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Fan (Feb 09): D-modules, bare minimumz, part 1

For now, let X = SpecA be a smooth affine variety over C.

Definition 1.0.1. A differential operator of order ⩽ i is a C-linear D : A→ A such that for any ϕ ∈ A,
[D,ϕ] is a differential operator of order ⩽ i− 1. In other words, for any ϕ0, . . . ,ϕn ∈ A, we have

[ϕn, . . . , [ϕ2, [ϕ1, [ϕ0,D]]]] = 0.

We will call the set of differential operators of order ⩽ i Di. We will see later that OX ∼= D0,
OX ⊕ TX ∼= D1, and GriD ∼= SymiOX TX. Some other facts are:

• D is generated by OX,TX under the rules

ϕ1 ∗ϕ2 = ϕ1ϕ2 ϕ ∗ ξ = ϕξ ξ1 ∗ ξ2 − ξ2 ∗ ξ1 = [ξ1, ξ2] ξ ∗ϕ−ϕ ∗ ξ = ξ(ϕ).

• For any ϕ ∈ A, Aϕ ⊗ADi(A) ∼= Di(Aϕ).

We will now prove these facts. First, OX ∼= D1(X) by ϕ 7→ ·ϕ and D 7→ D(1). On the other
hand, we note that OX ⊕ TX → D1 is given by ϕ⊕ ξ 7→ (·ϕ) + ξ(−) and D 7→ D(1)⊕ [D,−].

Lemma 1.0.2. We have Di ·Dj ⊆ Di+j and [Di,Dj] ⊆ Di+j−1.

Proposition 1.0.3. There is a canonical map SymOX
TX → DX.

On one hand, note that TX ≃ Gr1(D). Taking symmetric powers of this, we obtain a map
SymTX → GrD.

To define the inverse, note that we have a morphism in degree 0 already. Inductively, we
consider the map

OX ⊗DnX → Grn−1 DX ϕ⊗D 7→ [D,ϕ].

This kills OX⊗Dn−1
X , so it descends to OX⊗GrnDX. Inductively, we use the adjunction to obtain

GrnDX → Der(OX, Symn−1
OX

TX) = HomOX
(ΩX, Symn−1

OX
TX) = Symn−1

OX
TX ⊗ TX → Symn TX.

It is easy to check that this is an inverse.
We will now consider generation of D by O and T. We will endow O⊕ T with the Lie bracket

{ϕ1,ϕ2} = 0, {ξ,ϕ} = ξ(ϕ), {ξ1, ξ2} = [ξ1, ξ2].
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We will show that
DX = U(OX ⊕ TX)/ ⟨ϕ1 ∗ϕ2 = ϕ1ϕ2,ϕ ∗ ξ = ϕξ⟩ .

Clearly there is a map ϕ 7→ ϕ, ξ 7→ ξ, whose source we call U. The commutation relations imply
that GrU is commutative, so we have a surjection

SymOX
Tx ↠ GrU → GrDX.

Clearly, we see that GrU → DX is an isomorphism, so U → DX is an isomorphism.
Finally, consider the map Aϕ ⊗Di(A) → Di(Aϕ) given by

ψ

ϕn
⊗D 7→ 1

ϕn
D(ψ) −

1
ϕn

fi−1
(
ψ

ϕn
⊗ [D,ϕn]

)
.

Clearly this is well-defined, so it suffices to check that Aϕ ⊗ GriD(A) → GriD(Aϕ) is an
isomorphism. But both sides are Aϕ ⊗ Symi TA = Symi TAϕ , and by exactness of localization we
are done.

Now that we have a sheaf DX, we will define DX-modules.

Definition 1.0.4. A left DX-module is a quasicoherent sheaf with a left DX-action.

Example 1.0.5. Clearly DX and OX are DX-modules. On the other hand, if kx is the skyscraper
sheaf at x ∈ X, then kx ⊗DX is a right DX-module.

Proposition 1.0.6. Let F,F ′ ∈ DX−Mod. Then

• F⊗F ′ is a left DX-module with the formula

ξ(v⊗ v ′) = ξv⊗ v ′ + v⊗ ξv ′.

