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Preface

These notes, taken during the first twoweeks of the program Recent developments in higher genus
curve counting at the Simons Center for Geometry and Physics, explain how to prove important
structural results in the higher-genus Gromov-Witten theory of compact Calabi-Yau threefolds.

One of the oldest problems in Gromov-Witten theory is to compute the Gromov-Witten invari-
ants of compact Calabi-Yau threefolds. While there are a variety of physical methods which have
allowed physicists to make spectacular predictions in a wide range of examples, mathematical
progress has often been frustratingly slow due to a lack of satisfactory tools to attack the prob-
lem with. To illustrate this, we will briefly outline some developments in mathematics regarding
Calabi-Yau threefolds with ℎ2 = 1 which arise as complete intersections in weighted projective
space.

For complete intersections in projective space, a genus-zero mirror theorem was proved by
Givental in 1996 and Lian-Liu-Yau in 1997 [Giv96; LLY97]. For complete intersections in weighted
projective space, a genus-zeromirror theoremwas proved by Coates-Corti-Lee-Tseng in 2006 in the
convex case and by JunWang in 2019 in the non-convex case [CCLT09; Wan20]. Themain difficulty
in the non-convex case is the failure of the quantum Lefschetz theorem [CG07], which is the main
tool used in [Giv96; LLY97; CCLT09].

Meanwhile, a genus-one mirror theorem was proved for the quintic by Zinger in 2007 and for
complete intersections in projective space by Popa in 2010 [Zin09; Pop13]. This used the theory of
reduced invariants developed by Vakil-Zinger and Li-Zinger [VZ08; LZ09], which is a technique of
performing birational modifications to the main component of the moduli space of stable maps to
force the quantum Lefschetz theorem to hold so that computations can be performed using virtual
localization [GP99]. Unfortunately, to this date no computations have been successfully performed
using reduced invariants since.

Another approach is to consider the theory of GLSMs [Wit92], which were constructed math-
ematically by various authors [FJR18; FK21] during the 2010s. Unfortunately, the virtual cycle is
supported on the moduli space of stable maps to the threefold, which does not carry a torus action.
For the quintic, the ambient space of the relevant GLSM is the total space of 𝒪ℙ4 (−5). A standard
way to gain a torus action is to compactify the moduli space at infinity and consider relative (or
logarithmic) invariants. This leads to the theory of logarithmic GLSMs, which was introduced by
Chen-Janda-Ruan in 2019 [CJR21]. Before this, Guo-Janda-Ruan used this theory [CJR23], includ-
ing still conjectural foundational results [CJRa; CJRb], to prove a genus-twomirror theorem for the
quintic in 2017 (up to the fact that the moduli space used in their 2017 paper is still not defined)
and to prove the Yamaguchi-Yau finite generation conjecture, holomorphic anomaly equations,
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and orbifold regularity (as well as the conifold gap condition in low genus) for the quintic [GJR17;
GJR18].

Because a GLSM is an enumerative theory of a critical locus in a GIT quotient, it depends on a
stability parameter. We can vary the stability parameter and construct a master theory following
themaster space construction of Thaddeus [Tha96]. This leads to the theory ofMixed-Spin-P fields,
which was first constructed by Chang-Li-Li-Liu in 2015 (for the quintic only) [CLLL19; CLLL22].
Unfortunately, the original theory is impossible to compute with when 𝑔 ≥ 2, so a parameter 𝑁
was introduced by Chang-Guo-Li-Li in 2018 [CGLL21]. In the same year, Chang-Guo-Li proved
the Yamaguchi-Yau finite generation conjecture, BCOV Feynman rule, and holomorphic anomaly
equations for the quintic threefold [CGL21; CGL19]. These results were generalized to hypersur-
faces in weighted projective space by the author in 2024 [Lei24b; Lei24a], where a genus-onemirror
theorem was also proved.

The Castelnuovo bound was proved in 2022 by Liu-Ruan [LR22] for any Calabi-Yau threefold
satisfying a conjectural Bogomolov-Gieseker-type inequality (including the quintic) due to Bayer-
Macri-Toda [BMT14] and a weaker version of the result was proved by Zhiyu Liu in 2024 [Liu24]
without assuming the conjectural inequality. These results were obtained using the GW/DT cor-
respondence [MNOP06a; MNOP06b], which was proved for complete intersections in products
of projective spaces by Pandharipande-Pixton in 2012 [PP17] and for all Calabi-Yau threefolds by
Pardon in 2023 [Par24].

As we can see, two major breakthroughs were made around the year 2018, when mathemati-
cians discovered ways which make proving results about Gromov-Witten invariants in arbitrary
genus tractable.1 These notes explain how to use these new ideas to prove the most important con-
jectures which are provided to us by physicists, namely the Yamaguchi-Yau finite generation con-
jecture and the holomorphic anomaly equations. Chapter 1 covers the B-model topological string
and the Givental formalism, Chapter 2 covers log GLSMs, and Chapter 3 covers Mixed-Spin-P
fields. We will cover both the foundational theory and the calculations in both approaches – in par-
ticular, Section 2.1 and Section 3.1 discuss the geometry of the log GLSM and MSP moduli spaces
while Section 2.2 and Section 3.2 discuss calculations.

Author’s note
In contrast to the genus zero situation, not much is known about higher-genus Gromov-Witten
theory. This is in part because there are significantly fewer tools to study higher-genus invariants,
and the ones which do exist seem to be considered extremely inaccessible. It is my sincere hope
that these notes can help make the subject more accessible.

All errors are the sole responsibility of the author. Please email me if you find any mistakes or
typos in these notes.

The lectures were divided as in Table 1. The notes from the lectures by Albrecht Klemm were
taken partly during the lecture and partly by watching the videos on the SCGP website, the notes
from my lectures are slightly expanded versions of my lecture notes, and the notes from all other
lectures were taken during the lecture, with some material being provided by the speakers after
their lectures. All references were added after the lectures.

1Considering that the progress had been approximately one genus every decade, the existence of such breakthroughs
is implied by the existence of these notes prior to the year 2027, or really at all.
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Table 1: Schedule of lectures
Date Time Subject Speaker(s)
1/6/25 9:30 Log GLSM foundations I Qile Chen
1/6/25 11:30 Givental formalism I Patrick Lei
1/7/25 9:30 Log GLSM foundations II Qile Chen
1/7/25 11:30 Givental formalism II Patrick Lei
1/8/25 9:30 Log GLSM foundations III Qile Chen
1/9/25 9:30 Physics I Albrecht Klemm
1/9/25 11:30 Log GLSM virtual localization Felix Janda
1/10/25 9:30 Physics II Albrecht Klemm
1/13/25 9:30 MSP moduli space: quintic Wei-Ping Li
1/13/25 11:30 Genus two and LG/CY via log GLSM Shuai Guo, Felix Janda
1/14/25 9:30 Polynomiality via MSP Patrick Lei
1/14/25 11:30 GW theory of the quintic via log GLSM Shuai Guo, Felix Janda
1/15/25 9:30 Ω-stability I Yang Zhou
1/16/25 9:30 Ω-stability II Yang Zhou
1/17/25 9:30 BCOV Feynman rule via MSP Shuai Guo
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One

Mathematical and physical preliminaries

We begin these notes with discussion of the topological B-model. Using mirror symmetry, physi-
cists are able to transport questions in Gromov-Witten theory (the A-model) to the B-model, which
lacks a satisfactory mathematical definition. The benefit of doing this is that it is easier to calculate
in the B-model, where genus-zero invariants are simply period integrals. Using other B-model tech-
niques,1 physicists are able to make far-reaching predictions about the Gromov-Witten invariants
of Calabi-Yau threefolds. Note that there are proposed mathematical definitions of the B-model –
the analytic approach of Costello-Li [CL12b; Li11] and the categorical enumerative invariants of
Caldararu-Tu [CT24] – but they are extremely difficult to compute with.

We then proceed to a discussion of the mathematical prerequisites for the calculations which
appear later in these notes. Themost important tool for performing calculations in Gromov-Witten
theory is the formalism introduced by Givental in a highly influential series of papers [Giv01b;
Giv01a; Giv04] in the early 2000s. This formalism allows us to package large formulae, for example
coming from virtual localization, in a compact way, which allows us to reason about higher-genus
invariants in a relatively streamlined way. For example, polynomiality of GW generating series
will be a direct corollary of polynomiality of the entries of an 𝑅-matrixwhich plays a central role in
Givental’s formalism.

1.1 Introduction to the topological B-model

1.1.1 Mirror symmetry and the role of Calabi-Yau threefolds
Let 𝑋(Ω,𝜔) be a Calabi-Yau 𝑛-fold, where here Ω is a holomorphic 𝑛-form and 𝜔 is a Kähler form.
Recall that this is equivalent to having 𝑆𝑈(𝑛) holonomy or to 𝐾𝑋 = 0. By a result of Yau [Yau78],
there exists a Kähler-Einstein metric 𝑔 in the class of 𝜔 with vanishing Ricci curvature. For our
purposes, we will mostly consider the case when 𝑛 = 3.

We will really consider families of Calabi-Yau varieties
𝒳 → 𝑋 →ℳ(𝑧, 𝑡),

whereℳ(𝑧, 𝑡) is parametrized by a combination of complex structuremoduli 𝑧 andKähler structure
moduli 𝑡ℝ complexefied by a Neveu-Schwarz harmonic 2-form 𝐵 to 𝑡. We will denote the fiber by

𝑋(Ω𝑧, 𝜔𝑡).
1They also have the advantage of not needing to prove any theorems rigorously.
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On the moduli of complex structuresℳ(𝑧), the tangent space 𝐻(0,1)(𝑋, 𝑇𝑋) has a basis given by
harmonic forms

𝐴(𝑘) = 𝐴(𝑘)𝑗̄𝚤
𝜕
𝜕𝑥𝑗

d𝑥 ̄𝚤

for 𝑘 = 1,… , ℎ𝑛−1,1(𝑋). Because we are in the Calabi-Yau setting, contracting withΩ gives us a basis

𝜒(𝑘) = 𝐴(𝑘)⌟Ω

of 𝐻𝑛−1,1(𝑋). By a theorem of Tian-Todorov [Tia87; Tod89], the moduli space is unobstructed. The
B-model is built from mathematical structures onℳ(𝑧).

There is a moduli spaceℳ𝑔
2 parameterized by 𝛿𝑔 subject to the condition

𝑅𝑖 ̄𝚥(𝑔 + 𝛿𝑔) = 0.

To first order, we have
∇𝜌∇𝜌𝛿𝑔𝜇𝜈 − 2𝑅𝜅𝜎𝜇𝜈𝛿𝑔𝑘𝜎 = 0.

The indices with pure Hodge type correspond to harmonic forms in𝐻(0,1)(𝑋, 𝑇𝑋)with components

𝛿𝑔𝑖 ̄𝚥 = 𝑔𝑖𝑘̄𝛿𝑔𝑘̄ ̄𝚥

yielding the Kuranishi family over ℳ(𝑧). The mixed indices correspond to real harmonic (1, 1)-
forms, and expanding the Kähler form linearly we obtain

𝜔 =􏾜𝑡𝑘ℝ𝜔(𝑘)

in terms of real Kähler parameters

Re(𝑡𝑘) = 𝑡𝑘ℝ = 􏾙
𝒞(𝑘)

𝜔 > 0,

which are volumes of holomorphic curves.
The Kähler moduli space ℳ(𝑡ℝ) is the real Kähler cone subject to positivity conditions from

integration over 𝑘-dimensional holomorphic submanifolds, namely

􏾙
𝒟 (𝑘)

𝜔∧𝑘 > 0.

The bosonic part of the string action contains the harmonic antisymmetric Neveu-Schwarz back-
ground field 𝑏𝑖 ̄𝚥

𝑆bos =
1

2𝜋𝛼′ 􏾙Σ
√ℎ(ℎ𝑎𝑏𝑔𝑖 ̄𝚥 + √−1𝑏𝑖 ̄𝚥𝜀𝑎𝑏)𝜕𝜎𝑎𝑥𝑖𝜕𝜎𝑏𝑥

̄𝚥,

where 𝛼′ is the string coupling constant. Its critical values measure complexified volumes of holo-
morphic curves by

𝑡𝑘 = 􏾙
𝒞 𝑘
(𝜔 + 𝑖𝑏) = Re(𝑡(𝑘)) + √−1 Im(𝑡(𝑘)).

2This is a moduli space of metrics, not the moduli space of smooth genus 𝑔 curves.
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Conjecture 1.1.1. For non-rigid Calabi-Yau threefolds 𝑋 with ℎ2,1 > 0, there exists a mirror Calabi-Yau 𝑋̂
with ℎ1,1(𝑋̂) = ℎ2,1(𝑥) and ℎ2,1(𝑋̂) = ℎ1,1(𝑋) such that the moduli spaces satisfy

ℳ[𝑋̂](𝑧̂) = ℳ [𝑋](𝑡) and ℳ[𝑋̂](𝑡̂) = ℳ [𝑋](𝑧)

and all relevant physical and mathematical structures can be identified using locally invertible mirror maps

𝑧̂(𝑡) and 𝑡̂(𝑧).

Mirror symmetry identifies Type IIA compactifications on 𝑋 with Type IIB compactifications
on 𝑋̂, and vice versa. Additional Ramond-Ramond background fields and axio-dilaton fields with
modulus 𝑗 and 𝑎 extend the moduli spaces as

ℳ IIB[𝑋] = ℳ [𝑋](𝑧) × 𝒬 [𝑋](𝑡, 𝑗, 𝑎)

and
ℳ IIA[𝑋̂] = ℳ [𝑋](𝑡̂) × 𝒬 [𝑋̂](𝑧̂, ̂𝑗, 𝑎̂),

where 𝒬 denotes a quaternionic extension ofℳ . The RR (𝑘 + 1)-form fields are sourced from 𝐷𝑘
branes. 𝑘 is even for Type IIA and odd for Type IIB. The 𝐷2𝑚 correspond to coherent sheaves and
𝐷2𝑚+1 correspond to special Lagrangian branes. Here, 𝒬 is the 4d 𝑁 = 2 hyper-multiplet moduli
space, andℳ is the 4d 𝑁 = 2 vector multiplet moduli space.

One kind of mathematical structure is Hodge numbers. In the traditional picture of the Hodge
diamond, Poincaré duality corresponds to a reflection along the horizontal axis, Dolbeaut symme-
try is a reflection along the vertical axis, andmirror symmetry is a reflection along a line with slope
1.

Superstring theory is defined by maps

𝑋 ∶ Σ𝑔 → 𝒞𝛽 ⊂ spacetime

weighted by an action 𝑆which is a supersymmetric extension of the area of𝒞𝛽. It is easy to quantize
the Neveu-Schwarz-Ramond action, and the Green-Schwarz action incorporates the RR fields. The
first quantized theory is defined by a variatonal integral with partition function

𝑍(𝑔, 𝑏, 𝜙) = 􏾙𝒟𝑋𝒟ℎ𝒟𝜓ferm𝑒
𝑖
ℏ𝑆NSR(𝑋,ℎ,𝜓ferm,𝑔,𝑏,𝜙).

Superstring theory is Weyl invariant in ten dimensions, or in other words

􏾙𝒟ℎ →􏾜
𝑔=0

􏾙
ℳΣ𝑔

𝜇3𝑔−3,

so we obtain a discrete sum of finite-dimensional integrals. This implies that the compact part 𝑋
of the spacetime 𝑀 must be a complex threefold. If 𝑋 is Calabi-Yau, we obtain an extended (2, 2)
world-sheet SCFT, which has four nilpotent operators

𝑄2
± = 𝑄̄2

± = 0.

The 𝐴-twist corresponds to taking
𝑄𝐴 = 𝑄− + 𝑄̄+
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and the 𝐵-twist corresponds to
𝑄𝐵 = 𝑄̄− + 𝑄̄+.

The topological 𝐴-model yields a cohomological topological theory depending only on the Kähler
structure, while the topological 𝐵-model is a homological topological theory depending only on
the complex structure. Mirror symmetry then exchanges the 𝐴-model and 𝐵-model.

1.1.2 The topological A-model and B-model
In the𝐴-model, terms depending on the complex structure are𝑄𝐴-exact, so the variatinoal integral
simplifies to

𝑍 =
∞
􏾜
𝑔=0

􏾜
𝛽∈𝐻2(𝑋,ℤ)

𝑔2𝑔−2𝑠 𝑄𝛽􏾙
ℳ 𝑔(𝑋,𝛽)

1.

Here, we have
𝑄 = 𝑒

2𝜋𝑖∫𝒞𝛽
𝑖𝜔+𝑏

= 𝑒𝑡𝛽

and these holomorphic maps are stationary points of the action. Moreover, taking the logarithm,
we obtain

ℱ (𝑔𝑠, 𝑄) = log𝑍 =􏾜
𝑔,𝛽
𝑔2𝑔−2𝑠 𝑄𝛽𝑟𝛽𝑔 =

∞
􏾜
𝑔=0

𝑔2𝑔−2𝑠 ℱ𝑔(𝑄),

where 𝑟𝛽𝑔 are the GW invariants. Rewriting these in terms of GV invariants, we obtain

ℱ (𝑔𝑠, 𝑄) =
𝑐(𝑡)
𝜆2 + ℓ(𝑡) +

􏾜
𝑔,𝛽

∞
􏾜
𝑚=1

𝑛𝛽𝑔
𝑚
􏿵2 sin 𝑚𝑔𝑠2 􏿸

2𝑔−2
𝑄𝑚𝛽.

In the 𝐵-model, the terms depending on the Kähler structure are 𝑄𝐵-exact and the variational
integral localizes to constant maps albeit with a nontrivial measure depending on the complex
structure. Mirror symmetry is supposed to be an exact duality, so we should have

􏾊𝒪 (0)
𝑖 𝒪 (0)

𝑗 𝒪 (0)
𝑘 􏽽

𝑔=0
= 􏾙

𝑋̂
Ω(𝑧)𝜕𝑧𝑖𝜕𝑧𝑗𝜕𝑧𝑘Ω(𝑧)

= 𝜕𝑡𝑖𝜕𝑡𝑗𝜕𝑡𝑘ℱ0(𝑡).

Period integrals
Π𝑖𝑗(𝑧) = 􏾙

Γ𝑖
𝛾𝑗(𝑧)

define a nondegenerate pairing between middle homology and cohomology by Stokes’ theorem.
This pairing is antisymmetric if 𝑛 is odd and symmetric if 𝑛 is even. For example, if 𝑋 is a K3
surface, then the lattice 𝐻2(𝑋,ℤ) is

𝐸8(−1)⊕2 ⊕ 􏿶
0 1
1 0􏿹

⊕3

.

If 𝑛 is odd, we can fix an integral symplectic basis Γ = {𝐴ℓ, 𝐵ℓ}, which is defined only up to the
action of Sp(𝑏𝑛(𝑋),ℤ).
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Example 1.1.2. If we consider an elliptic curve 𝑝3 = 𝑤𝑦2 −𝑥(𝑥 −𝑤)(𝑥 −𝑤𝑧) = 0 ⊂ ℙ2, then we obtain

Ω(𝑧) = 􏽤
2d𝑥 ∧ d𝑦

𝑝3
= d𝑥

𝑦

and
𝜕𝑧Ω(𝑧) ∼

𝑥d𝑥
𝑦 .

Then the integrals
𝐸1(𝑧) = 􏽤

𝐴
Ω and 𝐸2(𝑧) = 􏽤

𝐵
Ω

are elliptic integrals. The periods are annihilated by the Picard-Fuchs operator, and by definition
thus satisfy the equation

ℒ 􏾙
Γ
Ω = 􏿰(1 − 𝑧)𝜕2𝑧 + (1 − 2𝑧)𝜕𝑧 −

1
4􏿳􏾙Γ

Ω = 0.

The main constraints which govern the periods of a Calabi-Yau 𝑛-fold are the Riemann bilinear
relations

𝑒−𝐾 = 𝑖𝑛2􏾙
𝑋
Ω∧ Ω̄ > 0.

This defines the exponential of the Kähler potential 𝐾(𝑧) for the Weil-Petersson metric

𝐺𝑖 ̄𝚥 = 𝜕𝑧𝑖 𝜕̄𝑧̄ ̄𝚥𝐾(𝑧)

onℳ[𝑋](𝑧). There are also holomorphic bilinear relations

􏾙
𝑋
Ω∧ 𝜕𝑘ℓ𝑘Ω =

⎧⎪⎨
⎪⎩
0 𝑘 < 𝑛
𝐶ℓ𝑛 (𝑧) ℓ = 𝑛

which follow fromGriffiths transversality [Gri68a; Gri68b]. Here, the integrand in the left hand side
are arbitrary combinations of derivatives of Ω with respect to the 𝑧𝑖. We will see later that these
give rise to propagators, the holomorphic anomaly equations, and other structures. The 𝐶ℓ𝑛 (𝑧) are
rational functions labelled by ℓ𝑛 up to permutations.They are also determined by differential ideals
ℒΠ⃗ also determine the 𝐶ℓ𝑛 (𝑧) up to normalization.
Remark 1.1.3. In terms of the periods Π⃗, if we write them in a basis compatible with the intersection
form Σ, the quantities in the relations may be written as

􏾙
𝑋
Ω∧ Ω̄ = Π⃗†ΣΠ⃗ and 􏾙

𝑋
Ω∧ 𝜕𝑘ℓ𝑘Ω = −Π⃗†Σ𝜕𝑘ℓ𝑘Π⃗.

1.1.3 The quintic
Consider the mirror quintic𝑊, which is given by the equation

𝑝̂5 =
4
􏾜
𝑖=0
𝑥5𝑖 − 5𝑧

− 15
4
􏾟
𝑘=0

𝑧𝑖 = 0 ⊂ ℙ̂4.
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The period vectorΠ(𝑧) (with an appropriate choice of integral cycles) fulfills the Picard-Fuchs equa-
tion

􏿰𝜃4 − 55𝑧􏿶𝜃 +
1
5􏿹􏿶𝜃 +

2
5􏿹􏿶𝜃 +

3
5􏿹􏿶𝜃 +

4
5􏿹􏿳Π(𝑧) = 0,

where 𝜃 = 𝑧 d
d𝑧 .

We want to find a basis where the monodromies around the singular points are integral sym-
plectic matrices, so we look at the Riemann symbol and see that it is given by

𝒫

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 5−5 ∞ ∗
0 0 1

5

0 1 2
5 𝑧

0 2 3
5

0 1 4
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Here, 𝑧 = 0 is a point ofmaximal unipotentmonodromy, 𝑧 = ∞ is the orbifold (or Landau/Ginzburg,
or Gepner) point, and 𝑧 = 5−5 is the conifold point. At a point of maximal unipotent monodromy,
we can expand the mirror map and go to the large volume limit point in the 𝐴-model.

Using special geometry, Bryant and Griffiths [BG83] showed that the periods may actually be
expressed using a prepotentialℱ as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
𝐵0
Ω

∫
𝐵1
Ω

∫
𝐴0
Ω

∫
𝐴1
Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐹0
𝐹1
𝑋0
𝑋1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ℱ0 − 𝑡𝜕𝑡ℱ0
𝜕𝑡ℱ0
1
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

These correspond to triple logarithmic, double logarithmic, analytic, and logarithmic solutions,
respectively. Using this, we can make the identification

ℱ (𝑧) = ℱ0(𝑡(𝑧)),

where the mirror map is given by

𝑡 = 𝑋1
𝑋0 = log(𝑧) + 𝒪 (𝑧).

This was generalized to multi-parameter models by Hosono et. al [HKTY95], who related the clas-
sical terms to CTC Wall data 𝜅 = 𝐷3 and 𝜎 = 𝜅 mod 2

2 in the formula

ℱ = −𝜅6 +
𝜎
2 𝑡

2 + 𝑐2 ⋅ 𝐷
24 𝑡 + 𝜒(𝑀)

2
𝜁(3)
(2𝜋𝑖)3 −

1
(2𝜋𝑖)3

􏾜
𝛽≠0

𝑛𝛽0 Li3(𝑄𝛽).

Later, we will use this to find the integral symplectic basis without calculating any monodromy.
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Table 1.1: Low genus GV invariants of the quintic.

𝑔 𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5
0 2875 609250 317206375 242467530000 22930588887625
1 0 0 609250 3721431625 12129909700200
2 0 0 0 534750 75478987900
3 0 0 0 8625 −15663750
4 0 0 0 0 49250
5 0 0 0 0 1100
6 0 0 0 0 10

We now turn our attention to calculating the numbers 𝑛𝛽𝑔. We already saw the genus-zero in-
variants, but we are also interested in the higher-genus ones. Some invariants in low genus and
degree are given in Table 1.1.

Predictions were made by Candelas et al. [COGP92] for 𝑔 = 0, Bershadsky et al. [BCOV94] for
𝑔 ≤ 3, andHuang et al. [HKQ09] for 𝑔 ≤ 53. The numbers 𝑛11, 𝑛21, and 𝑛31 were calculatedmathemati-
cally by Schubert, Katz [Kat86], and Ellingsrud-Strømme [ES96], respectively. Kontsevich [Kon95]
gave a mathematical proof of some numbers in 𝑔 = 0 before the genus-zero invariants were com-
pletely determined by Givental and Lian-Liu-Yau [Giv96; LLY97]. The formula for the genus-one
invariants was proved by Zinger [Zin09].

1.1.4 Fourteen one-parameter hypergeometric families
There are fourteen hypergeometric Picard-Fuchs operators for one-parameter families of Calabi-
Yau threefolds 𝑋̂ given by

ℒ = 𝜃4 − 𝜇−1𝑧
4
􏾟
𝑘=1
(𝜃 + 𝑎𝑘),

where the values of 𝜇 and 𝑎𝑘 are given in Table 1.2. Here, the notation for the mirror 𝑋 means
the complete intersection in the weighted projective space with weights given in parentheses with
degrees given by the subscripts. The local exponents are all 0 at the MUM point, 0, 1, 1, 2 at the
conifold point 𝜇, and are given by 𝑎1, 𝑎2, 𝑎3, 𝑎4 at the orbifold point ∞. The monodromy around a
singular point ∗ is captured by the minimal exponent3 1 ≤ 𝑘 < ∞ such that

(𝑀𝑘
∗ − 1)𝑝+1 = 0

for some 0 ≤ 𝑝 ≤ dimℂ 𝑋. When 𝑘 > 1 and 𝑝 = 0, then we have an orbifold point. When 𝑝 > 0
we have an infinite shift monodromy. If 𝑝 = 1 and the local exponents take the form 𝑎, 𝑏, 𝑏, 𝑐, then
we have a single vanishing period dual to a logarithmic degenerating period and hence a conifold
point, and if the local exponents are take the form 𝑎, 𝑎, 𝑏, 𝑏, then we have two vanishing periods
and two logarithmic degenerating periods, and this case is called a 𝐾-point. The case 𝑝 = 2 cannot
occur by Schmid’s SL(2, ℂ) orbit theorem, and when 𝑝 = 3, we have a point of maximal unipotent
monodromy with local exponents 𝑎, 𝑎, 𝑎, 𝑎.

3This corresponds to the degree of the base change needed to make the monodromy unipotent.
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Table 1.2: Data of one-parameter hypergeometric families

𝑁 𝑎𝑘 𝜇−1 Mirror 𝑋 𝜅 𝑐2 ⋅ 𝐷 𝜒(𝑋)

8 1
2 ,

1
2 ,

1
2 ,

1
2 28 𝑋2,2,2,2(18) 16 64 −128

9 1
4 ,

1
3 ,

2
3 ,

3
4 2633 𝑋4,3(1521) 6 48 −156

16 1
4 ,

1
2 ,

1
2 ,

3
4 210 𝑋4,2(16) 8 56 −176

25 1
5 ,

2
5 ,

3
5 ,

4
5 55 𝑋5(14) 5 50 −200

27 1
3 ,

1
3 ,

2
3 ,

2
3 36 𝑋3,3(16) 9 54 −144

32 1
4 ,

1
4 ,

3
4 ,

3
4 212 𝑋4,4(1422) 4 40 −144

36 1
3 ,

1
2 ,

1
2 ,

2
3 2433 𝑋3,2,2(17) 12 60 −144

72 1
6 ,

1
2 ,

1
2 ,

5
6 2833 𝑋6,2(1531) 4 54 −256

108 1
6 ,

1
3 ,

2
3 ,

5
6 2436 𝑋6(1421) 3 42 −204

128 1
8 ,

3
8 ,

5
8 ,

7
8 216 𝑋8(1441) 2 44 −296

144 1
6 ,

1
4 ,

3
4 ,

5
6 21033 𝑋6,4(132231) 2 32 −158

200 1
10 ,

3
10 ,

7
10 ,

9
10 2855 𝑋10(132151) 1 34 −288

216 1
6 ,

1
6 ,

5
6 ,

5
6 2836 𝑋6,6(122232) 1 22 −120

864 1
12 ,

5
12 ,

7
12 ,

11
12 21236 𝑋12,2(144161) 1 46 −484

At the point 𝑧 = 0, there is a Frobenius basis of solutions

Π0(𝑧) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓0(𝑧)
𝑓0(𝑧) log 𝑧 + 𝑓1(𝑧)

1
2𝑓0(𝑧)(log 𝑧)

2 + 𝑓1(𝑧) log 𝑧 + 𝑓2(𝑧)
1
6𝑓0(𝑧)(log 𝑧)

3 + 1
2𝑓1(𝑧)(log 𝑧)

2 + 𝑓2(𝑧) log 𝑧 + 𝑓3(𝑧),

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where we normalize the power series to have 𝑓0(0) = 1 and 𝑓𝑘>0(0) = 0. Therefore, we can find an
integral basis

Π = (2𝜋𝑖)3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜁3𝜒(𝑀)
(2𝜋𝑖)3

𝑐2⋅𝐷
24⋅2𝜋𝑖 0 𝜅

(2𝜋𝑖)3
𝑐2⋅𝐷
24

𝜎
2𝜋𝑖

𝜅
(2𝜋𝑖)2 0

1 0 0 0
0 1

2𝜋𝑖 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Π0.
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In the integral basis, all monodromies are integral symplectic matrices. At the point 𝑧 = 0, we have

𝑀0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 𝜅
6 +

𝑐2⋅𝐷
12

𝜅
6 + 𝜎

0 1 𝜎 − 𝜅
2 −𝜅

0 0 1 0
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and at the conifold point, we have

𝑀𝜇 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

At 𝑧 = ∞, we have𝑀∞ = (𝑀0𝑀𝜇)−1.
The work of Alexandrov-Feyzbakhsh-Klemm-Pioline-Schimannek [Ale+24] solves the topolog-

ical string on these models up to 𝑔mod given in Table 1.3 using 𝐷4 brane and wall-crossing.4 Note
that 𝑔avail is the maximum genus for which data appears at http://www.th.physik.uni-bonn.de/
groups/klemm/data.php and 𝑔integ is the maximum genus solved by the work of Huang-Klemm-
Quackenbush [HKQ09].

