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Hyperkähler Manifolds

Some useful references for K3 surfaces are the book by Huybrechts and the Barth-Peters-van de
Ven book Compact Complex Surfaces and another book. For Hilbert schemes some references are
Chapter 7 of FGA Explained, Huybrechts-Lehn, some lectures of notes of Lehn, and Nakajima’s
Lectures on Hilbert Schemes. For Hilbert schemes of K3 surfaces and abelian varieties, there is
Beauville’s Varietés Kahlerienne dont la premiere classe de Chern est nulle.

1.1 Motivation

Giulia believes that hyperkähler manifolds are some of the most interesting objects in algebraic
geometry because one can actually prove results about high-dimensional hyperkähler varieties,
unlike the usual situation in algebraic geometry. Because these objects are of a differential-
geometric nature, through the course we will work over C.

Recall that in order to classify curves, for a given curve C, we want to consider the positivity
of the canonical bundle. In the first case, we know ωP1 = O(−2) < 0, in the second case of an
elliptic curve, we have ωC = OC, and finally for a higher genus curve the canonical sheaf ωC > 0
is ample.

In higher dimension, let X be a smooth projective variety. Then there exists an integer κ(X),
the Kodaira dimension of X such that

h0(ω⊗mX ) ∼ mκ(X)

for m� 0 sufficiently divisible. Of course, this is a birational invariant.
There is a classification of surfaces. Each smooth surface is birational to a minimal surface.

Here, a surface S is minimal if any birational morphism from S to a smooth surface is a birational
curve. By Castelnuovo, we know that S is minimal if and only if it does not contain a (−1)-curve.
Also, any surface dominates a minimal surface.

1.2 Hyperkähler manifolds

Example 1.2.1. If S is a surface, then κ(S) = −∞ if and only if

Pm(S) := h0(ω⊗mS ) = 0

for all m > 1. Some examples of these are P2 and P1 ×P1.
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Example 1.2.2. If S is a surface, then κ(S) = 0 if and only if Pm(S) = 0 generically and there
exists m such that Pm(S) = 1. In this case, there are two cases. First, h0(ωS) = 1, in which case
ωS = OS, and thus either h1(OS) = 0 (in which case we have a K3 surface) or h1(OS) = 2 (in which
case we have an abelian surface).

Alternatively, we may have h0(ωS) = 0, in which case there exists m > 2 (where m ∈ {2, 3, 4, 6})
such that ω⊗mS = OS. Either h1(OS) = 0, in which case we have an Enriques surface, or
h1(OS) = 1, in which case we have a bi-elliptic surface.

If T is an Enriques surface, then there exists a K3 surface S with a 2 : 1 étale cover S→ T . On
the other hand, any bi-elliptic surface has an m : 1 étale cover from an abelian surface.

Theorem 1.2.3 (Beauville-Bogomolov). Let M be a compact Kähler manifold with c1(ωM) = 0. The
there exists a finite étale cover of M by a product

Tn ×
∏

Yi ×
∏

Xi →M,

where Tn is a complex torus, the Yi are strict Calabi-Yau, and the Xi are irreducible holomorphic symplectic
(or hyperkähler).

Definition 1.2.4. Let Y be a compact Kähler manifold. Then Y is strict Calabi-Yau if π1(Y) = 1 and
H0(ΩPY) = C when p = 0, dimY and H0(ΩPY) vanishes elsewhere.

Definition 1.2.5. A compact Kähler manifold X is irreducible holomorphic symplectic if π1(X) = 1
and H0(Ω2

X) = CσX, where σX is an irreducible symplectic form. In particular, σn is a nonzero
top form and thus trivializes the canonical bundle. In addition, σ induces an isomorphism of
holomorphic vector bundles ΩX ' TX.

1.3 Some surfaces

Returning to the simplest case, we will define K3 surfaces.

Definition 1.3.1. A smooth projective surface S is a K3 surface if ωS = 0 and h1(OS) = 0.

It follows from the definition that K3 surfaces are simply connected, so they are in fact both
strict Calabi-Yau and irreducible holomorphic symplectic. Later in the course, we will see that
irreducible holomorphic symplectic varieties are the true higher-dimensional analogues of K3
surfaces.

Lemma 1.3.2. Let S be a K3 surface and f : S→ C be a dominant morphism to a smooth projective curve
C with connected fibers. Then C = P1 and the general fiber of f is an elliptic curve.

Proof. The proof is left as an exercise to the reader.

Any K3 surface S with a dominant map to a curve is called an elliptic K3. As a consequence,
any surjective map f : S→ B where B is not a point and f has connected fibers has either B = P1

or B is a singular K3. This is generalized by the following remarkable result:

Theorem 1.3.3 (Matsushita). Let X2n be an irreducible holomorphic symplectic manifold and f : X→ B
be a proper surjective morphism with connected fibers with B a normal variety. If B is not a point, then
either dimB = n and f is a Lagrangian fibration where the general fiber is an abelian n-fold or dimB = 2n
and B is a singular symplectic variety if f is not an isomorphism. In the second case, f is called a symplectic
resolution.
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Remark 1.3.4. There is another extremely difficult result of Hwang, which says that if B is smooth,
then B = Pn (if dimB = 3, apparently B is a Q-factorial Fano threefold with klt singularities).

Now we will consider some examples. Beginning in the simplest case, consider a general
section f4 ∈ |OP3(4)|. By the Bertini theorem, the general S = (f4 = 0) is smooth, and by the
adjunction formula, ωS = OS. Then we consider the exact sequence

0→ OP3(4)→ OP3 → OS → 0,

and by the long exact sequence of cohomology and the known values of cohomology for projective
space, we have H1(OS) = 0.

Example 1.3.5. A concrete example of this is the Fermat quartic, which has the equation

x4
0 + x

4
1 + x

4
2 + x

4
3 = 0.

We will see that this is an elliptic K3. The first step is to see that S contains a line ` ⊆ S ⊆ P3,
so we choose a primitive ζ8 and set x0 = ζ8x1 and x2 = ζ8x3. Now we project S from `, and
considering planes that contain `, we obtain a rational map S 99K P1. This extends over `. Finally,
we know that S∩P2 is a quartic curve containing a line `, so in fact the generic fiber of this map
is an elliptic curve.

Similarly, we may consider other complete intersections, such as the (2, 3) complete intersection
in P4 (intersection of a quadric and a cubic) and the (2, 2, 2) complete intersection in P5. In higher
dimensions, any degree (n+ 1) hypersurface Y in Pn has ωY = OY . By the Lefschetz hyperplane
theorem, this is a strict Calabi-Yau.

Example 1.3.6. Let Γ ∈ |OP2(6)| be a general sextic and S be a 2 : 1 cover of P2 branched along Γ .
We will use the covering trick, which holds for any variety X, line bundle L, and 0 6= s ∈ H0(L⊗m)
for some m > 1. Then if we set D = (s = 0), there exists a finite flat morphism f : Y → X that
is a Z/m-cover away from D and ramified along D. In this case, f∗L has a section t such that
(t = 0) ' D. Finally if X and D are smooth, so is Y, and ωY = f∗ωX((m− 1)(t = 0)).

In our example, we have ωS = f∗ωP2 ⊗OX(y
2 = Γ) = OS, so S is a K3 surface.

Example 1.3.7 (Kummer K3 surfaces). Let A be an abelian surface. It has an involution −1 with
fixed locus A[2]. Thus A/± 1 has 16 singular points that look like C2/± 1 = Spec C[x2, xy,y2] =
Spec C[a,b, c]/(ab = c2) (the A1 singularity). Now the surface S = BlA[2]A/± 1 is a K3 surface.

It is easy to see that the smooth locus of A/± 1 has a holomorphic symplectic form σA/±1.
Then we can bull back f∗σA/±1 to a holomorphic symplectic form on f−1(U) ⊆ S, and this form
extends to S. The reason for this is that BlA[2]A still has the involution −1, and S is the quotient
of BlA[2]A by this involution. If we denote this diagram by

(1.1)

BlA[2]A S

A A/± 1

q

g f

p

and denote Ã := BlA[2]A, then we obtain

ω
Ã

= f∗ωA ⊗O
(∑

Ei

)
= O

Ã

(∑
Ei

)
= q∗ωS ⊗O

Ã

(∑
Ei

)
and therefore q∗ωS = O

Ã
, so ωS = OS. The morphism f is called a symplectic resolution.
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Before we proceed, we will discuss crepant and symplectic resolutions. Let Y be a smooth
variety, so Ω1

Y is locally free. Then ωY :=
∧dimY Ω1

Y is called the canonical bundle. Then if f : X→ Y
is a birational morphism of smooth varieties, we have an exact sequence

0→ f∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.

Then we know Ω1
X/Y

is supported on the exceptional locus of f. Because Y is smooth, then the
exceptional locus is divisorial, and thus

ωX = f∗ωY ⊗OX

(∑
aiEi

)
.

Now suppose that Y is just normal with smooth locus U. Also suppose that Y \U has codimension
at least 2, so Weil divisors on U and Y are the same. There are two ways to extend ωU to Y. The
first is to denote the inclusion j : U ⊆ Y and consider the sheaf j∗ωU, which is generally not locally
free. On the other hand, we can extend the Weil divisor KU to Y, which determines a Weil divisor
KY on Y, called the canonical class.

Remark 1.3.8. In general, the Weil divisor KY is not Cartier. In fact, KY is Cartier if and only if
j∗ωU is locally free.

Now let f : X→ Y be a reolution of Y. This means f is proper and an isomorphism over U. We
want a formula relating of the form KX = f∗KY +

∑
aiEi. Unfortunately, we can only pull back

Cartier divisors, so we will assume that KY is Q-Cartier, which means that there exists m > 1 such
that mKY is Cartier. We know that f−1(U) ' U, so KX

∣∣
f−1(U)

= f∗KY
∣∣
f−1(U)

. Thus there exist
integers ai such that

mKX = f∗mKY +
∑

aiEi,

where the Ei are the divisorial components of X \ f−1(U). Formally dividing by m, we have

KX = f∗KY +
∑

aiEi.

Here, the ai are known as the discrepancies and if ai = 0, then the resolution is called crepant.

Example 1.3.9. One example of a crepant resolution is S→ A/± 1.

Example 1.3.10. Consider Y = C2N/± 1. This is the cone over the degree 2 Veronese embedding
of P2N−1. Now we will write f : X = Bl0 Y → Y, and the exceptional divisor is a P2N−1. We know
that X is the total space of O(−2), so there is a projection X→ P2N−1. Now we need to compute
a in the formula

KX = f∗KY + aE.

First note that KY = 0. This is because the standard holomorphic symplectic form on C2N descends
to the smooth locus U ⊆ Y, so we have a symplectic form on X \E. Now by the adjunction formula,
we have

KE = (KX + E)

∣∣∣∣
E

,

and thus because E = P2N−1, we have

OE(−2N) = (a+ 1)E
∣∣∣∣
E

.
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Finally, we see that OX(E)
∣∣
E
= OP2N−1(−2), and thus a+ 1 = N, so a = N− 1. In particular, f is a

crepant resolution if and only if N = 1. For N > 2, f∗ωU extends to X with a zero of order N− 1
along E. Therefore the form

f∗σU ∧ · · ·∧ f∗σU
has a zero of order N− 1 along E, so f∗σU does not extend over E.1

1.4 Hilbert Schemes of points on surfaces

Let X be a smooth quasiprojective surface. Consider the functor

HilbnX : Sch
op → Set

associating a scheme T to isomorphism classes of flat proper morphisms T ×X ⊇ Z→ T satisfying
pZt(t) = n.

Theorem 1.4.1 (Grothendieck). The functor HilbnX is representable by a quasiprojective scheme X[n]. If
X is projective, so is X[n].

Later in the course, we will sketch a construction of the Hilbert scheme, but for now we will
simply assume that it exists. A fundamental resolt about Hilbert schemes is

Theorem 1.4.2 (Fogarty). Let X be a smooth quasiprojective surface. Then X[n] is a smooth connected
quasiprojective variety of dimension 2n and there exists a morphism h : X[n] → X(n), called the Hilbert-
Chow morphism,2 which is a resolution of singularities. Here, if Z is a length n subscheme of Z, we
have

h(Z) =
∑
p∈X

`(OZ,p) · p.

Example 1.4.3. For n = 2, we are looking for ideal sheaves I ⊆ OX with quotient OZ of length 2.
At a point p, we know I/m2 ⊆ m/m2, and thus subschemes of length 2 supported on p form a
Pm/m2 = P1.

Sketch of smoothness. We need to compute the Zariski tangent space at a given point, so we have

T[Z]X
[n] = Hom0 7→Z(Spec C[ε],X[n]).

By definition, these are flat proper families of length n subschemes Z → Spec C[ε] such that
Z
∣∣
ε=0 = Z, and by a computation (for example in FGA Explained) we have

T[Z] = HomX(IZ,OZ).

To compute the dimension, we begin by considering the exact sequence

0→ IZ ⊆ OX → OZ → 0

and applying the functor HomX(−,OZ), we have an exact sequence

0→ HomX(OZ,OZ)→ HomX(OX,OZ)→ HomX(IZ,OZ)→ Ext1
X(OZ,OZ)→ Ext1

X(OZ,OZ),

1In fact, in this case, no crepant resolution exists. A necessary condition for f to be a symplectic resolution is that it is
crepant. In dimension 2, the two notions are the same.

2This may be the most studied morphism in algebraic geometry besides Pn→ Speck.
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and thus because HomX(OX,OZ)→ HomX(IZ,OZ) is the zero morphism, and Ext1
X(OZ,OZ) =

H1(OZ) = 0, we can simply compute the Ext group. Here, we have

χ(OZ,OZ) :=
2∑
i=0

(−1)i dim Exti(OZ,OZ).

We simply need to show that the Euler characteristic vanishes because

Ext2(OZ,OZ) = Hom(OZ,ωX ⊗OZ)
∨

has dimension n, as does Hom(OZ,OZ). To do this, we use Grothendieck-Riemann-Roch, which
says that

χ(F,G) = ch(F∨) · ch(G)
√

td(X),

and here we see that χ(OX,G) = χ(F) where F = ÕX. Now because supp(F) has dimension 0,
then ch(F) = [0, . . . ,±`(F)].

Exercise 1.4.4. Prove that χ(OZ,OZ) = 0 using a locally free resolution in the first variable.

Now we will review some basic theory of Hilbert schemes for quasiprojective varieties. Here,
if X is quasiprojective and p(t) ∈ Q[t] is some Hilbert polynomial, consider [Z] ∈ Hilbp(t)X .

Proposition 1.4.5. If I ⊆ OX is the ideal sheaf of Z, then

T[Z]Hilb = HomX(I,OZ) = HomZ(I/I2,OZ) = H0(Z,NZ/X).

Sketch of proof. We know that T[Z]Hilb = Hom(Speck[ε], Hilb, 0 7→ [Z]). This set of morphisms is
the same as the set of Z ⊆ X× Speck[ε] flat over k[ε]. And a module M is flat over k[ε] if and only
if M⊗ (ε) ' ε ·M. Now we want an ideal sheaf Ĩ ⊆ OX[ε] such that

0 0 0

0 I OX OZ 0

0 Ĩ OX[ε] O
Z̃

0

0 I OX OZ 0

0 0

·ε ·ε

But now we can see that I = Ĩ/εI ⊆ OX ⊕ εOZ, and thus giving Ĩ is the same as giving an element
of HomX(I,OZ).

Exercise 1.4.6. Let X be a smooth quasiprojective curve. Show that X[n] = X(n) is smooth of
dimension n.3

3Newton actually proved way back in the day that the symmetric powers of A1 are smooth (and equal to An).
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Theorem 1.4.7. Let X be a quasiprojective variety. Then there exists a regular proper morphism

hn : X
[n] → X(n) Z 7→

∑
p∈X

`(OZ,p)p

which is surjective and birational. By a result of Fogarty, the fibers of hn are connected, so if X is connected,
so is X[n].

From now on, we will assume that X is projective. Therefore, for all Z ⊆ X with `(Z) = n, there
exists an open affine neighborhood U ⊆ X containing Z. Therefore we have [Z] ∈ U(n) ⊆ X(n).
Now if Z =

∑
αipi and Ui 3 pi are open neighborhoods, then Z ∈

∏
U

(αi)
i .

Remark 1.4.8. If X is a smooth surface, then the local structure of X(n) at np is the same as the
local structure of (An)(n) at n · {0}. In particular, when n = 2, we have

(X(2), 2p) ' (Q, 0)×∆,

where ∆ is smooth of dimension 2 and Q is the quadric cone.

Now for any partition n =
∑
αi of n into positive integers with length k, write α = (αi). Then

define
X
(n)
α =

{∑
αizi | zi 6= zj

}
.

These X(n)
α give a stratification of X(n) into locally closed subsets, where the open stratum is

X
(n)
(1,1,...,1) and the closed stratum is X(n)

(n)
. It is easy to see that dimX

(n)
α = 2`(α). Another important

stratum is X(n)
(2,1,...,1), where exactly two points come together. Now note that

h−1
n (
∑

αizi) =
∏

h−1
αi

(αizi),

where the h−1
αi

are the punctual Hilbert schemes Hilbαi(OX, zi) ' Hilbαi(k[x1, x2], 0). For α = 2, the
punctual Hilbert scheme is simply Pm/m2.4

Theorem 1.4.9 (Briançon). The fiber h−1
n (nz) is irreducible of dimension at most n− 1.

In particular, this tells us that X[n]
(1,...,1) → X

(n)
(1,...,1) has fibers of dimension 0 and is thus an

isomorphism.

Proposition 1.4.10. The exceptional locus of hn is an irreducible divisor E.

Proof. Because X(n) is normal and Q-factorial,5 then any birational Y → X(n) from a smooth
variety Y has divisorial exceptional divisor.

Now the exceptional locus E(2,1,...,1)toX
(n)
(2,1,...,1) has fibers P1, while for a general α, we have

dimEα = dimX
(n)
α +

∑
dimh−1

αi
(αizi) 6 n+ `(α).

Because the strata are irreducible and so are the fibers, we obtain irreducibility for the exceptional
divisor.

4Apparently these are useful in representation theory.
5Every finite quotient of something smooth is Q-factorial.
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Proposition 1.4.11. Let X be a projective variety. Then there exists a birational surjective morphism
h : X[n] → X(n).

Proof. We will show that for all Z ⊆ T ×X proper and flat over T with `(Zt) = n for all t, there
exists a natural morphism T → X(n) given by

t 7→
∑
p∈X

`(OZt ,p) · p.

Fix t0 ∈ T . Because X is projective, there exists U ⊆ X affine with Zt0 ∈ U = SpecA. Then because
p : Z→ T is proper, there exists t0 ∈ V ⊆ T , where V = SpecB is affine, and for all t ∈ V , Zt ∈ U.
In conclusion, we have a family ZV ⊆ V ×U. At the level of rings, we have a diagram

C B⊗A

B.

ϕ

Now we need a map (A⊗n)
Sn → B. Because Z → V is flat, C is a rank n projective B-module.

Clearly we have a map A→ EndB(C) given by A 7→ ϕ(1⊗ a), and thus A⊗n acts on C⊗n. Then
we obtain an action of (A⊗n)Sn on

∧n C, which is just a map

(A⊗n)
Sn → EndB

(∧n
C
)
' B,

which is the map we want.