• HomOX
(F,F ′) is a left DX-module by

(ξf)(v) = ξ(f(v)) − f(ξ(v)).

The analogous statement is true for right modules.

• If G is a right DX-module, then G⊗F is a right module by

(w⊗ v)ξ = wξ⊗ v−w⊗ ξv.

• HomOX
(F,G) is a right module by

fξ(v) = f(v)ξ+ f(ξv).

Recall that TX acts on ΩnX by the Lie derivative. Then detΩX admits a right DX-module
structure by w · ξ = −Lieξω.

Definition 1.0.7. Define the right DX-module ΩDX by

ΩDX
:= detΩX ⊗DX.
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Now if F is a left DX-module, then we see that

ΩDX ⊗DX F = detΩX ⊗OX F

is a right DX-module. Now if G is a right DX-module, then

Hom
D

op
X
(ΩDX ,G) ∼= HomOX

(detΩX,G)

= G⊗OX(detΩX)∨

= G⊗DX Hom
D

op
X
(ΩDX ,DX).

We will call this sheaf Ω†DX .

Proposition 1.0.8. The functors detΩX⊗OX − and HomOX
(detΩX,−) give an equivalence of categories

between DX−Mod and Mod−DX.

Proof. We will prove an adjunction

Ψ : Hom
D

op
X
(detΩX ⊗−,−) → HomDX(−, HomOX

(detΩX,−)).

This will be defined by

Ψf(ξv) = ξΨf(v) = ξ(ω 7→ f(ω⊗ v)) = −f(ω⊗ v)ξ+ f(ξω⊗ v).

Here, we note that f(ξω⊗ v) − f(ω⊗ ξv) = f((ω⊗ v)ξ), so we have the adjunction. We only need
to check that the unit and counit are isomorphisms now. Here, we have

detΩX ⊗OX HomOX
(detΩX,F) = detΩX ⊗F⊗ (detΩX)∨

= F,

and the unit is similar.
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Fan (Feb 16): D-modules, bare minimumz, part 2

Our goal is the following underived theorem:

Theorem 2.0.1 (Kashiwara). Let ι : X→ Y be a closed immersion. Then there exist functors

ι+ : DX−Mod → DY−ModX, ι+ : DY−ModX → DX−Mod

giving an equivalence of categories.

Definition 2.0.2. Let f : X→ Y be a morphism. Then the D-module pullback f∗ is defined by

f∗F = OX ⊗f−1OY
f−1F

with the DX-action given by
ξ(ϕ⊗ v) = ξ(ϕ)v+ϕdf (ξ)v.

2.1 Transfer modules

Definition 2.1.1. Define the transfer module DX→Y := f∗DY .

Now that we have this definition, it is clear that f∗F = DX→Y ⊗f−1DY
f−1F.

Definition 2.1.2. Define the functor f+ : DX−Mod → DY−Mod by

f+F = Hom
D

op
Y
(ΩDY , f∗(ΩDX ⊗DX F⊗DX DX→Y)).

After symbol pushing, we obtain

f+F = HomOY
(detΩY , f∗(detΩX)⊗OX F⊗DX DX→Y)

= HomOY
(detΩY , f∗(detΩX ⊗OX DX→Y ⊗DX F))

= f∗HomOX
(f∗ detΩY , detΩX ⊗OX DX→Y ⊗DX F)

= f∗
(
(detΩX)⊗OX DX→Y ⊗DX F⊗OX f

∗ detΩ∗Y
)

= f∗((detΩX ⊗OX DX→Y)⊗DX (F⊗OX f
∗ detΩ∗Y))

= f∗(detΩX ⊗OX DX→Y ⊗OX f
∗ detΩ∗Y ⊗DX F).

This motivates the following definition:
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Definition 2.1.3. Define the other transfer bimodule by

DY←X := detΩX ⊗OX DX→Y ⊗OX f
∗ detΩ∗Y

= ΩDX ⊗DX DX→Y ⊗f−1DY
f−1(DY ⊗OY detΩ∗Y).