Table 1.3: Current state of the art in physics literature as of January 2023.

𝑋 𝜒𝐷 𝑛𝑝1 𝑛𝑐1 Type 𝑔integ 𝑔mod 𝑔avail
𝑋5(15) 5 7 0 𝑂 53 69 64
𝑋6(1421) 4 4 0 𝑂 48 66 48
𝑋8(1441) 4 4 0 𝑂 60 84 64
𝑋10(132151) 2 7 0 𝑂 50 70 68
𝑋4,3(1521) 5 9 0 𝑂 20 24 24
𝑋6,4(132231) 3 3 0 𝑂 14 17 17
𝑋3,3(16) 6 14 1 𝐾 29 33 33
𝑋4,4(1421) 4 6 1 𝐾 26 34 34
𝑋6,6(122232) 2 1 0 𝐾 18 21 21
𝑋6,2(1531) 5 7 0 𝐶 63 84 49
𝑋4,2(16) 6 15 1 𝐶 50 64 40
𝑋3,2,2(17) 7 21 1 𝐶 14 ? 14
𝑋2,2,2,2(18) 8 33 3 𝑀 17 ? 32

Remark 1.1.4. Even inserting at least one 𝐷4 brane requires going beyond the topological string,
which only gives the usual DT or PT invariants (one 𝐷6 brane, no 𝐷4 branes, and arbitrary 𝐷2 and
𝐷0 brane charges). Hopefully, we will be able to explore the entire space of Bridgeland stability
conditions in the future.

4There have since been more improvements found by adding more 𝐷4 brane charges [AFKP23].
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1.1.5 More on periods
Consider the Picard-Fuchs operator

ℒ (𝑛+1)(𝑧) =
𝑛+1
􏾜
𝑖=1
𝑎𝑖(𝑧)𝜕𝑖𝑧

of a one-parameter Calabi-Yau 𝑛-fold with middle Hodge structure of type 1, 1, … , 1. Defining the
adjoint operator

ℒ (𝑛+1)∨(𝑧) =
𝑛+1
􏾜
𝑖=1
(−𝜕𝑧)𝑖𝑎𝑖(𝑧),

then Griffiths transversality implies that the operator is essentially self-adjoint, or in other words

ℒ (𝑛+1)𝐶𝑧 = (−1)𝑛+1𝐶𝑧ℒ (𝑛+1)∨.

Here, the Yukawa coupling 𝐶𝑧 satisfies the differential equation

𝐶′𝑧 = −
2

𝑛 + 1𝑎𝑛𝐶𝑧.

For the quintic, we in fact obtain
𝐶𝑧𝑧𝑧 =

5
𝑧3(1 − 55𝑧) .

Equivalently, self-adjointness implies

𝑛+1
􏾜
𝑗=𝑘
􏿶
𝑗

𝑘
􏿹

⎧⎪⎪⎨
⎪⎪⎩
𝐶(𝑗−𝑘)𝑧

𝐶𝑧
𝑎𝑗 + (−1)𝑛+𝑗𝑎

𝑗−𝑘
𝑗

⎫⎪⎪⎬
⎪⎪⎭ = 0.

When 𝑛 = 3, this yields
𝑎33 + 4𝑎″3 + 6𝑎3𝑎′3 + 8𝑎1 − 4𝑎2𝑎3 − 8𝑎′2 = 0.

In the multi-parameter case, the periods Π⃗ span the kernel of the Picard-Fuchs differential ideal

{ℒ } = {ℒ (𝑑𝑘)
𝑘 | 𝑘 = 1, … , ℓ}

generated by the differential operators

ℒ (𝑑𝑘)
ℓ (𝜃, 𝑧)Π(𝑧) = 0.

This system is complete if all three-point functions

𝐶𝑖𝑗𝑘(𝑧) = 𝐶𝑧𝑖𝑧𝑗𝑧𝑘 (𝑧)

can be integrated from the Griffiths transversality relations.
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Example 1.1.5. For the example𝑋18(136191)withmiddle Hodge structure 1, 2, 2, 1, the Picard-Fuchs
equation is generated by

ℒ (2)
1 = 𝜃1(𝜃1 − 3𝜃2) − 12𝑧1(6𝜃1 + 1)(6𝜃1 + 5),

ℒ (3)
2 = 𝜃32 +

2
􏾟
𝑖=0
(3𝜃2 − 𝜃1 + 𝑖),

and the 𝐶𝑖𝑗𝑘 are given by

𝐶111 =
9

𝑧31Δ1
;

𝐶112 =
3𝛿

𝑧21𝑧2Δ1
;

𝐶122 =
Δ22

𝑧1𝑧22Δ1
;

𝐶222 =
9(𝛿3 + (432𝑧1)3)

𝑧22Δ1Δ2
,

where the components of the discriminant are given by

Δ1 = (1 − 432𝑧1)3 − 27𝑧2(432𝑧1)3 and Δ2 + 1 + 27𝑧2,

and 𝛿 = 1 − 432𝑧1.
If we shift the holomorphic form by

Ω → 𝑒𝑓(𝑧)Ω,

this induces a Kähler gauge transformation

𝐾 → 𝐾 − 𝑓(𝑧) − 𝑓(𝑧).

Also note that the Yukawa couplings 𝐶𝑖𝑗𝑘(𝑧) are sections of

ℒ 2 ⊗ Sym3 𝑇∗ℳ(𝑧)1,0,

whereℒ is the dual of the Hodge bundle.
By the local Torelli theorem [Gri68a; Gri68b], the 𝑋𝐼 components of the period vector

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
𝐵0
Ω
⋮

∫
𝐵𝑟
Ω

∫
𝐴0
Ω
⋮

∫
𝐴𝑟
Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐹0
⋮
𝐹𝑟
𝑋0
⋮
𝑋𝑟

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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are homogeneous coordinates onℳ(𝑧). Griffiths transversality implies that

𝐹 = 1
2𝑋

𝐼𝐹𝐼 ∈ ℒ 2

is a homogeneous prepotential such that

𝑒−𝐾 = 𝑖(𝐹𝑖𝑋̄𝐼 − 𝑋𝐼𝐹̄𝐼)

and the Yukawa couplings are given by

𝐶𝐼𝐽𝐾 =
𝜕
𝜕𝑋𝐼

𝜕
𝜕𝑋𝐽

𝜕
𝜕𝑋𝐾 𝐹.

Dividing by𝑋0, wewill get inhomogeneous coordinates 𝑡𝑖 = 𝑋𝑖

𝑋0 , andwe obtain the inhomogeneous
prepotential

ℱ (𝑡) = 𝐹(𝑋)
(𝑋0)2 .

The Kähler potential and Yukawa coupling become

𝑒−𝐾 = 𝑖[(𝑡 ̄𝚤 − 𝑡𝑖)(ℱ𝑖 +ℱ ̄𝚤) + 2(ℱ − ̄ℱ )]
𝐶𝑖𝑗𝑘(𝑡) = 𝜕𝑖𝜕𝑗𝜕𝑘ℱ (𝑡).

In addition, we have
𝐶𝑖𝑗𝑘(𝑡) =

1
(𝑋0)2

𝜕𝑧ℓ
𝜕𝑡𝑖

𝜕𝑧𝑚
𝜕𝑡𝑗

𝜕𝑧𝑛
𝜕𝑡𝑘 𝐶ℓ𝑚𝑛(𝑧).

In inhomogeneous coordinates, we can obtain the period vector fromℱ (𝑡) by

Π⃗𝑇 = 𝑋0(2ℱ (𝑡) − 𝑡𝑖𝜕𝑖ℱ (𝑡), 𝜕𝑖ℱ (𝑡), 1, 𝑡𝑖).

The Picard-Fuchs equation is equivalent to the Gauss-Manin connection

(𝜕𝑖 − 𝐴𝑖(𝑧))Π⃗(𝑧) = 0,

where 𝑖 = 1, … , 𝑟 and 𝐴𝑖(𝑧) ∈ ℚ[𝑧]. If we set

Ω̂0 = 𝛼0 + 𝑡𝑖𝛼𝑖 − 𝜕𝑖ℱ 𝛽𝑖 − (2ℱ − 𝑡𝑖𝜕𝑖ℱ )𝛽0

𝜒̂𝑖 = 𝛼𝑖 − 𝜕𝑖𝜕𝑗ℱ 𝛽𝑗 − (𝜕𝑎ℱ − 𝑡𝑖𝜕𝑖𝜕𝑗ℱ )𝛽0

𝜒̂𝑖 = −𝛽𝑖 + 𝑡𝑎𝛽0

Ω̂0 = 𝛽0,

this becomes

𝜕𝑖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω0
𝜒𝑗
𝜒𝑗
Ω0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝛿𝑘𝑖 0 0
0 0 𝐶𝑖𝑗𝑘(𝑡) 0
0 0 0 𝛿𝑗𝑖
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω0
𝜒𝑗
𝜒𝑗
Ω0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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1.1.6 Special geometry
On the moduli space of complex structures ℳcs ≔ ℳ(𝑧), we have metric connections from the
Weil-Petersson metric and the Kähler line bundle connection. On sections

𝑉𝑗 ̄𝚥 ∈ 𝑇∗1,0ℳcs ⊗ 𝑇∗0,1ℳcs ⊗ℒ ⊗𝑛 ⊗ ̄ℒ ⊗𝑚,

the covariant derivatives are given by
𝐷𝑖𝑉𝑗 ̄𝚥 = 𝜕𝑖𝑉𝑗 ̄𝚥 − Γℓ𝑖𝑗𝑉ℓ ̄𝚥 + 𝑛𝐾𝑖𝑉𝑗 ̄𝚥
𝐷𝑖𝑉𝑗 ̄𝚥 = 𝜕 ̄𝚤𝑉𝑗 ̄𝚥 − Γℓ̄̄𝚤 ̄𝚥𝑉𝑖ℓ̄ + 𝑚𝐾 ̄𝚤𝑉𝑗 ̄𝚥.

Using the covariant derivatives, we see that 𝜒𝑖 ∈ 𝐻𝑛−1,1(𝑋) and 𝜒̄ ̄𝚤 ∈ 𝐻1,𝑛−1(𝑋).
Proceeding more systematically, repeated applications of 𝐷𝑖 yield

𝐷𝑖Ω = (𝜕𝑖 + 𝐾𝑖)Ω = 𝜒𝑖
𝐷𝑖𝜒𝑗 = −𝑖𝑒𝐾𝐶𝑖𝑗𝑘𝐺𝑘𝑘̄𝜒𝑘̄
𝐷𝑖𝜒𝑘̄ = 𝐺𝑖𝑘̄Ω̄
𝐷𝑖Ω̄ = 0.

Using the relation
[𝐷𝑖, 𝐷𝑗]𝜒𝑘 = −𝐺𝑖 ̄𝚥𝜒𝑘 + 𝑅

𝑝
𝑖 ̄𝚥𝑘𝜒𝑝,

we further deduce
[𝐷𝑖, 𝐷 ̄𝚥]𝜒𝑘 = 𝐺𝑘 ̄𝚥𝜒𝑖 − 𝑒2𝐾𝐶 ̄𝚥𝑚̄𝑛̄𝐺𝑚𝑚̄𝐺𝑛𝑛̄𝐶𝑖𝑘𝑚𝜒𝑛.

It follows that
[𝐷𝑖, 𝐷 ̄𝚥]𝑘ℓ = −𝑅𝑘𝑖 ̄𝚥ℓ = 𝜕 ̄𝚥Γ𝑘𝑖ℓ = 𝛿𝑘ℓ𝐺 ̄𝚥𝑖 + 𝛿𝑘𝑖𝐺 ̄𝚥ℓ − 𝐶𝑘𝑚̄𝚥 𝐶𝑖ℓ𝑚,

where 𝐶𝑘ℓ̄𝚥 = 𝑒2𝐾𝐶 ̄𝚥𝑘̄ℓ̄𝐺𝑘𝑘̄𝐺ℓℓ̄. This equation is known as the special geometry equation and is the inte-
grability condition for the existence of the prepotentialℱ .

1.1.7 Genus one predictions
In a (2, 2) theory, the topological torus partition function is defined by

𝐹(𝑡, ̄𝑡) = 1
2 􏾙ℱfund

d2𝜏
Im 𝜏 Tr(−1)

𝐹𝐹𝐿𝐹𝑅𝑞𝐻 𝑞̄𝐻̄

as an integral of the fermion number projected partition function over the fundamental region
of the torus. Using its relationship to the family index of Ray-Singer analytic torsion [FLY08], it
satisfies the holomorphic anomaly equation

𝜕𝑖𝜕̄ ̄𝚥𝐹1 =
1
2𝐶𝑖𝑗𝑘𝐶

𝑘ℓ
̄𝚥 − 􏿵 𝜒24 − 1

􏿸𝐺𝑖 ̄𝚥.

Using 𝐺𝑖 ̄𝚥 = 𝜕 ̄𝚥𝜕𝑖𝐾 = 𝜕 ̄𝚥𝐾𝑖 and the special geometry equation, we can integrate the holomorphic
anomaly equation to obtain

𝐹1 = −
1
2 log det𝐺𝑖 ̄𝚥 + 􏿶

1
2(ℎ11 + 1) −

𝜒
24 + 1􏿹𝐾 + log 𝑓1(𝑧) + log 𝑓1(𝑧̄). (1.1)
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1.1.8 Propagators
The propagators are an-holomorphic sections 𝑆𝑖𝑗, 𝑆𝑖, and 𝑆 ofℒ −2 ⊗ Sym2(𝑇ℳ 1,0

cs ), ℒ −2 ⊗ 𝑇ℳ 1,0
cs ,

andℒ −2, respectively, defined by

𝜕 ̄𝚤𝑆𝑗𝑘 = 𝐶
𝑗𝑘
̄𝚤 , 𝜕 ̄𝚥𝑆𝑘 = 𝐺𝑖 ̄𝚥𝑆𝑖𝑘, and 𝜕 ̄𝚥𝑆 = 𝐺𝑖 ̄𝚥𝑆𝑖.

We can integrate the first equation using the special geometry equation and the observation that
the only contributions to 𝐶𝑘𝑚̄𝚥 𝐶𝑖ℓ𝑚 are derivatives in 𝜕̄ ̄𝚥. Therefore, if there exists an index 𝑖 such that
[𝐶(𝑖)]𝑚 is invertible, we obtain

𝑆𝑘𝑚 = 𝐶(𝑖)𝑘ℓ(𝛿𝑚ℓ 𝐾(𝑖) + 𝛿𝑚(𝑖)𝐾ℓ + Γ𝑚(𝑖)ℓ + 𝑞𝑚(𝑖)ℓ),

where 𝑞𝑚(𝑖)ℓ is the holomorphic propagator ambiguity.
Following Alim-Länge [AL07], it is convenient to shift the remaining propagators as

̃𝑆𝑖 = 𝑆𝑖 − 𝑆𝑖𝑗𝐾𝑗;

𝑆̃ = 𝑆 − 𝑆𝑖𝐾𝑖 +
1
2𝑆

𝑖𝑗𝐾𝑖𝐾𝑗.

Applying the special geometry equation, we obtain

𝜕𝑖𝑆𝑗𝑘 = 𝐶𝑖𝑚𝑛𝑆𝑚𝑗𝑆𝑛𝑘 + 𝛿
𝑗
𝑖𝑆̃𝑘 + 𝛿𝑘𝑖 𝑆̃𝑗 − 𝑞

𝑗
𝑖𝑚𝑆𝑚𝑘 − 𝑞𝑘𝑖𝑚𝑆𝑚𝑗 + 𝑞

𝑗𝑘
𝑖 ;

𝜕𝑖𝑆̃𝑗 = 𝐶𝑖𝑚𝑛𝑆𝑚𝑗 ̃𝑆𝑛 + 2𝛿
𝑗
𝑖𝑆̃ − 𝑞

𝑗
𝑖𝑚𝑆̃𝑚 − 𝑞𝑖𝑘𝑆𝑗𝑘 + 𝑞

𝑗
𝑖;

𝜕𝑖𝑆̃ =
1
2𝐶𝑖𝑚𝑛𝑆̃

𝑚𝑆̃𝑛 − 𝑞𝑖𝑗𝑆̃𝑗 + 𝑞𝑖;

𝜕𝑖𝐾𝑗 = 𝐾𝑖𝐾𝑗 − 𝐶𝑖𝑗𝑛𝑆𝑚𝑛𝐾𝑚 + 𝑞𝑚𝑖𝑗 𝐾𝑚 − 𝐶𝑖𝑗𝑘𝑆̃𝑘 + 𝑞𝑖𝑗.

Here, all of the ambiguities are in fact rational functions in 𝑧with rational coefficients. This allows
us to obtain explicit formulae

𝑆̃𝑘 = 1
2(𝜕𝑘𝑆

𝑘𝑘 − 𝐶𝑘ℓ𝑚𝑆𝑘ℓ𝑆𝑘𝑚 + 2𝑞𝑘𝑘ℓ𝑆ℓ𝑘 − 𝑞𝑘𝑘𝑘 );

̃𝑆 = 1
2(𝜕ℓ𝑆̃

ℓ − 𝐶𝑘ℓ𝑚𝑆̃𝑘𝑆ℓ𝑚 + 𝑞ℓℓ𝑚 ̃𝑆𝑚 + 𝑞ℓ𝑚𝑆ℓ𝑚 − 𝑞ℓℓ).

Taking the holomorphic limit of the propagators, we obtain

𝒮 𝑘𝑚 = 𝐶(𝑖)𝑘ℓ(𝛿𝑚ℓ𝒦(𝑖) + 𝛿𝑚(𝑖)ℒℓ − Υ𝑚(𝑖)ℓ + 𝑞𝑚(𝑖)ℓ),

where we take the holomorphic limits 𝑒−𝐾 → 𝑒−𝒦 = 𝑋0∗ , 𝐾𝑖 → 𝒦𝑖 = −𝜕𝑖 log(𝑋0∗ ), and Γ𝑖𝑗𝑘 → Υ𝑖𝑗𝑘 =
𝜕𝑧𝑖

𝜕𝑡𝑎∗
𝜕2𝑡𝑎∗
𝜕𝑧𝑗 𝜕𝑧𝑘

.
Returning to the genus one situation, the holomorphic anomaly equation becomes

𝜕𝑖𝐹1 = 𝐶𝑖 − 􏿶
𝜒(𝑋)
24 − 1􏿹𝐾𝑖,
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where we define 𝐶𝑖 = 1
2𝑆

𝑗𝑘𝐶𝑖𝑗𝑘 + 𝑓
(1)
𝑖 . This can be integrated to obtain (1.1). The holomorphic limit

is given by
ℱ1 = −

1
2 log det􏿶

𝜕𝑡𝑎∗
𝜕𝑧𝑖

􏿹 + 􏿶
𝜒(𝑋)
24 − 12ℎ11 + 3􏿹 log

𝑋0∗
(2𝜋𝑖)3 + 𝑓1(𝑧),

where the holomorphic ambiguity is given by

𝑓1(𝑧) = log􏿶𝑧−
𝑐2⋅𝐷+12

24 Δ
− 1
12

con 􏿹.

1.1.9 Higher-genus predictions
In higher genus, the holomorphic anomaly equation becomes

𝜕̄𝑘̄ =
1
2𝐶

𝑖𝑗
𝑘̄

⎛
⎜⎜⎜⎜⎜⎜⎝𝐷𝑖𝐷𝑗𝐹𝑔−1 +

𝑔−1
􏾜
𝑟=1

𝐷𝑖𝐹𝑟𝐷𝑗𝐹𝑔−𝑟

⎞
⎟⎟⎟⎟⎟⎟⎠.

This can be rewritten as the system of equations

𝜕𝐹𝑔
𝜕𝑆𝑖𝑗

= 1
2𝐷𝑖𝐷𝑗𝐹𝑔−1 +

1
2

𝑔−1
􏾜
ℎ=1

𝐷𝑖𝐹ℎ𝐷𝑗𝐹𝑔−ℎ,
𝜕𝐹𝑔
𝜕𝐾𝑖

+ 𝑆𝑖
𝜕𝐹𝑔
𝜕𝑆 + 𝑆𝑖𝑗

𝜕𝐹𝑔
𝜕𝑆𝑗

= 0

assuming that 𝑆𝑖𝑗, 𝑆𝑖, 𝑆, and 𝐾 are algebraically independent. Using the shifted propagators, we
obtain 𝜕𝐹𝑔

𝜕𝐾𝑗
= 0 and

𝜕𝐹𝑔
𝜕𝑆𝑗𝑘

− 12
𝜕𝐹𝑔
𝜕 ̃𝑆𝑘

𝐾𝑗 −
1
2
𝜕𝐹𝑔
𝜕𝑆̃𝑗

+ 1
2
𝜕𝐹𝑔
𝜕𝑆̃

𝐾𝑗𝐾𝑘 +
1
2𝐷𝑗𝐷𝑘𝐹𝑔−1 +

1
2

𝑔−1
􏾜
ℎ=1

𝐷𝑗𝐹ℎ𝐷𝑘𝐹𝑔−ℎ.

Using the method of direct integration, due to Yamaguchi-Yau, Grimm-Klemm-Mariño-Weiss,
and Alim-Länge [YY04; GKMW07; AL07], we obtain

𝜕𝐹𝑔
𝜕𝑆𝑖𝑗

= 1
2𝜕𝑖(𝜕

′
𝑗𝐹𝑔−1) +

1
2(𝐶𝑖𝑗ℓ

̃𝑆ℓ𝑘 − 𝑞𝑘𝑖𝑗)𝜕′𝑘𝐹𝑔−1 +
1
2(𝐶𝑖𝑗𝑘

̃𝑆𝑘 − 𝑞𝑖𝑗)𝑐𝑔−1

+
𝑔−1
􏾜
ℎ=1

𝜕′𝑖𝐹ℎ𝜕′𝑗𝐹𝑔−ℎ;

𝜕𝐹𝑔
𝜕𝑆̃𝑖

= (2𝑔 − 3)𝜕′𝑖𝐹𝑔−1 +
𝑔−1
􏾜
ℎ=1

𝑐ℎ𝜕′𝑖𝐹𝑔−ℎ;

𝜕𝐹𝑔
𝜕 ̃𝑆

= (2𝑔 − 3)𝑐𝑔−1 +
𝑔−1
􏾜
ℎ=1

𝑐ℎ𝑐𝑔−ℎ.
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Here, we set

𝑐𝑔 =
⎧⎪⎨
⎪⎩
𝜒
24 − 1 𝑔 = 1
(2𝑔 − 2)𝐹𝑔 𝑔 > 1

and 𝜕′𝑖𝐹𝑔 =
⎧⎪⎨
⎪⎩
𝜕𝑖𝐹𝑔 + 􏿴

𝜒
24 − 1􏿷𝐾𝑖 𝑔 = 1

𝜕𝑖𝐹𝑔 𝑔 > 1.

Therefore, we can solve for a polynomial 𝐹𝑔(𝑆𝑖𝑗, 𝑆̃𝑖, 𝑆̃, 𝑧), which is a weighted polynomial of degree
3𝑔 − 3 with the weights 1, 2, 3, 0. For example, in the one-parameter case, we obtain

𝐹2 =
5
24𝐶

2
111(𝑆11)3 +

1
8(𝜕1𝐶111 − 3𝐶111𝑞

1
11 + 4𝐶111𝑓

(1)
1 )(𝑆11)2

+ 􏿶
1
4𝑞

11
1 𝐶111 +

1
2𝜕1𝑓

(1)
1 + 1

2𝑓
(1)
1 (𝑓

(1)
1 − 𝑞111) +

1
2
􏿵1 − 𝜒

24
􏿸𝑞11􏿹𝑆11

+ 𝜒
48(𝐶111𝑆

11 + 2𝑓(1)1 )𝑆̃1 +
𝜒
24
􏿵 𝜒
24 − 1

􏿸𝑆̃ + 𝑓2(𝑧).

1.1.10 Boundary conditions
The most difficult part of computing 𝐹𝑔 is the degree-zero part 𝑓𝑔(𝑧), which is known as the holo-
morphic or modular ambiguity. In the hypergeometric cases, we have

𝑓𝑔>1(𝑧) =
∑2𝑔−2
𝑘=0 𝑎𝑘𝑧𝑘

(1 − 𝜇−1𝑧)2𝑔−2
+

𝑐∞
􏾜
𝑘=1

𝑏𝑘𝑧𝑘,

where the number 𝑐∞ depends on the type of singularity at 𝑧 = ∞. At 𝑧 = 0, the boundary condi-
tions come from the asymptotics

􏿶
𝜆
𝑔2
􏿹
2𝑔−2

ℱ𝑔 =􏾜
𝛽

⎛
⎜⎜⎜⎜⎝(−1)𝑔−1

(2𝑔 − 2)𝐵2𝑔
(2𝑔)! 𝑛𝛽0 +

2(−1)𝑔𝑛𝛽2
(2𝑔 − 2)! +⋯

⎞
⎟⎟⎟⎟⎠Li3−2𝑔(𝑄𝛽)

= (−1)𝑔(2𝑔)!
(2𝜋)4𝑔−2𝑔(2𝑔 − 2)

𝜒(𝑋) + 𝒪 (𝑄𝛽).

The second equality uses the computation of degree-zero GW invariants by Faber-Pandharipande.
In the one-parameter case, the Castelnuovo bound implies that theGV invariants 𝑛𝑑𝑔 are nonzero

only when the genus is strictly less than 𝑔max(𝑑) ≤ 􏿩
𝑑2

2𝜅 +
𝑑
2 􏿬+1 in general and 𝑔max(𝑑) ≤ 􏿩

2𝑑2

3𝜅 +
𝑑
3 􏿬+1

when 0 < 𝑑 < 𝜅. This was first observed by Huang-Klemm-Quackenbush [HKQ09] and proved
in 2023 by Feyzbakhsh (in the paper [Ale+24] of Alexandrov et. al). Because curves of degree 𝛽 of
genus 𝑔max(𝛽) are smooth, the associated invariants may be obtained by the formula

𝑛𝑔,𝛽 = (−1)dimℂℳ𝛽𝜒(ℳ𝛽),

where ℳ𝛽 denotes the deformation space of the curve. For the one-parameter hypergeometric
cases, we obtain

𝑛𝑔max(𝜅𝑑),𝜅𝑑 =

⎧⎪⎪⎨
⎪⎪⎩

𝜔(𝜔−1)
2 𝑑 = 1

(−1)𝜅
𝑑(𝑑−1)
2 𝜔􏿵𝜔 + 𝜅𝑑(𝑑−1)

2 􏿸 otherwise.
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The most important boundary condition is the gap condition at the conifold point 𝑧 = 𝜇, where
a 3-cycle with the topology of a lens space vanishes. Here, this says that we have

(𝑋0con)2𝑔−2ℱ𝑔 =
(−1)𝑔−1𝐵2𝑔
2𝑔(2𝑔 − 2)

⎛
⎜⎜⎜⎜⎜⎝
(2𝜋𝑖)

1
2

𝑡con

⎞
⎟⎟⎟⎟⎟⎠

2𝑔−2

+ 𝒪 (𝑡0con)

for all 𝑔 > 1, where 𝑡con is the local coordinate at the conifold point given by the ratio of a vanishing
and non-vanishing period.

1.2 An axiomatic approach to enumerative geometry

1.2.1 Moduli of curves and CohFTs
Wewill denote byℳ 𝑔,𝑛 the moduli space of stable curves of genus 𝑔with 𝑛marked points. This is
nonempty if and only if 2𝑔 − 2 + 𝑛 > 0, in which case it is a Deligne-Mumford stack of dimension
3𝑔−3+𝑛. There is a combinatorial structure to the collection ofℳ 𝑔,𝑛, which is given by a collection
of morphisms.