As an example, consider B = k. Then C =
∏
Ci is Artinian, hence a product of Artinian

local rings Ci of length αi. Then the map we defined at the end of the proof factors through∏
Symαi(Ci).

Theorem 1.4.12 (Beauville-Fujiki). Let X be a smooth surface. Then the Hilbert-Chow morphism is a
crepant resolution and if X has a holomorphic symplectic form, so does X[n].

Exercise 1.4.13. If X is a smooth surface, prove that

X[n] = Bl∆ X(2) = (Bl∆ X×X)/S2.

Proof. Consider X(n)
∗ = X

(n)
(1,...,1) ∪X

(n)
(2,1,...,1) and define Xn∗ ,X[n]

∗ similarly. In Xn consider ∆ =
⋃
∆ij,

where the i-th and j-th points coincide. Now consider the diagram

Bl∆ Xn∗ Xn∗

X
[n]
∗ X

(n)
∗ ,

η

ρ

h

which quite clearly commutes by the same argument showing that X[n] is the blowup of X(n)

along the diagonal. Then the exceptional divisor
⋃
Eij is fixed by S2, so it maps to E∗ ⊂ X

[n]
∗ .
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Now it suffices to prove that X[n]
∗ → X

(n)
∗ is crepant because the complement has codimension 2.

To see this, the quotients by Sn have simple ramification, and thus we have

KBl∆Xn∗ = ρ∗(K
X

[n]
∗

) +
∑

Eij

= ρ∗h∗K
X

(n)
∗

+ (a+ 1)
∑

Eij

= η∗KXn∗ +
∑

Eij,

so a = 0 because π : Xn∗ → X
(n)
∗ is étale away from codimension 2 and thus KXn∗ = π∗K

X
(n)
∗

.
Therefore the Hilbert-Chow morphism is a crepant resolution.

Now suppose that X has a holomorphic symplectic form ωX ∈ H0(Ω2
X). By codimension

reasons, it is enough to produce a holomorphic symplectic form on X[n]
∗ . Clearly we have a

symplectic form ω :=
∑
i p
∗
i (ωX) on Xn∗ , which is clearly Sn-invariant. Therefore, we obtain a

symplectic form σ
X

(n)
(1,...,1)

on X(n)
(1,...,1) and a symplectic form η∗ω on Bl∆ Xn∗ , which is degenerate

along
⋃
Eij and Sn-invariant. This induces a holomorphic 2-form σ

X
[n]
∗

on X[n]
∗ (as in there exists

such a σ such that η∗ω = ρ∗σ). We know that σ
X

[n]
∗

is generically nondegenerate.
We now show that σ := σ

X
[n]
∗

is symplectic. We know σn is a section ofω
X

[n]
∗

, so the degeneracy
locus of σ is the zero locus of σn. However, we know K

X
(n)
∗

= 0 by the existence of ωX, and
because h is crepant, we see that K

X
[
∗n]

= 0, and thus σn must be nonzero everywhere.

We will now discuss some invariants of X[n].

Proposition 1.4.14. There is an isomorphicm of Hodge structures

H2(X[n], Q) = h∗H2(X(n))⊕QE.6

Now we know that H2(X(n)) = H2(Xn)
Sn . By the Künneth formula, we have

H2(Xn) =

n⊕
i=1

H2(X)⊗H0(X)⊕
⊕
i,j

H1(X)⊗H1(X),

and therefore
H2(X(n)) = H2(X)⊕

∧2
H1(X).

Now

H2(X[n]) = H2(X
[n]
∗ )

= H2(Bl∆ Xn∗ )
Sn

]

= (Imη∗)Sn ⊕
(⊕

QEij

)Sn
= η∗(H2(Xn∗ ))

Sn ⊕QE

= H2(X)⊕
∧2

H1(X)⊕QE.

6Note that X(n) is a finite quotient of something smooth and thus has a pure Hodge structure.
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Over Z, we can check in local coordinates that there exists a class δ ∈ H2(X[n], Z) such that
2δ = E.7

Corollary 1.4.15. If X is a K3 surface, then there is an isomorphism

H2(X[n]) = H2(X)⊕QE

as Hodge structures, and in particular,

H0(Ω2
X[n]

) = H2,0(X[n]) ' H2(X) = C.

We will now sketch the computation of the fundamental group of X[n]. One fact is that

h∗ : π1(X
[n])→ π1(X

(n)) = π1(X)/[π1(X),π1(X)] = H1(X, Z)

is an isomorphism. In particular, if X is a K3 surface, then π1(X
[n]) = 0, so X[n] is irreducible

holomorphic symplectic.
If A is an abelian surface, we know A has a holomorphic symplectic form σA, and thus

A[n] has a holomorphic symplectic form σA[n], so ωA[n] = OA[n]. However, we know that

H1(A[n]) = H1(A) = Z4, so it is not simply connected. But then we know that

H2(A[n]) = H2(A)⊕
∧2

H1(A) = H2(A)⊕H2(A),

so A[n] has larger H2,0. By Beauville-Bogomolov, we know that A[n+1] has an étale cover by a
product of complex tori, irreducible holomorphic symplectics, and strict Calabi-Yaus. There exists
a natural morphism

alb : A[n+ 1] h−→ A(n+1) → A

and an action of A on A[n+1] given by translation. Of course, this is not equivariant because∑
(zi + a) 7→

∑
zi + (n+ 1)a, and by generic smoothness all fibers are isomorphic and smooth.

Now if we consider the diagram

A×A A[n+ 1] A[n+1]

A A,

alb

n+1

we see that A×AA[n+1] = Kn(A)×A. Later, we will show that Kn(A) is irreducible holomorphic
symplectic.

Example 1.4.16. If n = 1, then K1(A) is the Kummer K3 surface associated to A.

Proposition 1.4.17.

1. ωKn(A) = OKn(A);

2. The restriction of teh holomorphic symplectic form σA[n+1]

∣∣
Kn(A)

is a symplectic form.

7We had a lengthy discussion checking the computations above, and the moral is that algebraic geometers are bad at
basic algebra. Also, to avoid sign problems, work in characteristic 2.
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3. H2(Kn(A)) = H2(A)⊕QF and π1(K
n(A)) = 1, where F is one of the fibers of E → A, where

E ⊂ A[n+ 1] is the exceptional divisor of h.

We will prove a result that

Proposition 1.4.18. There exists a (non-effective) line bundle L on X[n] such that L⊗2 = OX[n](E).

Proof. Consider Bl∆ Xn∗ /An. This has simple ramification over E∗ ⊆ X
[n]
∗ , and thus f∗OZ =

O
X

[n]
∗
⊕L. This is the desired line bundle.

Corollary 1.4.19. If X is a K3 surface, then Pic(X[n]) = Pic(X) + Zδ, where δ = c1(L).

1.5 Generalized Kummers

Recall the construction of the varieties Kn(A) for an abelian surface A. Recall the diagram

Kn(A) A[n+1] An+1

A(n+1)

0A A.

a

ε

Also recall that π1(A
[n+1]) = π1(A). Using the long exact sequence of homotopy groups and the

fact that A is a K(Z4, 1), we see that π1(K
n(A)) = 0.

Proposition 1.5.1. Kn(A) is an irreducible holomorphic symplectic manifold. In particular,

1. If σA[n+1] is the holomorphic symplectic form on A[n + 1], then its restriction to Kn(A) is a
holomorphic symplectic form.

2. H2(Kn(A)) = H2(A)⊕QF, where F = E∩Kn(A).

Proof. Consider the Leray filtration on H2(A[n+1]) induced by the map a. Here, we have

H2(A) = H2(a∗Q) ⊆ H2(A[n+1])→ H0(A,R2a∗Q) = H2(Kn(A))
inv

,

where invariants are taken with respect to the monodromy group of a, which is A[n+ 1] because

base change by A n+1−−−→ A trivializes a. We will show that the last inclusion is an equality. Also,
note that

H2(A[n+1]) =
∧2

H1(A)⊕H2(A)⊕QE

and that if α,β ∈ H1(A), then

a∗(α∧β) = a∗α∧ a∗β =
∑

p∗iα∧
∑

p∗iβ.
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Next, write Kn∗ (A) analogously to A[n]
∗ and let N = ker(An+1 → A). Then we have a diagram

BlN∗

Kn∗ (A) N∗

K
(n)
∗ (A).

Note that N has an action of Sn+1 and an action of A[n+ 1] given by adding ε to all elements that
preserves N and ∆. Then we know that

H2(N∗) = H
2(N) = H2(An)

has an action of A[n+ 1] has an action by translation, which is trivial in cohomology. Finally, we
conclude that

H2(Kn(A)) = H2(Kn∗ (A)) = H
2(BlN∗)

Sn+1

and obtain the desired result.

Now we have two examples of irreducible holomorphic symplectic manifolds. The first is
K3[n] with b2 = b2(K3) + 1 = 23 and the second is Kn(A) with b2 = b2(A) + 1 = 7.

Proposition 1.5.2. Let f : X→ B be a smooth proper morphism of complex manifolds such that for some
0 ∈ B, X0(B) is a Kähler irreducible holomorphic symplectic manifold. Then there exists an analytic
neighborhood 0 ∈ V ⊆ B such that for all t ∈ U, Xt is Kähler and holomorphic symplectic.

Proof. By a result of Kodaira, being Kähler is an open condition, so there exists an open U ⊆ B
such that for all t ∈ U, Xt is Kähler. Therefore, for all t ∈ U, the map t 7→ hp(Xt,Ω

q
Xt

) is constant
by Ehresman’s theorem that this family is topologically trivial and upper semicontinuity.

This implies that up to further restricting U, f∗Ω2
X/B

|U is free. This implies that σ0 ∈ H0(Ω2
X0

)

extends locally to a section σ̃ ∈ H0(XU,Ω2
XU/U

). To check that this is symplectic, we know that

σ̃n ∈ H0(KX/U) has closed zero locus which does not intersect the zero fiber, and so we obtain an
open set where this form is nondegenerate.

Proposition 1.5.3. Let f : X→ B be a smooth proper family of Kähler manifolds. Then if X0 is irreducible
holomorphic symplectic, so is Xt for all t ∈ B.

Sketch of proof. First, note that the relative canonical bundle KX/B
∼= f∗L, where L is a line bundle

on B. By the same proof as before, there exists Z ⊆ B such that for all t ∈ B \Z, Xt is irreducible
holomorphic symplectic.

Now suppose t0 ∈ Z. Then KXt0
is trivial and Xt0 is simply connected, so Xt0 is a product of

irreducible holomorphic symplectic varieties and strict Calabi-Yau manifolds.
Now we will state without proof the fact that if X is a complex manifold with KX = OX, then

Def(X) is smooth (as a germ of complex manifold). This is a nontrivial result of Bogomolov-Tian-
Todorov. Note that if Xt0 =

∏
Xi ×

∏
Yi, then

Def(Xt0) =
∏

Def(Xi)×
∏

Def(Yi)

because all Xi, Yi satisfy h1,0 = 0. Thus the splitting situation is impossible.
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It is known that if S is a K3 surface, then Def(S) has dimension 20. Also, note that projective
K3 surfaces are a 19-dimensional locus. Here, note that Def(X) = h1(TX) = h

1(Ω1
X) = h

1,1.
In the next case, if X = S[n], then Def(X) has dimension 21, and there is a 20-dimensional locus

of genuine Hilbert schemes of K3 surfaces. There are also higher-codimension loci parameterizing
the spaces Mv(S,h). Note that in both of these situations, the very general object is Kähler but
not projective.

Now we will discuss some examples of Lagrangian fibrations.

Example 1.5.4. Let f : S→ P1 be an elliptic K3 surface. Then we have a morphism

S[n]
f−→ S(n)

f(n)−−→ (P1)
(n)

= Pn.

This is clearly a Lagrangian fibration.

Example 1.5.5. Let A = E× F be the product of two elliptic curves and let ϕ : A→ F be the second
projection. Then we have a diagram

K2(A) A[3]

K(2)(A) A(3) F(3) ε−1(0)

A F 0F.

ϕ(3)

ε

Here, we see that ε−1(0) = P̌2, and so in general there is a Lagrangian fibration Kn(A)→ Pn.

1.6 Some operations

Now we will consider some birational transformations.

Example 1.6.1 (Atiyah flop). Let f : S→ ∆ be a family of quartic surfaces in P3. Suppose that St is
smooth and S0 has one simple node p ∈ S0. This simple node is given locally by x2 + y2 + z2 = t.

Note that Blp S0 =: S̃0 is a smooth K3 surface. We would like to modify the family such that
we get smooth fibers for all t ∈ ∆. Now if we take a base change of ∆ by t 7→ t2, locally at p ∈ S

we have the equation x2 + y2 + z2 = t2 is a singular point of S. But then X := Blp S is smooth, and
X0 = S̃0 ∪Q, where Q = P1 ×P1.

Unfortunately, the discrepancy of ν : X→ S is 1, so KX = ν∗KS +Q, and so by adjunction we
see that

ωQ = (KX +Q)|Q = O(2Q)|Q,

and thus OX(Q) = O(−1,−1). This tells us that we can contract Q along both of the factors
and produce S+, S− with maps to S. Then there is a birational map ϕ : S+ 99K S− which is an
isomorphism away from the central fiber.

We conclude that S±0 = S̃0 and that ϕ is an isomorphism outside of the copies of P1 that we
contracted Q onto but does not extend over those copies of P1. Also, note that X = Γϕ and that
Xt = Γϕt for all t 6= 0, and X0 = S̃0 ∪P1 ×P1.

The next observation is that H2(S±t0
) ' H2(S̃0), but passing between the two identifications is

actually reflection across the (−2)-curve produced from the Atiyah flop.
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Here, we have used the following result of Nakano and Fujiki: Let M̃ be a complex manifold
and E ⊆ M̃ be a smooth divisor that is a Pn-bundle over some Z.. Then there exists a complex
manifold M ⊃ Z and π : M̃→M such that M̃ = BlZM if and only if O

M̃
(E)|E = OX(−1).

Another fact that we used to show that S+0 and S−0 are isomorphic is that two birational K3
surfaces are isomorphic.

Now let X ⊇ Pn be a holomorphic symplectic manifold of dimension 2n. For example, some
K3 surfaces contain (−2)-classes, which are isomorphic to P1.

Lemma 1.6.2. Any such Pn ⊆ X is a Lagrangian submanifold of X. Moreover, if Z ⊆ X is any Lagrangian,
NZ/X

∼= Ω1
Z.

Proof. The first part is clear because H0(Ω2
Pn) = 0. Next, consider the exact sequencec

0 J/J2 Ω1
X|Z

Ω1
Z 0

0 TZ TX|Z NX/Z 0.

∼

Note that the rightmost vertical morphism is generically injective with torsion kernel, but because
NX|Pn is torsion free, we have an isomorphism.

Now consider BlPn X and let E be the exceptional divisor. Denote Pn = PV for some vector
space V .

Lemma 1.6.3. We have an isomorphism E ' I ⊆ PV × PV∨, where I is the incidence subscheme.
Moreover, we have O

X̃
(E)|E ∼= OE(−1,−1).

Proof. We know that E = PNPn/X ' PΩ1
Pn . Now if we consider the Euler sequence

0→ Ω1
Pn → V∨ ⊗OPn(−1) ev−→ OPn → 0,

we obtain an embedding
PΩ1

Pn ⊆ PV∨ ×PV

as the locus {(s, x) | s(x) = 0}. Next, we use adjunction in X̃ and in PV ×PV∨ to see that

OX(−n,−n) = ωE = ω
X̃
(E)|E = O

X̃
(nE)|E.

Now by the Nakano-Fujiki criterion, there exists X̃ ′ ⊇ PV and q ′ : X̃→ X ′ such that we have
the following diagram:

X̃

X X ′

q ′

ϕ

such that q ′ takes E to PV∨.

Definition 1.6.4. Such an X ′ is called the Mukai flop of X at Pn.
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Remark 1.6.5. We can perform the Mukai flop whenever we have Z ⊆ X such that there exists some
Pr-bundle structure Z→ B and Z has codimension r in X. We also require that NZ/X ' Ω1

Z/B
.

Remark 1.6.6. We have a diagram

X̃

Pn X X ′

p X0.

π

Remark 1.6.7. If X ′ and X are isomorphic in codimension 2, they have isomorphic H2 and X ′ is
holomorphic symplectic.

The local structure of (X0,p) is isomorphic to that of the cone C•(I). In particular, X0 is not
Q-factorial because the exceptional locus of π is Pn, which is not a divisor. In addition, π is a
crepant (symplectic resolution).

Proposition 1.6.8. A birational map f : X 99K X ′ of compact complex manifolds (or projective varieties)
with trivial canonical bundles is an isomorphism in codimension 2. In particular, π1(X) = π1(X

′) and
H2(X, Z) = H2(X ′, Z).

Proof. Let Γ be the graph of f and consider the diagram

Γ

X X.
p

p ′

f

Then if E, F are the exceptional divisors of p,p ′, we have KΓ = E = F up to linear equivalence.
However, we know that H0(mF) = H0(mE) = H0(mKΓ ) = 1, but these h0(ω⊗mX ) are birational
invariants, so E, F do not move in their equivalence class. In particular, we have an isomorphism
X \ p(E) ' X ′ \ p ′(F).

Corollary 1.6.9. Suppose that f : X� S ′ is a birational map of K3 surfaces. Then f is an isomorphism.

Proof. Consider the graph Γ and diagram

Γ

X S ′.
p

q

f

We know that f is an isomorphism away from finitely many points. We know that f is not defined
at x if and only if p−1(x) is a curve. But then there exists a curve C ′ ⊆ S ′ contracted by f−1, which
is impossible.

Example 1.6.10 (Beauville). This example comes from the paper Some remarks on Kähler manifolds
with c1 = 0 by Beauville.8 Let S ⊆ P3 be a quartic K3 surface. Choose a length 2 point z ∈ S[2],
which has linear span a line. But then `∩S = z+w, and so we define a rational mapϕ : S[2] 99K S[2]

given by z+w.
8This paper is written in English, but Giulia suggests that we read some math papers in French.
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Proposition 1.6.11.

1. ϕ is regular at [Z] ∈ S[2] if and only if ` = 〈Z〉 6⊆ S.

2. If S ⊇ `1, . . . , `k where the `i are disjoint lines, then ϕ is the Mukai flop at `[2]1 , . . . , `[2]k .

Proof. We have a commutative diagram

Γ

S[2] S[2]

G = Gr(2, 4),

q1

q2

p

and clearly p is finite over [`] ∈ G if and only if ` 6⊆ S. In particular, if ` ⊆ S, we have p−1([`]) = `[2].
Now consider the graph Γ and note that Γ ⊆ S[2] ×G S[2] ⊆ S[2] × S[2]. Because S[2] is smooth, we
know ϕ is regular at [Z] if and only if q−1

1 (Z) is finite.
But now q−1

1 (Z) ⊆ S[2] × S[2] is contained in [Z]× p−1(`). Thus, if p−1(`) is finite, so is q−1
1 (Z).

For dimension reasons, if ` ⊆ S is a line, then `[2] × `[2] is an irreducible component of S[2] ×G S[2].
But then q−1

1 (`[2]) = Γ ∩ `[2]× `[2], and then S[2]×G S[2] ⊆ S[2]×S[2] is a local complete intersection.
But then irreducible components intersect in the correct dimension, so we are done.