Now we have f+F = f∗(DY←X ⊗DXF).

If ι : X→ Y is a closed immersion, then ι+ is right exact. We hope that an adjoint exists, and in
fact we will define a candidate.

Definition 2.1.4. Define the functor ι+ : DY−Mod → DX−Mod by

ι+F := Homι−1DY
(DY←X, ι−1F).

Example 2.1.5. Let {xi,∂i} be a local étale coordinate system on X. Then write ξ(x,∂) =∑
α pα(x)∂

α. Now we define

ξ+(x,∂) =
∑

(−1)
∑
α∂αpα(x).

This is an anti-homomorphism of DX. Defining a right action on ΩDX ⊗ F by vξ = ξ+v, this is
the left-right flip.

Example 2.1.6. Now let {yi,∂i} be a coordinate system on Y and suppose X is cut out by ym =
· · · = yn = 0. Then we have

DX→Y = OX ⊗ι−1OY
ι−1OY [∂1, . . . ,∂m]⊗C C[∂m+1, . . . ,∂n]

= DX ⊗C C[∂m+1, . . . ,∂n].

On the other hand, we have DY←X = C[∂m+1, . . . ,∂m]⊗C DX.

2.2 Proof of Kashiwara

We will first prove an adjunction. In fact, we will prove the adjunction on the level of sheaf Homs.
But this reduces to

HomDY
(ι∗(DY→X ⊗DX F),G) = ι∗Homι−1DY

(DY←X ⊗DX F, ι−1G).

There is a natural morphism coming from G → ι∗ι−1G, so we only need to check locally that this
is an isomorphism. But now the left hand side becomes

HomDY
(ι∗(C[∂n+1, . . . ,∂m]⊗C F),G) = HomDY

(ι∗(C[∂]⊗C F), ΓXG)

= ι∗Homι−1DY
(C[∂]⊗C F, ι−1ΓXG),

where ΓXG is the subsheaf with supports in X (note notation is different from Hartshorne).
We will now prove that the units and counits are isomorphisms. We can do this affine locally, so

we will choose an étale coordinate system {yi,∂i} on Y. We will assume that X = V(yn+1, . . . ,ym),
and in particular we can reduce to the case where X = V(ym). We will simply write y := ym for
simplicity. First, consider

η : F → Homι−1DY
(DY←X, ι−1ι∗(DY←X ⊗DX F))

= Hom(ι−1DY)(C[∂]⊗C DX, C[∂]⊗C F).
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This is determined by f(1 ⊗ 1) such that yf(1 ⊗ 1) = 0. Write f(1 ⊗ 1) =
∑
k ∂
k ⊗ vk. Because

[∂,y] = 1, we have [y,∂k] = −k∂k−1 and [∂,yk] = kyk−1. Now we have

y
∑

∂k ⊗ vk =
∑

y · ∂k ⊗ vk +
∑

∂k ⊗ yvk

=
∑

[∂k,y]⊗ vk

=
∑

k∂k−1 ⊗ vk.

This is nonzero unless vk = 0 for all k > 0, so f(1 ⊗ 1) = 1 ⊗ v0.
Now consider

εF : ι∗(DY←X ⊗DX Homι−1DY
(DY←X, ι∗F)) → F.

Locally, the left hand side is simply ι∗(C[∂] ⊗C Homι−1DY
(C[∂] ⊗C DX, ι−1F)). Consider the

operator y∂ : F → F. Then define Fk = ker(y∂− ·k). We now have

y∂ · yv = (y[∂,y] + y2∂)v = (k+ 1)yv

and
y∂ · ∂v = ∂y∂v− [∂,y]∂v = (k− 1)∂v,

so we see that y,∂ act like shift operators. Now define Fk = ker(yk) ⊂ F. Then we will show
that Fk ⊆ F−1 ⊕ · · · ⊕ F−k. To show this, we will use induction. If v ∈ kery, then y∂v = −v, so
v ∈ F−1. For the inductive step, we note that if v ∈ Fk, then

yv ∈ Fk−1 ⊆ F−1 ⊕ · · · ⊕F−(k−1).