• There is the gluing morphism

𝑞 ∶ ℳ 𝑔,𝑛+1 ×ℳ ℎ,𝑚+1 →ℳ 𝑔+ℎ,𝑛+𝑚,

which takes two curves and glues them along the last marked point to form a node;
• There is the self-gluing morphism

𝑠 ∶ ℳ 𝑔−1,𝑛+2 →ℳ 𝑔,𝑛,

which glues the last two marked points.
There is of course another interesting map, which is the forgetful map

pr ∶ ℳ 𝑔,𝑛+1 →ℳ 𝑔,𝑛

given by deleting the last marked point and then stabilizing. We are now able to define our enu-
merative theories of interest, which include Gromov-Witten theory.
Definition 1.2.1. Given a vector space 𝑉 with a nondegenerate symmetric bilinear form 𝜂 and a
unit element 1 ∈ 𝑉, a Cohomological Field Theory (CohFT) [KM94] Ω on 𝑉 is a collection Ω𝑔,𝑛 of
𝑆𝑛-equivariant linear maps

Ω𝑔,𝑛 ∶ 𝑉⊗𝑛 → 𝐻∗(ℳ 𝑔,𝑛)
which satisfy the basic identity

Ω0,3(1, 𝑢, 𝑣) = 𝜂(𝑢, 𝑣)
and the following combinatorial identities (we will let 𝑒𝜇 be a basis of 𝑉 such that 𝑒1 = 1 and 𝑒𝜇 be
the dual basis):

𝑞∗Ω𝑔+ℎ,𝑛+𝑚(v1, v2) = 􏾜
𝜇
Ω𝑔,𝑛+1(v1, 𝑒𝜇) ⋅ Ωℎ,𝑚+1(v2, 𝑒𝜇);
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𝑠∗Ω𝑔,𝑛(v) = 􏾜
𝜇
Ω𝑔,𝑛+2(v, 𝑒𝜇, 𝑒𝜇).

If in addition the identity
pr∗Ω𝑔,𝑛(v) = Ω𝑔,𝑛+1(v, 1)

is satisfied, then we say the CohFT has a flat unit (or satisfies the string equation).
All of this can be generalized to super vector spaces, but for simplicity we will not deal with

this case.
Example 1.2.2. The most important example of a CohFT is the Gromov-Witten theory of a smooth
projective variety 𝑋. Here, recall that the source of a stable map is a prestable curve, so there is a
stabilization morphism

st ∶ ℳ 𝑔,𝑛(𝑋, 𝛽) → ℳ 𝑔,𝑛

which forgets the map and stabilizes the curve. Then, working over the Novikov ring, we will set
𝑉 = 𝐻∗(𝑋), 𝜂 to be the Poincaré pairing, and 1 to be the fundamental class of 𝑋. The linear maps
Ω𝑋
𝑔,𝑛 are given by the formulae

Ω𝑋
𝑔,𝑛(𝝉) ≔􏾜

𝛽
𝑞𝛽 st∗

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾟
𝑖=1

ev𝑖(𝜏𝑖) ∩ [ℳ 𝑔,𝑛(𝑋, 𝛽)]vir
⎞
⎟⎟⎟⎟⎟⎠,

where ev𝑖 ∶ ℳ 𝑔,𝑛(𝑋, 𝛽) → 𝑋 is the 𝑖-th evaluation map.

Example 1.2.3. Let 𝜋∶ 𝒞𝑔,𝑛 → ℳ 𝑔,𝑛 be the universal curve. Then the Hodge bundle is the vector
bundle

𝔼𝑔,𝑛 ≔ 𝜋∗𝜔𝜋.

We then consider the vector space 𝑉 = ℂ with the usual pairing and define the CohFT Ω𝔼 by the
formula

Ω𝔼
𝑔,𝑛 ≔ 𝑐(𝔼𝑔,𝑛).

The gluing axioms are satisfied by the equation 𝑞∗𝔼𝑔+ℎ = 𝔼𝑔 ⊕ 𝔼ℎ and the exact sequence

0 → 𝔼𝑔−1 → 𝔼𝑔 → 𝒪 → 0.

Here, because genus zero components do not contribute to global sections of 𝜔 and 𝔼 does not
depend on the marked points, this CohFT has a flat unit.
Remark 1.2.4. We will see later that this is related to the GW CohFT of a point by the quantum
Riemann-Roch theorem [CG07].

Given a CohFTΩ, we may produce invariants by pairing the classesΩ𝑔,𝑛(v)with various coho-
mology classes onℳ 𝑔,𝑛. The most important ones to consider are the classes

𝜓̄𝑖 ≔ 𝑐1(𝑠∗𝑖𝜔𝜋),

where 𝑠𝑖 ∶ ℳ 𝑔,𝑛 → 𝒞𝑔,𝑛 is the 𝑖-th marked point.
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Remark 1.2.5. In Gromov-Witten theory, these are called ancestors. There are also descendants,
which are given by the same formula except using themoduli space𝔐𝑔,𝑛 of prestable curves instead
ofℳ 𝑔,𝑛, where we factor the morphism st defined above as

ℳ 𝑔,𝑛(𝑋, 𝛽)
forget map
−−−−−−−−−→ 𝔐𝑔,𝑛

stabilize−−−−−−−→ℳ 𝑔,𝑛.

The descendant classes are denoted by 𝜓𝑖.
Example 1.2.6. We will calculate an invariant which will appear in the GW theory of Calabi-Yau
threefolds. For any CohFT Ω, consider the invariant

􏾉1𝜓̄1􏽼
Ω
1,1 ≔􏾙

ℳ 1,1
Ω1,1(1)𝜓̄1.

Using the second gluing equation, the degree zero part of Ω1,1(1) is equal to
􏾜
𝜇
Ω0,3(1, 𝑒𝜇, 𝑒𝜇) = 􏾜

𝜇
𝜂(𝑒𝜇, 𝑒𝜇),

which yields the (graded) dimension 𝜒(𝑉) of 𝑉. Therefore, we obtain

􏾉1𝜓̄1􏽼
Ω
1,1 =

𝜒(𝑉)
24 .

Example 1.2.7. Consider the GW CohFT of a point. This is given by 𝑉 = ℂ with the usual pairing
and the formula

Ω𝑔,𝑛 = 1.
Then we define the invariants

􏾊𝜓̄𝑎11 ⋯𝜓̄𝑎𝑛𝑛 􏽽
𝑔,𝑛
≔􏾙

ℳ 𝑔,𝑛
Ω𝑔,𝑛 ⋅ 𝜓̄

𝑎1
1 ⋯𝜓̄𝑎𝑛𝑛 .

Theorem 1.2.8 ([Kon92]). The function

𝒟 ≔ exp
⎛
⎜⎜⎜⎜⎜⎝􏾜𝑔,𝑛

ℏ𝑔−1
𝑛!

􏾜
𝑎1+⋯+𝑎𝑛=𝑛

􏾊𝜓̄𝑎11 ⋯𝜓̄𝑎𝑛𝑛 􏽽
𝑔,𝑛
𝑡𝑎1⋯𝑡𝑎𝑛

⎞
⎟⎟⎟⎟⎟⎠

is annihilated by the operators

𝐿−1 ≔ − 𝜕
𝜕𝑡0

+ ℏ−1
2 𝑡20 +

∞
􏾜
𝑖=0
𝑡𝑖+1

𝜕
𝜕𝑡𝑖
;

𝐿0 ≔ − 32
𝜕
𝜕𝑡1

+
∞
􏾜
𝑖=0

2𝑖 + 1
2 𝑡𝑖

𝜕
𝜕𝑡𝑖

+ 1
16 ;

𝐿𝑛 ≔ − (2𝑛 + 3)!!2𝑛+1
𝜕

𝜕𝑡𝑛+1
+

∞
􏾜
𝑖=0

(2𝑖 + 2𝑛 + 1)!!
(2𝑖 − 1)!!2𝑛+1 𝑡𝑖

𝜕
𝜕𝑡𝑖+𝑛

+ ℏ
2

𝑛−1
􏾜
𝑖=0

(2𝑖 + 1)(2𝑖 − 1)⋯ (2𝑖 + 1 − 2𝑛)
2𝑛+1

𝜕2
𝜕𝑡𝑖 𝜕𝑡𝑛−1−𝑖

.
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Remark 1.2.9. This result (Virasoro constraints for a point) is equivalent to𝒟 being a tau-function
for the KdV hierarchy and has been generalized by various authors.

1.2.2 The genus-zero picture
A CohFT in genus zero defines a Frobenius manifold [Dub96]. In particular, there is a product
structure defined by the formula

𝜂(𝜏1 ⋆𝜏 𝜏2, 𝜏3) ≔ 􏾜
𝑛

1
𝑛!𝑝∗

􏾉𝜏1, 𝜏2, 𝜏3, 𝜏, … , 𝜏􏽼
Ω
0,3+𝑛

and the quantum connection, which is defined by the formula

∇𝜇 ≔ 𝜕𝑒𝜇 +
1
𝑧𝑒𝜇 ⋆𝜏 .

The structure of a Frobenius manifold comes from a functionℱ0, which is known as the genus-zero
descendant potential and satisfies a set of PDEs, which are the string equation, dilaton equation, and
an infinite set of topological recursion relations, where we write v = ∑𝜇,𝑛 𝑡

𝜇
𝑛𝑒𝜇𝑧𝑛 ∈ 𝑉J𝑧K:

𝜕
𝜕𝑡10

ℱ0 =
1
2(v0, v0) +

∞
􏾜
𝑛=0

􏾜
𝜇
𝑡𝜇𝑛+1

𝜕
𝜕𝑡𝜇𝑛

ℱ0;

𝜕
𝜕𝑡11

ℱ0 =
∞
􏾜
𝑛=0

􏾜
𝜇
𝑡𝜇𝑛

𝜕
𝜕𝑡𝜇𝑛

ℱ0 − 2ℱ0;

𝜕3

𝜕𝑡𝛼𝑘+1 𝜕𝑡
𝛽
𝑚 𝜕𝑡𝑟𝑛

ℱ0 =􏾜
𝜇,𝜈

𝜕2

𝜕𝑡𝛼𝑘 𝜕𝑡
𝜇
0
ℱ0 ⋅ 𝜂𝜇𝜈 ⋅

𝜕3

𝜕𝑡𝜈0 𝜕𝑡
𝛽
𝑚 𝜕𝑡𝑟𝑛

ℱ0.

To state the following result, we consider the infinite-dimensional vector space 𝑉⦇𝑧−1⦈ (or a com-
pletion of this) with the symplectic form

(f(𝑧), g(𝑧)) ≔ Res𝑧=0 𝜂(f(−𝑧), g(𝑧)).
We also consider the new variable5 q = v − 𝑧, soℱ0 is now a function near q = −𝑧.
Theorem 1.2.10 ([Giv04]). ℱ satisfies the above PDEs if and only if the graphℒ of dℱ is a Lagrangian
cone with vertex at q = 0 such that its tangent spaces 𝐿 are tangent toℒ exactly along 𝑧𝐿 ⊂ 𝐿.

We may recover the Lagrangian coneℒ by the following procedure. We find a fundamental
solution

𝑆 = Id + 𝑆1𝑧−1 + 𝑆2𝑧−2 +⋯
to the quantum connection, which satisfies the equation

𝑧 𝜕𝜕𝑡𝜇 𝑆 = 𝑒𝜇 ⋆ 𝑆.

Then, setting 𝐽 ≔ 𝑧𝑆∗(𝑧)1, we can then recover the Lagrangian cone by the following procedure:
5This is called the dilaton shift.
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• The derivatives 𝜕
𝜕𝑡𝜇 𝐽 form a basis of 𝐿 ∩ 𝑉J𝑧−1K;

• This implies that 𝑧 𝜕2

𝜕𝑡𝜇 𝜕𝑡𝜈 ∈ 𝐿∩𝑉J𝑧−1K. Writing these in terms of the first derivatives and using
the fact that 𝐽 solves the quantum connection, we recover the Frobenius structure and hence
the Lagrangian cone.

In Gromov-Witten theory, there is an explicit formula for the fundamental solution in terms of
descendant invariants. It is given by

𝑆𝜏(𝑧)𝜙 ≔ 𝜙 +􏾜
𝜇
􏾜
𝑛,𝛽

𝑞𝛽
𝑛! 𝑒

𝜇􏾋
𝑒𝜇

𝑧 − 𝜓1
, 𝜙, 𝜏, … , 𝜏􏽾

𝑋

0,𝑛+2,𝛽
.

Example 1.2.11. Let 𝑋 be the quintic threefold. We will use the genus-zero mirror theorem of
Givental to compute the quantum product on 𝐻∗(𝑋). Let

𝐼(𝑞, 𝑧) ≔ 𝑧􏾜
𝑑≥0

𝑞𝑑
∏5𝑑

𝑚=1(5𝐻 + 𝑚𝑧)
∏𝑑

𝑚=1(𝐻 + 𝑚𝑧)5

= 𝑧𝐼0(𝑞) + 𝐼1(𝑞) ⋅ 𝐻 + 𝐼2(𝑞) ⋅
𝐻2

𝑧 + 𝐼3(𝑞) ⋅
𝐻3

𝑧2

be the (very small) 𝐼-function of 𝑋. Setting 𝑄(𝑞) ≔ 𝑞𝑒
𝐼1(𝑞)
𝐼0(𝑞) , the mirror theorem states that

𝐽(0,𝑄(𝑞), 𝑧) = 𝐼(𝑞, 𝑧)
𝐼0(𝑞)

.

Because the mirror map 𝑞 ↦ 𝑄(𝑞) corresponds to setting 𝜏 = 𝐼1(𝑞)
𝐼0(𝑞)

𝐻 by the divisor equation, we can
use the mirror theorem to compute ⋆𝜏. Because of our nonstandard choice of the 𝐼-function, the
quantum connection becomes the ODE

(𝐻 + 𝑧𝐷)𝑆𝜏(𝑧)∗ = 𝑆𝜏(𝑧)∗ ⋅ 𝐼11𝐻⋆𝜏,

where 𝐷 ≔ 𝑞 d
d𝑞 (here, the coordinate is log 𝑞) and 𝐼11 ≔ 1+𝐷􏿵 𝐼1(𝑞)𝐼0(𝑞)

􏿸. An explicit computation using
the mirror theorem and the results of Zagier-Zinger [ZZ08] yields

𝐼11𝐻 +⋯ = 𝑆𝜏(𝑧)∗(𝐼11𝐻 ⋆𝜏 1)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + 𝐷

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼1
𝐼0
+ 𝐷􏿵 𝐼2𝐼0 􏿸

𝐼11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐻2 +⋯ = 𝑆𝜏(𝑧)∗(𝐼11𝐻 ⋆𝜏 𝐻)

𝐼11𝐻3 = 𝑆𝜏(𝑧)∗(𝐼11𝐻 ⋆𝜏 𝐻2).

Because 𝑆𝜏 begins with the identity, this computes 𝐻⋆𝜏.
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1.2.3 𝑅-matrix action
In the early 2000s, Givental [Giv01a; Giv04] discovered a remarkable property of axiomatic enu-
merative theories, namely that one can transform CohFTs by the action of matrices 𝑅(𝑧) = 𝑅0 +
𝑅1𝑧 + 𝑅2𝑧2 +⋯ ∈ Hom(𝑉,𝑉′)J𝑧K which satisfy the property

𝑅∗(−𝑧)𝑅(𝑧) = Id𝑉 .

Traditionally, the literature [PPZ15] requires that 𝑉 = 𝑉′ and 𝑅0 = Id, but the MSP group [CGL19]
has removed this restriction and also allows dim𝑉 < dim𝑉′.

In order to define the action of 𝑅 on a CohFT Ω defined on 𝑉, we need to review some of the
combinatorial structure ofℳ 𝑔,𝑛. For a curve 𝐶 ∈ ℳ 𝑔,𝑛(ℂ), we may consider the dual graph of 𝐶,
which has vertices, edges, and legs, which are defined as follows:

• The vertices correspond to irreducible components of 𝐶 and are labelled by a non-negative
integer, which is the genus;

• The edges correspond to nodes of 𝐶 (in particular, we allow loops);
• The legs correspond to marked points.

Any graph which appears as the dual graph of a stable curve is called a stable graph.

2

3

0

𝛼

𝛽
3

1

2

𝜓

𝜓

𝜓2

𝜓

Figure 1.1: Example of a stable graph inℳ 7,3 and associated tautological class. This stable graph
describes the image of a mapℳ 2,4 ×ℳ 3,2 ×ℳ 0,5 →ℳ 7,3.

The first type of action on CohFTs is a translation action. Let 𝑇 ∈ 𝑉J𝑧K. For a CohFT Ω, we
define

(𝑇Ω)𝑔,𝑛(v) ≔ 􏾜
𝑚

1
𝑚!𝑝∗Ω𝑔,𝑛+𝑚(v, 𝑇, … , 𝑇)

whenever the infinite sum makes sense.
Example 1.2.12. IfΩ𝑋 is the GWCohFT of a smooth projective variety𝑋 and 𝜏 ∈ 𝐻2(𝑋) is a divisor
class, then the infinite sum makes sense and we can define the shifted GW CohFT Ω𝑋,𝜏 of 𝑋. For
example, if 𝑋 is the quintic threefold and 𝜏 = 𝐼1

𝐼0
𝐻, then shifting to 𝜏 is the same as the mirror map

𝑞 ↦ 𝑄(𝑞) = 𝑞𝑒
𝐼1
𝐼0 .
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The second type of action is the action of a matrix 𝑅 as in the beginning of this section. Let 𝐺𝑔,𝑛
define the set of all stable graphs of genus 𝑔 with 𝑛 legs. Then we define

(𝑅Ω)𝑔,𝑛 ≔ 􏾜
Γ∈𝐺𝑔,𝑛

1
|Aut Γ| ContΓ,

where ContΓ is defined by the following construction:
• At the 𝑖-th leg, we place the map

𝑅(−𝜓̄𝑖)∗ ∈ Hom(𝑉′, 𝑉)J𝜓̄𝑖K;
• At every edge, we place the bivector

𝑉(𝜓̄1, 𝜓̄2) ≔
∑𝜇 𝑒𝜇 ⊗ 𝑒𝜇 − ∑𝜇′ 𝑅(−𝜓̄1)∗𝑒𝜇′ ⊗ 𝑅(−𝜓̄2)∗𝑒𝜇

′

𝜓̄1 + 𝜓̄2
;

• At every vertex, we place the linear map

Ω𝑔𝑣,𝑛𝑣 ∶ 𝑉⊗𝑛𝑣 → 𝐻∗(ℳ 𝑔𝑣,𝑛𝑣 );

• Finally, we consider the pushforward in cohomology along the gluing morphism

􏾟
𝑣
ℳ 𝑔𝑣,𝑛𝑣 →ℳ 𝑔,𝑛.

Definition 1.2.13. Let 𝑅 be as above. Then we define the translation

𝑇𝑅 ≔ 𝑧(1 − 𝑅(−𝑧)∗1′) ∈ 𝑧𝑉′J𝑧K.
Whenever it makes sense, we define

𝑅.Ω ≔ 𝑅𝑇Ω.

Theorem 1.2.14 ([CGL19]). Suppose we work with coefficients in ℂJ𝑞K. Then if

𝑇𝑅 ∈ 𝑧2𝑉J𝑧K + 𝑧𝑞𝑉J𝑧K,
𝑅.Ω is a well-defined CohFT. Moreover, if dim𝑉 = dim𝑉′, 1′ is a unit for 𝑅.Ω.

We would like to remark a bit more about the translation action when 𝑅0 ≠ Id. For simplicity,
we will assume that 𝑉 = 𝑉′ and 𝑅01 = 𝑐 ⋅ 1 for some constant 𝑐. Then we set 𝑇̃𝑅 ≔ 𝑧(1 − 𝑐𝑅(𝑧)−11)
and use the dilaton equation to compute

𝑇𝑅Ω𝑔,𝑛(v) =
∞
􏾜
𝑚=0

1
𝑚!𝑝∗Ω𝑔,𝑛+𝑚(v, 𝑇𝑅, … , 𝑇𝑅)

= 􏾜
𝑘,ℓ≥0

1
𝑘!ℓ!𝑝∗Ω𝑔,𝑛+𝑘+ℓ(v, ((1 − 𝑐−1)1 ⋅ 𝜓)⊗𝑘, (𝑐−1𝑇̃𝑅)⊗ℓ)

Page 23 of 94



= 􏾜
𝑘,ℓ≥0

(1 − 𝑐−1)𝑘 ⋅ 𝑐−ℓ
ℓ! 􏿶

2𝑔 − 2 + 𝑛 + 𝑘 + ℓ − 1

𝑘
􏿹𝑝∗Ω𝑔,𝑛+ℓ(v, 𝑇̃⊗ℓ𝑅 )

=
∞
􏾜
𝑚=0

𝑐2𝑔−2+𝑛
𝑚! 𝑝∗Ω𝑔,𝑛+𝑚(v, 𝑇̃𝑅, … , 𝑇̃𝑅)

whenever this makes sense.

1.2.4 Reconstruction theorem
Recall that every CohFT defines a Frobenius algebra. We will call a CohFT semisimple if the corre-
sponding Frobenius algebra is semisimple.
Theorem 1.2.15 ([Tel12]). Let Ω be a semisimple CohFT with flat unit and 𝜔 be its topological part. If Ω
is semisimple, there exists a unique

𝑅 = Id + 𝑅1𝑧 +⋯ ∈ End(𝑉)J𝑧K
such that

Ω = 𝑅.𝜔.

Example 1.2.16. Recall the Hodge bundle CohFT from before. Recall that it is given by the formula

Ω𝔼
𝑔,𝑛 = 𝑐(𝔼) = 1 + 𝜆1 +⋯+ 𝜆𝑔.

Taking the degree zero part, we see that 𝜔𝔼 is the GW CohFT of a point. Using Mumford’s compu-
tation

ch(𝔼) = 𝑔 +
∞
􏾜
𝑘=1

𝐵2𝑘
(2𝑘)!

⎛
⎜⎜⎜⎜⎜⎝𝜅2𝑘−1 +

1
2𝜄∗

2𝑘−2
􏾜
𝑖=0

𝜓̄𝑖1𝜓̄
2𝑔−2+𝑖
2

⎞
⎟⎟⎟⎟⎟⎠,

where 𝜅𝑚 = 𝑝∗𝜓̄𝑚+1𝑛+1 , 𝐵2𝑘 are the Bernoulli numbers, and 𝜄 is the inclusion of the boundary up to a
2 ∶ 1 étale cover, and the formula

𝑐(𝐸) = exp
⎛
⎜⎜⎜⎜⎜⎝−􏾜

𝑘
(−1)𝑘(𝑘 − 1)! ch𝑘(𝐸)

⎞
⎟⎟⎟⎟⎟⎠

for any vector bundle 𝐸 (or by just using the quantumRiemann-Roch theorem6 directly), we obtain
the 𝑅-matrix

𝑅(𝑧) = exp
⎛
⎜⎜⎜⎜⎜⎝
∞
􏾜
𝑘=1

𝐵2𝑘
2𝑘(2𝑘 − 1)𝑧

2𝑘−1

⎞
⎟⎟⎟⎟⎟⎠ = 1 +

1
12𝑧 +⋯ .

As a sanity check, wewill computeΩ𝔼
1,1 using the𝑅-matrix. First, we consider the stable graphs

in Figure 1.2. The first graph Γ1 gives us the contribution

ContΓ1 = 𝑇𝜔𝔼1,1(𝑅(𝑧)−11)
6There is a sign error in Coates-Givental, which has propagated to the rest of the literature.
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1 0

Figure 1.2: Stable graphs for 𝑔 = 1, 𝑛 = 1

= 𝜔𝔼1,1(𝑅(𝑧)−11) + 𝑝∗𝜔𝔼1,1(𝑅(𝑧)−11, 𝑇𝑅(𝑧)).

Using the formula 𝐵2 = 1
6 and the fact that dimℳ 1,1 = 1, this becomes

1 − 1
12𝜓1 +

1
12𝜅1.

The second graph does not receive tail contributions because dimℳ 0,3 = 0. The constant term of
the edge contribution is 1

12 , so considering the automorphism and pushing forward toℳ 1,1 gives
us

ContΓ2 =
1
12Δ,

where Δ denotes the boundary divisor (with the correct stack structure). Because 𝜓1 = 𝜅1 in this
case, we obtain

1 + 𝜆1 = 1 +
1
12(𝜅1 − 𝜓1 + Δ) = 1 +

1
12Δ.

1.2.5 Operator formalism and geometric quantization
Wewill return to the symplectic formalism of Givental. This is more convenient for certain compu-
tations, but it is in fact equal to what we have before, at least when we want to calculate generating
functions. Recall that we had a Frobenius manifold structure on 𝑉 and we considered the vector
space 𝒱 ≔ 𝑉⦇𝑧−1⦈ with symplectic form

(f(𝑧), g(𝑧)) ≔ Res𝑧=0 𝜂(f(−𝑧), g(𝑧)).

If we consider the polarization given by 𝒱+ = 𝑉[𝑧] and 𝒱− = 𝑧−1𝑉J𝑧−1K, then letting q be as be-
fore (with the dilaton shift), let p be coordinates on 𝒱− such that (q,p) form a system of Darboux
coordinates for 𝒱 .
Definition 1.2.17. We will call any formal function of the form

𝒟 = exp
⎛
⎜⎜⎜⎜⎜⎜⎝
∞
􏾜
𝑔=0

ℏ𝑔−1ℱ𝑔

⎞
⎟⎟⎟⎟⎟⎟⎠

an asymptotic element of the Fock space.
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Then given such an asymptotic element of the Fock space, we will quantize (infinitesimal) sym-
plectic transformations on 𝒱 by the following formulae:

􏾨𝑝𝑎𝑝𝑏 ≔ ℏ𝜕𝑞𝑎𝜕𝑞𝑏 , 􏾨𝑝𝑎𝑞𝑏 ≔ 𝑞𝑏𝜕𝑞𝑎 , 􏾨𝑞𝑎𝑞𝑏 =
𝑞𝑎𝑞𝑏
ℏ .

In particular, this will allow us to understand expressions like 𝑅̂𝒟 . However, we need to be careful
because our formulae will involve both the fundamental solution 𝑆𝜏 and the 𝑅-matrix, and 𝑆𝜏 is a
power series in 𝑧−1.7

Theorem 1.2.18 ([Giv01a]). An operator of the form 𝑆(𝑧−1) = Id+𝑆1𝑧−1+⋯ acts on (asymptotic) elements
of the Fock space by the formula

𝑆̂−1𝒟(q) = 𝑒
1
2ℏ𝑊(q,q)𝒟([𝑆q]+),

where𝑊 = ∑𝜂(𝑊𝑚𝑛𝑞𝑚, 𝑞𝑛) is defined by the formula

𝑆(𝑤−1)∗𝑆(𝑧−1) − Id
𝑤−1 + 𝑧−1 =􏾜 𝑊𝑚𝑛

𝑤𝑚𝑧𝑛 .

Operators of the form 𝑅(𝑧) = Id + 𝑅1𝑧 +⋯ act by the formula

𝑅̂𝒟 (q) = 𝑒
ℏ
2𝑉(𝜕q,𝜕q)𝒟(𝑅−1q),

where 𝑉 = ∑𝜂(𝑝𝑚, 𝑉𝑚𝑛𝑝𝑛) is defined by
𝑅(𝑤)∗𝑅(𝑧) − Id

𝑤 + 𝑧 = 􏾜𝑉𝑚𝑛𝑤𝑚𝑧𝑛.

For a semisimple CohFT, there is a system of canonical coordinates 𝑢𝛼 such that the 1-form d𝑢
is a homomorphism of algebras 𝑇𝑣𝑉 → ℂ. Then near a semisimple point, there is a asymptotic
solution to the quantum connection of the form

Ψ ⋅ 𝑅 ⋅ 𝑒
𝑈
𝑧 ,

whereΨ switches from flat coordinates to canonical coordinates and 𝑈 = diag(𝑢𝛼) is the matrix of
canonical coordinates. Finally, define

𝐶 = 1
2 􏾙

𝑢
􏾜𝑅𝛼𝛼1 d𝑢𝛼.

A corollary of Teleman’s reconstruction theorem is the formula

𝒟 𝑋 = 𝑒𝐶(𝑢)𝑆̂−1𝜏 Ψ̂𝑅̂
􏾨
𝑒
𝑈
𝑧
dim𝑉
􏾟
𝑖=1

𝒟 pt

for the Gromov-Witten theory of any smooth projective variety with semisimple quantum coho-
mology.

7This is because we expand 1
𝑧−𝜓 = ∑

∞
𝑛=0 𝜓𝑛𝑧−𝑛−1.

Page 26 of 94



Example 1.2.19. As afinal example, wewill apply Teleman’s theorem to compute 𝐹1 of any semisim-
ple CohFT. This result was first proved by Givental [Giv98] for the equivariant Gromov-Witten
theory of GKM orbifolds and extended to the orbifold case by Zong [Zon16]. The argument we
give is due to Guo-Ross [GR19]. Let 𝑒𝜇 denote an idempotent basis for the quantum product. We
will compute

􏾙
ℳ 1,1

Ω1,1(𝑒𝛽).