It remains to show that f is the Mukai flop. We may assume that there is a unique line ` ⊆ S.
The key technical lemma is that ϕ extends to Bl`[2] S

[2], which means we have a map

Bl`[2] S
[2] Bl`[2] S

[2]

S[2] S[2].

ϕ̃

π π

ϕ

But then ϕ̃ takes E to itself, which means that it must swap the two rulings on E. But this means
that the two copies of π contract E along the two rulings, as desired.

To prove the lemma, S[2] → G factors as S[2] → Z→ G, where Z is normal and Z→ G is finite.
But then ϕ descends to an honest morphism ϕ : Z→ Z, and thus if `[2] is contracted to z0, ϕ lifts
to Blz0 Z = Bl`[2] S

[2].

Proposition 1.6.12 (Huybrechts). This proposition comes from the paper Birational symplectic manifolds
and their deformations. Let Pn ⊆ X2n, where X is Kähler and symplectic and f : X 99K X ′ be the Mukai
flop. Then there exist two birational smooth proper families

X X ′

∆

φ

such that φt is an isomorphism for all t 6= 0, X0 = X, and X ′0 = X ′.

Corollary 1.6.13. There exists an isomorphism of Hodge structure H∗(X) ' H∗(X ′).
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Proof. Let Γ ⊆ X×∆ X ′ be the fiber product. Then we know Γt = Γϕt ⊆ Xt ×X ′t, and this implies
that

γ∗t : H
∗(X ′t)→ H∗(Xt) α 7→ p∗1 [Γ ] ^ p∗2(α)

is an isomorphism. But then we know H∗(X ′t) ' H∗(X ′0) and similarly for X. We also have a
correspondence Γ∗0 , and this is an isomorphism.

Example 1.6.14. Let S→ P2 be a degree 2 K3 surface. Then we obtain some P2 ⊆ S[2]. Then the
Mukai flop of S[2] is a hyperkähler manifold M with a Lagrangian fibration over P̌2. Here, if
` ⊂ P2 is a line, we consider C ∈ |f∗OP2(1)|, and the fiber over [C] ∈ |C| = P̌ is simply Pic2(C). In
addition, the Mukai flop takes z ∈ S[2] to the line bundle OC(Z).

Proposition 1.6.15. Let Pn ⊆ X2n be a Kähler holomorphic symplectic manifold and f : X 99K X ′ be the
Mukai flop. Then there exist X,X ′ over a disk ∆ and φt : X → X ′ such that φt is an isomorphism for
t 6= 0, and (Γφ)0 = Γf + Pn × P̌n.

Corollary 1.6.16. There exists a universal deformation space for X (as a germ of complex manifold).

Proof. We have an identity

TDef(X) = H
1(X, TX) = Ext1

OX
(Ω1
X,OX).

Here, a deformation v is taken to the exact sequence

(1.2) 0→ TX → TX|X → NX/X = OX → 0.

The first step in the proof is to show that there exists X→ ∆ such that NPn/X = V∨ ⊗OPn(−1).
To do this, note that H1(X, TX) = H1(X,Ω1

X) and there is a sequence of maps

H1(X, TX)→ H1(P, TX|P)→ H1(P,NP/X) = H
1(P,Ω1

P).

We also have a map H1(X,Ω1
X)→ H1(P,Ω1

P), and the resulting diagram commutes. We need to
find v ∈ H1(X, TX) such that v|P 6= 0. Note that because X is Kähler, there exists a Kähler form ω
that restricts to a nonzero form on P. Next, the exact sequence (1.2) remains exact after restricting
to P, and therefore we have

0 TX|P TX|P NX/X|P 0

0 NP/X NP/X OP 0.

Because vP 6= 0, the bottom sequence is not split, and because vP ∈ H1(P,NP/X) = H1(P,Ω1
P) is

contained in a 1-dimensional vector space, the sequence is actually the Euler sequence, and thus
NP/X = V∨ ⊗OP(−1).

Next, we consider the exceptional divisor P(V∨ ⊗O(−1)) = PV∨ ×PV of BlP X, and we can
check that O(E)|E = O(−1,−1). By Nakano-Fujiki, there exists a contraction of the exceptional
divisor E onto the first factor.



20

1.7 Deformations

For this part, we will follow notes by Voisin from a class in 2006-07. Let X be a compact complex
manifold (or a reduced variety). We will see that

TDefX = DefX(C[ε]) = Ext1(Ω1
X,OX).

Fix ∆n = Spec C[t]/tn+1. By reducedness, for every X1 → ∆1, we assign the exact sequence

0→ I/I2 → Ω1
X|X → Ω1

X → 0.

Remark 1.7.1. The sheaf Ω1
X has torsion, but its restriction to the central fiber is locally free if X is

smooth.

Conversely, given
0→ OX → E→ Ω1

X → 0,

we want to define an algebra OX∞ fitting in

0→ OX → OX1 → OX → 0.

Equivalently, we want a sheaf A and A→ E commuting with the inclusion of O and the differentia
d. We simply set

A = {(α, f) ∈ E⊕OX} | r(α) = df ,

where r : E → Ω1
X is the map in the exact sequence above. To define the algebra structure, we

simply set
(α, f)(β,g) = (αg+βf, fg).

It remains to check that the kernel of A→ OX is a square zero ideal.
Next, we will consider global deformations of X a compact complex structure. We can consider

the deformations of X over either germs of complex spaces or local Artinian rings.

Theorem 1.7.2 (Kuranishi). If H0(X, TX) = 0, then there exists a universal family X→ Def(X) over a
germ of (pointed) complex analytic spaces.

Alternatively, using the point of view of Schlessinger, because H0(TX) = 0, then DefX(−)
satisfies the axiom H4 and is thus pro-representable.

Remark 1.7.3. There is generally no chance of having an algebraic family. Unfortunately, even if
the central fiber is algebraic, there are arbitrarily small deformations that are not algebraic. If you
want to keep everything algebraic, then we need to mark X with an ample line bundle.

Theorem 1.7.4 (Bogomolov, Tian, Todorov). Let X be a compact Kähler Calabi-Yau manifold with
H0(TX) = 0. Then the germ of space (Def(X), 0) is smooth (equivalently, the pro-representing ring R is a
formal power series ring).

The proof of this result uses the T1-lifting principle, resting on the fact that by the infinitesimal
lifting principle, smoothness of Def(X) at 0 is equivalent to the fact that deformations can be lifted
to any order. Before we do this, we need some notation and results.

Lemma 1.7.5. Given an n-th order deformation fn : Xn → ∆n, the sheaves Ω1
Xn

|Xn−1 and Ω1
Xn−1/∆n−1

are both locally free. Moreover, they fit into an exact sequence

0→ OXn−1
dt−→ Ω1

Xn
|Xn−1 → Ω1

Xn−1/∆n−1
→ 0.
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Proof. Note that Ω1
∆n

= {dt | tn dt = 0}. Then the sheaf Ω1
∆n

|∆n−1 is locally free of rank 1 gener-

ated by dt. Now because X is smooth, ÔX ' C[[x1, . . . , xm]], and in fact we have isomorphisms

C[[x1, . . . , xm, t]]/tn+1 ' ÔXn

for all n. This implies that Ω1
Xn

is locally generated by dx1 , . . . , dxm , dt with tn dt = 0. In
particuar, after killing tn, we see that Ω1

Xn
|Xn−1 is locally free and generated by the dxi. We know

the exact sequence
f∗Ω1

∆n
→ Ω1

Xn
→ Ω1

Xn/∆n
→ 0,

and restricting to Xn−1, we obtain the desired result.

Definition 1.7.6. Given fn : Xn → ∆n, set

en := [0→ OXn−1 → Ω1
Xn

|Xn−1 → Ω1
Xn−1/∆n−1

→ 0] ∈ Ext1
Xn−1

(Ω1
Xn−1/∆n−1

,XXn−1).

This is called the Kodaira-Spencer class.

Remark 1.7.7. By the lemma, we have

Ext1(Ω1
Xn−1/∆n−1

,OXn−1) = H
1(TXn−1/∆n−1

).

Theorem 1.7.8 (Ran). Let X be a compact complex manifold. Given Xn → ∆n, there exists a lift
fn+1 : Xn+1 → ∆n+1 if and only if en lifts to some class en+1 ∈ H1(TXn/∆n), where the map

H1(TXn/∆n)→ H1(TXn−1/∆n−1)

is induced as follows: make the identification

D ∈ Der∆n(OXn ,OXn) = TXn/∆n 7→ D|Xn−1 .

Equivalently, given an extension

0→ OXn → E→ Ω1
Xn/∆n

→ 0,

everything is locally free, so we can restrict to ∆n−1 and use the identity Ω1
Xn/∆n

|Xn−1 = Ω1
Xn−1/∆n−1

.

Lemma 1.7.9. The algebra OXn+1 is determined by OXn and the short exact sequence

0→ OX
tndt−−−→ Ω1

Xn+1
|Xn

r−→ Ω1
Xn
→ 0.

As we did earlier, we construct A to fit into the exact sequence

0→ OX
tn−→ A→ OXn .

Sketch of proof of theorem. One direction is clear. If there is a lift, we construct the class en+1 and
clearly, it must restrict to en by definition.

In the other direction, suppose there is a class en+1 lifting en. We want to construct OXn+1 .
Given this en+1, we will find E fitting into the sequence

0→ OXn → E→ Ω1
Xn/∆n

→ 0.
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Given any E as above, there exists an isomorphism Ω1
Xn

|Xn−1 ' E|Xn−1 induced by a surjection
r : E→ Ω1

Xn
. This will give us the desired algebra.

To prove that such an isomorphism exists, by the existence of en+1, we already have a surjection
f1 : E→ Ω1

Xn/∆n
. Then after restricting to Xn−1, we have a sequence

E
f2−→ E_Xn−1 ' Ω1

Xn
|Xn−1

g2−→ Ω1
Xn−1/∆n−1

.

We now claim that
Ω1

Xn
⊆ Ω1

Xn/∆n
⊕Ω1

Xn
|Xn−1

g1,g2−−−→ Ω1
Xn−1/∆n−1

,

Because g1 ◦ f1 = g2 ◦ f2, we have our desired r : E→ Ω1
Xn

.
Next, we show that ker r ' OX. We have a short exact seqeunce defining E, and then we obtain

a diagram

OX ker r

0 OXn E Ω1
Xn/∆n

0

f∗Ω1
∆n

OXn−1 Ω1
Xn

Ω1
Xn

0.

∼

tn

r

Constructing A ⊆ E⊕OXn as we did before, we are done.

To prove that Def(X) is smooth when X is a compact Calaby-Yau, we need to check the T1

lifting principle. In order to do this, we need some Hodge theory.

Lemma 1.7.10. The sequence

OX
∂−→ Ω1

X
∂−→ Ω2

X → · · ·

is a resolution of the constant sheaf C in the analytic topology.

Corollary 1.7.11. Hk(X, C) = Hk(X,Ω•).

This gives us a filtration bête (for stupid filtration) FpΩ•X = Ω>pX , which by standard techniques
leads to a spectral sequence where

E
p,q
1 = Hq(ΩpX)⇒ grFH

k(X,Ω•X)

which comes from the filtration FpHk(Ω•X) = Im(Hk(Ω>0
X )→ Hk(Ω•X)).

If X is Kähler and compact, then the Hodge theorem implies that this spectral seqeunce (called
the Frolicher spectral sequence) at the E1-page and that FpHk(X, C) is the Hodge filtration. To see
this, note that

bk(X) = dimEp,q∞ 6
∑

dimE
p,q
1 =

∑
hp,q = bk(X).

Deligne in the paper Théorème de Lefschetz et Critères de Dégénérescence de Suites Spectrales shows
that if X is any smooth proper scheme over C, the Frolicher spectral sequence degenerates at E1.

Previously, we considered X→ B smooth proper morphisms of complex manifolds. then if X0
is Kähler, the hp,q(Xt) are locally constant, and in fact the degeneration of the Frolicher spectral
sequence at E1 is enough. Thus if B is a complex manifold, the sheaves Rqf∗Ω

p
X/B

are locally free
and satisfy base change.
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Proposition 1.7.12. Let f : X → B be smooth and proper with B a scheme over C (possibly of finite
type). Then the higher direct images Rkf∗Ω•X/B and Rqf∗Ω

p
X/B

are locally free and satisfy base change.

Moverover, there exists a filtration FpRkf∗Ω•X/B whose successive quotients are locally free and whose
associated graded components are Rqf∗Ω

p
X/B

.

Lemma 1.7.13 (Deligne). Let A be a local Artinian ring over C and K• be a bounded above complex of free
A-modules. Then `A(Hn(K•)) 6 `(A) · `CHn(K• ⊗A C), and if equality holds, then base change holds in
degree n,n+ 1, which means that for j = n,n+ 1, we have

Hj(K•)⊗AN ' Hj(K• ⊗AN),

where N is any B-module of finite type for some Artinian A-algebra B. In addition, Hn(K•) is a free
A-module.

Proof of proposition. We will reduce to the case of B = SpecA, where A is an artinian ring over C.
Recall that we have an exact sequence

0→ f∗Ω1
B → Ω1

X → Ω1
X/B → 0.

Then we have the relative de Rham complex which resolves

f−1OB → Ω•X/B.

Now because B is affine, we note that

Rkf∗Ω
•
X/B = Hk(X, f−1OB) = H

k(X,A) = Hk(X0, C)⊗C A

by A-linearity of the differential. Thus HkRkf∗Ω•X/B is a free A-module (in the general case, we

obtain Rkf∗Ω1
X/B

= (Rkf∗C)⊗OB).

Now we consider the stupid filtration FpΩ•
X/B

= Ω>p
X/B

and this induces a spectral sequence

E
p,q
1 = Rqf∗Ω

p
X/B

⇒ GrFRkf∗Ω•X/B,

where FpRkf∗Ω•X/B = Im(RkFpΩ•
X/B

→ RkΩ•
X/B

). We now have

`(A) · bk(X0) = `(R
kf∗Ω

•
X/B)

=
∑

p+q=k

`(Ep,q∞ )

6
∑

p+q=k

`(Ep,q
1 )

=
∑

`(Rqf∗Ω
p
X/B

)

6 `(A)
∑

`(Hq(ΩpX0
))

= bK(X0) · `(A)

by the lemma, so all inequalities are equalities. Using the lemma again, the Rpf∗Ω
q
X/B

are free
A-modules and satisfy base change. The remainder of the result is easy to see.
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Proof of Bogomolov-Tian-Todorov. Given Xn → ∆n, we have a class en ∈ H1(TXn−1/∆n−1
), and we

want to lift this to H1(TXn/∆n). Suppose that X0 is a compact Calabi-Yau such that the Frolicher
spectral sequence degenerates at E1 and dimX0 = m. Then Ωm

Xn/∆n
∼= OXn , so there exists a

perfect pairing
Ω1
Xn/∆n

⊗Ωm−1
Xn/∆n

→ ΩmXn/∆n ' OXn .

Thus TXn/∆n ' Ω
m−1
Xn/∆n

. If we consider

Rqfn∗Ω
m−1
Xn/∆n

= H1(Ωm−1
Xn/∆n

)→ H1(Ωm−1
Xn−1/∆n−1

) = R1fn−1,∗Ω
m−1
Xn−1/∆n−1

= R1f∗Ω
m−1
Xn/∆n

|Xn−1 ,

we are done.

1.8 Some Hodge theory

Let f : X→ B be a proper surjective smooth morphism either of schemes over C or with Kähler
fibers Xb. Let

Hk := Rkf∗Ω
•
X/B = Rkf∗C⊗C OB

be the Hodge bundle. Then there is a decreasing filtration FpHk ⊂ Hk in subbundles. Now
suppose that B is sufficiently small so that Hk = Hk(X0, C)⊗OB is free.

Theorem 1.8.1. Fix k,p. Then there is a holomorphic map, called the period mapping,

B
ϕ−→ Gr(fpk ,Hk(X0, C)) b 7→ FpHk(Xb) ⊆ Hk(Xb, C) ∼= Hk(X0, C),

where fpk =
∑
`>p h

`,k−`(X0). Pulling back the tautological seqeunce on the Grassmannian gives
FpHk ⊆ Hk.

We would like to study ϕ, and a first step is to study its differentials. Note that ϕ factors via
the universal deformation space Def(X0), so we have a diagram

B Gr(fpk ,Hk(X0))

Def(X0).

ϕ

℘

Now recall that T[W]Gr(j,V) = Hom(W,V/W), and so the differential of the period map is a
morphism

H1(TX)
d℘0−−→ Hom(FpHk,Hk/FpHk).

This factors through Hom(Fp, Fp−1/Fp) by Griffiths transversality, and so we have the diagram

H1(TX) Hom(Fp, Fp−1/Fp)

Hom(Fp/Fp−1, Fp−1/Fp),

and the bottom term in the diagram is isomorphic to Hom(Hk−p(ΩpX),H
k−p+1(Ωp−1

X )).
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Proposition 1.8.2. The morphism H1(X, TX) → Hom(Hk−p(ΩpX),H
k−p+1(Ωp−1

X )) is the morphism
sending a tangent vector v to the morphism induced by contraction by v.

Returning to irreducible holomorphic symplectic manifolds, let X be irreducible holomorphic
symplectic. Then the Hodge filtration here gives

F2H2 = H0(Ω2
X) = Cσ FH2 � H1(Ω1

X),H
2(X)� H2(OX) = Cσ.

Then the period map is a morphism

Def(X) ℘−→ PH2(X, C) t 7→ Cσt,

where we have made an identification ηt : H2(Xt, C) ∼= H2(X0, C).

Proposition 1.8.3. The differential d℘0 has maximal rank.

Proof. Write the morphism

H1(TX) Hom(H2,0,H2/H2,0)

Hom(H2,0, F1H2/H2,0).

d℘0

It is enough to show that the morphism H1(TX)→ Hom(H2,0, F1H2/H2,0) = H1(Ω1) is an isomor-
phism. But this map is given by contraction, and so it is precisely the isomorphism TX ' Ω1

X
induced by σ.

We conclude that ℘ is an isomorphism onto its image. There will be a local statement, where
we consider small deformations, and a global statement, where we consider the entire moduli
space. First, note that dim Def(X) = b2 − 2 and dim PH2(X) = b2 − 1.

Proposition 1.8.4. There exists a quadric hypersurface Q ⊆ PH2(X, C) such that Im℘ ⊆ Q.

Proof. First note that Im℘ is contained in a degree 2n-hypersurface, where dimX = 2n. There is a
natural degree 2n polynomial on H2 given by the cup product of H2 with itself 2n times. By type
reasons9, because σXt is a (2, 0)-form, we know σ2n

Xt
= 0, and thus σ2n

t = 0. Thus if F is the cup
product polynomial, we see, Im℘ ⊆ {F = 0} ⊆ PH2(X, C). (Note that for K3 surfaces, we are done
and that this quadric is defined over Z. In fact, the H2(S, Z) is a unimodular lattice.)