Thus ∂yv ∈ F−2 ⊕ · · · ⊕F−k. Then

0 = ∂ykv = yk∂v+ kyk−1v = yk−1(y∂v+ kv),

so y∂v+ kv ∈ F−1 ⊕ · · · ⊕F−(k−1), and thus

y∂v+ kv− ∂yv ∈ F−1 ⊕ · · · ⊕F−k.

Because F is supported on X, we have F =
⋃∞
k=1 Fk ⊆ F−1 ⊕ · · · , and thus

F = F−1 ⊕ · · · = C[∂]⊗C F−1.

But now f ∈ Homι−1DY
(C[∂]⊗C DX, ι−1(C[∂]⊗C F−1)) is determined by f(1 ⊗ 1) and must be

killed by y, so Hom = F−1.
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Fan (Mar 02): D-modules, bare minimumz, part 3

Recall that we have an underived version of Kashiwara. We will prove that

Proposition 3.0.1. If a DX-module is coherent over OX, then it is locally free over OX.

Also, we will prove

Proposition 3.0.2. Let X ⊂ Y be a smooth closed subvariety. Then there exists a functor ι† such that
ι† = Rι+.

Finally, we will prove

Theorem 3.0.3. There exists a functor i⋆ : Db(DX−Mod) → Db(DY−ModX) such that ι†, ι⋆ give an
equivalence of categories.

3.1 Proof of first proposition

Note that local freeness can be checked at stalks. Also, flatness can be checked at stalks. Over
local rings, flat is equivalent to free. Finally, for finite modules over a reduced Noetherian ring,
flatness is the same as the rank of M⊗ k(p) being locally constant. Then, any two closed points
on a smooth variety can be connected by (a chain of) smooth curves. Therefore, we can reduce to
the case when X is a smooth curve.

First, we will show that F is torsion-free. If F has torsion at x, then there exists G ⊂ F supported
at x, so by Kashiwara, there exists H ∈ Dx−Mod such that

G = ιx+H

= ιx∗(DX←x ⊗C H)

= (ιx)∗([∂]H),

which is not coherent. But now F is not coherent. Now because X is smooth, OX,x is a DVR, and
in this case, being torsion free is the same as being free.

3.2 D-modules on singular varieties

Now suppose X is singular and affine. Choose X ↪→ Y = An, and then define DX−Mod to be
DY−ModX, and this automatically satisfies Kashiwara. This is compatible with diagrams of the
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form
X Y1

Y2 Z.

We will not consider singular things, so we will not need this in the future.

3.3 Construction of functors

We will define the functors we want to study. First define f† : Db(DY−Mod) → Db(DX−Mod) by

f† = Lf∗[dimX− dim Y],

where the shift apparently makes the Riemann-Hilbert correspondence more convenient.
On the other side, define f⋆ : Db(DX−Mod) → Db(DY−Mod) by

f⋆ = Rf∗(DY←X ⊗LDX −).

Theorem 3.3.1 (Bernstein). Let X be separated and Noetherian. If R is a sheaf of OX-algebras, quasicoher-
ent as an OX-module. Let Dbqc(R−Mod) be those with quasicoherent cohomology. Then

Db(QCoh(R)) → Dbqc(R−Mod)

is induced by the inclusion of quasicoherent modules into all modules.

Example 3.3.2. If j : X→ Y is an open embedding, then j∗ is exact and DX→Y is precisely DX, so
in fact j† = j−1. Also,

DY←X = ΩDX ⊗DX→Y ⊗ j−1DΩY

= ΩDX ⊗DX ⊗DΩX

= DX,

and therefore j+ = j∗(DY←X ⊗−) = j∗, and thus j⋆ = Rj∗.