Using the reconstruction theorem, we obtain

􏾙
ℳ 1,1

Ω1,1(𝑒𝛽) = 􏾙
ℳ 1,1

𝑇𝑅𝜔1,1(𝑅(𝜓̄)−1𝑒𝛽) +
1
2𝑇𝑅𝜔0,3(𝑅(𝜓̄)

−1𝑒𝛽, 𝑉(𝜓̄2, 𝜓̄3))

= 􏾙
ℳ 1,1

𝑇𝑅𝜔1,1(𝑒𝛽) − 􏾙
ℳ 1,1

𝑇𝑅𝜔1,1(𝑅1𝑒𝛽)𝜓̄

+ 1
2
􏾜
𝜇
𝜔0,3(𝑒𝛽, 𝑅1𝑒𝜇, 𝑒𝜇)

= 􏾙
ℳ 1,1

(𝜔1,1(𝑒𝛽) + 𝑝∗(𝜔1,2(𝑒𝛽, 𝑅11)𝜓̄22))

− 􏾙
ℳ 1,1

(𝜔1,1(𝑅1𝑒𝛽)𝜓̄1 + 𝑝∗(𝜔1,2(𝑅1𝑒𝛽)𝜓̄22)𝜓̄1)

+ 1
2
􏾜
𝜇
𝜂(𝑒𝛽 ⋆ 𝑒𝜇, 𝑅1𝑒𝜇)

= 1
24
􏾜
𝜇
(𝜔0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝛽, 𝑅11) − 𝜔0,3(𝑒𝜇, 𝑒𝜇, 𝑅1𝑒𝛽))

+ 1
2𝜂(𝑒𝛽, 𝑅1𝑒

𝛽)

= 1
24
􏾜
𝜇
􏾜
𝜈
𝜔0,3(𝑒𝜇, 𝑒𝜇, 𝑒𝜈)𝜔0,3(𝑒𝜈, 𝑒𝛽, 𝑅11)

− 1
24
􏾜
𝜇
𝜔0,3(𝑒𝜇, 𝑒𝜇, 𝑅1𝑒𝛽) +

1
2(𝑅1)𝛽𝛽

= 1
24

⎛
⎜⎜⎜⎜⎜⎝𝜂(𝑒

𝛽, 𝑅11) −􏾜
𝜇
𝜂(𝑒𝜇, 𝑅1𝑒𝛽)

⎞
⎟⎟⎟⎟⎟⎠ +

1
2(𝑅1)𝛽𝛽.
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Using the identities

𝜂(𝑅11, 𝑒𝛽) −􏾜
𝜇
𝜂(𝑅1𝑒𝛽, 𝑒𝜇) = 􏾜

𝜇
Δ𝜇􏾙

ℳ 0,4
Ω0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽)

= −12
􏾜
𝜇
Δ𝜇𝜕𝑢𝛽Δ−1𝜇

= 1
2
􏾜
𝜇
𝜕𝑢𝛽 logΔ𝜇,

(1.2)

where Δ𝜇 ≔ 𝜂(𝑒𝜇, 𝑒𝜇)−1, we obtain the result

􏾙
ℳ 1,1

Ω1,1𝑒𝛽 =
1
48
􏾜
𝜇
𝜕𝑢𝜇 logΔ𝜇 +

1
2(𝑅1)𝛽𝛽,

which can be placed in the suggestive form

d𝐹Ω1 =􏾜
𝜇

dlogΔ𝜇
48 + 1

2(𝑅1)𝜇𝜇 d𝑢𝛼.

We will now prove the identities in (1.2). For the first identity, we will compute Ω0,4 using the
reconstruction theorem. There are two stable graphs, given in Figure 1.3. The first graph gives the

0 0 0

Figure 1.3: Stable graphs for 𝑔 = 0, 𝑛 = 4

contribution

Cont1 = 𝑇𝜔0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽) − 3𝑇𝜔0,4 (𝑅1𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽)𝜓̄1
− 𝑇𝜔0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑅1𝑒𝛽)𝜓̄4

= 𝜔0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽) + 𝜔0,5(𝑅11, 𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽)𝜓̄1
− 3𝜔0,4(𝑅1𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽)𝜓̄1 − 𝜔0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑅1𝑒𝛽)𝜓̄4

= 𝛿𝛽𝜇Δ𝜇 + 𝛿𝛽𝜇𝜂(𝑅11, 𝑒𝜇)𝜓̄1 − 3𝜂(𝑅1𝑒𝜇, 𝑒𝛽)𝜓̄1 − 𝜂(𝑒𝜇, 𝑅1𝑒𝛽)𝜓̄4.

The second graph gives the contribution

Cont2 = 􏾜
𝜈
𝜔0,3(𝑒𝜇, 𝑒𝜇, 𝑒𝜈)𝜔0,3(𝑅1𝑒𝜈, 𝑒𝜇, 𝑒𝛽)[pt]

= 𝜂(𝑅1𝑒𝜇, 𝑒𝛽)[pt].
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This has multiplicity 3, so taking the sum and integrating overℳ 0,4 ≅ ℙ1, we obtain

􏾙
ℳ 0,4

Ω0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽) = 𝛿𝛽𝜇𝜂(𝑅11, 𝑒𝜇) − 𝜂(𝑅1𝑒𝛽, 𝑒𝜇)

= Δ−1𝜇 (𝛿𝛽𝜇𝜂(𝑅11, 𝑒𝜇) − 𝜂(𝑅1𝑒𝛽, 𝑒𝜇)),

where we have used the fact that
𝑒𝜇 =

𝑒𝜇
𝜂(𝑒𝜇, 𝑒𝜇)

= Δ𝜇𝑒𝜇.

This proves the first identity.
To prove the second equality in (1.2), we note that

Δ−1𝜇 = Ω0,3(1, 𝑒𝜇, 𝑒𝜇) = Ω0,3(𝑒𝜇, 𝑒𝜇, 𝑒𝜇)

because 𝑒𝜇 is idempotent. Differentiating with respect to 𝑢𝛽, we obtain

𝜕𝑢𝛽Δ−1𝜇 = 2Ω0,3(1, 𝑒𝜇, 𝜕𝑢𝛽𝑒𝜇) = 3Ω0,3(𝑒𝜇, 𝑒𝜇, 𝜕𝑢𝛽𝑒𝜇) +􏾙ℳ 0,4
Ω0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽).

Using again the fact that 𝑒𝜇 is idempotent, we see that

Ω0,3(1, 𝑒𝜇𝜕𝑢𝛽𝑒𝜇) = Ω0,3(𝑒𝜇, 𝑒𝜇, 𝜕𝑢𝛽𝑒𝜇).

This implies that

0 = Ω0,3(1, 𝑒𝜇𝜕𝑢𝛽𝑒𝜇) +􏾙ℳ 0,4
Ω0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽)

= 1
2𝜕𝑢𝛽Δ

−1
𝜇 +􏾙

ℳ 0,4
Ω0,4(𝑒𝜇, 𝑒𝜇, 𝑒𝜇, 𝑒𝛽),

which proves the identity.
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Two

Higher-genus computations via log GLSM

In algebraic geometry, one profitable way to deal with non-compactness issues is to forcibly com-
pactify our spaces and then understand the contributions coming from the divisor at infinity. For
example, this technique was used by Deligne to construct mixed Hodge structures [Del71]. In
enumerative geometry, one profitable application of this technique is the capped topological ver-
tex [OP10], which calculates relative invariants of a (partial compactification) of ℂ3 relative to the
divisor at infinity and is related to the usual topological vertex by a capping operator. While Jun
Li’s technique of expanded degenerations [Li01] allows us to calculate enumerative invariants rela-
tive to a smooth divisor, generalizing this to the case of a simple normal crossings divisor requires
logarithmic geometry (at least if we want to do it using algebraic geometry). Now, Chen-Janda-
Ruan [CJR21] have developed the theory of log GLSMs, which define stable map-type invariants
for any GLSM-type theory defined over an arbitrary projective Deligne-Mumford stack (and re-
solves all compactness issues therein). This theory has been used by Guo-Janda-Ruan [GJR18] to
prove finite generation, holomorphic anomaly equations, orbifold regularity, and the LG/CY cor-
respondence for the quintic threefold and some other Calabi-Yau threefold complete intersections
in projective space.

2.1 Geometry of log GLSMmoduli spaces
Ourmotivation is the quantumLefschetz theorem. Here, we let𝒳 be a smooth projective variety or
Deligne-Mumford stack over ℂ and 𝐸 be a vector bundle over𝒳 . We are interested in computing
the Gromov-Witten invariants of a smooth complete intersection 𝒵 ⊂ 𝒳 defined by a regular
section of 𝐸. Because the ambient space is generally easier to work with, it is desirable to find a
way to compute the GW invariants of𝒵 in terms of the data of (𝒳 , 𝐸).
Question 2.1.1. Is there a way to compute the Gromov-Witten invariants of𝒵 using the ambient data of
(𝒳 , 𝐸), possibly involving some correction terms?

While quantum Lefschetz holds in genus zero in the convex case, and the approach of desingu-
larization of themoduli of stable maps to force quantum Lefschetz to holdworks well in genus one,
this is intractable in higher-genus. Instead, our approach will be to use GLSMs, which were intro-
duced by Witten [Wit92] in the physics literature, and by Fan-Jarvis-Ruan and Kiem-Li, Chang-Li,
Chang-Li-Li, and other authors in mathematics [FJR18; KL13; CL12a; CLL15]. We will combine
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this with the theory of punctured log maps due to Abramovich-Chen-Gross-Siebert [ACGS24] to
obtain the theory of log GLSM.

2.1.1 𝑅-maps and log targets
Definition 2.1.2. An 𝑅-map is a commutative diagram

𝔓

𝐶 𝐵ℂ×𝜔

𝑆,

𝑓

𝜔log

where the morphism 𝔓 → 𝐵ℂ×𝜔 is a proper, log-smooth DM-type morphism. If the source is a
twisted curve, this is the underlying 𝑅-map. If the source is a log curve, this is a log 𝑅-map, and if
the source is a punctured curve, this is a punctured 𝑅-map.
Example 2.1.3. Consider the diagram

𝔓∘
ℂ = Tot(𝒪ℙ𝑛 (−𝑑) ⊗ ℂ𝜔) 𝔓∘ = Tot(𝒪ℙ𝑛 (−𝑑) ⊠ℒ𝜔)

Specℂ 𝐵ℂ×𝜔 ℙ𝑛 × 𝐵ℂ×𝜔 .

Taking the base change of the underlying 𝑅-map to 𝐶, consider the diagram

𝔓∘ ×𝐵ℂ×𝜔 𝐶 𝔓∘

𝐶 𝐵ℂ×𝜔 .

Therefore, the data of an 𝑅-map to this target is equivalent to the data of a morphism 𝐶 → ℙ𝑛 and
a section 𝜌 ∈ 𝐻0(𝑓∗𝒪 (−𝑑) ⊗ 𝜔log). In particular, if 𝑛 = 0, we are left with the data of a differential
𝜌 ∈ 𝐻0(𝜔log).
Example 2.1.4. Wewill now give some examples of some log targets. An easy way to compactify a
vector bundle is to turn it into a weighted projective space bundle, so for example wemay consider

𝔓
GW,ℂ

= ℙ( ̃𝑟,1)(𝒪ℙ𝑛 (−𝑑) ⊗ ℂ𝜔 ⊕ 𝒪 ) 𝔓
GW

= ℙ( ̃𝑟,1)(𝒪ℙ𝑛 (−𝑑) ⊕ 𝒪 ).

We can give this the log structure of functions which vanish only on the boundary and call it 𝔓GW.
Another example is to consider the example of 5-spin curves. Here,𝒳 = 𝐵𝔾𝑚 with the degree

5map to 𝐵ℂ×𝜔 . Then we set
𝔓

LG
= ℙ(ℒ 5

𝒳 ⊕ 𝒪 ).
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Again, we give this the divisorial log structure and call it 𝔓LG.
A feature of this is that there is a geometric LG/CY correspondence, namely that ∞LG ≃ ∞GW

as log stacks.
Example 2.1.5. For the (3, 3) complete intersection in ℙ5, we consider

𝔓GW = ℙ(𝒪ℙ5 (−3)⊕2 ⊗ℒ𝜔 ⊕ 𝒪 )

with the divisorial log structure.
Example 2.1.6. Wewill now consider a general hybrid target. The input is a smooth projective DM
stack 𝑋, a vector bundle 𝐸 = ⨁𝐸𝑖 over 𝑋, a line bundle 𝐿 over 𝑋, and 𝑟 ∈ ℤ>0. The spin is the
diagram

𝒳 𝐵𝔾𝑚

𝑋 × 𝐵ℂ×𝜔 𝐵𝔾𝑚

ℒ𝒳

𝑟
𝐿−1⊗ℒ𝜔

The target is
ℙ􏿵􏾘𝐸∨𝑖 ⊗ℒ 𝑖

𝒳 ⊕ 𝒪 􏿸

with the divisorial log structure at infinity.
We will now turn our discussion to the discrete data. This consists of a genus, curve class,

and twisted sector for each marking. We will now construct a dual graph, which has vertices and
half-edges. There is an involution

𝜄𝐺 ∶ 𝑉 ∪ 𝐻 → 𝑉 ∪𝐻
and a vertex map 𝑣𝐺 ∶ 𝐻 → 𝑉. Legs are the half-edges which are fixed by the involution, and we
will label the legs by the marking map

𝑚∶ 𝐿 → {1,… , 𝑛}.

The decorations are the curve classes, sectors, and degrees.
Consider a log map

𝔓

𝑃ℎ ⊂ 𝐶𝜔log 𝐵ℂ×𝜔 ,

𝑓

where 𝑃ℎ is a special point. Because 𝜔log|𝑃ℎ is the trivial bundle, we obtain a commutative diagram

𝑃ℎ 𝔓ℂ

𝐶 𝔓,
𝑓
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which exhibits 𝑃ℎ as a gerbe over𝔓ℂ. Assuming that there are no orbifold points, theere is a sector
map

𝑟 ∶ 𝐻(𝐺) → 􏿺0𝔓ℂ ,∞𝔓ℂ , 𝔓ℂ􏿽.

We require that 𝑃ℎ → 𝔓ℂ factors through 𝑟ℎ, and say that ℎ is compact type if 𝑟ℎ = 0𝔓.
Example 2.1.7. Consider again 𝑋 = ℙ0. Then 𝔓 = ℙ(ℒ𝜔 ⊕ 𝒪 ). If 𝑔 = 1, then a log map is simply
𝜂 ∈ 𝐻0(𝜔𝐶), which cannot be stable. Adding a marked point, we obtain a section of 𝜔log

𝐶 , which we
will force to vanish at the marked point.

The stability of underlying 𝑅-maps has two conditions:
1. First, that the morphism is representable;
2. Second, that

(𝜔log)1+𝛿 ⊗ 𝑓∗𝐻⊗𝑘 ⊗ 𝑓∗𝒪 ( ̃𝑟∞) > 0,
where 𝐻 is a polarization on the target. Here, 𝑘 ≫ 1 ≫ 𝛿 > 0.

Example 2.1.8. Again considering 𝑋 = ℙ0, we will let 𝐶 be of genus 2. the limit lim𝜆→∞ 𝜆 ⋅ 𝜂 is
the union of a genus-zero curve with a differential which vanishes at one point with multiplicity 2
connected to a genus 2 curve which sits entirely at infinity. Even though the rational component is
not a priori stable, it is stabilized by its intersection with the zero section.
Remark 2.1.9. In the ℙ0 case, stability is equivalent to the condition that

𝜔log ⊗ 𝜂∗𝒪 (𝑘 ⋅ 0𝔓) > 0

whenever 𝑘 ≫ 1.

2.1.2 Log geometry and tropicalization
Definition 2.1.10. Let 𝑌 be a scheme or a stack. A log structure on 𝑌 is a sheaf of monoidsℳ𝑌 on
𝑌, together with a morphism

𝛼∶ ℳ𝑌 → (𝒪𝑌, ⋅)

inducing an isomorphism 𝛼−1𝒪 ×
𝑌 ≃ 𝒪 ×

𝑌 . The pair 𝑌 = (𝑌,ℳ𝑌) is called a log scheme/stack and the
sheaf

ℳ 𝑌/𝒪 ×
𝑌

is called the characteristic sheaf or ghost sheaf.
Example 2.1.11. Any log GLSM target is a log stack.
Example 2.1.12. Another standard target is a toric varietywithℳ𝑌 being all functionswhich vanish
only on the toric boundary. This is usually called the divisorial log structure.
Example 2.1.13. For a toric monoid 𝑃, we can consider

𝑆 = Spec(𝑃 → ℂ) = (Specℂ, 𝑃 × 𝒪 ×
Specℂ).
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The tropical datawewill consider is the categoryCones of rational polyhedral cones (𝜎,𝑁). This
has a distinguished object (ℝ≥0,ℤ). Locally, we will define

Σ(Spec(𝑃 → ℂ)) = Hom(𝑃, 𝑅≥0) = 𝑃∨ℝ
with the natural lattice structure 𝑃∨ ≔ Hom(𝑃,ℕ). In general, the tropicalization Σ(𝑋) of a log
scheme 𝑋 is the generalized cone complex given by gluing local pictures along face maps.
Example 2.1.14. Consider𝔸1 with the log structure given by 0. Then

Σ(𝔸1) = ℝ≥0.

Here, there is only a log structure at 0, which is a copy ofℕmeasuring the vanishing order at the
origin. The map

𝑀𝔸1,0 →𝑀𝔸1,𝑥

sends 1 to 0, so induces 0 ↪ ℕ∨.
Example 2.1.15. Consider𝔸2 with the toric log structure. Then Σ(𝔸2) is simply ℝ2

≥0, which is the
same as the support of the toric fan. At the monoid level, there is anℕ2 at the origin, a copy ofℕ
on each axis, and 0 at a general point.

2.1.3 Log curves
Definition 2.1.16. An 𝑛-pointed log curve over a log scheme 𝑆 consists of

(𝜋∶ 𝐶 → 𝑆, {𝑝𝑖}𝑛𝑖=1),

such that
1. The underlying morphism of 𝜋 is an 𝑛-pointed twisted curve;
2. 𝜋 is log smooth and integral;

3. On the smooth locus of 𝐶, the log structure is given by𝑀𝑆 ⊕⨁
𝑛
𝑖=1ℕ ⋅ 𝑝𝑖

Intuitively, the log structure is given by the log structure𝑀𝑆 at smooth unmarked points,𝑀𝑆⊕ℕ
at marked points, and𝑀𝑆 ⊕ℕℕ2 at the nodes, which means the pushout diagram

ℕ ℕ2

𝑀𝑆 𝑀𝐶|𝑞.

Δ

ℓ

Here, ℓ is the edge length parameter, and (1, 0) and (0, 1) are the two components.
Because tropicalization is functorial, the morphism 𝐶 → 𝑆 induces a morphism

Σ(𝐶) → Σ(𝑆).
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Figure 2.1: Tropicalization of a log curve.

For example, if 𝐶 has two components, then the node will correspond to the largest cone, each
component corresponds to a copy of𝑀𝑆, and eachmarking will give a leg of infinite length. Above
a point in Σ(𝑆), the distance between the two components is the edge length parameter evaluated
at the point 𝑥. To see this more clearly, see Figure 2.1.

We will now consider punctured curves. We will consider a diagram

𝑝∘𝑖 𝑝𝑖

𝐶∘ 𝐶 𝑆.𝑃

Here, 𝑃 is a morphism of log schemes which is an isomorphism away from 𝑃𝑖 and 𝑃 is an isomor-
phism. In addition, we will have an inclusion

𝑀𝐶,𝑝𝑖 = 𝑀𝑆 ⊕ℕ𝑝𝑖 ⊂ 𝑀𝐶∘,𝑝𝑖 = 𝑀𝑆 ⊕ℤ𝑝𝑖.

This corresponds to allowing poles at 𝑝𝑖, and in the tropicalization makes edges finite-length. A
picture is given in Figure 2.2.
Definition 2.1.17. A punctured curve is a log curve with punctures

ℂ∘ → 𝐶→ 𝑆.

A tropical punctured curve is a tropical curve with the additional data of lengths of punctured legs.
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Figure 2.2: Tropicalization of a punctured curve.

2.1.4 Superpotentials
Definition 2.1.18. A superpotential is a commutative diagram

𝔓∘ ℒ𝜔

𝐵ℂ×𝜔 ,

where 𝔓∘ = 𝔓∖∞. We say that𝑊 has proper critical locus if
Crit𝑊 → 𝐵ℂ×𝜔

is proper.
Equivalently, a superpotential is a ℂ×𝜔-equivariant function

𝑊ℂ ∶ 𝔓∘
ℂ → ℂ𝜔 .

In this formulation, 𝑊 has proper critical locus if and only if Crit𝑊ℂ is proper (as a DM stack).
This implies that the critical locus is contained in 0𝔓.
Example 2.1.19. Let 𝑋 be a smooth projective Deligne-Mumford stack and 𝐸 be a vector bundle on
𝑋 with section 𝑠. We will write

𝑊ℂ = ⊗(𝑠 ⊗ 1ℂ𝜔 ) ∶ 𝔓
∘
ℂ = 𝐸∨ ⊗ ℂ𝜔 → ℂ𝜔 .

Then Crit𝑊ℂ is proper if and only if 𝑍 = (𝑠 = 0) is smooth of codimension equal to the rank of 𝐸.
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Example 2.1.20. Let𝑋 = ℙ0 and 𝐸 = ℂ. Let 𝑠 ∈ 𝐻0(𝐸) be nonzero. Now𝑊ℂ is simplymultiplication
by 𝑠, so the critical locus is empty.

2.1.5 Punctured 𝑅-maps
Definition 2.1.21. A punctured 𝑅-map is an 𝑅-map with domain a punctured 𝑅-map.
Definition 2.1.22. Let ℎ be a half-edge. Then the contact order at ℎ is defined by

𝑐(ℎ) ≔ 𝜕 Trop 𝑓
𝜕𝑢ℎ

∈ ℤ.

Figure 2.3: Contact orders. Note the last downward edge has finite length.

Example 2.1.23. Consider the genus 2 picture from before (target being ℙ0) and consider the same
stable limit as an 𝑅-map. If we calculate with 𝑧 = 𝑠−1, then

𝑧2 d𝑧 = −𝑠−3d𝑠𝑠 ,

so the pole order at the node must be 3. Tropically, if ℎ̂ is the half edge of the node attached to
the 𝑔 = 2 vertex, we have 𝑐(ℎ̂) = −3, so restricting to the 𝑔 = 2 component, we obtain a punctured
𝑅-map.

The discrete data of punctured 𝑅-maps is

𝝉 = (𝐺, 𝑔, 𝛽,deg, 𝑟, 𝜎 ∶ 𝑉 ∪ 𝐻 → {0, 𝑅≥0}, 𝑐 ∶ 𝐻 → ℤ).

Theorem 2.1.24. The moduli stackℛ(𝔓, 𝝉) is a proper log DM stack admitting a canonical perfect obstruc-
tion theory.
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Definition 2.1.25. We will consider 𝝉 where 𝑉(𝐺) = {⋆} and 𝐿(𝐺) = 𝐻(𝐺). These are called vertex-
type moduli. If 𝜎 = 0, then we will denote

ℛ𝑔,⃗𝑐(𝔓, 𝛽) ≔ ℛ (𝔓, 𝝉)
for the stack of stable log 𝑅-maps, and if 𝜎 = ℝ≥0, the we will denote

ℛ𝑔,⃗𝑐(∞, 𝛽) ≔ ℛ (𝔓, 𝝉)
for the stack of punctured 𝑅-maps.

2.1.6 Obstruction theories
Definition 2.1.26. Recall that we have a diagram

𝔓

𝐶 𝐵ℂ×𝜔

ℛ(𝔓, 𝝉).

𝜋

𝑓

The canonical perfect obstruction theory is defined by
𝜑∶ 𝕋ℛ(𝔓,𝛽)/𝔐(𝝉) → 𝑅𝜋∗𝑓∗𝑇𝔓/𝐵ℂ×𝜔 .

Because it is very complicated, we will not discuss𝔐(𝝉).
Unfortunately, this is not the obstruction theory that we really want. We will consider the su-

perpotential and then use the cosection localization technique of Kiem-Li [KL13]. Here, we have
the diagram

𝔓∘ ℒ𝜔

𝐶 𝐵ℂ×𝜔

𝑆

𝑊

𝜔log
𝜋

whenever 𝝉 is of compact type. The compact-type condition implies that
𝑓∗ d𝑊 ∶ 𝑓∗𝑇𝔓∘/𝐵ℂ×𝜔 → 𝜔log

factors through the sheaf𝜔 of holomorphic differentials. Because𝑅1𝜋∗𝜔 ≅ 𝒪 , we obtain a cosection
𝜎𝑊 ≔ 𝑅1𝜋∗𝑓∗ d𝑊 ∶ 𝑅1𝜋∗𝑓∗𝑇𝔓∘/𝐵ℂ×𝜔 → 𝒪 .

By the results of Kiem-Li, this gives us a virtual cycle
[ℛ𝑔,⃗𝑐(𝔓∘, 𝛽)]vir𝜎𝑊

supported on 𝑅-maps to Crit𝑊, which coincides with the canonical virtual cycle after pushing
forward to the stack of all 𝑅-maps.
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Remark 2.1.27. In Gromov-Witten theory, the cosection localized virtual cycle satisfies the relation

[ℛ𝑔,⃗𝑐(𝔓∘, 𝛽)]vir𝜎𝑊 = ±[ℳ 𝑔,𝑛(𝑍, 𝛽)]vir

by work of Chang-Li, Chang-Li, Kim-Oh, Picciotto, and Chen-Janda-Webb [CL12a; CL20b; KO22;
Pic21; CJW21].

Of course, we have the problem that ℛ𝑔,𝒞 (𝔓∘, 𝛽) is not proper, so we need to find a way to
extend the cosection along the boundary

Δ𝑔,⃗𝑐(𝔓, 𝛽) ≔ ℛ𝑔,⃗𝑐(𝔓, 𝛽) ∖ℛ𝑔,⃗𝑐(𝔓∘, 𝛽).

We need to understand how to differentiate

𝑊∶ 𝔓 99Kℒ𝜔 ,

which will require compact-type legs and a principalization of the boundary.
Definition 2.1.28. We will say discrete data is compact type if for all ℎ ∈ 𝐿(𝐺), either

• 𝑐(ℎ) = 0 and 𝑟̄ = 0𝔓;
• 𝑐(ℎ) ≤ −1. In this case 𝑟̄ = ∞𝔓.

Example 2.1.29. Consider the ℙ0 example in genus 1. If we consider 𝜂 ∈ 𝐻0(𝜔𝐶), we can view it as
𝜂 ∈ 𝐻0(𝜔log

𝐶 ). Then, at the marking, we see that 𝑐(ℎ) = 0 and 𝑟̄ℎ = 0𝔓, so the leg is of compact type.
In the tropical picture, the entire infinite leg gets contracted to the origin.
Example 2.1.30. Now consider the same example but with 𝑔 = 2. We will impose that there are no
markings by (𝜂 = 0) = 2𝑝. The stable limit as we scale 𝜂 to infinity had a genus 0 component with
a zero of order 2 and a genus 2 component mapping entirely to ∞. If we consider the half-edge
emerging from the genus 0 vertex, it touches∞with contact order 3, so it is not compact type. On
the other hand, the half-edge coming from the genus 2 vertex touches∞ with contact order −3, so
it is compact type (and in the tropical picture the leg has finite length).
Remark 2.1.31. The data of 𝜂0|𝐶2 is equivalent to a fixed isomorphism 𝒪𝐶2 (2𝑝) ≃ 𝜔𝐶2 , where 𝐶2 is
the genus 2 vertex.
Remark 2.1.32. Tropical curves with only compact-type legs have compact image in Σ(𝔓) = ℝ≥0. In
this picture, they are either pointing downward or contracted to the origin.

Having defined compact type insertions, we will now define a modular principalization of the
boundary. There is an edge length

ℓ ∶ 𝐸(𝐺) ∪ 𝐿∘(𝐺) → 𝑀𝑆

and a degeneracy
𝑒 ∶ 𝑉(𝐺) → 𝑀𝑆

which intuitively records where 𝑣 is sent in ℝ≥0.
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Definition 2.1.33. For a toric monoid 𝑃, define a partial order 𝑎 ≤ 𝑏 if there exists 𝑐 ∈ 𝑃 such that
𝑎 + 𝑐 = 𝑏. If we consider a punctured 𝑅-map, consider the collection of degeneracies

{𝑒𝑉 | 𝑣 ∈ 𝑉(𝐺)}.

It has uniform maximal degeneracy if there is a unique maximum
𝑒max = max{𝑒𝑣 | 𝑣 ∈ 𝑉(𝐺)}.

Example 2.1.34. Let𝑀𝑆 = ℕ2. Suppose that there are 𝑣1, 𝑣2 and a vertex 𝑣0 which is sent to 0 ∈ ℝ≥0.
Then we compute

𝑒𝑣1 = 𝑒𝑣0 + 𝑐1 ⋅ ℓ1
= ℓ1.

Similarly, 𝑒𝑣2 = ℓ2, where ℓ1 and ℓ2 are the generators ofℕ2. These cannot be compared, so we do
not have uniform maximal degeneracy.

To uniformize this, we consider a subdivision into three subcones. The first is when ℓ2 > ℓ1,
the second is when ℓ1 = ℓ2, and the third is when ℓ1 > ℓ2. After this subdivision, each subcone has
uniform maximal degeneracy.
Example 2.1.35. A family of tropical curves over 𝑀̄∨

𝑆 with compact-type legs and uniformmaximal
degeneracy 𝑒max ∈ 𝑀𝑆 has images in ℝ≥0 uniformly bounded from above by 𝑒max.