Now we will prove that F = qn up to a constant. To do this, we will prove that F vanishes with
order at least n on Im℘ and then write down a quadric explicitly. Write σt = σ0 + tα, and so we
have

σ2n
t = (σ0 + tα)

2n

= σ2n
0 + tσ2n−1

0 α+ · · ·+ tnσnα.

Thus F vanishes up to order n, as desired.

9This sounds a lot like computer science.
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Theorem 1.8.5 (Beauville, Bogomolov, Fujiki). Let X be irreducible holomorphic symplectic manifold
of dimension 2n. There exists an integral, indivisible, quadratic form q : H2(X, C) → C of signature
(3,b2 − 3) and a constant cX ∈ Q>0 such that∫

X
α2n = cXq(α)

n

for all α ∈ H2(X).

Note that the relation, called the Fujiki relation, identifies q, cX with no ambiguity except when
n is even, in which case we specify q(ω) > 0 for ω Kähler. Moreover:

• Im℘ ⊆ Ω = {q(x) = 0,q(x, x) > 0} ⊆ Q. In particular, the map ℘ : Def(X) → Ω is a local
isomorphism.

• With respect to q, H1,1 ⊥ H2,0 ⊕H2,0.

Proof. We will normalize σ such that
∫
(σσ)n = 1. For a class α = aσ+ω+ bσ, we will define

q(α) = ab+

∫
(σσ)n−1 ·ω2

=
n

2

∫
(σσ)n−1α2 + (1 −n)

(∫
σn−1σnα

)
·
(∫
σnσn−1α

)
.

First we check that if ω is a Kähler form, then q(ω) > 0. In fact, we have

q(α) =

∫
(σσ)n−1 ·ω2,

and now we use the Hodge-Riemann bilinear relations. Here, if M is compact and Kähler with
dimM = m and ω a Kähler form, define

(α,β) :=
∫
α∧β∧ωm−k.

Then the bilinear form
ip−q(−1)

k(k−1)
2 (−,−)|Hp,q

prim

is positive-definite. In our situation, note that σn−1 is a primitive form, and so we obtain the
desired result. It is clear that q(σ) = 0,q(Re(σ)) = q(Im(σ)) > 0, and q(Re(σ), Im(σ)) = 0, and so
q has rank at least 3 and is thus irreducible.

We now prove the Fujiki relation. By type reasons, we have σn+1
t = 0, and so if we write

atσ+ωt + btσ, and thus

(σn+1
t )2n,2 = 0 = ant btσ

nσ+ an−1
t σn−1ω2,

and when we multiply by σn−1, we have

0 = an−1
t

(
atbt +

∫
(σσ)n−1ω2

)
.

Because at 6= 0 for sufficiently small t, we see q(σt) = 0, and thus (q) = I(Im(℘)) 3 F, which gives
us the Fujiki relation.
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We will compute the signature of q. If we differentiate the equation∫
α2n = cq(α)n

with respect to t under α+ tβ, we have

2n ·α2n−1β = 2ncq(α)n−1q(α,β).

Now if ω is Kähler form, then β is primitive if and only if q(ω,β) = 0. It is now enough to
compute the sign of q|

H1,1
prim

. Differentiating again, we obtain

(2n− 1)α2n−2β∧ γ = 2(n− 1)cq(α)n−22(α,γ)q(α,β) + cq(α)n−1q(γ,β).

Choosing α = ω to be Kähler and β,γ primitive, we obtain

(2n− 1)α2n−2β∧ γ = cq(α)n−1q(γ,β),

and by the Hodge-Riemann bilinear equations, the left-hand-side is negative.
Finally, we need to prove integrality. For all λ,α ∈ H2(X, C), we have

(λ2n)
2
q(α) = q(λ)[(2n− 1)λ2n(λ2n−2α2) − (2n− 1)(λ2n−1α)

2
].

This is obtained from previous formulae by multiplying the derivative of the Fujiki repation by
q(α), using the Fujiki relation, and taking the derivative again.

Corollary 1.8.6. Up to multiplication by a nonzero constant, we can assume that if α ∈ H2(X, Q), then
q(α) ∈ Q.

Proof. We prove that there exists λ ∈ H2(X, Q) such that q(λ) 6= 0. The class σ+ σ ∈ H2(X, R) and
q(σ+ σ) > 0, so by density of H2(X, Q) ⊂ H2(X, R), we are done.

Once we have this normalization, we have proven the integrality statement in Beauville-
Bogomolov-Fujiki.

Remark 1.8.7. The Fujiki relation implies that both q(−) and cX ∈ Q>0 in the relation∫
α2n = cXq(α)

n

are deformation invariants.

Using the Hodge-Riemann bilinear relations, we see that restricting q to H2,0 ⊕H0,2 (as a
real vector space) is positive definite. In addition, a basis of H2,0 ⊕H0,2 is Reσ, Imσ, and in fact
q(Reσ, Imσ) = 0.

Now the period map ℘ : Def(X)→ Q lands in the set

Ω = {x | q(x) = 0,q(x+ x) > 0}.

This set Ω is called the period domain.

Remark 1.8.8. The points of Ω parameterize Hodge structures on H2(X, Z) of K3-type (1,b2 − 2, 1).
These structures have x ∈ H2(X, C) with q(x) = 0,q(x, x) > 0, and then H1,1 is the orthogonal
complement of x.
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We hope that for every Hodge structure, there is some manifold realizing the Hodge structure,
but this is a highly nontrivial result of Huybrechts.

Proposition 1.8.9. There exists a natural diffeomorphism Ω ' Gr+(2,H2(X, R)), where the + means
that for a subspace W, we have both an orientation and positive-definiteness of q|W given by

σ 7→ 〈Reσ, Imσ〉 W = 〈w1,w2〉 7→ w1 + iw2.

Now we consider the case of K3 surfaces. We know that if X = S is a K3 surface, then q is
simply the cup product. To say more about this, first we will prove

Proposition 1.8.10. We have an identity c2(S) = 24 ∈ H4(S, Z) = Z, and of course this means
b2(S) = 22 and h1,1 = 20. In addition, we have H2(S, Z) = E8(−1)⊕2 ⊕U⊕3, where U =

(
0 1
1 0

)
.

Proof. Recall Noether’s formula, which says that

χ(OM) =
c1(M)2 + c2(M)

12
.

In the case of a K3 surface, we know χ(OM) = 2, so we get c2(S) = 24. Because c2(S) is also the
Euler class, we see that χtop(S) = 24, which gives us b2 = 22 and h1,1 = 20. The computation of
H2(S, Z) as a lattice follows from the abstract classification of lattices once we know that H2(S, Z)
is unimodular and even of indefinite signature. Recall that a lattice Λ is called even if for all α ∈ Λ,
α2 ∈ 2Z and unimodular if the matrix corresponding to the bilinar form has determinant ±1.10

To prove that H2(S, Z) is even, we use Wu’s formula, which says that for all α ∈ H2(M, Z)
(for any compact complex surface M) we have c1 ·α ≡ α2 (mod 2). For a K3 surface, this clearly
implies that H2(S, Z) is even.

We now consider Hirzebruch-Riemann-Roch on a K3 surface. If L is a line bundle and X is a
surface, we have

χ(X,L) =
L2 − L ·KX

2
+ χ(OX).

For a K3 surface, we have χ(S,L) = L2

2 + 2.

Corollary 1.8.11.

• If L2 > −2, then ±L is effective.

• If L2 > 0, then either L = OS or h0(±L) > 2.

• If L = OS(C) for an irreducible curve C, then L2 = 2g− 2.

Example 1.8.12. If C = R is a smooth rational curve, then R2 = −2. If C = E is an elliptic curve,
then E2 = 0.

Now for a compact complex manifold, define the Neron-Severi group NS(X) = PicX/Pic0 X.
This emerges from the exponential sequence

0→ Z→ OX → O∗X → 1

as the image of PicX
c1−→ H2(X, Z). By the Lefschetz theorem on (1, 1)-classes, we know Im c1 =

H2(X, Z)∩H1,1
R . In particular, if X is irreducible holomorphic symplectic, H1(OX) = 0, so NS = Pic.

The reason we care about this is that if we consider Def(X)→ Ω and identifyH2(X, R) = H2(Xt, R),
then the rank ρ(X) = rk PicX can vary.

We now return to consider consequences of the local Torelli theorem.
10For other hyperkähler manifolds, the lattice is not unimodular.
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Proposition 1.8.13. Let X be irreducible holomorphic symplectic. Then some small deformation of X is
projective.

Proof. It suffices to show that there exists a small deformation such that Xt contains a Kähler class
that is rational. By the Kodaira embedding theorem, such a class is the first Chern class of an
ample line bundle. To prove this, recall the identification Ω ∼= Gr+(2,H2(X, R)). But then the set
of planes W ⊆ H2(X, R) defined over Q are dense, so for 0 ∈ Def(X) and corresponding ℘(0) ∈ Ω,
we can choose a nearby point such that W is defined over Q. But then W⊥ = H1,1 is also defined
over Q. Thus if t ∈ Def(X) satisfies ℘(t) =W, then H1,1(Xt) is also defined over Q. In particular,
H1,1

R ∩H
2(Xt, Q) is dense and has maximal rank. But then it must have nonempty intersection

with the Kähler cone of Xt, so we are done.

Now let X be irreducible holomorphic symplectic, L be a line bundle, and ` = c1(L) ∈ H2(X, Z).
Set Ω` := Ω ∩ `⊥ and Def(X)` = ℘−1(Ω`) ⊆ Def(X). Then if X → Def(X) is the universal
deformation, we will call X` the base change to Def(X)`.

Proposition 1.8.14. The space Def(X)` ⊂ Def(X) is a smooth hypersurface and is the univeral deformation
space of Def(X,L) (which means there exists a universal line bundle L on X` such that L|X0 = L, L|Xt = Lt,
and c1(Lt) = `t). More generally, if L1, . . . ,Lk ∈ PicX have `1, . . . , `k linearly independent, then
Def(X,L1, . . . ,Lk) ⊆ Def(X) = ℘−1(Ω∩ 〈`i〉⊥) is smooth of codimension k.

Proof. Note that `⊥ ⊆ PH2(X, C) is smooth if and only if q(`) 6= 0. On the other hand, if q(`) = 0,
the only singular point is ` ∈ `⊥, but then such an ` cannot lie in Ω. Thus a necessary condition
for Xt to have a line bundle Lt with c1(Lt) = `t is that `t is a (1, 1)-class, which is equivalent to
q(`t,σt) = 0. Of course, this is equivalent to ℘(t) ∈ Ω`. In particular, we know that if (X,L)→ B
is a deformation of (X,L), the Kodaira-Spencer map B → Def(X) must factor through Def(X)`.
Of course, by the Lefschetz (1, 1)-theorem, this is also a sufficient condition. In particular, for all
t ∈ Def(X)`, we have q(σt, `t) = 0, so `t ∈ H1,1 ∩H2(X, Z), so there exists a unique line bundle Lt
such that c1(Lt) = `t. Therefore on X` → Def(X)`, every fiber has a line bundle, so we prove that
there exists a global line bundle and that such a line bundle is universal.

We show that Def(X,L) is unobstructed with tangent space ker[H1(TX)
c(L)−−−→ H2(X,OX)] ⊆

H1(TX). This is induced by the perfect pairing

H1(TX)⊗H1(Ω1
X)→ H2(OX) = C.

Consider OX
d−→ Ω1

X and the corresponding map O∗X → Ω1
X given by u 7→ du

u . This induces a map

H1(X,OX)
c(−)−−−→ H1(X,ΩX) = Ext1(TX,OX).

Thus we have L 7→ c(L) ∈ [0→ OX → EL → TX → 0]. This gives us an exact sequence

0 = H1(X,OX)→ H1(X,EL) ↪→ H1(X, TX)� H2(X,OX)→ H2(X,EL)→ H2(X, TX).

We also have H1(X,EL) = TDef(X,L) and of course H1(X, TX) = TDef(X). In addition, we have
H2(X,EL) = Obs(Def(X,L)), but deformations of X are unobstructed, so Obs(X,EL) = 0, and thus
deformations of (X,L) are unobstructed.
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1.9 Noether-Lefschetz loci

Definition 1.9.1. Let f : X→ B be a non-isotrivial family of irreducible holomorphic symplectic
varieties over a connected B.11 Define

ρ0 = min
t∈B

{ρ(Xt)}.

Then the Noether-Lefschetz locus12 of f is

NL(f) = {t | ρ(Xt) > ρ0}.

Proposition 1.9.2 (Green). The Noether-Lefschetz locus NL(f) ⊆ B is dense in the analytic topology.

In fact, we will prove a stronger statement.

Proposition 1.9.3 (Oguiso). Suppose that B is small enough such that there is an identification
ηt : H

2(Xt, Z) ' H2(X0, Z) =: Λ. In this case, there exists a period mapping ℘ : B → PΛC. Then
there exists a primitive sublattice Λ0 ⊆ Λ of rank ρ0 such that for all t ∈ B, NS(Xt) ⊇ Λ0.13

Proof. Let I be the set of all possible primitive sublattices Λα ⊆ Λ. Then for all α ∈ I, define
Bα = {t ∈ B | NS(Xt) = Λα}. But then we see that B =

⋃
Bα and that ℘(Bα) ⊆ P(Λα,C)

⊥. But
now we know that

B =
⋃
℘−1(Λ⊥α,C),

and thus there exists α0 such that B = ℘−1(Λ⊥α0,C) and therefore Λα0 ⊆ NS(Xt) for all t.

Proof of Green. We will assume that B = ∆ is a disk and that ℘ : ∆ → PΛC is injective. Let
H2

C = R2f∗C⊗C C∞(∆) ' H2(X0, C)×∆ (where the last identification is local). Here, we have a
Hodge filtration F•H2

C, and we let H2
R be the real part of this bundle. If we intersect F1H2 ∩H2

R,
we obtain precisely the bundle H1,1

R .
The key claim is that the natural map φ : H1,1

R → H2(X0, R) is an open immersion. Assuming
this, we know H2(X0, Q) ⊆ H2(X, R) is dense and Λ0 ⊆ H2(X, Q) has smaller rank, so H2(X0, Q) \

Λ0 is dense. In particular, φ−1(H2(X0, Q) \Λ0) ⊆ H1,1
R is dense. In particular, for any α, the set of

t for which αt has type (1, 1) is dense.
We omit the proof of the key claim because it uses the Gauss-Manin connection. The idea is

that the differential of φC : H2
C → H2(X0, C) is surjective. This is done by identifying it in terms of

the Gauss-Manin connection and the differential of the period map.

Definition 1.9.4. A pair (X,H) of a complex manifold X and line bundle H is called a polarized
complex manifold if H is ample (in particular this means X is projective). Here, H is called the
polarization. A polarized family (X,H) over B has H ample on every fiber.

Definition 1.9.5. A family X → B of irreducible holomorphic symplectic manifolds is (locally)
complete if B = Def(X0)h.

Example 1.9.6. The family of quartic K3 surfaces is locally complete.

11Note this is equivalent to the Kodaira-Spencer map being nontrivial.
12Note this is a union of Hodge loci.
13Giulia did not give us a precise reference for this, but she said that there are two papers with the keywords ‘Picard

rank’ and ‘hyperkähler’ and that we would be able to figure out which one it is.
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For higher-dimensional irreducible holomorphic symplectic manifolds, it is in general very
hard to construct such locally complete families. The known such constructions are EPW sextics,
which are IHS fourfolds of K3[n] type, fourfolds constructed by Debarre-Voisin, and various
examples constructed from cubic fourfolds.

Theorem 1.9.7 (Matsushita). Let X be irreducible holomorphic symplectic of dimension 2n and f : X→ B
be surjective and proper with connected fibers and 0 < dimB < 2n for B a Kähler manifold (alternatively
it can be a projective variety). Then dimB = n, B is projective, b2(B) = ρ(B) = 1, and B is Fano
(alternatively B is Q-factorial and Fano with log-terminal singularities). Moreover, the general fiber is a
complex torus and every component of a fiber is a Lagrangian subvariety.

Definition 1.9.8. Let X be holomorphic symplectic. Then a subvariety V is called Lagrangian if
dimV = 1

2 dimX and for all resolutions ν : Ṽ → V ⊆ X, ν∗σX = 0.

Proof. Recall that if g : Y → Z is a surjective morphism of Kähler manifolds, then g∗ : Hk(Z, Q)→
Hk(Y, Q) is injective.14 This immediately gives H2,0(B) = 0, and thus H1,1(B) = H2(B), which
immediately gives a rational Kähler class, so B is projective. Let H be a polarization on B. If
m = dimB, then c1(H)

m 6= 0 but c1(H)
m+1 = 0, and because m < 2n, we know c1(H)

2n = 0, and
by Fujiki, we have q(f∗H) = 0.

Now let ω be a Kähler form on X. Because (f∗H)m = [Xb], if we write L = f∗H, then
Lm ∧ω2n−m

X 6= 0. Similarly, for k 6 m, Lk ∧ω2n−k
X 6= 0 because Lk = f−1(H1 ∩ · · · ∩Hk). We

need to prove that m = n. Here, we apply Fujiki to ω+ tL. This gives us

(ω+ tL)2n = cq(ω+ tL)n = c[q(ω) + tq(ω,L)]n.

If we expand this, we obtain

ω2n + · · ·+ tmω2n−mLm = c[q(ω)n + · · ·+ tnq(ω,L)n].

Comparing coefficients in t, we observe that the coefficient of tn is nonzero, and thus n = m.
Now we prove that if Xb is smooth, then it is Lagrangian. Using the Hodge-Riemann bilinear

relations, this is the same as showing that∫
Xb

σ|Xb ∧ σ|Xb ∧ω
n−2
X = 0.

If ω is the restriction of a Kähler form on X, then our integral simply becomes∫
X
σ∧ σ∧ωn−2 ∧ Ln.

Applying Fujiki to σ + σ + tω + sL and using the fact that q(σ,L) = q(σ,L) = 0, we obtain
the desired conclusion. To conclude that all fibers are Lagrangian, we use a major result of
Kollár, which says that if h : Y → Z is a proper and surjective morphism of smooth projective
varieties, then Rih∗ωY is torsion free for all i. In particular, for f : X→ B, we see that Rif∗OX is
torsion-free, so for σ ∈ H2(OX), this maps to a torsion section σ ∈ H0(B,R2f∗OX), which must
vanish. Pulling back to H2(X̃b,O), Xb is Lagrangian. By linear algebra reasons, dimXb 6 n, so f
is equidimensional.

Next we prove that B is Fano. First, it is clear that H1(OB) = 0, so PicB = NSB. But then
f∗ : H2(B) ⊆ H1,1(X). For all α ∈ H2(B), q(f∗α) = 0, but because H1,1(X) has signature (1,−), we

14In general this is not true over Z.
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see that dimH2(B) = 1. Thus NS(B) = ZH for some H. This implies that KB = mH, and we
want to show that m < 0. If we consider the inclusion f∗Ω1

B ↪→ Ω1
X, Ω1

X is a slope-semistable
bundle because c1(X) = 0. In particular, µ(Ω1

B) 6 µ(Ω
1
X) = 0, so m 6 0. To prove that m 6= 0,

we see that if m 6= 0, then OB = f∗KB ↪→ ΩnX, so H0(OB) ⊆ H0(ΩnX), and for type reasons, this is
impossible.

