14. Let U ⊂ Rn be definable for some o-minimal structure. Then for any ε > 0, N(Utr, t) =
O(tε).

This result shows that most Q-rational points are algebraic. The next application is the
Definable Chow theorem of Peterzil-Starchenko. Recall Chow’s theorem, which says that if X is a
proper complex variety and Y ⊂ Xan is a closed complex analytic subvariety, then Y is an algebraic
subvariety.

Theorem 6.6.15 (Definable Chow). Fix an o-minimal structure and let X be any complex variety. Let Y
be a closed complex analytic subvariety whose underlying set is definable. Then Y is algebraic.
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