We now define a new stack
𝒰(𝔓, 𝝉)

to be the stack of punctured 𝑅-maps with discrete data 𝝉 and having uniformmaximal degeneracy.
By removing the condition of uniform maximal degeneracy, we obtain a morphism

𝐹 ∶ 𝒰(𝔓, 𝝉) → ℛ (𝔓, 𝝉),

which satisfies the following:
• 𝐹 is log étale, proper, and surjective;
• There is as canonical perfect obstruction theory;
• We have

𝐹∗[𝒰𝑔,⃗𝑐(𝔓, 𝛽)]vir = [ℛ𝑔,⃗𝑐(𝔓, 𝛽)]vir𝜎𝑊
𝐹∗[𝒰𝑔,⃗𝑐(𝔓, 𝛽)]vir = [ℛ𝑔,⃗𝑐(∞, 𝛽)]vir𝜎𝑊

for vertex-type moduli.
The boundary Δ𝑔,⃗𝑐(𝔓, 𝛽)⋏ defined by the Cartesian diagram

Δ⋏ Δmax = 0

𝒰 [𝔸1/𝔾𝑚]

is a log Cartier divisor.
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Theorem 2.1.36. Assume all legs are of compact type and𝑊∶ 𝔓∘ →ℒ𝜔 has proper critical locus. Then
1. 𝒰(𝔓, 𝝉) has a reduced perfect obstruction theory;
2. In the log 𝑅-map case, we have

[𝒰𝑔,⃗𝑐(𝔓, 𝛽)]red = [ℛ𝑔,⃗𝑐(𝔓∘, 𝛽)]vir𝜎𝑊 ;

3. The boundary Δ⋏𝑔,⃗𝑐(𝔓, 𝛽) also has a reduced perfect obstruction theory;

4. There is the relation
[𝒰𝑔,⃗𝑐(𝔓, 𝛽)]red = [𝒰𝑔,⃗𝑐(𝔓, 𝛽)]vir − ̃𝑟[Δ⋏𝑔,⃗𝑐(𝔓, 𝛽)]red,

where ̃𝑟 is the pole order of𝑊 at infinity.
The reduced perfect obstruction theory for log 𝑅-maps is given by the triangle

𝔼red → 𝑅𝜋∗𝑓∗𝑇𝔓/𝐵ℂ×𝜔
𝜎−→ [𝒪 → 𝒪 ( ̃𝑟Δmax)]

[1]
−−→

and for 𝑒max > 0 is given by

𝔼red → 𝑅𝜋∗𝑓∗𝑇𝔓/𝐵ℂ×𝜔
𝜎−→ 𝒪 ( ̃𝑟)[−1]

[1]
−−→ .

The virtual components of Δ⋏𝑔,𝒞 are given by the formula

[Δ⋏𝑔,⃗𝑐(𝔓, 𝛽)]red =􏾜
𝝉⋏

lcm𝑥∈𝐸(𝐺) 𝑐(𝑥)
|Aut 𝝉⋏|

[𝒰(𝔓, 𝝉⋏)]red

due to Abramovich-Chen-Gross-Siebert [ACGS24], where
𝝉⋏ = (𝝉, 𝑉max(𝐺))

is the tropical type of rigid tropical curves with uniform maximal degeneracy. Here, this implies
that 𝝉⋏ is bipartite and rigidity means there is no deformation fixing 𝝉 and 𝑉max(𝐺) besides scaling
𝑒max

Decomposing this further, we have
[𝒰(𝔓, 𝝉⋏)]red

= (− ̃𝑟)|𝑉∞(𝐺)|−1
∏𝐸∈𝐸(𝐺) 𝑐(𝐸)
lcm𝐸∈𝐸(𝐺) 𝑐(𝐸)

Δ!𝝉⋏

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾟
𝑣∈𝑉∞(𝐺)

[𝒰(𝔓, 𝝉𝑣)]red × 􏾟
𝑣∈𝑉0(𝐺)

[𝒰(𝔓, 𝝉𝑉)]vir
⎞
⎟⎟⎟⎟⎟⎟⎠.

This is not true if we replace everything with the canonical obstruction theory, so this is quite
interesting. Putting these two formulae together, we obtain the tropical decomposition formula

[𝒰𝑔,⃗𝑐(𝔓, 𝛽)]red =􏾜
𝝉⋏

(− ̃𝑟)|𝑉∞(𝐺)|
|Aut 𝝉⋏|

⋅ 􏾟
𝐸∈𝐸(𝐺)

𝑐(𝐸)⋅

⋅ Δ!𝝉⋏

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾟
𝑣∈𝑉∞(𝐺)

[𝒰(𝔓, 𝝉𝑣)]red × 􏾟
𝑣∈𝑉0(𝐺)

[𝒰(𝔓, 𝝉𝑣)]vir
⎞
⎟⎟⎟⎟⎟⎟⎠.
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𝑔 = 2 𝑔 = 1 𝑔 = 0 𝑔 = 0 𝑔 = 0 𝑔 = 0 𝑔 = 0

𝑔 = 1 𝑔 = 0 𝑔 = 0 𝑔 = 1 𝑔 = 2 𝑔 = 2

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

1 1 1 1 1 2 2 3

Figure 2.4: Graphs of tropical types for 𝑋 = ℙ0 when 𝑔 = 2.

Example 2.1.37. Consider theℙ0 example again. When 𝑔 = 2, we obtain six bipartite graphs, which
are given in Figure 2.4. Choosing any nonzero superpotential, we obtain the tropical decomposi-
tion formula

0 = [𝒰𝑔(𝔓, 0)]red =􏾜
𝝉⋏

(−1)|𝑉∞(𝐺)|
|Aut 𝝉⋏|

⋅ 􏾟
𝐸∈𝐸(𝐺)

𝑐(𝐸)

⋅ Δ!𝝉⋏

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾟
𝑣∈𝑉∞(𝐺)

[𝒰(𝔓, 𝝉𝑣)]red × 􏾟
𝑣∈𝑉0(𝐺)

[𝒰(𝔓, 𝝉𝑣)]vir
⎞
⎟⎟⎟⎟⎟⎟⎠.

Note here that the critical locus is empty, so the virtual cycle must be zero.
In GW theory, the tropical decomposition formula becomes

[ℳ 𝑔,𝑛(𝑍, 𝛽)]vir = ±􏾜
𝝉⋏

(−1)|𝑉∞(𝐺)|
|Aut 𝝉⋏|

⋅ 􏾟
𝐸∈𝐸(𝐺)

𝑐(𝐸)⋅

⋅ Δ!𝝉⋏

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾟
𝑣∈𝑉∞(𝐺)

[𝒰𝑔𝑣,𝑒𝑣 (∞, 𝛽𝑣)]red × 􏾟
𝑣∈𝑉0(𝐺)

[ℛ𝑔𝑣,𝑒𝑣 (𝔓, 𝛽𝑣)]vir
⎞
⎟⎟⎟⎟⎟⎟⎠.

2.1.7 Effective invariants
We will consider the reduced virtual cycle [𝒰𝑔,𝒞 (∞, 𝛽)]red. For each ℎ ∈ 𝐿, the evaluation lands in
∞ℂ = ℙ(𝐸

∨). Then effective invariants are given by

𝐹∗

⎛
⎜⎜⎜⎜⎜⎝􏾟
ℎ
ev∗ℎ 𝛼ℎ ∩ [𝒰𝑔,𝒞 (∞, 𝛽)]red

⎞
⎟⎟⎟⎟⎟⎠.

Remark 2.1.38. In the vertex case, we have the relation
[𝒰𝑔,⃗𝑐(𝔓, 𝛽)]vir = ̃𝑟Δmax ∩ [𝒰𝑔,⃗𝑐(𝔓, 𝛽)]red.
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Before we continue, we will consider the geometry of ℛ𝑔,⃗𝑐(∞, 𝛽) when 𝑋 = ℙ𝑁 . Consider the
diagram

∞ ℙ𝑁

𝐶 𝐵ℂ×𝜔 .

𝑓

𝜔log

This induces a stable map 𝐶 → ℙ𝑁 , so in fact it is equivalent to the data of 𝑠 ∶ 𝐶 → ℙ𝑁 and an
isomorphism

𝑓∗𝒪 (𝑑) ⊗ 𝜔−1log ≃ 𝒪𝐶􏿴􏾜𝑐ℎ𝑝ℎ􏿷,

which is equivalent to an isomorphism

𝑓∗𝒪 (1)𝑑 ≃ 𝜔

⎛
⎜⎜⎜⎜⎜⎝􏾜
ℎ
(𝑐ℎ + 1)𝑝ℎ

⎞
⎟⎟⎟⎟⎟⎠.

Therefore, when 𝑁 = 0, ℛ𝑔,𝒞 (∞, 𝛽) is the moduli of canonical divisors with specified zero orders,
and for general 𝑁, we have the moduli of 𝑑-spin linear series of rank 𝑁.

We can now take a root of the log target∞, which is given by the diagram

∞
1
ℓ ∞

[𝔸1/𝔾𝑚] [𝔸1/𝔾𝑚].
ℓ

On virtual cycles, we obtain

[ℛ𝑔,⃗𝑐(∞
1
ℓ , 𝛽)]⋆ = ℓ−1[ℛ𝑔,⃗𝑐(∞, 𝛽)]⋆,

where ⋆ is either “vir” or “red.”
Geometrically, we must have a balancing condition

deg 𝑓∗𝒪 (∞) = 􏾜
ℎ
𝑐(ℎ).

Example 2.1.39. Let 𝑋 = ℙ𝑁 and suppose 𝐸 = 𝒪 (𝑑) is a line bundle. Then we obtain

􏾜
ℎ
𝑐(ℎ) = deg 𝑓∗𝒪 (∞)

= deg(𝑓∗𝒪ℙ𝑁 (𝑑) ⊗ 𝜔−1log)
= 𝛽 ⋅ 𝑑 − (2𝑔 − 2 + 𝑛).

This implies that
2𝑔 − 2
𝑑 ≥ 𝛽 ≥ 0,
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so 𝛽must be one of 0, 1, 2, … , 􏿩 2𝑔−2𝑑 􏿬.
When 𝑔 = 0, the upper bound is negative, so there are no genus zero reduced invariants. When

𝑔 = 1, then the upper bound is zero, so the only reduced invariant is in the case 𝛽 = 0. This implies
that

􏾜
ℎ
(𝑐(ℎ) + 1) = 0,

so because the contact orders are all negative, they must equal −1.
Example 2.1.40. Wewill consider legs of contact order −1 in the ℙ0 case. Let 𝐶 be smooth of genus
𝑔 and 𝜂 ∈ 𝐻0(𝜔𝐶). We now choose a marking 𝑝 ∈ ℂ, we obtain 𝜂 ∈ 𝐻0(𝜔log). The stable limit as we
scale 𝜂 to infinity is a genus 𝑔 component mapping entirely to∞ and a genus 0 component with a
zero at 𝑝. On ℙ1, we see that

𝜂0|ℙ1 = d𝑧 = d𝑠−1 = −𝑠−1
d𝑠
𝑠 .

This implies the contact order of the genus 0 component with∞ is 1, so the genus 𝑔 component has
contact order −1.
Remark 2.1.41. The legswith contact order −1 are created by adding compact typemarkings outside
of∞ and should be viewed as the unit, denoted by 1.

2.1.8 Log GLSM axioms
Consider the diagram

𝒰𝑔,⃗𝑐+1(∞, 𝛽) 𝒞 ∘ 𝒰𝑔,⃗𝑐(∞, 𝛽),
𝑠

𝐹1

𝜋

where 𝜋∶ 𝒞 ∘ →𝒰𝑔,⃗𝑐(∞, 𝛽) is the universal punctured curve.
Theorem 2.1.42. We have the equations

𝑠∗[𝒰𝑔,⃗𝑐+1(∞, 𝛽)]red = 𝜋∗[𝒰𝑔,⃗𝑐(∞, 𝛽)]red

and
𝐹1,∗(ev∗1𝐷 ∩ [𝒰𝑔,⃗𝑐+1(∞, 𝛽)]red) = 􏾙

𝛽
𝐷 ⋅ [𝒰𝑔,⃗𝑐(∞, 𝛽)]red

for any 𝐷 ∈ 𝐻2(∞). In addition, if we consider the diagram

𝒰𝑔,⃗𝑐+1(∞, 𝛽) ℳ 𝑔,𝑛+1

𝒰𝑔,⃗𝑐(∞, 𝛽) ℳ 𝑔,𝑛

𝐹

𝐹1 𝜋

𝐹

then we have
𝐹∗[𝒰𝑔,⃗𝑐+1(∞, 𝛽)]red = 𝜋∗𝐹∗[𝒰𝑔,⃗𝑐(∞, 𝛽)]red.
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Example 2.1.43. If we consider 𝑍𝑑 ⊂ ℙ𝑁 and let 𝑔 = 1, then we only need to compute one non-
ambient invariant.

The reduced virtual dimension of 𝒰𝑔,⃗𝑐(∞, 𝛽) is given by the formula

𝜒(𝑓∗𝑇𝔓/𝐵ℂ×𝜔 ) + 1 + dim𝔐𝑔,⃗𝑐(∞𝒜 ),

which also happens to equal

virdimℳ 𝑔,𝑛(𝑍, 𝛽) + (rk𝐸) ⋅􏾜
ℎ
(𝑐(ℎ) + 1).

Therefore, when the virtual dimension of the stable map moduli is negative, then the reduced
virtual dimension is zero.
Example 2.1.44. Consider 𝑍5 ⊂ ℙ4. The reduced dimension of𝒰𝑔,𝒞 (∞, 𝛽) is simply

virdimℳ 𝑔,𝑛(𝑍5, 𝛽) +􏾜
ℎ
(𝑐(ℎ) + 1) = 􏾜

ℎ
(𝑐(ℎ) + 2).

We can remove all legs of contact order −1, so we reduce to the case when 𝑐(ℎ) = −2 for all ℎ.
Therefore, there are exactly 􏿩 2𝑔−25 􏿬 + 1 reduced invariants.

Example 2.1.45. For a general semi-positive hypersurface in ℙ𝑁 , the reduced virtual dimension
when 𝑔 ≥ 2 is

(4 − 𝑁)(𝑔 − 1) − 𝛽 ⋅ (𝑑 − 𝑁 − 1) + 𝑛 +􏾜
ℎ
(𝑐(ℎ) + 1).

Using the balancing condition, we obtain an upper bound of

(𝑔 − 1)􏿶(2 − 𝑁) +
2𝑁 + 2
𝑑 􏿹 + 𝑛 +􏾜

ℎ
(𝑐(ℎ) + 1).

If 2 − 𝑁 + 2𝑁+2
𝑑 is negative, then the reduced virtual dimension is structly less than

𝑛 +􏾜
ℎ
􏾜
ℎ
(𝑐(ℎ) + 1).

After removing all legs of contact order −1, all effective cycles vanish! For example, we have this
negativity whenever 𝑑 = 3 and 𝑁 ≥ 9, when 𝑑 = 4 and 𝑁 ≥ 6, and when 𝑑 ≥ 5 and 𝑁 ≥ 5. For
complete intersections in other targets, we can run the same arguments, and they are governed by
birational invariants.

2.1.9 Uniform minimal degeneracy
Definition 2.1.46. A punctured 𝑅-map has uniform minimal degeneracy if there exists a unique

𝑒min = min{𝑒𝑣 | 𝑣 ∈ 𝑉(𝐺)}.
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Sometimes, we will also need to consider disconnected graphs, so if we enforce uniform mini-
mal degeneracy, we will obtain a cartesian diagram

𝒰(∞, 𝝉⋎) ℛ (∞, 𝝉⋎)

𝒰(∞, 𝝉) ℛ (∞, 𝝉)

where both vertical arrows are log blowups and hence log étale and projective. These introduce
two new tautological classes on 𝒰(∞, 𝝉⋎), which are

𝜓max = −[Δmax]

coming from 𝑒max and
𝜓min = 𝑐1(𝒪 (−𝑒min))

coming from 𝑒min. The class 𝜓min is a key ingredient for the tropical decomposition and is needed
for the virtual localization formula.

2.1.10 Some examples
Here, we will give a few exmples.
Example 2.1.47 (Quintic). Here, the target is 𝑋5 ⊂ ℙ4. We will consider the log target

𝔓𝑋5 = [ℙℙ4 (𝒪 (−5) ⊕ 𝒪 )/ℂ
𝜔
× ]

with the infinity part
∞𝑋5,ℂ ≅ ℙ4.

Example 2.1.48 (Double cubic). Here, the target is 𝑋3,3 ⊂ ℙ5. We will consider the log target

𝔓𝑋3,3 = [ℙℙ5 (𝒪 (−3)⊕2 ⊕ 𝒪 )/ℂ
𝜔
× ]

with the infinity part
∞𝑋3,3,ℂ ≅ ℙ(𝒪 (−3)⊕2) ≅ ℙ5 × ℙ1.

Example 2.1.49 (Quintic FJRW). We will consider the log target

𝔓LG = [ℙ5/ℂ×𝑅] → 𝐵ℂ×𝑅
5−→ 𝐵ℂ×𝜔

with the infinity part
∞LG,ℂ

fifth root−−−−−−−→ ∞𝑋5,ℂ.
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GW/FJRW
[𝒰]red

[𝒰(𝔓)]vir

effective
[𝒰(∞)]red

GW/FJRW
twisted

trop
ical d

ecom
posi

tion

localization

Figure 2.5: Relation between structural formulae and virtual cycles in log GLSM

2.1.11 ℂ×𝜔 action
Our goal is now to proceed towards a virtual localization formula for log GLSM. Here, the two
structural formulae are related as in Figure 2.5.

There are two ways to think about this ℂ×𝜔-action. If we have an 𝑅-map

𝔓

𝐶 𝐵ℂ×𝜔 ,
𝜔log
𝐶

this was a morphism of stacks, so there is a 2-morphismmaking the diagram commute. Abstractly,
the action simply scales the 2-morphism, which is an isomorphism of line bundles.

More concretely, consider the quintic example. Then an 𝑅-map is equivalent to the data of a
stable map 𝑓 ∶ 𝐶 → ℙ4 and a section of the projective bundle

ℙ𝐶(𝑓∗𝒪ℙ4 (−5) ⊗ 𝜔
log
𝐶 ⊕ 𝒪𝐶).

Using this description, the ℂ×𝜔-action simply scales the 𝑝-field, where we scale the first summand
and not the second.

We now have a ℂ×𝜔 action on all moduli spaces that we considered previously, for example
ℛ(𝔓, 𝛽) or 𝒰(𝔓, 𝛽).
Proposition 2.1.50. The perfect obstruction theories 𝔼ℛ and 𝔼red

𝒰 are ℂ×𝜔-equivariant.
Remark 2.1.51. A key input to this result is that the superpotential is ℂ×𝜔-equivariant. If it was in
fact invariant, then there would be no need to develop the theory of log GLSM.

We may now apply the virtual localization theorem, proved in increasing strength by Graber-
Pandharipande, Chang-Kiem-Li, and Aranha-Khan-Latyntsev-Park-Ravi [GP99; CKL17; Ara+24]
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to decompose the reduced virtual cycle as

[𝒰]red =􏾜
𝐹
𝜄∗

[𝐹]red

𝑒(𝑁vir
𝐹/[𝑈])

.

2.1.12 Fixed loci
There are several kinds of fixed loci:

• There is a fixed locusℛ𝑔,⃗𝑐(0𝔓, 𝛽) of all maps going into the zero-section.
• There is another fixed locusℛ𝑔,⃗𝑐(∞𝔓, 𝛽) of maps going into infinity.
• More general fixed locimay be described by decorated bipartite graphs, with vertices at either
0 or∞ being decorated by a genus and curve class and edges being decorated by the contact
order (which implies the degree of the edge).

From a bipartite graph, the𝑅-mapswhich appear in the corresponding fixed locus arise from taking
scaling limits of 𝑅-maps of the corresponding tropical type. From the fixed curves, we can obtain
other curves of the same tropical type by smoothing nodes which appear at 0.

The moduli spaces corresponding to stable vertices are given as follows. When 𝑣 ∈ 𝑉∞, the
vertex moduli space is

ℛ𝑣 = ℛ𝑔(𝑣),⃗𝑐(𝑣)(∞, 𝛽(𝑣)),
where all contact orders are negative. When 𝑣 ∈ 𝑉0, then we have

ℛ𝑣 = ℛ𝑔(𝑣),⃗𝑐(𝑣)(0, 𝛽(𝑉))

≅ ℳ𝑣 = ℳ 𝑔(𝑣),𝑛(𝑣)(𝑋, 𝛽(𝑣)),

where 𝑋 was the ambient space.

2.1.13 Virtual localization formula
Example 2.1.52. In the case of the quintic, note that∞ ≅ 0. Then we have a stabilization morphism
st ∶ 𝒰 → ℳ 𝑔,𝑛(𝑋, 𝛽). Then we will describe the virtual localization formula on a moduli space
which is related to the fixed locus. It is given by the Cartesian diagram

ℳΓ ∏𝑣ℳ 𝑣

(ℙ4)|𝐸| (ℙ4 × ℙ4)|𝐸|.

ev
Δ

We then obtain the virtual localization formula

st∗[𝒰]red = 􏾜
Γ

1
|Aut Γ| 𝜄Γ,∗Δ

!⋅

⋅ 􏾟
𝑣∈𝑉0

[ℳ𝑣]vir

𝑒ℂ× (𝑅𝜋∗𝜔
log
𝐶 ⊗ 𝑓∗𝒪 (−5) ⊗ ℂ𝜔)

􏾟
ℎ∈𝐻𝑣

1
𝑡−ev∗ℎ(5𝐻)

𝑐ℎ
− 𝜓ℎ
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⋅ 􏾟
𝑣∈𝑉∞

st∗
𝑡[𝒰(∞)]red
−𝑡 − 𝜓min

⋅􏾟
𝑒
⋯,

where 𝑡 is the equivariant parameter and 𝑐ℎ is the contact order. The 0 part gives the twisted GW
theory of ℙ4 with special insertions and the∞ part gives a more general version of effective invari-
ants.
Example 2.1.53. In the case of the double cubic, note that∞ℂ ≅ ℙ5 ×ℙ1 → ℙ5 = 0ℂ. Then we have
a stabilization morphism st ∶ 𝒰 → ℳ 𝑔,𝑛(ℙ5, 𝛽). For 𝑣 ∈ 𝑉∞, we have

ℳ 𝑣 = ℳ 𝑔(𝑣),𝑛(𝑣)(ℙ5, 𝛽(𝑣)) ×(ℙ5)𝑛(𝑣) (ℙ5 × ℙ1)𝑛(𝑣).

Then we will describe the virtual localization formula on a moduli space which is related to the
fixed locus. It is given by the Cartesian diagram

ℳΓ ∏𝑣ℳ 𝑣

(ℙ5 × ℙ1)|𝐸| (ℙ5 × (ℙ5 × ℙ1))|𝐸|.

ev
Δ

Here, Δ is composition the diagonal and deleting the ℙ1 in the first factor. We then obtain the
virtual localization formula

st∗[𝒰]red = 􏾜
Γ

1
|Aut Γ| 𝜄Γ,∗Δ

!⋅

⋅ 􏾟
𝑣∈𝑉0

[ℳ𝑣]vir

𝑒ℂ× (𝑅𝜋∗𝜔
log
𝐶 ⊗ 𝑓∗𝒪 (−3)⊕2 ⊗ ℂ𝜔)

􏾟
ℎ∈𝐻𝑣

1
𝑡−ev∗ℎ(3𝐻+𝐻∞)

𝑐ℎ
− 𝜓ℎ

⋅ 􏾟
𝑣∈𝑉∞

st∗
𝑡[𝒰(∞)]red
−𝑡 − 𝜓min

⋅􏾟
𝑒
⋯,

where 𝑡 is the equivariant parameter, 𝑐ℎ is the contact order, and 𝐻∞ is the hyperplane class on the
ℙ1 factor. The 0 part gives the twisted GW theory ofℙ5 with special insertions and the∞ part gives
a more general version of effective invariants.
Example 2.1.54. In the case of the FJRW theory of the quintic, note that∞𝐶 = 5

√(ℙ4, 𝒪 (1)) → 0ℂ =

𝐵𝜇5. Then we have a stabilization morphism st ∶ 𝒰 → ℳ
1
5
𝑔,𝒞 . We now set

ℳ 𝑣 = ℳ
1
5
𝑔(𝑣),𝒞 (𝑣) ×( ̄𝐼0ℂ)𝑛(𝑣) ( ̄𝐼∞𝑣)𝑛(𝑣)

Then we will describe the virtual localization formula on a moduli space which is related to the
fixed locus. It is given by the Cartesian diagram

ℳΓ ∏𝑣ℳ 𝑣

( ̄𝐼∞ℂ)|𝐸| ( ̄𝐼0ℂ × ̄𝐼∞ℂ)|𝐸|.

ev
Δ
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We then obtain the virtual localization formula

st∗[𝒰]red = 􏾜
Γ

1
|Aut Γ| 𝜄Γ,∗Δ

!⋅

⋅ 􏾟
𝑣∈𝑉0

[ℳ𝑣]vir
𝑒ℂ× (𝑅𝜋∗ℒ ⊗ℂ𝜔)

􏾟
ℎ∈𝐻𝑣

1
𝑡−ev∗ℎ(𝐻∞)

𝑐ℎ
− 𝜓ℎ

⋅ 􏾟
𝑣∈𝑉∞

st∗
5𝑡[𝒰(∞)]red
−𝑡 − 𝜓min

⋅􏾟
𝑒
⋯,

where 𝑡 is the equivariant parameter and 𝑐ℎ is the contact order. The 0 part gives the twisted GW
theory of ℙ4 with special insertions and the∞ part gives a more general version of effective invari-
ants.

2.2 Applications to Gromov-Witten theory

2.2.1 Genus two calculations
The goal is to prove the formula

𝐹QM
2 (𝑄) = ⟨ ⟩𝑡,QM

2 − 􏾋
− 53𝐻

3 + 5
24𝐻

4𝑡−1

(𝑡 − 5𝐻)(𝑡 − 5𝐻 − 𝜓)􏽾

𝑡,QM

1
(2.1)

+ 1
2􏾋

− 53𝐻
3 + 5

24𝐻
4𝑡−1

(𝑡 − 5𝐻)(𝑡 − 5𝐻 − 𝜓) ,
− 53𝐻

3 + 5
24𝐻

4𝑡−1

(𝑡 − 5𝐻)(𝑡 − 5𝐻 − 𝜓)􏽾

𝑡,QM

0
(2.2)

+ 1
2􏾋Δ∗

⎛
⎜⎜⎜⎜⎜⎝

5
3𝐻

3𝑡−1 + 65
8 𝐻

4𝑡−2

(𝑡 − 5𝐻)2(𝑡 − 5𝐻 − 𝜓1)(𝑡 − 5𝐻 − 𝜓2)

⎞
⎟⎟⎟⎟⎟⎠􏽾

𝑡,QM

0

(2.3)

+ 𝐹2(𝑄 = 0) (2.4)
for the quintic threefold.

We will first use the localization formula to compute
deg[𝒰2(𝔓𝑋5 , 𝛽)]red.

There are many localization graphs, which may be obtained as modifications of the ones in Fig-
ure 2.4. The most important ones are displayed in Figure 2.6.

The contributions will now be given. For graph 𝐴, the contribution is

􏾜deg [ℳ 2(ℙ4, 𝛽)]vir

𝑒(𝑅𝜋∗𝜔
log
𝐶 ⊗ 𝑓∗[𝑂](−5) ⊗ ℂ𝜔)

= ⟨ ⟩𝑡2,

which is the 𝒪 (5)-twisted Gromov-Witten potential of ℙ4. Graph 𝐵 contributes

􏾋
ev∗􏿵

[𝒰1,(−1)(∞,0)]vir

−𝑡−𝜓min
􏿸

(𝑡 − 5𝐻)(𝑡 − 5𝐻 − 𝜓)􏽾

𝑡

1
= 􏾋

− 53𝐻
3 + 5

24𝐻
4𝑡−1

(𝑡 − 5𝐻)(𝑡 − 5𝐻 − 𝜓)􏽾

𝑡

1
.
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𝛽
𝑔 = 2

𝛽
𝑔 = 1

𝛽
𝑔 = 0

𝛽
𝑔 = 0

𝛽1
𝑔 = 0

𝛽2
𝑔 = 0

𝛽 = 0
𝑔 = 1

𝛽 = 0
𝑔 = 0

𝛽 = 0
𝑔 = 0

𝛽 = 0
𝑔 = 1

𝛽 = 0
𝑔 = 1

𝐴 𝐵 𝐶 𝐷 𝐸

1 1 1 1 1 2 2

Figure 2.6: Localization graphs with nonzero contribution for 𝑔 = 2.

Graph 𝐶 contributes (2.2), and graph 𝐷 contributes (2.3). Graph 𝐸 will contribute

𝑐eff ⋅ 􏾋
⋯

𝑡−5𝐻
2 − 𝜓

􏽾
𝑡

0

= 𝐹2(𝑄 = 0) ⋅ 𝑃21(𝑄),

where 𝑐eff is the effective invariant.
To obtain a formula with five terms from all of our localization graphs, we will apply the shift

𝜇 = (1 − 𝐼0)𝜓 + 𝐼1𝐻 which comes from quasimap wall-crossing. Under the shift, the contribution of
graph 𝐸 becomes the constant 𝐹2(𝑄 = 0), while the contributions from all other graphs vanish.

2.2.2 Genus two mirror theorem
For convenience, we will set 𝑡 = 5𝑠. This will make the equivariant parameters the same for both
the Gromov-Witten and FJRW calculations. This gives us

𝐹QM
2 (𝑄) = ⟨ ⟩𝑠,QM

2 − 􏾋
− 53𝐻

3 + 5
24𝐻

4(5𝑠)−1

(5𝑠 − 5𝐻)(5𝑠 − 5𝐻 − 𝜓)􏽾

𝑠,QM

1

+ 1
2􏾋

− 53𝐻
3 + 5

24𝐻
4(5𝑠)−1

(5𝑠 − 5𝐻)(5𝑠 − 5𝐻 − 𝜓) ,
− 53𝐻

3 + 5
24𝐻

4(5𝑠)−1

(5𝑠 − 5𝐻)(5𝑠 − 5𝐻 − 𝜓)􏽾

𝑠,QM

0

+ 1
2􏾋Δ∗

⎛
⎜⎜⎜⎜⎜⎝

5
3𝐻

3(5𝑠)−1 + 65
8 𝐻

4(5𝑠)−2

(5𝑠 − 5𝐻)2(5𝑠 − 5𝐻 − 𝜓1)(5𝑠 − 5𝐻 − 𝜓2)

⎞
⎟⎟⎟⎟⎟⎠􏽾

𝑠,QM

0
+ 𝐹2(𝑄 = 0).