Remark 1.9.9. A similar argument shows that if α ∈ H2(X, Z) satisfies q(α) = 0, then αn 6= 0 but
αn+1 = 0.

There is a result of Verbitsky that the kernel of q : S2H2(X, Z) → H∗(X, Q) is given by〈
αn+1 | q(α) = 0

〉
. Also, when we proved that B is Fano, we used the following result.

Proposition 1.9.10 (Beauville). Let X be irreducible holomorphic symplectic of dimension 2n. then
H0(Ω∗X) = 〈σX〉, where σX is the holomorphic form.

Idea of proof. We consider the holonomy representation. We know that Hol(g) = Sp(n), where g is
the hyperkähler metric. This has an action on ΩkX,x0

. By compactness of X, holomorphic tensors
are parallel. Coversely, parallel forms are holomorphic. But then we consider representations
of Sp(n) on

∧k
C2n, but then by the representation-theoretic black box there exists a unique

invariant if k is even and no invariants if k is odd.

Remark 1.9.11. There exists a singular definition of irreducible holomorphic symplectic varieties.
This uses the algebra of reflexive holomorphic forms.

Now we want to see that the smooth fibers of a Lagrangian fibration X → B are complex
tori. But it is clear that NXb/X = OnXb

and that NXb/X = Ω1
Xb

. Then we need to prove that
a : X→ Alb(X) is an isomorphism, but we consider the sequence

T → X→ Alb(X),

and the map T → X is étale, the map T → Alb(X) is surjective, and finally by considering the
effect of a on H1, this is an isomorphism.

Alternatively, we may use the holomorphic version of Arnold-Liouville. This describes
smooth compact fibers of a completely integrable system. If M is holomorphic symplectic and
h = (h1, . . . ,hn) : M→ Cn has compact connected fibers and dh1 , . . . , dhn linearly independent
at every point, h is an integrable system if they Poisson commute. This all implies that the
smooth fibers are biholomorphic to complex tori. In our case, each vector field Xhi defined by
dhi = σM(Xhi ,−) acts infinitesimally on M and preserves the level set of hj for all j. Thus Xhi
acts on each fiber. Because the fibers are compact, the action lifts to an action of C on the fibers
Mc. Of course, all of these actions commute, and we obtain an action of Cn on each Mc. The
orbits are open, and the fibers are connected, so there exists a unique orbit and the action is
transitive. However, the kernel is discrete and has maximal rank, and thus we obtain Mc = Cn/Λ.

In our case, the fact that [Xhi ,Xhj ] = 0 is the same thing as our fibers being Lagrangian, and
then we can just work locally.

1.10 An explicit computation

We will compute the Beauville-Bogomolov-Fujiki form for irreducible holomorphic symplectic
varieties X of K3[n] type.
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Proposition 1.10.1. There exists an isomorphism of lattices

(H2(X, Z),q) ∼= ΛK3 ⊕ 〈−2(n− 1)〉 .

Moreover, the Fujiki constant is given by

cn :=
(2n)!
n!2n

.

Proof. By deformation invariance, it is enough to perform this computation for X = S[n], where S
is a K3 surface. Recall that

H2(S[n], Z) = h∗(H2(S(n), Z))⊕Zδ

where h is the Hilbert-Chow morphism and we have the isomorphism H2(S(n), Z) ' H2(S, Z).
Also, if E is the exceptional divisor of h, then 2δ = c1(E). Our strategy is the following:

1. We will prove that q|H2(S,Z) = (−,−)S up to a constant.

2. We will prove that δ ⊥ H2(S, Z).

3. We will compute q(δ).

4. We will compute the Fujiki constant.

Let α ∈ H2(S, Z). We will compute∫
S[n]

h∗
(∑

p∗iα
)2n

=

∫
S(n)

(∑
p∗iα

)2n

=
1
n!

∫
Sn

(∑
p∗iα

)2n
.

=
1
n!

∫
Sn

(p∗1α+ · · ·+ p∗nα)2n

=
1
n!

∑(
2n
k1

)(
2n− k1

k2

)
· · ·p∗1α

k1 · · ·p∗nαkn

=
1
n!

(
2n
2

)(
2n− 2

2

)
· · ·
(

4
2

) n∏
i=1

p∗i (α∧α)

=
(2n)!
n!2n

(α,α)nS .

Continuing, we have ∫ [n]
S
h∗(α)2n−1 · E = c · q(α)n−1q(α,E)

=

∫
E
h∗(i(α))2n−1 = 0

because h(E) = ∆2n−2, and so the integral vanishes by dimension reasons. Now we have

q(α) = λ(α,α)S
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for some λ ∈ Z, and because
∫
α2n = cnq(α)

n = cX(α,α)n, we have cX = cn · λn. Later, we
prove that λ = 1. To compute q(δ), we compute∫

S[n]
E2 ∧ h∗

(∑
p∗iα

)2n−2
=

∫
E
E|E ∧ h∗α2n−2

=

∫
∆
h∗(E|E)∧

(∑
p∗iα

)2n−2
, = −2

∫
∆

(∑
p∗iα

)2n−2
.

Note that h∗(E|E) = −2 because E→ ∆ looks locally like the resolution of a quadric cone. Noting
that we have a diagram

E ∆

S× Sn−2 S× S(n−2),

η

(n−2)!

bir.

our integral becomes

−2
(n− 2)!

∫
Sn−1

η∗
(∑

p∗iα
)2n−2

=
−2

(n− 2)!

(
(2n− 2)!

2n−1 22(α,α)n−1
S

)
.

On the other hand, we can differentiate the Fujiki relation twice, and we know that

(2n− 1)
∫
S[n]

E2 ∧ h∗α2n−2 = cXq(α)
n−1q(E)

= cXλ
n−1(α,α)n−1

S q(E).

=
cn

λ
(α,α)n−1

S q(E).

Comparing the coefficients, we obtain

−(2n− 1)!
(n− 2)!2n−4 =

4
λ

(2n)!
n!2n

q(δ),

and after cancelling everything, we have

−2
(n− 2)!

=
1
λ

1
n− 1

q(δ),

and therefore q(δ) = −2(n− 1)λ.15 Finally, we are forced to take λ = n− 1, so we are done.

In the case when n = 2, there is a more explicit argument using intersection theory and Segre
classes of the Hilbert scheme of 2 points.

Remark 1.10.2. It is not a coincidence that q(E) < 0.

Definition 1.10.3. If X is irreducible holomorphic symplectic, then E ⊆ X is called prime exceptional
if it is integral and q(E) <∞.

Theorem 1.10.4 (Markman,16 Druel). E ⊆ X is prime exceptional if and only if there exists a birational
f : X 99K X ′ such that the strict transform E ′ of E can be contracted.

15This was exhibit N� 0 that mathematicians are bad at arithmetic.
16Fun fact: Markman was on my undergraduate thesis committee.
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Proposition 1.10.5. Let f : x 99K X ′ be a birational map between irreducible holomorphic symplectic
varieties. Then the isomorphism

f∗ ' H2(X ′, Z) ' H2(X, Z)

preserves qX ′ and qX.

Proof. If we consider the graph Γ̃ of f with projections p,q, we can normalize first so that∫
X
(σσ)n = 1,

and then we compute ∫
Γ
p∗(σσ)n−1E2 = 0.

Recall that if Z is a smooth projective variety and F is a coherent sheaf, then

χ(Z,F) =
∫
Z

ch(F)td(Z)

by Hirzebruch-Riemann-Roch. If F = L is a line bundle, then we have

χ(Z,L) =
∑∫

Z

c1(L)
i

i!
tddimZ−i(Z).

Proposition 1.10.6. Let X be irreducible holomorphic symplectic. Then there exist qi ∈ Q depending only
on the deformation class of X such that

χ(X,L) =
n∑
i=0

qiq(L)
i.

Corollary 1.10.7. For all isotropic L, we have χ(X,L) = n+ 1, where X has dimension 2n.

To prove the proposition, we need to prove the following Fujiki-like result.

Proposition 1.10.8. Let β ∈ H4`(X, R) be a class that stays of type (2`, 2`) for all small deformations of
X. Then there exists cβ ∈ R such that

∫
β∧α2n−2` = cβq(α)

n−` for all α ∈ H2(X, Z).

Proof of this is the same as the proof of Fujiki.
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Moduli spaces

Our goal is to eventually prove the following theorem:

Theorem 2.0.1 (Mukai, O’Grady, Yoshioka, Huybrechts). Let S be a projective K3 surface. Let
v ∈ H∗alg(S, Z) = H0 ⊕NS(S)⊕H4 be a primitive Mukai vector. Let H be a general polarization and
Mv,H be the moduli space of H-semistable coherent sheaves on S with Mukai vector

v(F) := ch(F)
√

td(S) =

(
r, c1,

c2
1

2
− c2 + r

)
∈ H∗alg(S, Z).

If v2 > −2, then Mv,H is a smooth projective irreducible holomorphic symplectic manifold of dimension
v2 + 2 deformation equivalent to S[n], where n = v2

2 + 1. Moreover, if v2 > 2, then there is a canonical
isomorphism

H2(Mv,H, Z) ' v⊥ ⊆ H∗(S, Z)

which is an isomorphism of Hodge structures.

We’ll have to understand what a general polarization is, and here semistability will mean
Gieseker stability, and of course we’ll need to prove smoothness, projectivity, and symplecticness.
OF course just being nonempty and irreducible is a nontrivial result. This result also holds more
generally for Bridgeland stability, which we will discuss in this course.

2.1 Strategy for deformation equivalence

Here is the strategy for deformation equivalence. Up to deforming S and considering birational
maps among moduli spaces with different Mukai vectors, we can relate Mv,H(S) to a Hilbert
scheme. Because Yoshioka is notoriously hard to read, we apparently will sketch this. The missing
piece is the following result:

Theorem 2.1.1 (Huybrechts). Let f : X 99K X ′ be a bimeromorphic map of irreducible holomorphic
symplectic manifolds. Then X and X ′ are deformation equivalent. This means that there exists a diagram

X X ′

∆

F

such that F is an isomorphism after restricting to ∆∗ and (ΓF)0 = Γf.

36
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This result can be found in a series of papers by Huybrechts titled:

• Birational symplectic manifolds and their deformations;

• Compact hyperkähler manifolds: basic results and erratum;

• Kähler cone...

Fix a lattice Λ of signature (3, ρ− 3), where ρ = rkΛ. Then the moduli space MΛ of Λ-marked
hyperkähler varieties parameterizes pairs (X,ϕ) where X is irreducible holomorphic symplectic
and ϕ : H2(X, Z)

∼−→ Λ is an isomorphism of lattices. Here, (X,ϕ) ' (X ′,ϕ ′) if there exists
f : X→ X ′ such that ϕ ◦ f∗ = ϕ ′.

This is apparently some nonseparated complex manifold because of local Torelli. Here, we
obtain a system of charts on MΛ that looks like

Def(X) ⊇ U MΛ V ⊆ Def(X ′)

ΩX ⊆ PH2(X, Z) ΩX ′ ⊆ PH2(X, Z).

℘X ℘X ′

ϕ−1◦ϕ ′

Lemma 2.1.2 (Tautological lemma). Two points (X,ϕ), (X ′,ϕ ′) ∈MΛ are non-separated if and only if
there exist families X,X ′ → ∆ and V ⊆ ∆ such that 0 ∈ V and X,X ′ are isomorphic over V with central
fibers X,X ′.

This result tells us that X,X ′ have the same period map because the diagram

Λ

H2(X, Z) H2(X ′, Z)

H2(Xt, Z) H2(X ′t, Z).

ϕ

ϕ ′

∼

∼

∼

Proposition 2.1.3 (Huybrechts, Burns-Rapoport). The tautological lemma implies that there exist
families

X X ′

∆

that are isomorphic over ∆∗. Now define ΓF∗ ⊆ X×∆∗ X ′. The key input is a volume estimate, which says
that the volume of Γt is bounded. By a result of Bishop, there exists a limit cycle Γ0 ⊆ X0 ×X ′0.

Let ωt,ω ′t be Kähler forms on Xt,X ′t varying continuously with t and consider the Kähler
form p∗tωt + p

′∗
t ω

′
t. Then we see that

vol(Γti) =
∫
Γti

(p∗tωt + p
′
tω
′
t)

2n

=

∫
Xt

(ωt + f
∗
tω
′
t)

2n

=

∫
X0

(ηt(ωt) + (ϕ−1 ◦ϕ ′)(ω ′t))2n.
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This implies that ∫
X0

(ω0 + (ϕ ◦ϕ ′)ω ′0)2n <∞,

and therefore that the limit cycle Γ0 ⊆ X× X ′ exists. We want to show that there exists Γf ⊆ Γ0
inducing a birational map. Because the correspondences Γ∗t are isomorphic, so is Γ∗0 . This also
tells us that Γ∗0 [X

′] = [X], and so Γ0 is dominant of degree 1 on both factors. We want to prove that
there exists a component that is dominant of degree 1 on both components. We need to exclude
the case where

Γ0 = Z+Z ′ +
∑

Yi,

where Z→ X is dominant, Z ′ → X ′ is dominant, and Yi are not dominant onto either factor. Now
we have∫

X
(σσ)n =

∫
X
Γ∗0 (σ

′)σn−1σn

=

∫
X
p∗(p

′∗(σ ′) ^ Γ0)σ
n−1σn

=

∫
Z
p ′∗(σ ′)p∗(σn−1σn) +

∫
Z ′
p ′∗(σ ′)p∗(σn−1σn) +

∑∫
Yi

p ′∗(σ ′)p∗(σn−1σn).

By type reasons, the integrand vanishes on Z ′, Yi and thus we only need to study the integral on
Z. But now p ′∗(σ ′)|Z = 0. This is because it comes from a smaller-dimensional subset of X ′ which
must be degenerate, but we know that holomorphic forms are a birational invariant, so this must
be degenerate.

Remark 2.1.4. In general, we have Γf ( Γ0. Sometimes, even their action on H2 is different.

Proof of Huybrechts for projective case. Let f : 99K X ′ be birational. We know that X,X ′ have L,L ′

such that qX(L) = qX ′(L ′). Also, we know that H0(X,L) = H0(X ′,L ′). Now we use Riemann-Roch,
and so there exists ai,a ′i ∈ Q such that

χ(X,L) =
∑

aiq(L)
i χ(X ′,L ′) =

∑
a ′iq(L

′)i.

Without loss of generality, we can assume that for t� 0,
∑
ait

i >
∑
a ′it

i. For n� 0, this means
that

χ(X,Ln) > χ(X ′,L ′n).

Now choose L ′ ample. If f is not an isomorphism, then L will not be nef (but it will be big). We
know that

X ′ = Proj
(⊕

H0(X ′,L ′n)
)
= Proj

(⊕
H0(X,Ln)

)
= X,

and so our map f : X 99K X ′ will be induced by L (which is not nef and thus has a base locus, but
is big and thus has many global sections).

Let (X,L) be a deformation of (X,L) such that for a very general t ∈ ∆, ρ(Xt) = 1. Now we use
a theorem from the erratum of the second Huybrechts paper, which says that if X is irreducible
holomorphic symplectic, then X is projective if and only if there exists L such that q(L) > 0. Here,
we know that q(L ′) = q(L) = q(Lt) > 0, and thus Lt is ample on Xt for very general t. This is an
open condition, so we may assume Lt is ample for t ∈ ∆∗. Thus for all n > 0, Hi(Xt,Lnt ) = 0.

The next claim is that π∗Ln is locally free for n� 0. Because the base is reduced, it is enough
to prove constant fiber dimension. It is enough to show that t 7→ h0(Xt,Lnt ) is constant for n� 0.
But now we have

h0(Xt,Lnt ) = χ(Xt,L
n
t ) = χ(X,Ln) > χ(X ′,L ′n) = h0(X ′,L ′n) = h0(X,Ln).
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By upper semicontinuity, everything here must be equal. Taking the relative Proj construction and
setting

X ′ := Proj∆
(⊕

π∗L
n
)

,

we are done.

2.2 Quot schemes

Let k be an infinite field with X ⊆ Pnk . Alternatively, we may consider a projective morphism
X → B with B quasiprojective over k. Fix p(t) ∈ Q[t]. We would like to construct a proper
(projective?) separated scheme of finite type over k whose closed points are in bijection with
isomorphism classes of sheaves on X whose Hilbert polynomial is p(t). We would also like M to
satisfy some universal property, namely representing some functor.

Definition 2.2.1. A family {Fα}α∈A of (isomorphism classes of) coherent sheaves on X is called
bounded if there exists a scheme S fo finite type over k and a coherent sheaf F on S×X such that

{Fα} ⊆ {Fs | s ∈ S}.

Unfortunately, fixing the Hilbert polynomial is not in general sufficient to have a bounded
family.

Example 2.2.2. On P1
k consider the constant Hilbert polynomial p(t) ≡ t+ 2. We will consider

locally free sheaves on P1 with this Hilbert polynomial. However, we have sheaves Fa =
O(a)⊕O(−a). But then h0(Fa) = a+ 1. This family cannot be bounded because for any scheme S
and any m the subscheme

Sm =
{
Fs | h

0(Fs) > m
}

is closed, and thus S cannot be of finite type.

Example 2.2.3. Let f : C→ P1 be a hyperelliptic curve with g(C) > 2. Then Picg−1(C) contains
a theta divisor Θ, but here we have h0(L) = 0 generically and h0(L) > 0 on Θ. Then there exists
a universal line bundle L on Picg−1(C)×C. Then we have a family of line bundles FL = f∗L on
P1 which are O(a)⊕O(−a− 2) for a > −1. If L /∈ Θ, we have FL = O(−1)⊕O(−1). However, if
L ∈ Θ and h0(L) = 1, we have FL = O⊕O(−2). This gives a nonseparated family of sheaves.

To achieve boundedness, we need to both fix the Hilbert polynomial and consider sheaves that
are quotients of a fixed sheaf ONX . Our main technical tool is the following:

Definition 2.2.4. A coherent sheaf F on Pn is Castelnuovo-Mumford regular if for all i > 0 we have
Hi(F(−i)) = 0.

Theorem 2.2.5 (Castelnuovo, Mumford). Let F be Castelnuovo-Mumford regular. Then

1. F is globally generated.

2. F(`) is Castelnuovo-Mumford regular for all ` > 0.

3. H0(F)⊗H0(OX(`))� H0(F(`)).
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This can be proved by inducting on the support of F and using the exact sequence

0→ F(−1)→ F→ F|H → 0.

Some references are of course FGA Explained and Grothendieck’s Techniques des construction et
théorème d’existence en geometrie algebrique IV: les schemas de Hilbert. Also there is a reference due to
Mumford.

Theorem 2.2.6. Fix (X,H) and some N > 0. Also fix p(t) ∈ Q[t] the Hilbert polynomial. Then there
exists an integer `0 sich that for all F a quotient of OnX � F, then

1. H0(ONX (`0))� H0(F(`0)) and Hi(F(`0)) = 0 for all i > 0.

2. G(`0) is globally generated and

H0(G(`0))⊗H0(OX(s))� H0(G(`0 + s))

for all s > 0, where G is the kernel of ONX → F.

3. Hi(G(`0 + s)) = 0 for all s > 0 and i > 0.

We now consider the functor QuotN,p
X that takes a scheme B to the set of isomorphism classes

of coherent sheaves F on X×B flat over B such that pFb(t) = p(t) and ONX×B � F. We will not
need this, but it is possible to identify quotients if their kernels are the same as subsheaves of
ONX×B.