Because the twisted theory is semisimple, we can compute it using the Givental-Teleman recon-
struction theorem [Giv01b; Tel12]. For a graph Γ ∈ {𝐴, 𝐵, 𝐶,𝐷, 𝐸}, the first step is to write

􏾉𝛼1(𝜓1), 𝛼𝑛(𝜓𝑛)􏽼
𝑠 = 􏾉[𝑆(𝜓̄1)𝛼1(𝜓̄1)]+, [𝑆(𝜓̄𝑛)𝛼𝑛(𝜓̄𝑛)]+􏽼

𝑠
𝑔,𝑛
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using the descendant-ancestor correspondence of Kontsevich-Manin [KM98]. The second step is
to use the Givental-Teleman reconstruction theorem to compute the ancestor invariants by a stable
graph sum.

For simple reasons, we can rewrite [𝑆(𝜓̄)𝛼(𝜓̄)]+ = 𝑆(5𝑠 − 5𝐻)𝛼1(𝜓̄). Both 𝑆(5𝑠 − 5𝐻) and

𝑅−1(𝑧) = 􏾜𝑅𝑘𝑧𝑘

have entries in a ring
̃ℛ = ℚ[generators]

where the generators are defined using genus-zero invariants. Using the fact that
𝐼𝑋5,𝑠(𝑞, 𝑧)|𝑧=5𝑠−5𝐻 = 5𝑠 − 5𝐻,

the mirror theorem, and 𝑆∗1 = 𝑧−1𝐽, we see that 𝑆∗1|𝑧=5𝑠−5𝐻 = 1. To compute the other entries, we
use the quantum connection

𝑧𝑞 dd𝑧𝑆
𝜏,𝑠 = 𝜏̇ ⋆ 𝑆𝜏,𝑠.

Quantum multiplication by 𝜏̇ is given by the matrix

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the ∗ denote nonzero entries. However, the entries of 𝐴 and their derivatives lie in
̃ℛ = ℚ[9 generators].

Using a computer, we then get the exact formulae for
ContΓ ∈ 𝑅̃.

A miracle implies that
􏾜
Γ
ContΓ ∈ ℛ = ℚ[5 generators] ⊂ ̃ℛ .

If we recall that the physicists predicted that 𝐹𝑔 is a polynomial in five generators (which are
exactly the same as the five generators here).
Remark 2.2.1. A similar calculation for FJRW theory yields similar formulae. For example, graph 𝐵
contributes

􏾋
5𝜙 4

5

24𝑠2(𝑠 − 𝜓) −
200𝜙 4

5

24𝑠(𝑠 − 𝜓)2 􏽾

𝑠,QM

1,1

and graph 𝐷 contributes

􏾋

65
8 𝜙 4

5
⊗ 𝜙 4

5

𝑠2(𝑠 − 𝜓1)𝑠2(𝑠 − 𝜓2)
+

5
3𝜙 4

5
⊗ 𝜙 4

5

𝑠(𝑠 − 𝜓)2𝑠2(𝑠 − 𝜓2)
+

5
3𝜙 4

5
⊗ 𝜙 4

5

𝑠2(𝑠 − 𝜓1)𝑠(𝑠 − 𝜓2)2
􏽾

𝑠,QM

0,2
.
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2.2.3 LG/CY correspondence for the quintic
Write

𝐼GW = 𝑧𝐼0 + 𝐼1 + 𝐼2
𝐻2

𝑧 + 𝐼3
𝐻3

𝑧2 .

Similarly, we can write
𝑧𝐼0𝜙 1

5
+ 𝐼1𝜙 2

5
+ 𝐼2𝜙 3

5
𝑧−2 + 𝐼3𝜙 4

5
𝑧−3.

We can then construct the generators for the FJRW theory of the quintic similarly to the gener-
ators for the GW theory of the quintic.
Theorem 2.2.2. Write

𝐹GW𝑔 = 𝑃CY𝑔 (9 generators)
𝐹FJRW𝑔 = 𝑃LG𝑔 (9 generators).

Then after identification of the generators, we have

𝑃CY𝑔 = 𝑃LG𝑔 .

The proof of this result is a direct matching of contributions from graphs in the virtual local-
ization formula. It relies on the fact that 𝐴CY = 𝐴LG under a suitable choice of basis, which also
matches the identification of the generators. The tropical input from log GLSM is that the effective
invariants are equal in both the CY and LG phases. Finally, we need to identify the insertions in
the two phases, and this follows from a direct computation of the specialized 𝑆-matrix.

2.2.4 Geometry of LG/CY correspondence
Let • ∈ {LG,CY}. Recall that

𝔓CY,ℂ = ℙ4 × ℙ1

and∞CY,ℂ = ℙ4. The log target is 𝔓LG,ℂ = [ℙ5/𝜇5], but the infinity-section is

∞LG ≅
5√ℙ4.

Remark 2.2.3. There is a modification of the targets such that∞CY ≅ ∞LG.
The first step is to match the virtual localization formulae. In the LG phase, there are no curve

classes at 0, so we compensate for this by using insertions. Also, note that we need to consider the
inertia stack

𝐼𝐵𝜇5 =
5
􏾅
𝑖=0

𝐵𝜇5,

and in fact the contact orders determine the twisted sectors at the nodes. Then there is a bijection
between the LG and CY decorated graphs. For example, we match the graphs in Figure 2.7.

Now let
𝜏• = 𝐼•1

𝐼•0
∈ ℋ •,

Page 53 of 94



𝛽 = 1
𝑔 = 4

𝛽1
𝑔 = 0

𝛽2
𝑔 = 0

𝛽∞ = 1
𝑔 = 4

𝑔 = 0 𝑔 = 0

2 1 2 1
3
5

4
5

2
5

1
5

CY LG

Figure 2.7: Corresponding graphs in CY and LG phases.

where the state spaces are given by

ℋ CY = 𝐻∗(ℙ4) and ℋ LG = ℚ(𝑠)􏾋𝜙 0
5
, 𝜙 1

5
, 𝜙 2

5
, 𝜙 3

5
, 𝜙 4

5
􏽾.

Defining
ev∞ ∶ 􏾟

𝑣∈𝑉∞
𝒰𝑔(𝑣),𝑒(𝑣)(∞•, 𝛽(𝑣)) → ( ̄𝐼∞•,ℂ)|𝐸| → (ℙ4)|𝐸|,

we define

Cont∞Γ,• = (ev∞)∗

⎛
⎜⎜⎜⎜⎜⎜⎝􏾟𝑣∈𝑉∞

5𝑠[𝒰𝑣]red
−5𝑠 − 𝜓min

⎞
⎟⎟⎟⎟⎟⎟⎠.

We may also define the contribution Cont0,𝜏Γ ∶ (ℋ •J𝜓̄K)|𝐸| → ℚ of 0 by

{𝑇𝑒(𝜓̄)}𝑒∈𝐸 ↦ 􏾟
𝑣∈𝑉0

􏾊{𝑇ℎ(𝜓̄)}ℎ∈𝐻(𝑣)􏽽
𝑠,•,𝜏

𝑔(𝑣),𝑛(𝑣)
.

Finally, for any contact order 𝑐 ∈ {1, 2}, let
𝒮 •
𝑐,𝜏 ∶ 𝐻∗(ℙ4) → ℋ •

be defined by
𝜙 ↦ edge factor(𝑐) ⋅ 𝜙

5𝑠−5𝐻
𝑐 − 𝜓

in the CY case and
𝜙 ↦ 􏾙

ℙ4

edge factor(𝑐) ⋅ 𝜙
5𝑠−5𝐻∞

𝑐 − 𝜓
⋅ 𝜙 5−𝑐

5

in the LG case.
Putting these ingredients together, we obtain the following formula:
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Theorem 2.2.4. We have the identity

𝐹•,𝜏𝑔 =􏾜
Γ

1
|Aut Γ| Cont

0𝜏
Γ,•

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝􏽿

𝑒
𝒮 •
𝑐(𝑒),𝜏

⎞
⎟⎟⎟⎟⎟⎠Cont

∞
Γ,•

⎞
⎟⎟⎟⎟⎟⎠.

The proof of this theorem follows the following steps:
1. Virtual localization;
2. Apply the shift coming from quasimap wall-crossing;
3. Keep track of signs and powers of 5.
It now remains tomatch the contributions. Here, the contributions Cont∞Γ,•match because of the

geometric isomorphism∞CY ≅ ∞LG. The matching of the𝒮 •
𝑐,𝜏 follows from a direct computation.

2.2.5 Twisted theories
Recall that the 𝒪 (5)-twisted GW theory of ℙ4 is given by integrals against

𝑒(𝑅𝜋∗𝑓∗𝒪 (5) ⊗ ℂ5𝑠) ∩ [ℳ 𝑔,𝑛(ℙ4, 𝛽)]vir.

This is not very hard to compute with, so we add a torus action of (ℂ×)5 on ℙ4. We will denote the
equivariant parameters on the base by 𝜆0, … , 𝜆4. This gives us a general 𝒪 (5)-twisted theory.

Unfortunately, this is extremely complicated, but we consider the formal quintic theory, which
is given by setting 𝑠 = 0 and

𝜆𝑗 = 𝜁𝑗𝜆, 𝜁 = exp􏿶
2𝜋𝑖
5 􏿹.

Therefore, we have a theory with only one equivariant parameter 𝜆. This theory (also called the
𝜆-twisted theory) has several advantages:

• It has been studied before by Zinger, Kim-Lho, Lho-Pandharipande, and various other au-
thors [Zin09; KL18; LP18];

• The 𝜆-twisted 𝐼-function

𝐼𝜆 = 𝑧􏾜
𝑑≥0

𝑞𝑑
∏5𝑑

𝑖=1(5𝐻 + 𝑖𝑧)
∏𝑑

𝑖=1((𝐻 + 𝑖𝑧)5 − 𝜆5)
= 𝐼quintic + 𝑂(𝑧−4)

is much nicer than the 𝑠-twisted 𝐼-function

𝐼𝑠 = 𝑧􏾜
𝑑≥0

𝑞𝑑
∏5𝑑

𝑖=1(5𝐻 − 5𝑠 + 𝑖𝑧)
∏𝑑

𝑖=1(𝐻 + 𝑖𝑧)5
.

In particular, the appearance of 5𝑠 in the numerator of each term of 𝐼𝑠 is the reason for the
appearance of extra generators for the 𝑠-twisted theory.
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Our goal now is to rewrite log GLSM invariants using the 𝜆-twisted theory. Using the tropical
decomposition formula, we obtain

deg[𝒰(𝔓)]red = 􏾜
Γtrop

􏾟
𝑣∈𝑉0

deg[𝒰(𝔓)]vir 􏾟
𝑣∈𝑉∞

effective.

Because the canonical virtual cycle does not depend on the equation of the quintic, we can compute

deg[𝒰(𝔓)]vir = deg[𝒰(𝔓)]vir,(ℂ×)6 |𝑠=0,𝜆𝑗=𝜁𝑗𝜆.

Using the log GLSM localization formula, we now obtain

􏾜
Γloc

􏾟
𝑣∈𝑉0

twisted
general 􏾟

𝑣∈𝑉∞
deg[𝒰(∞)]vir,(ℂ×)6 .

We will now apply operations to graphs as in Figure 2.8.

𝑔 = 2

𝑔 = 1

𝑔 = 1

𝑔 = 1

𝑔 = 1

𝑔 = 1

𝑔 = 1

𝑔 = 2

𝑔 = 1

Γtrop

Γloc

Γtri

Γbi⟹

⟹

Figure 2.8: Tropical graph, localization graph, and tripartite graph

We may then combine the two decompositions to form a tripartite graph. Using this, we then
obtain

GW = 􏾜
Γtri

􏾟
𝑣∈𝑉ℓ

twisted
general 􏾟

𝑣∈𝑉𝑚
deg[𝒰(∞)]vir,(ℂ×)6 ⋅ 􏾟

𝑣∈𝑉𝑢
effective

= 􏾜
Γbi

􏾟
𝑣∈𝑉0

twisted
general 􏾟

𝑣∈𝑉∞
(𝑠, 𝜆)−effective

=

⎛
⎜⎜⎜⎜⎜⎜⎝􏾜Γbi

􏾟
𝑣∈𝑉0

𝜆−twisted 􏾟
𝑣∈𝑉∞

𝜆−effective

⎞
⎟⎟⎟⎟⎟⎟⎠􏵶
𝜆=0

.

Here, the second equality comes from combining the middle and upper layers of a tripartite graph.
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Remark 2.2.5.
1. It is not a priori clear that the specialization 𝑠 = 0, 𝜆𝑗 = 𝜁𝑗𝜆 makes sense. However, we note

that 𝐻5 = 𝜆5, so 𝐻−1 = 𝐻4

𝜆5 , so the specialization
1

5𝑠 − 5𝐻 − 𝜓ℎ
→ 1

−5𝐻 − 𝜓ℎ
makes sense.

2. The graph Γbi may have contact orders 𝑐 ≥ 3.

2.2.6 Combinatorial structure theorem
Recall that the 𝑅-matrix action was found by Givental as follows:

• Wewill stabilize a localization graph to a stable graph. This involves contracting rational tails
and chains:

• The tails become the translation action;
• The chains become edge contributions 𝑉(𝑧, 𝑤);
• The ends become leg contributions 𝑅(𝑧)−1.
We will consider something similar in log GLSM. We will begin by stabilizing graphs Γbi as

in Figure 2.9. Applying Givental-Teleman to the vertices at level 0, we see that there are∞∞ edges,

0

∞

𝑔 = 0

𝑔 = 1 𝑔 = 1

𝑔 = 0

𝑔 = 1

𝑔 = 1 𝑔 = 1 𝑔 = 1

⇒

Figure 2.9: Stabilization of Γbi

0∞ edges, and 00 edges. There are also both 0 and∞ legs. This implies that

𝐹𝑔 = ℛ̂ (𝜔𝜆 ⊕ 𝜔∞),

whereℛ is generalized from the Givental formalism. It is given by

ℛ =
⎧⎪⎨
⎪⎩
𝑅𝜆 label 0
𝒮 label∞
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Also, the matrices 𝑅 and 𝑆 are determined from the quantum differential equation, which in the
𝜆-twisted case are given by

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝐼11
0 𝐼22

0 𝐼33
0 𝐼44

𝐼0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

2.2.7 GW theory of the quintic
We are now able to apply the combinatorial structure theorem.

• We have a stable graph sum formula involvingℛ ;
• The entries ofℛ are polynomials in the five generators, which are determined by 𝐴;
• The generalized tail contribution

𝒯 =
⎧⎪⎨
⎪⎩
𝑇 label 0
𝐽 label∞

is a polynomial in the holomorphic generator 𝑋 = 1
1−55𝑞 .

To prove the holomorphic anomaly equation, consider differentiating by 𝑆 ∈ {𝐴, 𝐵1, 𝐵2, 𝐵3}. We
look directly at the stable graph localization formula. Differentiation comes from cutting edges as
in Figure 2.10.

𝜕
𝜕𝑆

⟹ +

+ +

Figure 2.10: Cutting of edges.

If a matrix 𝑅 satisfies the equation

𝜕
𝜕𝑆𝑅

−1 = 𝑅−1 ⋅ Λ𝑆,

then the 𝑉-tensor satisfies the equation

𝜕
𝜕𝑆𝑉 = 𝑅−1(𝑧) ⊗ 𝑅−1(𝑤)(Δ𝑆),

where
Δ𝑆 =

Λ𝑆(𝑧)𝑒𝛼 ⊗ 𝑒𝛼 + 𝑒𝛼 ⊗ Λ𝑆(𝑤)𝑒𝛼
𝑧 + 𝑤 .
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Therefore, when we compute 𝜕
𝜕𝑆𝐹𝑔, we place Δ𝑆 at the nodes, and this will match the holomorphic

anomaly equation.
Remark 2.2.6. This method also proves that for any extra generator ℰ , we have

𝜕
𝜕ℰ 𝐹𝑔 = 0.

This implies that 𝐹𝑔 is independent of ℰ , so we reduce the nine generators to five generators.
Remark 2.2.7. In fact, the holomorphic anomaly equations hold for arbitrary values of the effective
invariants. In particular, if we define 𝐹𝑐𝑔 by the formal theory and effective invariants, then

1. The generating function 𝐹𝑐𝑔 satisfies the holomorphic anomaly equations;
2. 𝐹𝑐𝑔 has orbifold regularity.

Orbifold regularity is proved by showing that every graph which appears in the graph sum for 𝐹𝑔
satisfies orbifold regularity.

The meaning of orbifold regularity is that if we replace 𝑋,𝐴1, 𝐵1, 𝐵2, 𝐵3 by the LG versions
𝑋orb, 𝐴orb

1 , 𝐵orb1 , 𝐵orb2 , 𝐵orb3 , then 𝐹𝑔 is a regular function near 𝑞 = ∞.

Conjecture 2.2.8 (Conifold gap). At the conifold point 𝑞 = 5−5, there is the conifold gap condition

𝐹con𝑔 =
𝐵2𝑔
Δ2𝑔−2

+ regular,

where Δ is the local flat coordinate near the conifold point.
The conifold gap condition has been checked for 𝑔 ≤ 5 by computer. Unfortunately, a systematic

way of proving the conjecture is not known.
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Three

See BCOV from the A-side: MSP fields

Using the master space construction introduced by Thaddeus and Dolgachev-Hu [Tha96; DH98]
in the context of variation of GIT, Chang-Li-Li-Liu [CLLL19; CLLL22] defined the theory ofMixed-
Spin-P fields, which connects the Gromov-Witten and FJRW theories of the quintic threefold. The
moduli space has a torus action, and one type of fixed point gives the Gromov-Witten theory of
the quintic, which led to hope that the theory could be used to compute GW invariants of the
quintic. However, the calculations quickly proved intractable, and an insight of Guo, which led to
the creation of N-Mixed-Spin-P fields [CGLL21], was required to resolve the difficulties. This led to
the proof of the finite generation conjecture and holomorphic anomaly equations for the quintic
threefold by Chang-Guo-Li [CGL21; CGL19], which was generalized to hypersurfaces in weighted
projective space by the author [Lei24b; Lei24a]. More recently, a new stability condition for GLSMs
was introduced by Chang-Guo-Li-Li-Zhou [Cha+23b], and this will enable the construction ofMSP
moduli spaces for other targets.

3.1 Geometry of MSP moduli spaces
The genus-zero Gromov-Witten invariants of the quintic were computed by Givental, Lian-Liu-
Yau, and various other authors [Giv96; LLY97]. Their computation uses the fact that the moduli
space

ℳ 0,𝑛(ℙ4, 𝛽)
is smooth and the obstruction sheaf corresponding to 𝒪 (5) is a vector bundle. This fails, however
in higher genus, and in genus one, the work of Zinger, Vakil-Zinger, and Li-Zinger [Zin09; VZ08;
LZ09] on reduced Gromov-Witten invariants desingularizes the moduli spaces and enables com-
putation of the genus one invariants. This result was also recovered by Kim-Loh [KL18] using
quasimap wall-crossing [CK20; Zho22].

There is also the approach of Maulik-Pandharipande [MP06] using the degeneration formula,
which in principle computes all of the invariants but is impossible to calculate with in practice.
Finally, there is the approach of Fan-Lee [FL19].

3.1.1 𝑃-field reformulation of GW and FJRW theory
Let 𝐹 = 𝑥𝑁1 + ⋯ + 𝑥𝑁𝑟 be an arbitrary Fermat polynomial. The setup works in full generality, but
the calculations can only be conducted for the quintic threefold. The first step is to construct the
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moduli space of 𝑃-fields following the work of Chang-Li [CL12a], which comes from the work of
Guffin-Sharpe [GS09] in physics.

Consider the vector space ℂ5 × ℂ with the action of ℂ× given by
𝑡(𝑥1, … , 𝑥5, 𝑝) = (𝑡𝑥1, … , 𝑡𝑥5, 𝑡−5𝑝).

The GIT quotient with the positive stability chamber is 𝐾ℙ4 . We will consider the superpotential
𝑝(𝑥51 +⋯+ 𝑥55).

A map 𝐶 → 𝐾ℙ4 is equivalent to the data
(𝐶,ℒ ,𝜑1, … , 𝜑5 ∈ 𝐻0(ℒ ), 𝜌 ∈ 𝐻0(ℒ −5)).

This is just a stable map, and the 𝑃-field is given by modifying 𝜌 by 𝜔𝐶 to obtain
𝜉 = (𝐶,ℒ ,𝜑1, … , 𝜑5 ∈ 𝐻0(ℒ ), 𝜌 ∈ 𝐻0(ℒ −5 ⊗ 𝜔𝐶)).

We will also require that (𝜑1, … , 𝜑5) is nonvanishing, so it gives a stable map to ℙ4.
The moduli spaceℳ 𝑝 of such 𝜉 is noncompact. However, we can follow Kiem-Li [KL13] and

use cosection localization for a cosection
𝜎∶ Ob→ 𝒪 .

The degeneracy locus is in fact
𝜎−1(0) = ℳ 𝑔(𝑍5, 𝛽),

where 𝑍5 ⊂ ℙ4 is the quintic threefold. This gives a virtual cycle1

[ℳ 𝑝]virloc = ±[ℳ 𝑔(𝑍, 𝛽)]vir.

FJRW invariants were originally defined using analysis. There are algebraic reformulations by
Polishchuk-Vaintrob and by Chiodo [PV16; Chi06]. We once again consider ℂ5 × ℂ with an action
of ℂ× given by

𝑡(𝑥1, … , 𝑥5, 𝑝) = (𝑡𝑥1, … , 𝑡𝑥5, 𝑡−5𝑝).
However, we use the negative stability chamber to obtain the quotient [ℂ5/𝜇5]. The objects in our
moduli space are given by

𝜂 = (𝐶,ℒ ,𝜑1, … , 𝜑5 ∈ 𝐻0(ℒ ), 𝜌 ∈ 𝐻0(ℒ −5 ⊗ 𝜔𝐶))

such that 𝜌 is nowhere zero. This implies thatℒ 5 ≅ 𝜔𝐶. We will consider the same superpotential
𝑝(𝑥51 +⋯+ 𝑥55).

Themoduli spaceℳ
1
5 ,5𝑝 of such 𝜂 is still noncompact, but cosection localization again provides

a virtual cycle
[ℳ

1
5 ,5𝑝]virloc

recovers the FJRW virtual cycle.
1The equality of virtual cycles was not proved by Chang-Li [CL12a] (who proved an equality of invariants only) as

claimed in the talk. The first proof of the equality of virtual cycles is due to Kim-Oh [KO22]. See also [CL20b].
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3.1.2 Master space and MSP fields
Following the work of Thaddeus [Tha96] and various other authors, we are interested in a geomet-
ric lift of a path connecting two GIT quotients. Consider the space ℂ5 × ℂ × ℙ1 with the action of
ℂ× given by

𝑡(𝑥1, … , 𝑥5, 𝑝, [𝑢, 𝑣]) = (𝑡𝑥1, … , 𝑡𝑥5, 𝑡−5𝑝, [𝑡𝑢, 𝑣]).
Now define the master space

(ℂ5 × ℂ × ℙ1 ∖ {(0, 0, 0, 0, 𝑝, [0, 1])} ∪ {(𝑥1, … , 𝑥5, 0, [1, 0])})/ℂ×.
Because ℙ1 is a GIT quotient, we can reformulate the GLSM for this target as being given by the
data of

𝜗 = (𝐶,ℒ ,𝒩 ,𝜑1, … , 𝜑5 ∈ 𝐻0(ℒ ), 𝜌 ∈ 𝐻0(ℒ −5 ⊗ 𝜔𝐶), 𝜇 ∈ 𝐻0(ℒ ⊗𝒩 ), 𝜈 ∈ 𝐻0(𝒩 ))
such that (𝜑1, … , 𝜑5, 𝜇) is nowhere zero, (𝜌, 𝜈) is nowhere zero, and (𝜇, 𝜈) is nowhere zero. We also
require that Aut𝜗 is finite.
Remark 3.1.1. Because the target is a Deligne-Mumford stack, we will need to require the source
curve to be a twisted curve. For orbifold markings, we require thatℒ|Σ is a nontrivial automor-
phism of AutΣ. For scheme markings we will consider either (1, 𝜌)markings where we force 𝜌 = 0
or (1, 𝜑)markings were we force 𝜑 = 0. These are required to construct the cosection. These mark-
ings are called narrow, and all other markings are called broad.

3.1.3 Cosection localization and virtual cycle
The numerical data is 𝑔 = 𝑔(𝐶), 𝑑0 = degℒ ⊗𝒩 , and 𝑑∞ = deg𝒩 . This gives the moduli space

𝒲𝑔,𝑑 →𝒟𝑔 = {(𝐶,ℒ ,𝒩 )}

with a relative perfect obstruction theory
𝑅𝜋∗(ℒ ⊕5 ⊕ℒ −5 ⊗ 𝜔𝐶 ⊕ℒ ⊗𝒩 ⊕𝒩 ) → 𝕃•𝒲𝑔,𝑑/𝒟𝑔

.

Here, 𝜋∶ 𝒞 → 𝒲𝑔,𝑑 is the universal curve.
Fiberwise, the cosection is given by the following construction. Let2

(𝜑̇, 𝜌̇, 𝜇̇, 𝜈̇) ∈ 𝐻1(ℒ ⊕5) ⊕ 𝐻1(ℒ −5 ⊗ 𝜔𝐶) ⊕ 𝐻1(ℒ ⊗𝒩 ) ⊕ 𝐻1(𝒩 ).
Then the cosection is given by

𝜎 = 𝜌̇(𝜑51 +⋯+ 𝜑55) + 5𝜌(𝜑41𝜑̇1 +⋯+ 𝜑45𝜑̇5)
and its image lies in 𝐻1(𝜔𝐶) ≅ ℂ (this isomorphism is canonical).

The degeneracy locus 𝜎−1(0) is given by
𝜎−1(0) = 􏿺𝜌𝜑41 = ⋯ = 𝜌𝜑45 = 𝜑51 +⋯+ 𝜑55 = 0􏿽

= 􏿺𝜌 = 𝜑51 +⋯+ 𝜑55 = 0􏿽 ∪ 􏿺𝜑 = 0􏿽.

The first difficult step is to prove the properness of the degeneracy locus.
Theorem 3.1.2. The degeneracy locus 𝜎−1(0) is proper in the narrow setting.

2We are pretending to be physicists here.
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3.1.4 Virtual localization
There is a ℂ×-action on𝒲 which actually preserves 𝜎−1(0) given by

𝑡 ⋅ (𝐶,ℒ ,𝒩 ,𝜑, 𝜌, 𝜇, 𝜈) = (𝐶,ℒ ,𝒩 ,𝜑, 𝜌, 𝑡𝜇, 𝜈).

This allows us to compute MSP invariants using virtual localization.
We will now relate the fixed loci to the previous moduli spaces.

• Let 𝜗 ∈ 𝒲 . If 𝜇 = 0, the 𝒩 = 𝒪𝐶 by the condition that (𝜇, 𝜈) is nowhere vanishing. This
reduces the fields to (𝜑, 𝜌), and we need (𝜑1, … , 𝜑5) to be nowhere vanishing, so we obtain
𝑃-fields. We will call this level 0

• If we let 𝜈 = 0, then the information of 𝜇 disappears and 𝜌 must be nowhere zero. This
reduces us to FJRW theory. This is called level∞.

• Finally, if we set 𝜑 = 𝜌 = 0, then both 𝜇, 𝜈 are required to be nowhere vanishing, so we
only have the data of a curve. When we perform virtual localization, this will give us Hodge
integrals. This is called level 1.

Fixed loci 𝐹 ⊂ 𝒲 ℂ× will be labelled by graphs. The problem is that there may be a situation
of two edges 𝑣0 → 𝑣1 → 𝑣∞ where one edge has degree 𝑑 and the other edge has degree −𝑑.
While there is no geometric smoothing of the node (it is banned by the stability condition), there
are nontrivial infinitesimal deformations, so we cannot decompose the virtual cycle. Fortunately,
there is a significant simplification, which was first discovered by Chang-Li [CL20a] for the quintic
and should hold for all other Calabi-Yau threefolds.
Theorem 3.1.3 ([CL20a]). These graphs contribute 0 to the MSP virtual localization formula.

Let Λ be the set of regular graphs. Then the virtual localization theorem for cosection localized
virtual cycles due to Chang-Kiem-Li [CKL17] gives

[𝒲 ]virloc = 􏾜
Γ∈Λ

(𝜄Γ)∗
[𝒲Γ]virloc
𝑒(𝑁vir

Γ )
.

Because of irregular vanishing, we can decompose [𝒲Γ]virloc along the vertices.

• At a level 0 vertex, we have

[𝒲𝑣0 ]
vir
loc = ±[ℳ 𝑔𝑣0 ,𝑛𝑣0

(𝑍, 𝑑𝑣0 )]vir,

where 𝑍 is the quintic.
• At a level∞ vertex, we have

[𝒲𝑣∞ ]
vir
loc = [ℳ

1
5 ,5𝑝
𝑔𝑣∞ ,𝛾𝑣∞ ]

vir.