Theorem 2.2.7 (Grothendieck). The functor QuotN,p
X is represented by a projective scheme QuotN,p

X . Of
course this means there is a universal coherent sheaf F on the Quot scheme with a surjection ON � F.

Example 2.2.8. Let r 6 n be integers. Then Gr(r,n) is the Quot scheme for X = pt if we consider
quotients kn �W to vector spaces of dimension n− r.

Of course, we use the Grassmannian to construct the Quot scheme, so we will construct the
Grassmannian by hand. If [V] ∈ Gr(r,n), we can choose a splitting kn = V ⊕W. Then the open
affines are given by Hom(V ,W) given by associating a map ϕ to its graph Γϕ. There is also the
tautological sheaf S and exact sequence

0→ S ⊆ OnGr → Q→ 0,

and of course we know that H0(det S∨) =
∧∨ kn.

Our strategy is to define the Quot scheme as a set, then slap a scheme structure on it and prove
that it is locally closed, and finally we prove that the universal family exists.

Let `0 be as in the previous theorem, n = dimH0(ONX (`0)), and r = p(`0). We will consider
Gr(n− r, r). Given ONX � F with pF(t) = p(t), let G = ker(ONX � F). Then we know

H0(G(`0)) ⊆ H0(ONX (`0))→ H0(F(`0)),

and because the higher cohomology of G(`0) vanishes, the last arrow is surjective. We know
that the middle term has dimension n and the last term has dimension r, so K` := H0(G(`0)) has
dimension n− r.

First we need to prove that this assignment is injective because K`0 determines G and hence F.
Indeed, by the theorem, we have a series of surjections

K`0 ⊗H
0(ONX (s))� H0(G(`0 + s)) ⊆ H0(ONX (`0 + s)).
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Thus it determines G as a graded module, and so in fact G is determined as a coherent sheaf.
Alternatively, we can consider K`0 ⊗OX → ONX (`0), and this surjects onto G. We now define the
set

Q =
{
K | K⊗H0(ONX (s))

ϕs,k−−−→ H0(ONX (`0 + s)) has rank pONX (`0 + s) − p(`0 + s)
}

.

We know that ϕs,k is the fiber of a map of vector bundles. We know S ⊆ H0(ONX (`0))⊗OGr and
so we have a map

S⊗H0(OX(s))
ϕs−−→ H0(ONX (`0 + s))⊗Ogr.

Now the locus Qs where the rank of ϕs is pONX (`0 + s) − p(`0 + s) is localy closed.

Theorem 2.2.9. Fix X,H,N,p, `0. Then there exist finitely many Hilbert polynomials of quotients ONX � F
such that G(`0) is globally generated by n− r global sections.

Proof. Consider Gr(n− r,n) =: Gr. We of course have the tautological sequence and the two
projections on Gr×X. Then we have

p∗1S ⊆ H
0(ONX (`0))⊗OGr×X → p∗2O

N
X (`0)� F(`0).

Call the kernel of the last morphism G(`0). By the flattening stratification and Noetherian induction,
we have only finitely many possible Hilbert polynomials.

Now let F be as in the proof of the theorem andQ1, . . . ,Qm be the possible Hilbert polynomials.
Then let ` ′0 be the maximum of the `0(Qi). For all s such that `0 + s > ` ′0, we know that

Hi(Fk(`0 + s)) = 0

for all i > 0. Thus pFk(`0 + s) = h
0(Fk(`0 + s)). Also, we know that Hi(Gk(`0 + s)) = 0, and thus

H0(ONX (`0 + s))� H0(Fk(`0 + s))

is surjective. Finally, using the original theorem, the map

H0(Gk(`0))⊗H0(ONX (s))→ H0(Gk(`0 + s))

is surjective.
Let γ ∈N be large enough such that if Qi(t) = p(t) for γ values, then Qi(t) ≡ p(t). We will

consider K ∈
⋂γ
s=1Qs+`0 = Q. Here, we observe that

ϕs : H
0(Gk(`0))⊗H0(ONX (s+ `0))� H0(Gk(s+ `0))

has the correct rank for these γ values. Therefore FK has the correct Hilbert polynomial, and so
we are done.

It remains to prove that Quot represents the functor and that it is a closed subscheme of Gr.
First, we will construct a universal family on Quot. Recall on the Grassmannian that we have the
tautological sequence

S ↪→ H0(ONX (`0))⊗OGr×X → 1.

Now restricting to Quot and pulling back to Quot×X, we have

(2.1)
p∗1S H0(ONX (`0))⊗OQuot×X p∗2O

N
X (`0) F(`0)

G(`0).
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Now observe that F is flat over Quot if and only if p1∗F(`) is locally free for `� 0. We will see
that

G(`0) ↪→ p∗2O
N
X (`0)� F(`0)

gives the universal quotient on Quot×X. But the flatness condition follows from the vanishing
result for ` > `0. Using the diagram (2.1), note that

p2∗(G(`0)) ⊆ ⊗OQuot×X(`0)→ F(`0)

recovers
S|Quot ⊆ H0(ONX (`0))⊗OQuot → Q|Quot → 0.

We will now check the universal property of our family. Consider a quotient ONX×B � FB. We
want ϕ : B→ Quot such that

ϕ∗(G ⊆ ONX � F) = (GB ⊆ ONB×X → FB).

But here we push forward p2∗(O
N
X×B → FB)⊗O(`0) and we now have

p2∗(GB(`0)) ↪→ H0(ONX (`0))⊗OB → p2∗FB(`0)→ 0.

But now the first factor is locally free of the correct rank, and so we have a map B→ Gr factoring
through Quot.

Finally we prove that Quot ⊆ Gr is a closed immersion. Here, we will use the valuative criterion.
Let R be a discrete valuation ring over k with fraction field K. Let U = SpecK ⊆ SpecR = C. We
want to fill in the diagram

U Quot

C Gr.

ϕ

ψ

On U×X we have an exact sequence

GU := ϕ∗G ↪→ OU×X → ϕ∗F,

and on C we have the exact sequence

ψ∗S H0(ONX (`0))⊗OC×X p∗2O
N
X (`0) F̃C(`0)

GC(`0).

We know F̃C is flat over C if and only if t : F̃C → F̃C is injective. Set FC := F̃C/[[t
∞]]. Then we

have

0 GC ONC×X F̃C 0

0 G ′C ONC×X FC,

But now FC is flat.
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Remark 2.2.10. We can replace ONX with any sheaf H on X and consider quotients H� F. Then
QuotXH,p ⊆ QuotX

ONX ,p is a closed subscheme. Here, we may assume that H is a quotient of ONX for
some large enough N. This also shows that HilbX ⊆ HilbPn is a closed subscheme for X ⊆ Pn.

Remark 2.2.11. We may also replace X/k with X→ S a projective morphism with S quasi-projective.
Then QuotX/S → S is a projective morphism. Also, we know (QuotX/S)s = QuotXs .

Wew will now compute the tangent space of the Quot scheme. Here we are following chapter
6 of FGA explained. We want to compute

T[ONX�F]
Quot = QuotONX�F

(Speck[ε]).

Theorem 2.2.12. The deformation functor DefONX�F has a tangent-obstruction theory given by

T1
Def = HomX(G, F), T2 = Ext1

X(G, F),

where G = ker(ONX � F).

We will prove the tangent part of the theorem. Consider the exact sequence

0→ (ε)→ k[ε]→ k→ 0.

We have the diagram
G(ε) ? G

0 ONX (ε) ON
X[ε] ONX

F(ε) ? F

0 0.

α

β

We want G ′, F ′ flat over k[ε] filling in the diagram. Remember flatness is equivalent to injectivity
of multiplication by ε. First we define e ∈ Ext1

X(G, F). If e = 0, then we can fill in the diagram.

Remark 2.2.13. Let A → B → C be a split exact sequence. Then the splittings are the same as
Hom(C,A).

Therefore, the possible ways to fill the diagram are the same as splittings of e, which are the
same as Hom(G, F). We know that Im(α) ⊆ ker(β)→ G. In particular, we have an exact sequence

0→ F(ε)→ ker(β)/ Im(α)→ G→ 0.

We will define e ∈ Ext1
X(G, F) to be the class of this extension. We will omit checking that

multiplication by ε is zero on this exact sequence.
If e = 0, then choose some splitting ξ : G→ ker(β)/ Im(α). We will construct a filling of the

diagram. We will define G ′ by the diagram

G ′ ker(β) ON
X[ε]

G ker(β)/ Im(α).ξ
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We will define G ′ to be the preimage of ξ(G). This gives us G(ε) ↪→ G ′ � G and of course F ′ with
F(ε)→ F ′ → F. Checking flatness is omitted.

Conversely, given G ′, F ′ filling the diagram, we know that G = G ′/ Im(α) ⊆ ker(β)/ Im(α), and
this splits the surjection ker(β)/ Im(α)� G. It is not hard to check that these two constructions
are inverses of each other.

2.3 Semistable sheaves

Given p(t) ∈ Q[t], we want to know which sheaves F with pF = p are quotients of a given sheaf.

Remark 2.3.1. A family {Fα} of sheaves is bounded if and only if there exists a sheaf H such that
H� Fα and there are only finitely many Hilbert polynomials.

Let X ⊆ Pn be projective and F coherent with Supp F ⊆ X.

Definition 2.3.2. F is pure of dimension d if for all nonzero subsheaves E ⊆ F, dim SuppE = d.

Note that this is equivalent to saying that all associated points of F have dimension d.

Example 2.3.3. If Z ⊆ X is a subscheme of dimension 0, then OZ has pure dimension 0. Also, if
j : C→ X is a curve and L is a line bundle on C, then j∗L is pure of dimension 1.

Example 2.3.4. Let X be integral and dimX = d. Then F is pure of dimension d if and only if F is
torsion-free.

Now define the torsion filtration of F as

0 ⊆ T0(F) ⊆ T1(F) ⊆ · · · ⊆ Td(F) = F

where Ti(F) is the maximal subsheaf of dimension at most i. Note that F/Td−1(F) is pure of
dimension d.

Let (X,H) be a polarization with X projective over k = k. If E is a coherent sheaf, recall that

pE(t) = χ(E(tH)) =

dimE∑
i=0

αi(E)
ti

2!
=
∑

χ(E|⋂
j6iHj

)

(
t+ i− 1

i

)
,

where Hi ∈ |H| are generic. We know α0 = χ(E). If d = dimE, then αd(E) > 0.

Remark 2.3.5. If E = OX, then αd(OX) = Hd is the degree of X with respect to H. We may now
define the generalized rank of E by αd(E)

αd(OX)
. If X is not irreducible, the generalized rank of E may

depend on the polarization.

Remark 2.3.6. Using Grothendieck-Riemann-Roch, if X is integral, then

αd(E)

αd(OX)
= rk(E).

Definition 2.3.7. The reduced Hilbert polynomial p(E) of E is defined by

p(E) :=
pE(t)

αd(E)
.

If we consider the lexicographic ordering on polynomials, we can make the following definition:
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Definition 2.3.8. A coherent sheaf E on X of dimension dimE = d is called (semi)stable if E is pure
and for all F ( E, p(F) < (6)p(E).

Remark 2.3.9. IT is enough to check semistability for so-called “saturated” subsheaves, which are
those F ⊆ E with E/F pure of dimension d. Indeed, if F ⊆ E → G and G is not pure, we can
consider T = Td−1(G) and then G/T is pure. We can then replace F with F ′, called the saturation
of F in E. Because saturating F increases the Hilbert polynomial because αd(F) = αd(F

′) and
αd−1(F) 6 αd−1(F

′), we can check semistability for saturated subsheaves.

Lemma 2.3.10. It is enough to check pure quotients. Namely, for all E � G pure of dimension d, E is
(semi)-stable if and only if p(E) < (6)p(G).

We can check that
αd(F)(p(F) − p(E)) = αd(G)(p(E) − p(G)).

Proposition 2.3.11. Let F,G be pure of dimension d and semistable.

1. If p(F) > p(G), then Hom(F,G) = 0;

2. If p(F) = p(G) and there exists a nonzero f : F→ G, then if F is stable, f is injective. If G is stable,
then f is surjective.

Remark 2.3.12. Even when X is integral, stability depends on H in general.

Corollary 2.3.13. If E is stable and k = k, then E is simple (which means End(E) = k). Otherwise,
End(E) is a finite-dimensional division algebra over k.

Proof. Consider the image E of f. By semistability, we have p(F) 6 p(E) 6 p(G), and so a nonzero
map cannot exist. For the second part, if F is stable, consider the image E ⊆ G again. If f is not
injective, then p(F) < p(E), and this is impossible.

Example 2.3.14. Let C be a curve of genus g > 1 and L a line bundle of degree d. Consider
e ∈ H1(OC) = Ext1(L,L). Then we have 0→ L→ E→ L→ 0, and E is strictly semistable.

Example 2.3.15. Let E be a vector bundle on D such that (degE, rkE) = 1. Then if E is semistable,
then E is stable.

2.3.1 Some filtrations We will now discuss the Harder-Narasimhan filtration

Lemma 2.3.16. Let E be a coherent sheaf pure of dimension d. Then there exists F ⊆ E such that for all
G ⊆ E, p(F) > p(G) and if equality holds, then G ⊆ F. Moreover, F is semistable and uniquely determined.

Definition 2.3.17. The F in the lemma is called the maximal destabilizing subsheaf of E.

Proof. Consider the ordering on the set of pairs (F ⊆ E,p(F)) where (F,p(F)) 6 (F ′,p(F ′)) if F ⊆ F ′
and p(F) 6 p(F ′). This is clearly a nonempty set and every ascending subsequence of subsheaves
has a maximal element. Among all maximal elements, choose one with minimal αd > 0. We will
prove that F is the desired maximal destabilizing subsheaf.

If not, there exists G ⊆ E such that p(G) > p(F). If G 6⊆ F, then F ( F+G and G∩ F ( G. By
the maximality of F, we can asssume that p(F) > p(F+G). We have the exact sequence

0→ G∩ F→ F⊕G→ F+G→ 0.
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But now we have p(F+G) < p(F) by assumption, but this means that p(F ∩G) > p(G) > p(F),
and this is a contradiction. Thus every G ′ ⊆ E with p(G ′) > p(F) defines a subsheaf G ⊆ F with
p(G) > p(F).

Now let G ⊆ F be a maximal subsheaf with p(G) > p(F). Let G ⊆ G ′ ⊆ E be maximal with
respect to the ordering. By maximality of G ′, we know that p(G ′) > p(G) > p(F). We will now
prove that G ′ 6⊆ F. By αd-minimality of F, if G ′ ⊆ F, then αd(G ′) < αd(F), and thus G ′ 6⊆ F by
contradiction. This implies that F ( F+G ′ and G ′ ∩ F ( G ′. By maximality of F, p(F) > p(F+G ′).
We assumed that p(F) < p(G ′), and thus p(G ′ ∩ F) > p(G ′) > p(G), contradicting the maximality
of G in F.

Definition 2.3.18. Let E be pure of dimension d. A Harder-Narasimhan filtraton of E is an increasing
filtration

0 ⊆ HN1(E) ⊆ · · · ⊆ HN`(E) = E

such that

1. The graded pieces HNi/HNi−1 are semistable with reduced polynomials pi.

2. We have p1 > p2 > · · · > p`.

Example 2.3.19. If E is semistable, then 0 ⊆ E1 = E is a Harder-Narasimhan filtration.

Example 2.3.20. Consider L1,L2 line bundles of degrees d1 > d2. Then Ext1(L2,L1) = H1(L1 ⊗
L∨2 ) 6= 0. Considering a nontrivial extension

0→ L1 → E→ L2 → 0,

note that E is unstable and 0 ⊆ L1 ⊆ E is a Harder-Narasimhan filtration.

Theorem 2.3.21. Let E be pure of dimension d. Then there exists a unique Harder-Narasimhan filtration.

Proof. We induct on αd(E). We may assume that E is unstable. Otherwise, let E1 ⊆ E be the
maximal destabilizing subsheaf. Then we consider E/E1 and αd(E/E1) < αd(E). By induction, we
have a Harder-Narasimhan filtration

0 ⊆ G1 ⊆ · · · ⊆ Gk = G = E/E1

such that p(G1) > p(G2/G1) > · · ·p(Gk/p(Gk−1)). Set Ei+1 = π−1(Gi) under π : E → E/E1. But
now we have p(E2/E1) = p(G1),p(E3/E2) = p(G2/G1), . . ., and this gives us

E1 ⊆ E2 ⊆ · · · .

We only need to check that p(E1) > p(E2/E1). By the maximality of E1, we know that p(E1) >
p(E2), and this gives the desired result.

Now let E•,E ′• be two Harder-Narasimhan filtrations. Then we know E1,E ′1 ⊆ E, and we may
assume that p(E ′1) > p(E1). Let j be the minimum integer such that E ′1 ⊆ Ej. But now the map
E ′1 → Ej/Ej−1 is nonzero, and source and target are both semistable, so p(E ′1) 6 p(Ej/Ej−1) <
p(E1), and the last inequality holds unless j = 1. By assumption, we know E ′1 ⊆ E1 and
p(E1) = p(E

′
1). Reversing the argument, we see that E1 ⊆ E ′1, so E1 = E ′1. This proves uniqueness

of the maximal destabilizing subsheaf, and by induction, the two filtrations on E/E1 are the same,
so E• = E ′•.

We will now move on to another filtration:
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Definition 2.3.22. Let E be a semistable sheaf pure of dimension d. Then a Jordan-Hölder filtration
for E is an increasing filtration

0 = E0 ⊆ E1 ⊆ · · · ⊆ E` = E

such that gri(E) = Ei/Ei−1 is stable with p(gri(E)) = p(E).

Example 2.3.23. If 0→ L→ E→ L→ 0 is a nontrivial extension of a line bundle L by itself, this
gives a Jordan-Hölder filtration. Also, E = L⊕n shows that the filtration is not unique in general.

Proposition 2.3.24. Jordan-Hölder filtrations exist and

grJH(E) :=
⊕

gri(E)

is unique up to isomorphism.

Proof. We induct on αd(E) > 0. If E is stable, we are done. Otherwise, there exists F ⊆ E such that
p(F) = p(E) and αd(F) 6 αd(E). This inequality must be strict because otherwise pF(t) = pE(t)
and thus F = E. Therefore, there exists a subsheaf F ⊆ E with p(F) = p(E) and minimal αd(F), and
this must be stable. By induction, E/F is semistable with the same reduced Hilbert polynomial,
and so by induction, it has a Jordan-Hölder filtration. Pulling back to E, we obtain the filtration
on E.

The proof of uniqueness is omitted.1 The outline is similar to the case of the Harder-
Narasimhan filtration, but the actual argument is different.

2.3.2 Boundedness We will prove boundedness of semistable sheaves with a fixed Hilbert
polynomial in the case of a smooth projective surface (because we will be using this result for K3
surfaces only). Note that this proof will only work for surfaces.

Recall that for a smooth projective surface X with polarization H and a sheaf E of rank r,
Riemann-Roch says that

χ(E) =
1
2
(c1(E)

2 − c1(E) ·KX) − c2(E) + rχ(OX).

This implies that

pE(t) =
r

2
H2t2 +

(
c1(E) ·H−

r

2
H ·KX

)
· t+ χ(E).

Thus the coefficients of p(E) are determined by c1(E)·H
r and χ(E)

r if E is pure of dimension 2.

Definition 2.3.25. Let E be pure of dimension 2. Then define the slope of E by

µ(E) =
c1(E) ·Hn−1

rk(E)
.

This gives a notion of slope-stability. It is a fact that slope-stability implies Gieseker stability
which implies Gieseker semistability, which implies slope-semistability.

Remark 2.3.26. There exists a maximal destabilizing subsheaf F ⊆ E, and we denote µ(F) =: µmax(E).

Remark 2.3.27 (Rudakov). We can define stability for any abelian category C with a preorder 6.
Then we can define stability with respect to 6, and in this case we obtain a Schur Lemma. Under
certain finiteness assumptions (where C is weakly Artinian or weakly Noetherian with respect to
6), we obtain Harder-Narasimhan filtrations or Jordan-Hölder filtrations.

1Because there are many things that Giulia wants to do this semester.
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Example 2.3.28. King-stability for quiver representations is an example of such a stability condi-
tion.

Theorem 2.3.29. Let (X,H) be a smooth projective polarized surface and p(t) ∈ Q[t]. Then there exist
N, ` only depending on (X,H) and p(t) such that any slope-semistable F is a quotient ONX (−`)� F.

Remark 2.3.30. Note that twisting by OX(`H) does not affect (semi)-stability. Therefore the theorem
gives boundedness of slope-semistable sheaves with fixed Hilbert polynomial (because they live
in the Quot scheme).

We will actually prove a slightly stronger result which allows us to use induction.

Theorem 2.3.31. Let (X,H) and p(t) ∈ Q[t] as above and fix µ ∈ Q. Then there exists N, ` only
depending on (X,H),p,µ such that for all c > 0 and any pure dimension 2 sheaf F with Hilbert polynomial
pF = p+ c and such that µmax(F) 6 µ, ONX � F(`). Moreover, the set of possible c (and hence of possible
pF) is finite.

Proof. We will induct on the rank of F. Let F be such that pF = p+ c for c > 0 and µmax(F) 6 µ.
First we find a uniform ` such that h0(F(`)) 6= 0. Using Riemann-Roch, we will have

h0(F(`)) + h2(F(`)) > pF(`) > p(`).

By Serre duality, h2(F(`)) = dim Hom(F,KX(−`)).
First, we claim that there exists a uniform ` such that dim Hom(F,KX(−`)) = 0. If we consider

0 G F KX(−`)

E

ϕ

where E has rank 1, then c1(E) ·H 6 (KX − `H) ·H, and thus

µ(G) =
c1(G) ·H
r− 1

>
1

r− 1
(rµ(F) + `H2 −H ·KX) > µ.

In particular, µ(G) 6 µmax(F) < µ, so we can fix ` such that h0(F(`)) 6= 0. If we consider

OX
s−→ F(`)→ Q,

we can saturate this and obtain

H→ F(`)→ Q/Tors =: G.

We know that H is rank 1 and torsion free, so H = L⊗ IZ, where dimZ = 0 and L is a line bundle.
This is because 0→ H ↪→ H∨∨, and reflexive sheaves are locally free in codimension 3 and the
cokernel is supported in codimension 2.

Now we have h0(H(`)) 6= 0, and thus H0(L(`)) 6= 0. Write L(`) = O(D) with D effective. Then

−`H2 6 µ(H) = D ·H− `H2 6 µ,

so there are only finitely many possibilities for c1(D) (because we have bounded D · ample). In
particular, this means there are only finitely many possibilities for c1(G) and thus for µ(G). In
fact, we can uniformly bound µmax(G) because for any G ′ ⊆ G, we can produce

0→ H→ F ′ → G ′ → 0
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and µ(F ′) is bounded.
Now G has rank r− 1 and slope µmax(G) 6 µ ′, where µ ′ is uniform. Thus

pG = pF − pH

= pF − p` + degZ
= p− p` + c+ degZ
= p ′ + c ′

for some p ′, c ′. By induction, there exist uniform N ′, ` ′ such that ON
′

X � G(` ′). Moreover, there
exist finitely many possible c ′ and thus finitely many degZ. Applying the theorem to H (that
there are finitely many c1(H) and degZ), we have a surjection ON

′′
X � H(` ′). Because such H

form a bounded family, we can assume that H1(H(` ′)) = 0. Thus we have

0→ H0(H(` ′))→ H0(F(` ′))→ H0(G(` ′))→ 0.

Now we lift the N ′ sections on the right and consider the N ′′ sections on the right, and we get
ON

′′′
X � F(` ′).

It remains to prove the rank 1 case. We will prove that give (X,H),p(t) (here µmax = µ because
we are in the rank 1 case), there exist N, ` such that if H has rank 1 and pH = p+ c for c > 0,
then ONX � H(`) → 0. We know that H = L⊗ IZ. By Riemann-Roch, there exists ` such that
H0(H(`)) 6= 0. Fixing such an `, we know that

D ·H = L ·H+ `H2,

and so there are only finitely many possibilities for c1(H). Using Riemann-Roch again, we know

1
2
[c1(H)2 − c1(H) ·KX] − degZ+ χ(OX) = χ(H) = p(0) = p(0) + c,

and therefore there are only finitely many possible degZ.

Proposition 2.3.32. The conditions of Gieseker (semi)stability and slope-semistability are open in families.

Sketch. Consider F on X×B. Then consider a destabilizing quotient Fb � G. Suppose you prove
that there exist only finitely many possible Hilbert polynomials pi. We then consider the relative
Quot schemes

QuotFX×B/B,pi
→ B,

which are proper over B. Studying this morphism, we obtain the desired result.

2.4 Moduli of sheaves

Definition 2.4.1. Two pure sheaves F, F ′ of dimension d on (X,H) are called S-equivalent if the
associated graded pieces grGH(F) ' grJH(F ′) are the same. Here, the “S” apparently stands for
Seshadri.

Definition 2.4.2. A polystable sheaf is a direct sum
⊕
Fi, where the Fi are stable and p(Fi) = p(Fj)

for all i, j.

Note that we cannot separate S-equivalent sheaves. More precisely, consider the following
example.
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Example 2.4.3. Suppose that F1, F2 are stable with p(F1) = p(F2) and suppose that there exists a
nontrivial extension

0→ F1 → F→ F2 → 0.

Clearly F is semistable. We will show that there exists a flat family F on A1 ×X such that for all
t 6= 0, Ft = F and for t = 0, F0 = F1 ⊕ F2. This will tell us that if there is a separated moduli space,
then F1 ⊕ F2 and F must be the same closed point.

Consider the second projection p2 : A1 × X → X. Then if we consider i0 : {0}× X ↪→ A1 × X,
the exact sequence

0→ F → p∗2F� i0∗F2

will define the desired family F.

By boundedness of semistable sheaves with a fixed Hilbert polynomial, there exists m such
that all such cheaves are m-regular (they become Castelnuovo-Mumford regular after twisting
with O(m)). We will now denote αd(F) by r, and now all sheaves with 0 < r ′ < r and the same
reduced Hilbert polynomial are also m-regular. We will now fix m and set N = p(m). Then we
have a surjection ONX (−m)� F. We may now consider the Quot scheme

QuotNm ⊆ Grassmannian.

Recall that the map to the Grassmannian was determined by

0→ p1∗G(`)→ p1∗(O
N
X (`−m))→ p2∗(F(`))→ 0,

which gave H0(G(`)) ⊆ H0(ONX (`−m)). In particular, we have

det(p2∗F(`)) = i
∗
`(Plücker),

and so L` := detp2∗F(`) is very ample. Now write H = ONX (−m) for shorthand. Then ρ ∈ Quot
is really a map H→ F. Now define

R =
{
F semistable | h0(ρ(m)) is an isomorphism

}
and consider Rs ⊆ R the locus of stable F. Let V := kN. We know that R is preserved by the
natural action of GL(V) because g acts by

V ⊗O(−m)
g−→ V ⊗O(−m)

ρ−→ F,

and so g ◦ ρ = ρ ◦ g.

Lemma 2.4.4. Let ρ ∈ Quot such that F(m) is globally generated. Then if h0(ρ(m)) is an isomorphim,
the stabilizer of ρ is actually Aut(F) ⊆ GL(V).

We need to understand this GL(V)-action and why there is an natural linearization. On GL(V),
there exists a “universal automorphism” τ : V ⊗OGL(V) → V ⊗OGL(V). On GL(V)×Quot, we
have

p∗2H
p∗1τ−−→ p∗2H→ p∗2F,

and this gives another quotient, and thus defines a map σ : GL(V) × Quot → Quot. By the
universal property, we have p∗2F = σ∗F and thus a linearization of the action. Because all natural
constructions of GL(V)-linearized sheavs are naturally GL(V)-linearized, we know detp1∗F(`) =
L` is also linearized. Now we have R with the linearized line bundle L` for G = SL(V), so we can
form the GIT quotient.
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Theorem 2.4.5. For ` sufficiently large,

1. ρ ∈ R is GIT semistable if and only if F is semistable;

2. GL(V) · F∩GL(V) · F ′ 6= ∅ if and only if F, F ′ are S-equivalent.

3. F is polystable if and only if SL(V) · ρ ⊆ R is closed.

Recall that for G a reductive group acting on projective X and a G-linearized ample line bundle
L on X, the GIT quotient X �G is given by Xss(L)/G. Recall that points of X �G correspond
to equivalence classes of orbits and that X �G is projective. Also recall that one can explicitly
determine GIT semistability using the Hilbert-Mumford criterion. This says that x ∈ X is
semistable if and only if for all λ : Gm → G, the number m(x, λ) > 0. This m(x, λ) is determined
by considering limt→0 λ(t) · x =: x0 and considering the weight of Gm on the fiber above x0. Then
m(x, λ) is defined to be −weight.

Now consider ρ : V ⊗OX(−m) → F ∈ R. Let λ : Gm → SL(V) be a one-parameter subgroup.
This is determined by its weight decomposition V =

⊕
Vn. Define a filtration on V by V6n =⊕

m6n Vm. This determines a filtration

F6n = ρ(V6n ⊗OX(−m)) ⊆ F.

Lemma 2.4.6.

1. We have limt→0 λ(t)ρ = ρ0, where

ρ0 :
⊕

V6n+1/V6n ⊗OX(−m)→
⊕

F6n+1/F6n.

2. The weight of Gm on (L`)ρ0 is given by
∑
npFn(`).

Proof. For `� 0, formation of L` commutes with base change, and so

(L`)ρ0 = det
(⊕

p2∗Fn(`)
)
=
⊗

det(p2∗Fn(`)).

Assuming that there is no higher cohomology, this has dimension dimH0(Fn(`)) = pFn(`). But
now the action of Gm here is given by n · h0(Fn(`)).

We will now sketch the first part. Consider the map Gm → Quot given by λ(t) · ρ. By
properness, this extends to a map A1 → Quot. Now ρ : V ⊕ OX(−m) → F defines a sheaf
F⊗ k[t, t−1], and we want to extend this to A1.

First, define

V :=
⊕

V6n · tn ⊆ V ⊗ k[t, t−1].

This is the same as V ⊗ k[t], where v⊗ 1 7→ v⊗ tn if v ∈ Vn. Now multiplication by t on each
piece is just the natural inclusion V6n → V6n+1. Thus the fiber of V above 0 is naturally the
direct sum

⊕
V6n+1/V6n. Similarly, we define the sheaf

F :=
⊕

F6n ⊗ tn ⊆ F⊗ t−Nk[t]

on A1 ×X, and it is easy to see that F0 =
⊕
Fn.
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We now assume that
∑
ndimVn = 0. This tells us that

wt(L`, ρ0) =
∑

npFn(`)

=
1

dimV

(∑
n(dimVp(Fn, `) − dimVnp(F, `))

)
= −

1
dimV

(∑
dimVp(F6n, `) − dimV6np(F, `)

)
.

Now for all V ′ ⊆ V , define F ′ = ρ(V ′ ⊗ OX(−m)) ⊆ F, and for all F ′ ⊆ F, define V ′ =
ρ−1H0(F ′(m)). We now want to reformulate the Hilbert-Mumford criterion.

Lemma 2.4.7. ρ ∈ R is GIT semistable if and only if for all V ′ ⊆ V , ϑ(V ′) > 0, where

ϑ(V ′) = dimV · p(F ′, `) − dimV ′ · p(F, `).

The next step is to translate this in terms of subsheaves F ′ ⊆ F and their Hilbert polynomials.
Here, we want

dimV · p(F ′) 6 dimV ′ · p(F).

By a theorem of Le Potier characterizing semistability, we consider h
0(F(m))
r .

Theorem 2.4.8 (Le Potier). Fix p ∈ Q[t]d and a multiplicity r. Then there exists m� 0 such that for all
sheaves F pure of dimension d with αd(F) = r and pF = rp, the following are equivalent:

1. F is semistable.

2. rp(m) 6 h0(F(m)) and for all F ′ ⊆ F, h
0(F ′(m))
r ′ 6 p(m).

Modulo actually proving anything, we now have semistability. It remains to discuss the orbit
closures. Consider a semistable (F, ρ). Then we know that (JH(F), JH(ρ)) ∈ SL(V) · ρ. It is enough
to show that orbits of polystable sheaves are closed in R.

Lemma 2.4.9. Consider a sheaf E on C×X flat over C and suppose that F =
⊕
F
ni
i is polystable. Suppose

that Et = F for t 6= 0 and that E0 is semistable. Then E0 = F.

To prove this lemma, consider the upper semicontinuous function t 7→ hom(Fi,Et). But then
the map ⊕

Fi ⊗Hom(Fi,E0)→ E0

is injective, and this gives us the desired inequality.
Now consider Rs ⊆ R. We know that Rs � SL(V) ⊆ R � SL(V) =: M is open, and that M is

projective by GIT quotient. We know that Rs → Rs � SL(V) is a geometric quotient and that
R → R � SL(V) is a good quotient. Also, closed points are the same as S-equivalence classes of
semistable sheaves while points of Rs are isomorphism classes of stable sheaves. Now recall the
functor M : Sch/kop → Set sending a scheme S to isomorphism classes of F on S× X flat over S
with the correct Hilbert polynomial and semistable. Here, F ∼ F ′ is there exists L ∈ Pic(S) such
that F = p∗1L⊗ F

′.

Theorem 2.4.10. The moduli spaces M (resp. Ms) universally corepresent M (resp. Ms).2

Remark 2.4.11. If there exist strictly semistable sheaves, then M is not a fine moduli space for M.

2This means that M is a coarse moduli space for M.
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We now try to salvage existence of a universal family on Ms (which is not always possible).

Definition 2.4.12. A sheaf E on Ms ×X flat over Ms is a universal family if for all S-flat families of
stable sheaves F with Hilbert polynomial p, there exists L ∈ PicS such that φ∗F(E) = F⊗ p

∗
1L. The

family is quasi-universal if there exists a locally free W such that φ∗F(E) = F⊗ p
∗
1W.

Now consider a coherent sheaf E on Rs. This descends to Rs �GL(V) if and only if the action
of Gm ⊆ GL(V) is trivial on Ex for all x ∈ Rs. We know that on Rs × X, we have the universal
sheaf F̃. Clearly this does not descent because of the morphism Aut(F)→ GL(V), so the action is
nontrivial. For `� 0, the sheaf

A` := p1∗(F̃⊗OX(`))

is locally free and Gm-linear if weight 0. Thus the sheaf Hom(p∗1A`, F̃) descends to Ms ×X. We
claim that this is a quasi-universal family.

2.4.1 Determinantal line bundles Let X be smooth and projective and let K(X) be the
Grothendieck group of coherent sheaves on X. Of course, this is a ring, and it has a quadratic form

χ(a · b) =
∫
X

ch(a)ch(b)td(X).

We may also consider the numerical Grothendieck group Knum(X) by quotienting out by the kernel
of the quadratic form.

Now suppose that X→ Y is a smooth projective morphism of relative dimension n and F is
coherent on X and flat over Y. Then there exists a locally free resolution F• → F of length n which
computes higher direct images. What we mean by this is that

Rif∗Fj =

{
0 i 6 n

locally free i = n.

Also, we have Hn−i(Fnf∗F•) = Rif∗F. Then we have

det(Rf∗F) =
⊗

det(Rnf∗Fi)
(−1)i

=
⊗

det
(
Rif∗F

)(−1)i
.

Now consider E on S×X flat over S and consider λE : Co〈(X)→ PicS given by

F 7→ det(Rp1∗(p
∗
2F⊗ E)).

λE satisfies certain properties. The most important for us right now concerns a rank r locally free
sheaf W on S. Here, we have

λE⊗p∗1W(u) = λE(u)
r ⊗ detWχ(c·u),

where c is the class of Es, for all u ∈ K(X). This gives us a map

Knum(X) ⊇ c⊥ → Pic(Ms).

For a K3 surface, we can do this on integral cohomology, and then H2(Mv, Z) = v⊥ as Hodge
structures.
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2.4.2 Mukai’s theorem

Theorem 2.4.13. Let X be projective over k, where k is algebraically closed and of characteristic 0. If F is a
stable sheaf on X and M is the moduli space containing F, then ÔM,F pro-represents DefF. Moreover,

T[F]M = Ext1(F, F) T det−−−→ T[detF] Pic(X) = H1(X,OX)

is the trace map. In adddition, for any small extension

0→ I→ Ã→ A→ 0,

we have tr
(

ob(FA, Ã,A)
)
= ob(det FA, Ã,A). Also, DefF has a tangent-obstruction theory given by

T1 = Ext1(F, F) and T2 = Ext2(F, F)0.

Corollary 2.4.14. If F is stable and X is a surface with ωX = OX, then M is smooth at [F] ∈M.

Proof. Here, we know that Ext2(F, F) ' H2(X,OX) is 1-dimensional, ans thus the trace morphism
has no kernel, so deformations are unobstructed.

Proof of theorem. The result about the tangent-obstruction theory of a coherent sheaf is due to
Maruyama, Mukai, and Artamkin, and there is a generalization of Lieblich for complexes and for
a morphism X→ S.

Next, if F is stable, then DefF is pro-representable. If F is only polystable, then DefF has a
hull. Here, we have a map DefF → ÔM,F and Quot ⊇ Rs → M2, and then we use Luna’s étale
slice. First, there there exists F ∈ V ⊆ Quot that is Aut(F)-invariant such that V � Aut(F) is locally
isomorphic to (M, F), and this constructs an inverse when F is stable.

We now want to consider the trace map. If E is locally free, then Exti(E,E) = Hi(End(E)), and
this clearly has a trace map to Hi(OX). We also have the inclusion

OX
δ−→ End(E) tr−→ (E)OX,

and this induces multiplication by the rank of E on cohomology. For any E, choose a locally free
resolution E• → E. Then

Exti(E,E) = Hi(Hom(E•,E•)),

and now we have the maps

OX
δ−→ Hom(E•,E•) tr−→ OX.

Now we want to compute deformation of F on k[ε]. Here, we have a short exact sequence

0→ F→ Fε → F→ 0.