• At a level 1 vertex, we simply have

[𝒲𝑣1 ]
vir
loc = [ℳ 𝑔𝑣1 ,𝑛𝑣1

].
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3.1.5 NMSP fields
The setup can calculate the genus 1 Gromov-Witten invariants of the quintic, which was done by
Chang-Guo-Li-Zhou [CGLZ20], but the calculations are too complicated to perform more compu-
tations. However, an insight of Guo is to replace 𝜇 with

𝜇 = (𝜇1, … , 𝜇𝑁) ∈ 𝐻0(ℒ ⊕𝒩 )⊕𝑁

and consider an action of (ℂ×)𝑁 scaling 𝜇 diagonally.

3.1.6 Reformulation of stability condition
Recall that the originalMSPmaster space is given by aGIT quotient ofℂ5×ℂ×ℂ×ℂwith coordinates
𝑥1, … , 𝑥5, 𝑝, 𝑢, 𝑣 by (ℂ×)2 acting with weights

􏿰
1 1 1 1 1 −5 1 0
0 0 0 0 0 0 1 1􏿳

and the polarization 𝑡1𝑡22. This is a change of coordinates from the standard presentation

􏿰
1 1 1 1 1 −5 1 −1
0 0 0 0 0 0 1 1 􏿳

and polarization 𝑡2.
Recall that a stable MSP field

𝜉 = (𝒞 ,ℒ ,𝒩 ,𝜑1, … , 𝜑5, 𝜌, 𝜇, 𝜈)

consists of the data of
• A pointed twisted curve 𝒞 – the nodes are required to be balanced, which means that they

locally look like

􏿰
Specℂ[𝑥, 𝑦]/(𝑥𝑦)
(𝑥, 𝑦) ↦ (𝜁𝑟𝑥, 𝜁−1𝑟 𝑦)

􏿳.

• ℒ,𝒩 ∈ Pic𝒞 are line bundles such thatℒ ⊕𝒩 is representable;
• 𝜑1, … , 𝜑5 ∈ 𝐻0(ℒ ), 𝜌 ∈ 𝐻0(ℒ −5 ⊗ 𝜔log

𝒞 ), 𝜇 ∈ 𝐻0(ℒ ⊗𝒩 ), and 𝜈 ∈ 𝐻0(𝒩 ) are sections such
that

– (𝜑, 𝜇) is nonvanishing;
– (𝜌, 𝜈) is nonvanishing;
– (𝜇, 𝜈) is nonvanishing;
– |Aut(𝜉)| < ∞.

We denote the nonvanishing condition byMSP-Stab-I and the finiteness of automorphisms
byMSP-Stab-II.

There is a superpotential

𝑝
5
􏾜
𝑖=1
𝑥5𝑖 ∶ [ℂ8/ℂ× × ℂ×] → ℂ
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with critical locus (see Figure 3.1)

Crit
⎛
⎜⎜⎜⎜⎜⎝𝑝

5
􏾜
𝑖=1
𝑥5𝑖

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝𝑝 =

5
􏾜
𝑖=1
𝑥5𝑖 = 0

⎞
⎟⎟⎟⎟⎟⎠ ∪ (𝑥1 = ⋯ = 𝑥5 = 0).

The semistable locus is
Cone(𝑋5) ∪ ℙ(1, 5).

𝐾ℙ4 [ℂ5/𝜇5]

ℙ(1, 5)Cone(𝑋5)

ℙ4

Figure 3.1: Critical locus Cone(𝑋5) ∪ ℙ(1, 5)

The degeneracy locus of the MSP moduli space (with reduced stack structure) consists of all 𝜉
such that 𝒞 is mapped entirely into the critical locus. In other words, we require that

⎛
⎜⎜⎜⎜⎜⎝𝑝 =

5
􏾜
𝑖=1
𝑥5𝑖

⎞
⎟⎟⎟⎟⎟⎠ ∪ (𝑥1 = ⋯ = 𝑥5 = 0) = 𝒞 .

The upshot of this is that the critical locus is proper.
Theorem 3.1.4 ([CLLL19]). Fixing the discrete data, the moduli of stable MSP fields is a separated DM
stack of finite type and the degeneracy locus of the cosection is proper.

Our goal is now to generalize the stability condition:
• Stability should come from GIT with the 𝑅-charge (which gives the 𝜔log);
• Properness should follow from properness of the target (or at least the critical locus).
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Lemma 3.1.5. UnderMSP-Stab-I, the condition that |Aut 𝜉| < ∞ is equivalent to the condition that

(ℒ ⊗𝒩 2) ⊗ (𝜔log
𝒞 )⊗𝐴 > 0

as 𝐴 → 1
5 + 0

+.

Now note that the unstable locus is cut out by the functions

𝑥1𝑣2, … , 𝑥5𝑣2, 𝑢𝑣, 𝑢10𝑝.

This allows to reformulateMSP-Stab-I as the condition that the sections

𝜑1𝜈2, … , 𝜑5𝜈2, 𝜇𝜈 ∈ 𝐻0(ℒ ⊗𝒩 2) and 𝜇10𝜌 ∈ 𝐻0(ℒ 5 ⊗𝒩 10 ⊗ 𝜔log
𝒞 )

have no common zeros. This reformulation allows us to give easier proofs of basic facts about MSP
fields.
Corollary 3.1.6. Fixing the discrete data, stable MSP fields are bounded.
Proof. We need to prove that

• There are finitely many irreducible components;
• The degrees degℒ𝒞 ′ and deg𝒩 |𝒞 ′ are uniformly bounded for irreducible components𝒞 ′ ⊂
𝒞 .

The first condition follows from positivity of the line bundle

ℒ ⊗𝒩 2 ⊗ (𝜔log
𝒞 )𝐴.

For the second condition, suppose for simplicity that 𝒞 ′ = 𝒞 . Then we vary the polarization
to obtain the inequalities

𝐴2 ≤ degℒ ⊗𝒩 2 ≤ 𝐴1;
𝐴3 ≤ degℒ ⊗𝒩 3;
𝐴4 ≤ degℒ 2 ⊗𝒩 3.

This gives a bounded region, and the denominators are bounded, so we are done.
Remark 3.1.7. In the nonabelian case, boundedness is much harder. See [Cha+23a] for more details.

3.1.7 General setup
The setup consists of the following data:

• An extension
1 𝐺 Γ ℂ× 1

ℂ×
𝜃

𝜛

𝜗

of reductive groups;
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• An affine scheme𝑉 (think a vector space or critical locus) with an action of Γ such that𝑉𝑠(𝜃) =
𝑉ss(𝜃) ≠ ∅;

Remark 3.1.8. The lift 𝜗 of 𝜃 is not essential.
Definition 3.1.9. An LG-quaasimap is a tuple

𝜉 = (𝒞 , 𝑢, 𝜅),

where
1. 𝒞 is a pointed twisted curve;
2. 𝑢∶ 𝒞 → [𝑉/Γ] is representable such that the base locus 𝑢−1([𝑉un(𝜃)/Γ]) is discrete and disjoint

from the special points;

3. 𝜅∶ 𝑢∗𝐿𝜛
≅−→ 𝜔log

𝒞 is an isomorphism of line bundles.

Example 3.1.10. In the MSP case, either 𝑉 = ℂ8 or Crit􏿴𝑝∑𝑥5𝑖 􏿷. We also have Γ = (ℂ×)2 × ℂ×𝑅.

• A map 𝑢∶ 𝒞 → [𝑉/Γ] is the data ofℒ,𝒩 ,ℛ ∈ Pic(𝒞 ) and fields 𝜑⃗, 𝜌, 𝜇, 𝜈. Here, note that
𝜌 ∈ 𝐻0(ℒ −5 ⊗ℛ ).

• The data of 𝜅 is an isomorphism 𝑢∗𝐿𝜛 = ℛ ≅ 𝜔log
𝒞 .

A fancier way to write an LG-quasimap is as a commutative diagram

𝒞

[𝑉/𝐺] [𝑉/Γ]

Specℂ 𝐵ℂ×𝑅.

𝑢

𝜔log
𝒞

𝜅

3.1.8 Ω-stability
Define

𝑅𝑘 ≔ 􏿺𝑓 ∈ ℂ[𝑉] | 𝑔∗𝑓 = (𝜃(𝑔))𝑘𝑓 for all 𝑔 ∈ 𝐺􏿽;
𝑅+ ≔􏾘

𝑘>0
𝑅𝑘.

Then recall that we have a morphism

𝑉 ⫽𝜃 𝐺 = Proj􏾘
𝑘≥0

𝑅𝑘 → Spec𝑅0 = 𝑉 ⫽0 𝐺.

Lemma 3.1.11 ([FJR18]). Each 𝑅𝑘 is Γ − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡.
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Set
𝑅𝑘 =􏾘

𝑐∈ℤ
𝑅𝑘,𝑐,

where
𝑅𝑘,𝑐 ≔ 􏿺𝑓 ∈ ℂ[𝑉] | 𝛾∗𝑓 = (𝜗(𝛾))𝑘(𝜀(𝛾))𝑐𝑓 for all 𝛾 ∈ Γ􏿽.

Definition 3.1.12. An element 𝑓 ∈ 𝑅• = ⨁𝑘≥0 𝑅𝑘 is homogeneous if 0 ≠ 𝑓 ∈ 𝑅𝑘,𝑐 for some 𝑘 and 𝑐.
We then define the 𝜃-weight of 𝑓 by 𝑘 ≕ wt(𝑓), the 𝑅-charge of 𝑓 to be 𝑐, and the slope of 𝑓 to be 𝑐

𝑘 .

Example 3.1.13. In the original MSP example, weights are given in Table 3.1. In this example, we
have

𝑢∗𝐿𝑘𝜗+𝑐𝜛 = (ℒ ⊗𝒩 2)⊗𝑘 ⊗ (𝜔log
𝒞 )⊗𝑐.

Table 3.1: Weights.

𝑥𝑖𝑣2 𝑢𝑣 𝑢10𝑝
Weight 1 1 5
𝑅-charge 0 0 1.

In general, for 𝑓 ∈ 𝑅𝑘,𝑐 and a map 𝑢∶ 𝒞 → [𝑉/Γ], we have

𝑢∗𝑓 ∈ 𝐻0(𝒞 , 𝑢∗𝐿𝑘𝜗+𝑐𝜛).

Now choose a package Ω = (𝑆,𝐴, 𝜗), where
• 𝑆 ⊂ 𝑅+ is a finite set of homogeneous elements;
• 𝐴 > max𝑓∈𝑆􏿺slope(𝑓)􏿽.

Definition 3.1.14. A prestable LG-quasimap 𝜉 is Ω-stable if
Ω-1 The base locus 𝑢−1([𝑉(𝑆)/Γ]) is discrete and disjoint from the markings and nodes;
Ω-2 For all non-special points 𝑥 ∈ 𝒞 sm, we have

min
𝑓∈𝑆

􏿼
1

wt(𝑓) ord𝑥(𝑢
∗𝑓) + slope(𝑓)􏿿 ≤ 𝐴;

Ω-3 We have the ampleness condition

𝑢∗𝐿𝜗 ⊗ (𝜔
log
𝒞 )⊗𝐴 > 0.

Remark 3.1.15.
1. The 𝐴 here corresponds roughly to 1

𝜀 in the previous literature about quasimaps. Roughly,
decreasing 𝐴means attempting to force more of the curve to go into the stable locus;
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2. 𝑉(𝑆)may be larger than the unstable locus 𝑉un = 𝑉(𝑅+);

3. If any irreducible component 𝒞 ′ ⊂ 𝒞 satisfies 𝜔log
𝒞 |𝒞 ′ > 0, then Ω-3 is implied by either Ω-1

or Ω-2;
4. In some way, Ω-stability is independent of 𝜗 (up to changing the other data).

Theorem 3.1.16. Fixing deg 𝑢∗𝐿𝜗 = 𝑑, the genus 𝑔, and the number 𝑘 of marked points, the stack
LGQΩ

𝑔,𝑘(𝑋, 𝑑)

is a separated DM stack of finite type.
Theorem 3.1.17. Suppose that𝑋⫽𝜃𝐺 is projective and 𝑆 is full (which means that set-theoretically𝑉(𝑆) =
𝑉un(𝜃)). Then LGQΩ

𝑔,𝑘(𝑋, 𝑑) is proper.

Example 3.1.18. In the originalMSP example, 𝑆 is full. The element 𝑢10𝑝 ∈ 𝑆 has slope 1
5 , sowe need

𝐴 > 1
5 . For any smooth point 𝑞 ∈ 𝒞 sm, the conditions Ω-1 and Ω-2 are equivalent. In particular,

they mean that at least one of the following conditions is satisfied:
ord𝑞 𝜑𝑖 + 2 ord𝑞 𝜈 ≤ 𝐴, 𝑖 = 1, … , 5
ord𝑞 𝜇 + ord𝑞 𝜈 ≤ 𝐴

1
5 ord𝑞 𝜌 + 2 ord𝑞 𝜇 ≤ 𝐴 −

1
5 .

As 𝐴 → 1
5 + 0

+, we see that the first inequality holds if and only if ord𝑞 𝜑𝑖 = ord𝑞 𝜈 = 0, which is
equivalent to nonvanishing of𝜑𝑖𝜈2. This recovers the original nonvanishing conditionMSP-Stab-I.

3.1.9 More examples
Example 3.1.19. Considerℙ𝑁 with an𝑅-charge. Thismeans thatwe take Γ = ℂ××ℂ×𝑅 and𝑉 = ℂ𝑁+1.
We will have Γ act with weights

􏿰
1 1 ⋯ 1
𝑐0 𝑐1 ⋯ 𝑐𝑁􏿳

.

For simplicity, assume that 𝑐0 ≤ ⋯ ≤ 𝑐𝑁 . In this model, an LG quasimap is a package

𝜉 = (𝒞 ,ℒ ,𝜑𝑖 ∈ 𝐻0(ℒ ⊗ (𝜔log
𝒞 )⊗𝑐𝑖 )).

For the stability condition, we choose 𝑆 = {𝑥0, … , 𝑥𝑁} and 𝐴 > 𝑐𝑁 .
The condition Ω-2 becomes the condition

min􏿺ord𝑥(𝜑𝑖) + 𝑐𝑖􏿽 ≤ 𝐴.
In general, we see that ord𝑥(𝜑𝑖) is allowed to be positive. The conditionΩ-3 becomes the positivity
condition

ℒ ⊗ (𝜔log
𝒞 )𝐴 > 0.

For example, if 𝑁 = 1, 𝑐0 = 0, and 𝑐1 = 1, then as 𝐴 → 1+, Ω-2 becomes the condition that
either 𝜑1(𝑥) ≠ 0 or ord𝑥(𝜑0) ≤ 1 at any non-special point 𝑥 ∈ 𝒞 . In particular, it is impossible to
completely remove basepoints.
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Example 3.1.20. We will now consider the LG phase for a complete intersection

𝑋𝑑1,𝑑2 ⊂ ℙ𝑁 .

We will consider 𝑉 = ℂ𝑁+1 × ℂ × ℂ and Γ = ℂ× × ℂ×𝑅 acting on 𝑉 with weights

􏿰
1 ⋯ 1 −𝑑1 −𝑑2
0 ⋯ 0 1 1 􏿳 .

We will choose the character (𝑡1, 𝑡2) ↦ 𝑡−11 , and the corresponding GIT quotient is

[𝑉 ⫽𝜃 𝐺] = Tot(𝒪ℙ(𝑑1,𝑑2)(−1)⊕𝑁+1).

An LG quasimap is given by the data

𝜉 = (𝒞 ,ℒ ,𝜑0, … , 𝜑𝑁 ∈ 𝐻0(ℒ ), 𝜌1 ∈ 𝐻0(ℒ −𝑑1 ⊗ 𝜔log
𝒞 ), 𝜌2 ∈ 𝐻0(ℒ −𝑑2 ⊗ 𝜔log

𝒞 )).

We choose 𝑆 = 􏿺𝑝1, 𝑝2􏿽, and assuming that 𝑑1 ≤ 𝑑2, we need to choose 𝐴 > 1
𝑑1
.

The stability condition Ω-2 becomes

min􏿼
ord𝑥(𝜌𝑖)

𝑑𝑖
+ 1
𝑑𝑖
􏿿 ≤ 𝐴,

while Ω-3 becomes the positivity condition

ℒ −1 ⊗ (𝜔log
𝒞 )𝐴 > 0.

As𝐴 → 􏿵 1𝑑1 􏿸
+
, the conditionΩ-2 becomes the condition that either 𝜌1(𝑥) ≠ 0 or ord𝑥(𝜌2) ≤ 𝑑2

𝑑1
−1.

Therefore, if 𝑑2 < 2𝑑1, then 𝜌1 and 𝜌2 have no common zeroes.
Remark 3.1.21. If 𝑑1 = 𝑑2, this hybridmodel admits a good lift in the sense of Fan-Jarvis-Ruan [FJR18]
and the theory was studied by Clader [Cla17].
Example 3.1.22. We will now consider MSP theory for 𝑋3,3 ⊂ ℙ2 × ℙ2. The Calabi-Yau phase is
given by 𝐾ℙ2×ℙ2 , which is a GIT quotient of ℂ3 × ℂ3 × ℂ by ℂ× × ℂ× with weights

􏿰
1 1 1 0 0 0 −3
0 0 0 1 1 1 −3􏿳 .

There are three phases for this model, which are given in Figure 3.2. To construct the MSP moduli
space involving all phases, consider the data

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑝 𝑢1 𝑢2 𝑣 𝜗
ℂ× 1 1 1 0 0 0 −3 1 0 0 1
ℂ× 0 0 0 1 1 1 −3 0 1 0 1
ℂ× 0 0 0 0 0 0 0 1 1 1 3
ℂ×𝑅 0 0 0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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𝐾ℙ2×ℙ2
[Tot(𝒪ℙ2 (−1)⊕3)/𝜇3]

[Tot(𝒪ℙ2 (−1)⊕3)/𝜇3]

Figure 3.2: Phases of 𝑋3,3 ⊂ ℙ2 × ℙ2.

We will choose the set

𝑆 = 􏿺𝑥𝑦𝑣3, 𝑥𝑢2𝑣2, 𝑦𝑢1𝑣2, 𝑢1𝑢2𝑣, 𝑦9𝑢91𝑝2, 𝑥9𝑢92𝑝2, 𝑢91𝑢92𝑝􏿽.

The maximum slope is 2
3 , so we will choose 𝐴 = 2

3 + 0
+. In particular, part of Ω-2 becomes the

condition
1
6(9 ord(𝑢1) + 9 ord(𝑢2) + ord(𝑝)) + 1

6 ≤
2
3 + 0

+,

which is equivalent to
9 ord(𝑢1) + 9 ord(𝑢2) + ord(𝑝) ≤ 3.

This is equivalent to the condition that 𝑢1 and 𝑢2 are nonzero and ord(𝜌) ≤ 3. Putting all of the
conditions together, we obtain the following nonvanishing conditions:

• (𝑢1, 𝑢2, 𝑣) ≠ 0;
• (𝑦, 𝑢2) ≠ 0;
• (𝑥, 𝑢1) ≠ 0;
• Either 𝑣 ≠ 0 or ord(𝜌) ≤ 3.

Unfortunately, it is not possible to remove the basepoints.
Consider the action of ℂ× × ℂ× given by scaling 𝜇. A schematic diaagram of the the types of

fixed loci is given in Figure 3.3.
Remark 3.1.23. There is a wall-and-chamber structure as we vary 𝐴. If we consider 𝐴 → ∞, the
conditionΩ-2 is always true, andΩ-3 bans all rational tails. This gives a stability condition similar
to stable quasimaps which was already studied by Fan-Jarvis-Ruan. In addition, there should be a
wall-crossing structure as we vary 𝐴 (which is desirable because we want to separate the different
kinds of fixed points).
Remark 3.1.24. Ω-stability exhibits a phenomenon which is close to being independent of 𝑆. If 𝑉 is
reduced and 𝑉 ⫽𝜃 𝐺 is projective, then whenever 𝑆 is full, we have
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𝐾ℙ2×ℙ2

ℙ2 ℙ2pt

[Tot(𝒪ℙ2 (−1)⊕3)/𝜇3] [Tot(𝒪ℙ2 (−1)⊕3)/𝜇3]
ord𝑥(𝜌) ≤ 3

𝜌 ∈ 𝐻0(𝒩 6 ⊗ 𝜔log
𝒞 )

ℒ1 ≅ ℒ2 ≅ 𝒩 −1

Figure 3.3: Diagram of fixed loci for 𝑋3,3 ∈ ℙ2 × ℙ2.

• The quantity
max
𝑓∈𝑆

{slope(𝑓)}

is independent of 𝑆;
• Fixing 𝐴 and 𝜗, Ω = (𝑆,𝐴, 𝜗)-stability is independent of 𝑆.

3.1.10 Proof of key properties of the moduli space
The idea of the proof is as follows:

• First prove the ℙ𝑁 case;
• Compare the general case to ℙ𝑁 .
To warm up, we will review the proof of properness for stable maps to ℙ1. A stable map to ℙ1

is equivalent to the data
(𝒞 ,ℒ ,𝜑1, 𝜑2 ∈ 𝐻0(ℒ ))

such that there are no common zeroes and ℒ|𝒞 ′ > 0 whenever 𝜔log
𝒞 |𝒞 ′ < 0. We will use the

valuative criteria.
Consider a family over a disk Δ𝑡. We have two divisors (𝜑1 = 0) and (𝜑2 = 0), but they may

meet on the central fiber transverselywith vanishing order 1. We can blow up the intersection point
to separate the two divisors as in Figure 3.4. Denote the blowup morphism by 𝜋∶ ̃𝒞 → 𝒞 . Then
we actually have

𝜋∗𝜑1, 𝜋∗𝜑2 ∈ 𝐻0(𝜋∗ℒ(−𝐸)),
where 𝐸 is the exceptional divisor. Then the stable limit is given by

( ̃𝒞 , 𝜋∗ℒ(−𝐸), 𝜋∗𝜑1, 𝜋∗𝜑2).

If 𝐴 > 1, we simply keep the base point (and disallow the rational tail).
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↓

𝑡 = 0
Δ𝑡

𝜑2 = 0

𝜑1 = 0

𝒞
↓

𝑡 = 0
Δ𝑡

𝐸

̃𝒞

𝜋

Figure 3.4: Stable limit of family of stable maps.

If we introduce an 𝑅-charge 0, 𝑐, an LG quasimap is given by

(𝒞 ,ℒ ,𝜑1 ∈ 𝐻0(ℒ ), 𝜑2 ∈ 𝐻0(ℒ ⊗ (𝜔log
𝒞 )⊗𝑐)).

Now 𝜋∗𝜑2 vanishes to order 1 + 𝑐 on 𝐸. Blowing up again, the vanishing orders now become
(1, 2𝑐) ∼ (0, 2𝑐 − 1), which seems worse. If instead (𝜑1 = 0) has multiplicity 𝑘 > 𝑐, then on 𝐸 the
vanishing orders are (𝑘, 1 + 𝑐) ∼ (𝑘 − 1 − 𝑐, 0). Then we blow up the node, which does not change
𝜔log
𝒞 . Therefore, we cannot improve a length 1 zero of 𝜑1, but we can improve a length > 𝑘 zero of

𝜑1.

↓

𝑡 = 0
Δ𝑡

𝜑2 = 0

𝜑1 = 0

𝒞
↓

𝑡 = 0
Δ𝑡

𝐸

̃𝒞

𝜋

↓

𝑡 = 0
Δ𝑡

Figure 3.5: Stable limit of family of LG quasimaps.

We will now study the general case. We will assume that 𝑆 = {𝑓0, … , 𝑓𝑁} all of weight 1. Then
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if we consider
𝑉 ℂ𝑁+1

Γ ℂ× × ℂ×𝑅

ℂ×,

(𝑓0,…,𝑓𝑁 )

𝜗×𝜀

𝜗
pr1

This induces a cartesian diagram

LGQ(𝑋) LGQ(ℙ𝑁)

LGQΩ(𝑋) LGQΩ(ℙ𝑁).

Φ

Properness reduces to proving properness of the bottom morphism. Using the valuative criterion,
consider a curve 𝒞 ∘ → Δ∘ and an LG quasimap

𝜉∘ = (𝒞 ∘, …) ∈ LGQΩ(𝒞 ∘, 𝑋).
If we have an extension of Φ(𝜉∘) to

𝜉 = (𝒞 ,ℒ ,𝜑0, … , 𝜑𝑁) ∈ LGQΩ(𝒞 ,ℙ𝑁),

we need a unique extension 𝜉 of 𝜉∘ such that Φ(𝜉) = 𝜉.
Because the line bundle 𝜔log

𝒞 comes from the coarse moduli space, we can trivialize it locally.
Working locally, any LG quasimap becomes a usual quasimap. First assume that there are no base
points (we will deal with base points using Hartogs’s theorem). We already have an extension to
the coarse moduli space 𝑋.
Lemma 3.1.25 ([AV02]). Locally, given 𝒞 → 𝑋, there exists a unique commutative diagram

𝒞 𝑋

𝒞 𝑋.

This completes the proof of properness.

3.2 Applications to Gromov-Witten theory

3.2.1 MSP invariants
Wewill consider MSP moduli spaces𝒲𝑔,𝑛,𝑑 with 𝑑0 = 𝑑, 𝑑∞ = 0, only (1, 𝜌) insertions, and arbitrary
values of 𝑁. We first note that the MSP virtual localization formula is given by

1
𝑒(𝑁vir

Θ )
= 􏾟

𝑣∈𝑉0

𝑁
􏾟
𝛼=1

1
𝑒(𝑅𝜋∗𝑓∗𝑣𝒪 (1) ⊗ 𝑡𝛼)
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⋅
𝑁
􏾟
𝛼=1

􏾟
𝑣∈𝑉𝛼1

5𝑡𝛼 ⋅ 𝑒(𝔼∨ ⊗ (−𝑡𝛼))5
𝑒(𝔼 ⊗ 5𝑡𝛼) ⋅ (−𝑡𝛼)5

∏𝛽≠𝛼 𝑒(𝔼∨ ⊗ (𝑡𝛽 − 𝑡𝛼))
∏𝛽≠𝛼(𝑡𝛽 − 𝑡𝛼)

⋅

⎛
⎜⎜⎜⎜⎜⎝􏾟𝔞∈𝔞∞

1
𝑒(𝑁vir𝔞 )

⎞
⎟⎟⎟⎟⎟⎠ ⋅􏾟

𝑒∈𝐸
𝐴𝑒,

where 𝑡𝛼 are the equivariant variables and 𝑉𝛼
1 denotes those vertices at level 1 where the curve

satisfies 𝜇𝛼 ≠ 0 and 𝜇𝛽≠𝛼 = 0. Also, 𝔞 ∈ 𝔞∞ are connected components of the level∞ part of Θ and
𝐴𝑒 is the contribution of an edge. In particular, define

[ℳ 𝑔,𝑛(𝑍5, 𝑑)]top =
[ℳ 𝑔,𝑛(𝑍5, 𝑑)]vir

𝑒(𝑅𝜋∗𝑓∗𝑣𝒪 (1) ⊗ 𝑡𝛼)
= (−𝑡𝑁)𝑑+1−𝑔[ℳ 𝑔,𝑛(𝑍5, 𝑑)]vir

[ℳ 𝑔,𝑛]𝛼,top = 􏿶
1
5𝑁(−𝑡𝛼)

𝑁+3􏿹
𝑔−1

[ℳ 𝑔,𝑛].

These are the top degree part of the contribution to the virtual localization formula coming from
a vertex 𝑣. We will denote the full contribution at level 1 by [ℳ 𝑔,𝑛]𝛼,tw. From now on, we will
specialize our equivariant variables to roots of unity as 𝑡𝛼 = −𝜁𝛼𝑁𝑡. For convenience, we will also
specialize 𝑡 such that 𝑡𝑁 = −1.

We may define MSP invariants using virtual localization. Note that by the condition that 𝜌
vanishes at the marked points, we have evaluation morphisms

ev𝑖 ∶ 𝒲𝑔,𝑛,𝑑 → ℙ4+𝑁 ,

which restrict to

ev𝑖 ∶ 𝒲 −
Θ → (𝑥51 +⋯+ 𝑥55 = 0)(ℂ

×)𝑁 = 𝑍5 ⊔
𝑁
􏾅
𝛼=1

pt𝛼,

where𝒲 −
Γ is the degeneracy locus of𝒲Γ. Therefore, wemay defineMSP invariants with insertions

from the state space

ℋ = 𝐻∗(𝑍5) ⊕
𝑁
􏾘
𝛼=1

𝐻∗(pt𝛼).

Using the vertex contributions to the virtual normal bundle, we define the pairing

(𝑥, 𝑦)𝑀 = 􏾙
𝑍5
𝑥𝑦|𝑍5 +􏾜

𝛼

5
𝑁𝑡3𝛼

𝑥𝑦|pt𝛼 .

The state space has several bases, which we will discuss now.
• Let 𝑝 = 𝑐1(𝒪ℙ4+𝑁 (1)) be the equivariant ambient hyperplane class. Then we have the basis
𝜙𝑖 = 𝑝𝑖 for 𝑖 = 0,… ,𝑁 + 3;

• There is the basis {1𝑍5 , 𝐻,𝐻2, 𝐻3} ∪ {1𝛼}𝑁𝛼=1;
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The last kind of MSP invariant we need to define is the MSP [0, 1] invariant. Here, we simply
consider the class

[𝒲 ][0,1] = 􏾜
Θ∈Λ[0,1]

[𝒲Θ]vir

𝑒(𝑁vir
Θ )

,

where Λ[0,1] denotes the set of all graphs without any level∞ vertices.