But now there exists a splitting k → k[ε], and so we have an element of Ext1
X(F, F). Conversely,

given any extension
0→ F→ F → F→ 0,

we declare the multiplication by ε to be F → F→ F.
We now consider obstructions. Up to tensoring by O(m), we can assume that Hi(F) = 0 for all

i > 0. Then declare V = H0(F) and H = V ⊗OX. Then we have a short exact sequence

0→ G→ H→ F→ 0.
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Because H is locally free and X is smooth, then dh(G) = max {0,dh(F) − 1}. Applying Hom(−, F),
we now have

0 Hom(F, F) Hom(H, F) Hom(G, F)

Ext1(F, F) Ext1(H, F) Ext1(G, F) Ext2(F, F) 0.

Becuase Ext1(H, F) = 0 and Ext1(G, F) is the obstruction space for the Quot scheme, we have the
desired expression for the obstruction. We will in fact give a different proof. For

0→ I→ Ã→ A→ 0,

we have the following diagram:

I I

0 m̃ Ã k

0 m A k 0

0 0.

Given FA, we know that ob(FA, Ã,A) ∈ Ext2(F, F⊗k I) = Ext2(F, F)⊗ I. Tensoring by FA, we now
have

FA ⊗ I FA ⊗ I

0 FA ⊗ m̃ FA ⊗ Ã F

0 FA ⊗m FA F 0

0 0.

Now we know that

[0→ FA ⊗m→ FA → F→ 0] = fFA ∈ Ext1(F, FA ⊗m)

and
[0→ FA ⊗ I→ FA ⊗ m̃→ FA ⊗m→ 0] = eFA ∈ Ext1(FA ⊗m, F⊗ I).

Applying Hom(F,−), we now obtain

Ext1(F, FA ⊗ m̃)→ Ext1(F, FA ⊗m)
∪eFA−−−−→ Ext2(F, F⊗ I).

This tells us that the obstruction ob(FA, Ã,A) = fFA ∪ eFA .
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Lemma 2.4.15. If E is locally free, then ob(EA, Ã,A) ∈ ker(tr : H2(End(E))→ H2(OX)).

To prove this, for some E
Ã

, we get
{
Gαβ

}
∈ H1(End(E)⊗ Ã) such that

GαβGβγGγα = IdFA +
∑

oαβγ · t,

and we can construct the obstruction by hand.
Now denote

[0→ G→ H→ F→ 0] = θ ∈ Ext1(F,G).

We claim there exists ψ ∈ Ext1(G, F) such that

ob(GA, Ã,A) = ψ∪ θ ∈ Ext2(G,G)⊗ I

and
ob(FA, Ã,A) = θ∪ψ ∈ Ext2(F, F)⊗ I.

We know that tr(θ∪ψ) = 0 if and only if tr(ψ∪ θ) = 0.

We will now construct a holomorphic form on the moduli space.

Theorem 2.4.16. Let X be a K3 surface or an abelian surface. Then Ms is smooth and has a holomorphic
symplectic form coming from

Ext1(F, F)× Ext1(F, F) ∪−→ Ext2(F, F) tr−→ H2(OX) = H
2(Ω2

X) = k.

This is in fact induced from Serre duality.

The first step is to prove that there exists an isomorphism of sheaves

TMs = Ext1
p1
(F̃, F̃),

where Ext1
f(F,−) = Rif∗ ◦Hom(F,−). We need to consider the Kodaira-Spencer map and the

Atiyah class. Given a coherent sheaf F on Y, we have

0→ I/I2 → O2∆ → O∆ → 0.

Considering p1∗(−)⊗ p∗2F, the Atiyah class of F is

[0→ Ω1
Y ⊗ F→ p1∗(p

∗
2F⊗O2∆)→ F→ 0] = A(F) ∈ Ext1(F, F⊗Ω1

Y).

Now given Ai(F) ∈ Exti(F, F⊗ΩiY), we will see that tr
(
Ai(F)

)
= chi(F).

Given F on S×X flat over S, we consider

Ext1(F, F⊗Ω1
S×X)→ H0(S, Ext1

p1
(F, F⊗Ω1

S×X))→ H0(S, Ext1
p1
(F, F⊗Ω1

S).

Note that Ω1
S×X = p∗1Ω

1
S ⊕ p

∗
2Ω

1
X. Now we can define KSF : TS → Ext1

p1
(F, F).

The next step is to see that if F is a family of stable sheaves on S× X, then p1∗Hom(F, F) =
H0(OX)⊗OS. Moreover, we have a series of isomorphisms

H2(OX)
δ−→ Ext2

p1
(F, F) tr−→ H2(OX)⊗OS.

We now apply this on the Quot scheme and descend, and we deduce that

π∗TMs = Ext1
p1
(F̃, F̃).
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Before we continue, we review some things about correspondences. Let X be smooth and
projective. Suppose Γ ∈ CHk(S×X), where S is smooth and quasiprojective. Then there exists a
lift

Γ ∈ CHk(S×X)� CHk(S×K) 3 Γ .

But then there is a cycle map to H2k(S×X), and we obtain a cohomology class [Γ ]. Then we obtain
a map

H∗(X)
p∗2−→ H∗(S×X) ∪[Γ ]−−−→ H∗+2k(S×X) p1∗−−→ H∗+2k−2 dimX(S).

Because [Γ ] is a Hodge class, this is a morphism of Hodge structures. Recall that by the Künneth
formula, we have

H2k(S×X) =
⊕

Hj(S)⊗H2k−j(X),

and by Poincaré duality we have H2k−j(X) = H2n−2k+j(X)∨. Thus we have

Γ j ∈ Hom(H2n−2k+j(X),Hj(S)).

In general, we will view Γ
∗ in Hk(S×X,ΩkS×X). Recall that

ΩkS×X =
⊕

p∗1Ω
k−j
S ⊗ p∗2Ω

j
X,

and therefore Γ ∈ Hk(ΩkS×X) =
⊕
Hi(ΩjS)⊗H

k−i(Ωk−jX ). By Serre duality, Hk−i(Ωk−jX ) '
Hn−k+i(Ωn−k+jX )∨, and so we have Hn−k+i(Ωn−k+jX )→ Hi(ΩjS). If dimX = 2, we can choose
k = 2, i = 0, and so we have

H0(ΩjX)→ H0(ΩjS).

As a corollary, for all α ∈ H0(ΩjX) a holomorphic j-form, Γ∗(α) is a holomorphic j-form on S
that extends to a j-form on any smooth projective compactification S of S. In particular, Γ∗(α) is
closed.

Now let F be a sheaf on S×X that is a flat family of sheaves on X. Then call γ2(F) = tr
(
A2(F)

)
,

where A2 is the Atiyah class. This was introduced by Atiyah for vector bundle and Illusie
for coherent sheaves. Here, A(F) ∈ Ext1(F, F⊗ΩS×X). Thus γi(F) ∈ Hi(ΩiS×X). If L is a line

bundle, then γi(L) ∈ H1(Ω1
L) is up to a multiple c1(L). Also, γ

i(F)
i! = chi(F). Now if we consider

γ2(F) ∈ H2(Ω2
S×X), considering the correct Künneth component gives us a morphism

τF : H
0(Ω2

X)→ H0(Ω2
S).

We will now assume that F is a family of stable sheaves.

Lemma 2.4.17. For all smooth points s ∈ S and all α ∈ H0(Ω2
X), the holomorphic 2-form τF(α) ∈ H0(Ω2

S)
induces the alternating bilinear pairing given by

TS,s × TS,s k

Ext1(Fs, Fs)× Ext1(Fs, Fs) H2(Ω2
X)

Ext2(Fs, Fs) H2(OX).

KSF,s×KSF,s

∪

'

∪α
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Theorem 2.4.18. Let Ms0 be the stable locus where the trace map is an isomorphism and E be a quasi-
universal family on MS0 × X. Then τE

rkE
: H0(Ω2

X) → H0(Ω2
Ms

0
) is independent of E. Moreover, for all

α ∈ H0(Ω2
X), τ(α) is nondegenerate at [F] ∈ Ms0 if and only if Ext1(F, F) α−→ Ext1(F, F⊗Ω2

X) is an
isomorphism.

Proof. First, let E,E ′ be quasi-universal families. Then we know that E⊗ p∗1W = E ′ ⊗ p∗1W
′ for

some W,W ′. But now we have

A(E⊗ p∗1W) = A(E)⊗ idp∗1W + idE ⊗ p∗1A(W).

When we consider the component H0(Ω2
X)→ H0(Ω2

S), only the A(E) term contributes. Finally, if
we consider the traces, we obtain the desired result.

The second part of this follows from Serre duality. Here, we have

Exti(F,E⊗KX)⊗ Extn−i(E, F) Extn(E,E⊗KX) Hn(KX) k

Exti(F,E)⊗ Extn−i(E, F) Extn(E,E) Hn(OX).

tr ∼

∪α⊗id ∪α

tr

∪α

This must commute, and thus our pairing must have been nondegenerate.

Corollary 2.4.19. Let X be a K3 surface or an abelian surface. Then Ms is smooth and has a holomorphic
symplectic form.

We now want to resolve the following questions:

1. What is dimMs? Is it even non-empty?

2. When does Ms =M? Is it irreducible?

3. What happens on M \Ms? When does there exist a symplectic resolution M̃→M?

We will focus on the case when X is a K3 surface. Then dimMs = dimExt1(F, F), where F is a
stable sheaf. But now dim Hom(F, F) = dim Ext2(F, F) = 1, we have dimMs = −χ(F, F) + 2. Using
Grothendieck-Riemann-Roch, we see that

χ(F, F) = ch(F) ch(F∨) td(X).

Definition 2.4.20. Define v(F) := ch(F) ·
√

td(X) ∈ H∗(X, Z). This is called the Mukai vector of F

and is equal to
(
r, c1, c

2
1

2 − c2 + r

)
.

For v = (a,b, c),w = (a ′,b ′, c ′) ∈ H∗(S, Z), we write v ·w = (v,w∨) = bb ′ − ac ′ − a ′c, where
v∨ = (a,−b, c). Now we have χ(F, F) = (v(F), v(F)∨) = −v2. Thus dimMs = v2 + 2.

We will now discuss v-generic polarizations. Let H be a polarization on X and let F be a µH-
semistable sheaf on X. Let F ′ ⊆ F be such that µH(F ′) = µH(F). Define ξF ′ = c1(F) · r ′ − c1(F

′) · r.
Then our condition that µH(F ′) = µH(F) is equivalent to ξF ′ ·H = 0, and by the Hodge index
theorem, ξ2

F ′ 6 0. Of course, this means that ξF ′ = 0, and in fact this is equivalent to ξF ′ ·H = 0.

Definition 2.4.21. The locus {ξF ′ · x = 0} ⊆ Amp(X)R (or in H a cross-section) is called the wall
associated to F ′.

Theorem 2.4.22. The walls of v(F) are locally finite in H.
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Proof. We have −r2∆(F)
4 6 ξ2 6 0, where ∆(F) = c2(End(F)). This gives local finiteness.

Now H is called generic if H-semistability implies H-stability. There may not always exist such
a polarization, but if v ∈ H∗(S, Z) is a primitive element, then a v-generic polarization does exist.

Theorem 2.4.23 (Yoshioka, O’Grady). Let (X,H) be a polarized K3 surface and v a primitive Mukai
vector such that v2 > −2. Then Mv,H is smooth, projective, nonempty, nonempty, irreducible, and
connected of dimension v2 + 2 and is deformation to X[v2/2+1].

This is proved by first deforming the K3 surface to an elliptic K3 and then by using Fourier-
Mukai transforms to get birational maps of moduli spaces.

Theorem 2.4.24 (O’Grady, KLS, PR). Let (S,H) be a polarized K3 surface. Suppose that v = mv0, where
v0 is primitive. Suppose that H is v0-generic and v2

0 > 2. Then Mmv0 is a singular symplectic variety
which has a resolution if and only if m = 2 and v2

0 = 2. In this case, then the resolution M̃2v0 is irreducible
holomorphic symplectic of OG10 type.

Remark 2.4.25. If v2
0 = 0, then the moduli space is a symmetric power of a K3 and if v2

0 = −2, the
moduli space is a point.

Note that b2(OG10) = 24 > b2(S
[5]).
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Bonus: cubic fourfolds

Let X ⊆ P5 be a smooth cubic hypersurface. By the Lefschetz hyperplane theorem, Hk(P5, Z)→
Hk(X, Z) is an isomorphism for k < 4 and is injective for k = 4. The only mystery is H4(X, Z).
Note that H4 = 3, so if k > 2, then H2k(X, Z) = ZHk

3 . We know that H4(X, Z) is torsion free and
that the cup product is an odd unimodular lattice. But now we compute χtop(X) = c4(X), and
here we simply use

0→ TX → TP5 |X → OX(3)→ 0,

and therefore c4(X) = 27. In particular, we have b4 = 27 − 4 = 23. Because X is Fano by the
adjunction formula, we have

H4(X, C) = H3,1 ⊕H2,2 ⊕H1,2.

Proposition 3.0.1. H1(Ω3
X) has dimension 1 and under the natural isomorphism between Ω3

X ' TX(−3),
the generator corresponds up to a multiple to the extension class of

0→ TX → TP5 |X → O(3)→ 0

in Ext1(O(3), TX) = H1(TX(−3)).

This is proved using Bott vanishing for Hp(ΩqPn(k)) and standard exact sequences. We also
obtain H3(Ω1

X) ' H
4(OX(−3)).

Now let Γ ⊆ S× X be a family of curves on X parameterized by S. Then for any smooth
projective model S̃ of S, there exists a holomorphic 2-form Γ̃∗(η) ∈ H0(Ω2

S̃
). Here, we have a map

H4(X)→ H2(S), and then H3,1 7→ H2,0 because this shifts the Hodge structure down by (1, 1).

3.1 Fano variety of lines on X

The main theorem is the following

Theorem 3.1.1 (Beauville-Donagi). Let X be a cubic fourfold. Then the Hilbert scheme F(X) of lines in X
is a smooth connected irreducible holomorphic symplectic fourfold deformation equivalent to K3[2].

Let Xd ⊆ Pn and write V = H0(OPn(1))∨. Then F(Xd) ⊆ Gr(2,n+ 1). Using the tautological
exact sequence

0→ S→ V ⊗OGr → Q→ 0,
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dualizing, and taking symmetric powers, we have

Symd V∨ ⊗OGr � Symd S∨.

This takes X ∈ Symd V∨ to fS. thus F(Xd) = {fS = 0}. This has expected dimension 4.
We now compute the tangent space. If ` ⊆ X, we have the normal bundle

0→ N`/X → N`/P5 → NX/P5 |` → 0.

The terms are
⊕3
i=1 O(ai), where ai 6 1 and

∑
ai = 1, O(1)⊕4, and O(3). The first term could be

either O(1)⊕O⊕O or O(1)⊕2 ⊕O(1). The first case are lines of the first kind and form an open
subset, and the lines of the second kind form a closed nonempty subset. Because h0(N`/X) = 4
and h1(N`/X) = 0, the deformations are unobstructed, and so F(X) is smooth of the expected
dimension. The next step is the following:

Proposition 3.1.2. For any cubic fourfold ωF(X) = OF(X). In the case when X is a cubic threefold, then
ωF(X) = hF(X), where h is the Plücker restricted to F(X).

To see this, we know that ωF(X) = ωGr ⊗ detNF/Gr. This becomes det Hom(S,Q)⊗ Sym3 S∨,
and in the dimension 4 case, this is O(−6h)⊗O(6h) = OF(X).

To prove that F(X) is connected, let Γ ⊆ F(X) × X be the universal family of lines. Then
p : Γ → F(X) is a P1-bundle if course, and we claim that q : Γ → X is a fibration in (2, 3) complete
intersections in P3 and in particular, this means that F(X) is connected.

We know that p−1(x) is the locus of all lines containing x. Then the locus swept by ` 3 x is the
intersection of Qx ∩Hx ∩X, where Qx is a quadric cone and Hx is a hyperplane. Choosing local
coordinates for X∩Hx ⊆ Hx = P4, we may choose x = [0, 0, 0, 0, 1]. Then X is given by

f2(x,y, z,u) · v+ f3(x,y, z,u),

and then X∩Hx = {f2 = f3 = 0}.
Remark 3.1.3. The same shows that if X0 is a cubic fourfold with a node (A1 singularity) o, then
the set of lines through o ∈ X0 is a (2, 3) complete intersection in P4 and is therefore a K3 surface.

We will finally prove that F(X) is irreducible holomorphic symplectic and deformation equiva-
lent to S[2]. Let X→ ∆ be a family such that Xt is a smooth cubic fourfold for t 6= 0 and X0 is a
cubic fourfold with a single A1 singularity. Then we have F(X0) ⊆ F(X/∆).

Lemma 3.1.4. Let S be the K3 surface of lines passing through the node. Then F(X0) ' Sym2(S).

Here, there is a unique plane passing through both a line not containing the node and the
node, and the intersection of this P2 with this line is part of a triangle of lines. Up to a 2 : 1 base
change of ∆, we can resolve the central fiber. The upshot is that there exists F̃ → ∆ such that
F̃t = F(Xt) for t 6= 0 and F̃0 = S[2].

Now if M→ ∆ is a projective morphism and M0 is birational to a hyperkähler and the Mt is
hyperkähler, then up to a base change, we can resolve the central fiber such that M̃0 is smooth
hyperkähler.

Theorem 3.1.5 (Beauville-Donagi). The Abel-Jacobi map

Γ∗ : H4(X, Z)→ H2(F(X), Z)

is an isomorphism of Hodge structures over Z, and more specifically,

(H4(X, Z)0,∪) ∼−→ (H2(F(X), Z),q)(−1)

is an isomorphism of lattices.
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Corollary 3.1.6. The set of (F(X),h) forms a codimension 1 locus in the moduli space of irreducible
holomorphic symplectic manifolds of their deformation type.

For very general X, the Neron-Severi group of F(X) is Zh.

Proposition 3.1.7. Let F→ S×X be a flat family of sheaves. For all ω ∈ H1(Ω3
X), tr

(
A3(F)

)
induces a

holomorphic 2-form on S which pointwise is

TsS× TsS Ext1(Fs, Fs)× Ext1(Fs, Fs) Ext2(F, F)

Ext3(F, F⊗Ω) H3(Ω1) H4(Ω4) = k.

KS×KS ∪

∪A(F)

tr ∪ω

This is proved by considering the Künneth component H1(Ω3
X)→ H0(Ω2

S)⊗H
3(Ω1

X).
Now suppose that M is a moduli spaace of stable sheaves. Then a sufficient condition, due

to Kuznetsov and Markusevich, for this form to be nondegenerate on a smooth point [F] is that
H•(F) = H•(F(−1)) = H•(F(−2)) = 2, and this is precisely the same as F being in the Kuznetsov
component of Db(X). This is because

Proposition 3.1.8 (Kuznetsov-Markusevich). The pairing

Exti(F,G)⊗ Ext2−i(G, F)→ Ext2(G,G)
εG−−→ Ext5(G,G⊗Ω4

X)
tr−→ H4(Ω4

X)

is nondegenerate. Here, εG is the composition of idG ⊗ ν ∈ Ext1(G⊗Ω1
X,G⊗ O(−3)) and A(G) ∈

Ext1(G,G⊗Ω1
X).
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