3.2.2 Genus zero MSP theory
In genus zero, the full MSP and the [0, 1] theory are equal. This follows from the following lemma:
Lemma 3.2.1. We have

𝒲0,𝑛,𝑑 ≅ ℳ 0,𝑛(ℙ4+𝑁 , 𝑑)
and an equality

[𝒲0,𝑛,𝑑]vir = ±𝑒(𝑅𝜋∗𝑓∗𝒪 (5)) ∩ [ℳ 0,𝑛(ℙ4+𝑁 , 𝑑)]vir

of virtual cycles.
The lemma tells us that the genus-zero MSP invariants are the same as the GW invariants of

a degree 5 hypersurface in ℙ4+𝑁 , which is in particular Fano. In particular, the MSP 𝐼-function is
given by the formula

𝐼𝑀(𝑞, 𝑧) = 𝑧􏾜
𝑑≥0

𝑞𝑑
∏5𝑑

𝑚=1(5𝑝 + 𝑚𝑧)
∏𝑑

𝑚=1(𝑝 + 𝑚𝑧)5∏
𝑑
𝑚=1((𝑝 + 𝑚𝑧)𝑁 − 𝑡𝑁)

.

This automatically implies the following result.
Lemma 3.2.2. We have

𝐽𝑀(0, 𝑞, 𝑧) = 𝐼𝑀(𝑞, 𝑧)
whenever 𝑁 ≥ 2.

The main result we need to know about genus zero MSP theory is the explicit form of the quan-
tum connection. Let 𝐷 ≔ 𝑞 d

d𝑞 .

Lemma 3.2.3. The MSP 𝑆-matrix satisfies the differential equation

(𝑝 + 𝑧𝐷)𝑆𝑀(𝑧)∗ = 𝑆𝑀(𝑧) ⋅ 𝐴𝑀,
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where 𝐴𝑀 is given by the matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 120𝑞
1 0 770𝑞

1 0 1345𝑞
1 0 770𝑞

1 0 120𝑞 + 𝑡𝑁
1 0

1 0
1 0

⋯ ⋯
1 0

1 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in the basis {𝜙𝑖} for 𝑁 > 5.

3.2.3 MSP [0, 1] CohFT
Define the MSP 𝑅-matrix by the Birkhoff factorization

𝑆𝑀(𝑧)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1
⋱

Δ𝑁
Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑅(𝑧)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆pt1
⋱

𝑆pt𝑁
𝑆𝑍5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Δ𝛼(𝑧)

≔ exp
⎛
⎜⎜⎜⎜⎜⎜⎝􏾜

𝐵2𝑘
2𝑘(2𝑘 − 1)

⎛
⎜⎜⎜⎜⎜⎜⎝

5
(−𝑡𝛼)2𝑘−1

+ 1
(5𝑡𝛼)2𝑘−1

+􏾜
𝛽≠𝛼

1
(𝑡𝛽 − 𝑡𝛼)2𝑘−1

⎞
⎟⎟⎟⎟⎟⎟⎠𝑧
2𝑘−1

⎞
⎟⎟⎟⎟⎟⎟⎠

is defined using the quantum Riemann-Roch theorem. Here, we need to shift 𝑆𝑍 to the point 𝜏𝑍5 =
𝐼1
𝐼0
𝐻, and

𝑆pt𝛼 = 𝑒
𝜏𝛼
𝑧 ,

where
𝜏𝛼 = −𝑡𝛼􏾙

𝑞

0
(𝐿(𝑥) − 1)d𝑥𝑥 .

Here, 𝐿(𝑞) ≔ (1 − 55𝑞)
1
𝑁 .

Theorem 3.2.4. The MSP [0, 1] invariants come from a CohFT Ω [0,1], which is defined by the formula

Ω [0,1] = 𝑅.

⎛
⎜⎜⎜⎜⎜⎜⎝Ω

𝑍5 ⊕
𝑁
􏾘
𝛼=1

𝜔pt𝛼,top

⎞
⎟⎟⎟⎟⎟⎟⎠.
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Remark 3.2.5. The normalized tail contribution at the isolated points is given by

𝑇̃𝛼(𝑧) = 𝑧(1 − 𝐿
𝑁+3
2 𝑅(𝑧)−11)|pt𝛼 = 𝑂(𝑧

2)

In addition, when 𝑁 ≫ 3𝑔 − 3 + 𝑛, there is no tail contribution at level 0.

3.2.4 Degree bound for MSP theory
In order to compute the invariants of a Calabi-Yau threefold using MSP theory, we need to control
the MSP invariants. Our goal will be to control the MSP [0, 1] invariants, but these are defined as a
mysterious sum of virtual localization contributions. First, we will control the full MSP invariants.
Lemma 3.2.6. The full MSP correlator

􏾊𝑝𝑎1𝜓̄𝑘11 , … , 𝑝𝑎𝑛𝜓̄
𝑘𝑛𝑛 􏽽

𝑀

𝑔,𝑛

is a polynomial in 𝑞 of degree at most
𝑔 − 1 + 3𝑔 − 3 + ∑𝑎𝑖

𝑁 .

This follows from the fact that the virtual dimension of the MSPmoduli space is𝑁(𝑑+1−𝑔)+𝑛.
To obtain the same degree bound for the [0, 1] correlators, we will need a decomposition formula
for the full MSP theory in terms of the [0, 1] theory and the remaining contributions. First, we will
construct bipartite graphs from localization graphs, where vertices are either [0, 1] vertices or ∞
vertices. For an example of this procedure, see Figure 3.6.

2 1 4

0 2 1

0 0 5

⟹

3 4

9

Figure 3.6: Obtaining a bipartite graph from a localization graph.

Lemma 3.2.7. We have the MSP decomposition formula

􏾊𝜏1𝜓̄
𝑎1
1 , … , 𝜏𝑛𝜓̄

𝑎𝑛𝑛 􏽽
𝑀

𝑔,𝑛
= 􏾜

Γ∈Λbipartite

1
|Aut Γ| 􏾟𝑣∈𝑉∞

Cont∞[𝑣]

⎛
⎜⎜⎜⎜⎜⎜⎝􏽿
𝑖∈𝐿∘𝑣

𝜓̄𝑎𝑖𝑐(𝑖)

⎞
⎟⎟⎟⎟⎟⎟⎠⋅
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⋅ 􏾟
𝑣∈𝑉[0,1]

􏾋􏽿
𝑖∈𝐿𝑣

𝜏𝑖􏽿
𝑖∈𝐿∘𝑣

𝜓̄𝑎𝑖𝑐(𝑖)􏽿
𝑒∈𝐸𝑣

1𝛼𝑒
5𝑡𝛼𝑒
𝑎𝑒
− 𝜓(𝑒,𝑣)

􏽾
[0,1]

𝑔𝑣,𝑛𝑣

.

Here, the contribution Cont∞[𝑣] of a vertex 𝑣 at level∞ is a generating series of FJRW-like invariants, which
is a polynomial in 𝑞 of degree at most

𝑑∞[𝑣] +
1
5

⎛
⎜⎜⎜⎜⎜⎜⎝2𝑔𝑣 − 2 − 􏾜𝑒∈𝐸𝑣

(𝑎𝑒 − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠.

In addition, Λbipartite is the set of stable bipartite graphs, 𝐿∘𝑣 is the set of legs which get contracted to 𝑣
after stabilization, and 𝑐(𝑖) is the stable vertex that 𝑖 gets contracted to after stabilization. For an example of
stabilization, see Figure 3.7.

0 𝑣2, 5

0
𝑣1, 2

0 𝑣3, 6

ℓ1 ℓ2 ℓ3

𝑒1

𝑒2

⟹

𝑣2, 5

𝑣1, 2 𝑣3, 6

ℓ1

ℓ2

ℓ3

Figure 3.7: Stabilization of a bipartite graph. In this example, we have 𝑐(ℓ1) = (𝑣1, 𝑒1), 𝑐(ℓ2) = (𝑒2, 𝑣2),
and 𝑐(ℓ3) = ℓ3.

This lemma is proved by directly applying the virtual localization formula and then analyzing
the following two situations:

• What happens at a vertex at level∞;
• What happens when we split a graph at a vertex at level 1.
By using the decomposition formula and a careful degree-counting argument, we obtain the

following degree bound for the [0, 1] theory.
Lemma 3.2.8. The MSP [0, 1] correlator

􏾊𝑝𝑎1𝜓̄𝑘11 , … , 𝑝𝑎𝑛𝜓̄
𝑘𝑛𝑛 􏽽

[0,1]

𝑔,𝑛

is a polynomial in 𝑞 of degree at most
𝑔 − 1 + 3𝑔 − 3 + ∑𝑎𝑖

𝑁 .
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3.2.5 Polynomiality
We first introduce the ring of five generators. Let

𝐼(𝑞, 𝑧) ≔ 𝑧􏾜
𝑑≥0

𝑞𝑑
∏5𝑑

𝑚=1(5𝐻 + 𝑚𝑧)
∏𝑑

𝑚=1(𝐻 + 𝑚𝑧)5

≕ 𝐼0𝑧 + 𝐼1𝐻 + 𝐼2
𝐻2

𝑧 + 𝐼3
𝐻3

𝑧2

and define the following generators:

𝐴𝑘 ≔
𝐷𝑘𝐼11
𝐼11

, 𝐵𝑘 ≔
𝐷𝑘𝐼0
𝐼0

, and 𝑌 = 1
1 − 55𝑞 .

Here, recall that 𝐼11 = 1 + 𝐷􏿵 𝐼1𝐼0 􏿸.

Lemma 3.2.9 ([YY04]). The ring
ℛ ≔ ℚ[𝐴1, 𝐵1, 𝐵2, 𝐵3, 𝑌]

contains all 𝐴𝑘 and 𝐵𝑘.
Theorem 3.2.10. Introduce the series

𝑃𝑔,𝑛 ≔
(5𝑌)𝑔−1𝐼𝑛11
𝐼2𝑔−20

􏿶𝑄
d
d𝑄􏿹

𝑛

𝐹𝑔(𝑄)􏵶
𝑄=𝑞𝑒

𝐼1
𝐼0

.

Then 𝑃𝑔,𝑛 ∈ ℛ for all 𝑔, 𝑛 such that 2𝑔 − 2 + 𝑛 > 0.
If we want to prove this result using the results we have already proved, then we need to prove

a polynomiality result for the the entries of the 𝑅-matrix. At level 0, we use the equation
(𝑅(𝑧)−1𝑥)|𝑍5 = 𝑆𝑍5 (𝑞, 𝑧)(𝑆𝑀(𝑧)−1)|𝑍5

and the explicit forms of the MSP quantum connection and the quantum connection for the quintic
to obtain

𝑅(𝑧)∗1|𝑍5 = 𝐼0 + 𝑂(𝑧𝑁−3)
𝑅(𝑧)∗𝑝|𝑍5 = 𝑧𝐷(𝐼0) + 𝐻𝐼0𝐼11 + 𝑂(𝑧𝑁−2).

To simplify what follows, define the normalized basis
𝜑𝑏 = 𝐼0𝐼11⋯𝐼𝑏𝑏𝐻𝑏,

where 𝐼22 was defined previously and 𝐼33 = 𝐼11. If we define
(𝑅𝑘)𝑏𝑗 ≔ (𝑅𝑘𝜑𝑏, 𝑝𝑗)𝑀,

then the recursive formula
(𝑅𝑘)𝑏𝑗 = (𝐷 + 𝐶 + 𝑏)(𝑅𝑘−1)𝑏𝑗−1 + (𝑅𝑘)𝑏−1𝑗−1 − 𝑐𝑗𝑞(𝑅𝑘)𝑏𝑗−𝑁 ,

where 𝐶𝑏 = 𝐷 log(𝐼0⋯𝐼𝑏𝑏) ∈ ℛ and 𝑐𝑗 = (0,… , 0, 120, 770, 1345, 770), yields the following result:
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Lemma 3.2.11. If 𝑗 ≢ 𝑏+ 𝑘 (mod 𝑁), then (𝑅𝑘)𝑏𝑘 = 0. Otherwise, we have (𝑅𝑘)𝑏𝑏+𝑘 ∈ ℛ and 𝑌(𝑅𝑘)𝑛𝑏+𝑁+𝑘 ∈
ℛ .

At level 1, define the normalized basis 1̄𝛼 = 𝐿−
𝑁+3
2 1𝛼. Then define

(𝑅𝑘)𝛼𝑗 ≔ 𝐿−(𝑗−𝑘)𝛼 (𝑅𝑘1̄𝛼, 𝑝𝑗)𝑀,

where 𝐿𝛼 = −𝑡𝛼𝐿.

Lemma 3.2.12. The quantity (𝑅𝑘)𝛼𝑗 is independent of 𝛼 and is a polynomial in 𝑌 of degree at most 𝑘 + 􏿩 𝑗𝑁 􏿬.

The lemma is proved as follows:
• Fix the case when 𝑗 = 0 by using the Picard-Fuchs equation

𝐷5
𝐿𝛼 (𝐷

𝑁
𝐿𝛼 − 𝑡

𝑁) − 𝑞
5
􏾟
𝑚=1

(𝐷𝐿𝛼 + 𝑚𝑧)𝑅(𝑧)∗1|pt𝛼 = 0

and an oscillating integral. Solving the Picard-Fuchs equation expresses 𝑅𝑘 as an antideriva-
tive of some polynomial in 𝑅𝑚<𝑘 and their derivatives. To prove that the constants of integra-
tion are zero, we use the fact that 𝑅(𝑧)1|pt𝛼 can be computed from the asymptotic expansion
of the oscillating integral

􏾙
𝛾𝛼
𝑒
𝑊
𝑧
d𝑥0 ∧⋯∧ d𝑥𝑁+3

𝑥0⋯𝑥𝑁+3
,

where

𝑊 =
𝑁+3
􏾜
𝑖=0
(𝑥𝑖 − 𝜆𝑖 log 𝑥𝑖) −

⎛
⎜⎜⎜⎜⎝
∏𝑁+3

𝑖=0 𝑥𝑖
𝑞

⎞
⎟⎟⎟⎟⎠

1
5

is the mirror superpotential and 𝛾𝛼 is the Lefschetz thimble near the critical point of𝑊 corre-
sponding to pt𝛼.

• Use the recursion

(𝑅𝑘)𝛼𝑗 = 􏿶𝐷 −
1
𝑁 􏿶

𝑁 + 3
2 − 𝑗 + 𝑘􏿹(1 − 𝑌)􏿹(𝑅𝑘−1)𝛼𝑗−1

+ (𝑅𝑘)𝛼𝑗−1 +
𝑐𝑗
55 (1 − 𝑌)(𝑅𝑘)

𝛼
𝑗−𝑁

to induct on 𝑗.
Proof of Theorem 3.2.10. First, note that we have the base cases 𝑃0,3 = 1 due to Zagier-Zinger [ZZ08]
and

𝑃1,1 = −
1
2𝐴1 −

31
3 𝐵1 −

1
12(1 − 𝑌) −

25
12

due to Zinger [Zin09]. The relation

𝑃𝑔,𝑛+1 = (𝐷 + (𝑔 − 1)(2𝐵1 + 1 − 𝑌) − 𝑛𝐴1)𝑃𝑔,𝑛
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implies that we only need to prove 𝑃𝑔≥2 ∈ ℛ .
Consider the correlator (5𝑌)𝑔−1⟨ ⟩[0,1]𝑔,0 , which is a polynomial in 𝑌 of degree at most 𝑔 − 1. By the

stable graph sum formula, we have

(5𝑌)𝑔−1⟨ ⟩[0,1]𝑔,0 = 𝑃𝑔 +􏾜
Γ
ContΓ .

For all non-leading graphs, we use the relation ∑𝑣(𝑔𝑣 − 1) + |𝐸| = 𝑔 − 1 to assign powers of 𝑌 to all
of the edges. Then the contributions from vertices are given as follows:

• At a level 0 vertex, the contributions are simply

𝑌𝑔𝑣−1􏾊𝜑𝑏1𝜓̄
𝑎1
1 , … , 𝜑𝑏𝑛𝑣 𝜓̄

𝑎𝑛𝑣𝑛𝑣 􏽽
𝑍5

𝑔𝑣,𝑛𝑣
,

which reduces to 𝑃𝑔𝑣,𝑚 by the string and dilaton equations.
• At a level 1 vertex, the contribution is

􏾜
𝑚

𝐿3(𝑔𝑣−1)
𝑚! 􏾊𝐿𝑗1−𝑘1𝛼 𝜓̄𝑘11 , … , 𝐿

𝑗𝑛𝑣−𝑘𝑛𝑣𝛼 𝜓̄𝑘𝑛𝑣𝑛𝑣 , 𝑇̃𝑚𝛼 􏽽
𝑔𝑣,𝑛𝑣+𝑚

.

After summing over all 𝛼, we see that this is nonzero only if the total power of 𝑡𝛼 is a multiple
of 𝑁 (here, we may want 𝑁 to be a prime number).

Using the fact that the contribution from an edge between two level 1 vertices satisfies a balancing
condition, the total factor of the 𝐿𝛼 for the various 𝛼 becomes 1. This implies that ContΓ ∈ ℛ for
any non-leading Γ, so we must have 𝑃𝑔 ∈ ℛ .
Remark 3.2.13. We can recover the genus one mirror theorem very quickly using the results we
have already proved. If we consider the correlator

􏾉𝑝􏽼[0,1]1,1 = const,

there are only two stable graphs. The contribution of the stable graph with a genus 1 vertex at the
quintic is given by

1
𝐼0
􏾊𝑅(𝑧)−1𝑝|𝑍5􏽽

𝑍5

1,1
= 􏾉−𝐵1𝜓̄1 + 𝐼11𝐻􏽼

𝑍5
1,1

= 𝑃1,1 +
200
24 𝐵1.

The other graph contributes
1
2(𝐴1 + 4𝐵1 +

2
5(1 − 𝑌))

at level 0. Finally, we can prove that the total contribution from level 1 is a degree 1 polynomial in
𝑌, so using the known values of 𝑁1,1 and ⟨𝐻⟩𝑍1,1,0 fixes the two coefficients of 𝑌.
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Remark 3.2.14. The formula

𝑃1,1 = −
1
2𝐴1 + 􏿶

𝜒(𝑍)
24 − 2􏿹𝐵1 −

1
12(1 − 𝑌) −

1
24 􏾙𝑍

𝑐2(𝑍) ⋅ 𝐻

is expected to hold for all of the examples in Table 1.2, where we denote the Calabi-Yau threefold
by 𝑍. It has been proven for hypersurfaces in weighted projective space by the author [Lei24b].

3.2.6 Mirror symmetry picture
Recall that mirror symmetry is for families

𝒵 = (𝑍,𝜔) 𝒵 ∨ = (𝑍∨, 𝐽)

ℳ ⊂ ℳ ∋ 𝑄 ℳ ∨ ⊂ ℳ
∨
∋ 𝑞.

On the A-side, we have bases 𝜙𝑖 ∈ 𝐻1,1(𝑍)mirror to 𝑒𝑖 ∈ 𝐻2,1(𝑍∨). On the B-side, near the maximal
unipotent monodromy point, we have periods

𝐼0 = 􏾙
Γ0
Ω(𝑞) = 1 + 𝑂(𝑞);

𝐼1,𝑖 = 􏾙
Γ𝑖
Ω(𝑞) = log 𝑞𝑖 +⋯ .

Then we will have the mirror map given by

𝑄𝑖 = 𝑒
𝐼1,𝑖
𝐼0 ,

so we see that
𝜙𝑗 =􏾜

𝑖

𝜕 log𝑄𝑗

𝜕 log 𝑞𝑖
𝑒𝑖.

Using the B-model basis, we define the Yukawa coupling

𝑌𝑖𝑗𝑘 ≔ 𝐼20􏾊𝑒𝑖, 𝑒𝑗, 𝑒𝑘􏽽
𝑍

0,3
,

which is a rational function over ̄ℳ .
Remark 3.2.15. Physicists have more predictions about the Yukawa couplings, including pole or-
ders.

In the case of the quintic 𝑍5 ⊂ ℙ4, there is only one Kähler parameter, and the Yukawa coupling
is simply

𝑌 = 1
1 − 55𝑞 .
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For 𝑍3,3 ⊂ ℙ2 × ℙ2, the Yukawa couplings are symmetric under permuting 1 and 2 and are given
by

𝑌111 =
34𝑞1(2 + 33𝑞1 + 33𝑞2)

Δ ;

𝑌112 =
(1 − 33𝑞1 − 33𝑞2)(1 + 2 ⋅ 33𝑞1 − 33𝑞2)

Δ ,

where the discriminant Δ is given by

Δ = (1 − 33𝑞1 − 33𝑞2) − 39𝑞1𝑞2.

In higher genus, we define
𝑃𝑔,𝑎 ≔

1
𝐼2𝑔−20

􏾊𝑒𝑎, … , 𝑒𝑎𝑛􏽽
𝑋

𝑔,𝑛
.

Conjecture 3.2.16 ([BCOV94]). Define

𝑓𝑔,𝑎 ≔ 𝑃𝑔,𝑎 + lower order,

where the lower order terms come from a sum over stable graphs. This 𝑓𝑔,𝑎 is a rational function in 𝑞 and
after normalization by some power of the Yukawa couplings is a polynomial of degree at most 3𝑔 − 3 + 𝑛.
Example 3.2.17. In the case when 𝑔 = 2, the contributions to 𝑓2 come from the graps in Figure 3.8.
We put 𝑆𝑖𝑗 on each edge and at each vertex, we place

2 1 1 1 1 0

0 0 0 0 0

Figure 3.8: Stable graphs of genus 2 with no marked points.

􏾊𝑒𝑖1 , … , 𝑒𝑖𝑛􏽽
𝐵

𝑔,𝑛
≔ 𝐼−(2𝑔−2)0 􏾊𝑒𝑖1 , … , 𝑒𝑖𝑛􏽽

𝐴

𝑔,𝑛
− (𝑛 − 1)!𝛿𝑔,1𝛿𝚤⃗,0⃗,

where we replace all 𝑒0 by 𝜓̄ and there is a correction term in genus 1with only ancestor insertions.
This Feynman graph sum can be realized using geometric quantization. In particular, consider

the matrix

𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑧𝐾𝑖 𝑧2𝑆𝑖 𝑧2(𝑆 + 𝑆𝑖𝐾𝑖)
𝐼 𝑧𝑆𝑖𝑗 𝑧2(𝑆̃𝑖)𝑇

𝑈 𝑧𝐾𝑇𝑖
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 􏿶

𝐴 𝐶
𝐷􏿹 ,
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which is explicitly defined using BCOV’s propagators [BCOV94]. This is symplectic with respect
to the pairing

􏾉𝑓, 𝑔􏽼 = Res𝑧=0(𝑓(−𝑧), 𝑔(𝑧)).
Therefore, we may define its geometric quantization by

𝑅̂𝐹(𝑥) ≔ 􏾙
ℝℎ+1×ℝℎ+1

𝑒
1
2𝑄(𝑥

′,𝑝′)−𝑥′⋅𝑝′+𝐹(𝑥′) d𝑥d𝑝,

where 𝑄 is a quadratic form given by

𝑄 = 􏾊𝑝,𝐷−1𝑥􏽽 −
1
2􏾊𝑝,𝐷

−1𝐶𝑝􏽽.

We will view 𝑅 ∈ End𝐻𝐵, where

𝐻𝐵 = span􏿺𝑒0𝑧−2, 𝑒𝑖𝑧−1, 𝑒𝑖, 𝑒0𝑧􏿽.

It naturally acts on Givental’s symplectic vector space, but we can restrict it to a finite-dimensional
vector space 𝐻𝐴 (which is still larger than 𝐻𝐵). We will call it 𝑅𝐴 when acting on 𝐻𝐴 and 𝑅𝐵 when
acting on 𝐻𝐵.
Remark 3.2.18. Note that Givental’s graph sum contains more information than BCOV’s graph sum
coming from the extra basis elements.
Theorem 3.2.19. Here, we restrict to the case of the quintic. Let • denote either 𝐴 or 𝐵. Denote

𝑓•(𝑥, 𝑦) ≔ 𝑅̂•𝐹•(𝑥, 𝑦),

where we define
𝐹•(𝑥, 𝑦) ≔􏾜ℏ𝑔−1𝐹•𝑔,𝑚,𝑛

𝑥𝑚𝑦𝑛
𝑚!𝑛! .

Then we have the identity
𝑓𝐵𝑔,𝑚,𝑛 = 𝑓𝐴𝑔,𝑚,𝑛 − 𝛿𝑔,1𝛿𝑚,0(𝑛 − 1)!.

In other words, there is the commutative diagram

𝑓𝐴𝑔,𝑚,𝑛 𝑓𝐵𝑔,𝑚,𝑛

𝐹𝐴𝑔,𝑚,𝑛 𝐹𝐵𝑔,𝑚,𝑛.

−𝛿𝑔,1𝛿𝑚,0(𝑛−1)!

−𝛿𝑔,1𝛿𝑚,0(𝑛−1)!
𝑅̂𝐴 𝑅̂𝐵

3.2.7 MSP realization of the Feynman rule
Recall that MSP for the quintic is given by the charges

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜌 𝜇 𝜈
ℒ 1 1 1 1 1 −5 1
𝜔log 1
𝒩 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Virtual localization gives us the fixed loci

𝑊(ℂ×)𝑁 = 𝑍5 ⊔ 𝑁pt,

where𝑊 = (𝑥51 +⋯+ 𝑥55 = 0) ⊂ ℙ4+𝑁 . At the level of CohFTs, recall that we had an identity

Ω [0,1] = 𝑅.(Ω𝑍5 ⊕Ω𝑁pt).

One advantage of increasing 𝑁 is that it makes the Dijkgraaf-Witten map 𝜏 (which sends 𝐼(−𝑧)
onto the slice ofℒ loc coming from 𝐻∗(𝑍5) ⊕ 𝐻∗(𝑁pt)) very nice. The actual values of 𝜏 on compo-
nents were given in Section 3.2.3. If we compute the edge contribution𝑉00 connecting two vertices
at level 0, this will be exactly the propagators as 𝑁 → ∞.

Our goal is to use the polynomiality of Ω [0,1] to deduce polynomiality of the CohFT

𝑅𝐴.Ω𝑍5 .

We will consider the factorization
𝑅 = 𝔾 ⋅ 􏿶

𝑅𝐴
𝐼𝑁×𝑁􏿹

,

which factorizes
Ω [0,1] = 𝔾.(𝑅𝐴.Ω𝑍5 ⊕Ω𝑁pt).

It now suffices to prove that 𝔾 preserves polynomiality, and in fact we see that the entries of 𝔾 lie
in ℚ[𝑌] with explicit degree bounds.

3.2.8 FJRW theory of the quintic
The unfortunate issue with the MSP moduli space of the quintic is that there are𝑁 vertices at level
∞. Instead, wewill consider𝑁 copies of the field 𝜈. To calculate FJRW invariants, we will set 𝑑0 = 0
and 𝑑∞ = 𝑑. One nice feature of this is that the moduli space has no vertices at level 0, so we do not
need to prove irregular vanishing.

The ambient space of the target is Tot(𝒪ℙ(1,…,1,5)(−1)⊕5). Virtual localization will give 𝑁 isolated
points and the FJRW theory as fixed loci. When computing using MSP, there is a factorization
𝑅 = 𝑅locΔ, where 𝑅loc comes from virtual localization and Δ comes from Grothendieck-Riemann-
Roch. In this model, neither step preserves the unit, but their composition does preserve the unit,
and therefore we obtain

𝑅.(ΩFJRW ⊕Ω𝑁pt) = Ω [1,∞].

3.2.9 Multi-parameter models
We will consider only a 1-parameter deformation of the GLSM for 𝑍3,3 ⊂ ℙ2 × ℙ2. This is given by
the charges ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜑6 𝜌 𝜇 𝜈
ℒ1 1 1 1 −3 1 0
ℒ2 1 1 1 −3 0 0
𝜔log 1
𝒩 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The fixed loci are now LG, ℙ2, and 𝑍3,3. We then have the identities

Ω[0,1]
1 = 𝑅1.(Ω𝑍3,3 ⊕Ω𝑁ℙ2 );

Ω[0,1]
2 = 𝑅2.(Ω𝑍3,3 ⊕Ω𝑁ℙ2 ).

Note that Ω[0,1]
1 is polynomial only in 𝑞1 and Ω[0,1]

2 is polynomial only in 𝑞2. We then find that
𝑅𝐴1 = 𝑅𝐴2 , and so in fact we have

Ω[0,1]
1 = 𝔾1.(𝑅𝐴.Ω𝑍3,3 ⊕Ω𝑁ℙ2 );

Ω[0,1]
2 = 𝔾2.(𝑅𝐴.Ω𝑍3,3 ⊕Ω𝑁ℙ2 ),

where𝔾𝑖 is polynomial in 𝑞𝑖 (with no bound in the other Kähler parameter). The first identity gives
polynomiality in 𝑞1 and the second gives polynomiality in 𝑞2.

𝑑1

𝑑2
3𝑔 − 3

Figure 3.9: MSP bounds (gray) and sharp bounds (blue) for 𝑍3,3 ⊂ ℙ2 × ℙ2.

Remark 3.2.20. The bound obtained using MSP for this example is not sharp, for example see Fig-
ure 3.9.
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