Example 3.3.3. Let ι : X→ Y be a closed embedding. Choose coordinates yi,∂i of Y such that X is
cut out by yn+1 = · · · = ym = 0. Then we know

OX ≃ K•(IX) =
m⊗

i=n+1

(ι−1OY
yi−→ ι−1OY),

wnere 0 → Km−n → · · · → K0 → OX → 0 is a resolution of ι−1OY-modules. Note that

Kk =

k∧(
m⊕

i=n+1

ι−1OY dyi

)

and that

dk(ϕ · · ·dyi1 ∧ · · ·∧ dyik) =
k∑
j=1

(−1)j+1yijϕ(dyi1 , . . . , dŷij , . . . , dyik).
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Applying −⊗ ι−1DY , we obtain a resolution

K• ⊗ι−1OY
ι−1DY → DX→Y

of locally free ι−1DY-modules. Therefore we have

ι†F = K• ⊗ι−1OY
ι−1F[n−m].

On the other hand, DY←X is locally free as a right DX-modules, so ι⋆ = ι+.

3.4 Proof of second proposition

First, we will show that Lι∗G[n −m] = RHomι−1DY
(DY←X, ι−1G). But it suffices to see that

DX→Y [n−m] = RHomι−1DY
(DY←X, ι−1DY). Now it suffices to show that

RHom
ι−1D

op
Y
(DX→Y , ι−1DY) = DY←X[n−m].

Note that Km−n = ι−1 detΩY has rank 1, so there exists a canonical pairing Kj ⊗ Km−n−j →
Km−n such that

Homι−1OY
(Kj, ι−1OY) = K

m−n−j ⊗ι−1OY
Homι−1OY

(Km−n, ι−1OY).

Therefore

RHom
ι−1D

op
Y
(DX→Y , ι−1DY) = RHom

ι−1D
op
Y
(OX ⊗ι−1OY

ι−1DY , ι−1DY)

= RHomι−1OY
(OX, ι−1DY)

= ι−1DY ⊗ι−1OY
RHomι−1OY

(OX, ι−1OY)

= ι−1DY ⊗K•[n−m]⊗ Homι−1OY
(ι−1 detΩY , ι−1OY).

Comparing this to

detΩX ⊗K• ⊗ ι−1DY = ΩDX ⊗DX→Y ⊗ ι−1DΩY = K• ⊗ ι−1DY ⊗ ι−1 detΩ∗Y ,

we have the desired result.
Next, we will show that RHomι−1DY

(DY←X, ι−1−) ∼= Rι+ in Db(Mod(Y)). Recall from the
proof of Kashiwara that

ι+ = Homι−1DY
(DY←X, ι−1ΓX(−)).

We will prove the derived version of this. Note that ι−1ΓX is exact, so it sends injectives to
injectives. We now claim that the map

RHomι−1DY
(DY←X, ι−1RΓXG) → RHomι−1DY

(DY←X, ι−1G)

induced from RΓXG → G is an isomorphism. This is by an exact triangle

RΓX(−) → (−) → Rj∗j
−1(−)

+1−−→ .

It suffices to show that RHomι−1DY
(DY←X, ι−1Rj∗j−1G) = 0. But this is because

ι∗(OX ⊗L ι−1Rj∗F) = ι∗OX ⊗L Rj∗F
= Rj∗(j

−1ι∗OX ⊗L F).

By vanishing of j−1ι∗OX = 0, we are done.
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3.5 Proof of Theorem

Finally, the proof of the derived version of Kashiwara follows from the underived version by an
inductive argument using truncation functors, which is not reproduced here.1

1Following the example of someone who decided to ditch us for Berkeley.
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Fan (Mar 09): brief interlude: refresher on algebraic groups

We will call GLn the general linear group, Bn the upper triangular matrices, Un the nilpotent
part, and Tn the maximal torus.

Example 4.0.1. Here are some examples of group schemes. First, we have Gm = Spec C[t, t−1],
whose functor of points is A 7→ A×. Analogously, we have GLn = Spec C[tij, det−1] which has
functor of points A 7→ GLn(A).

Proposition 4.0.2 (Cartier). In characteristic 0, all algebraic groups are smooth.

Proposition 4.0.3. For algebraic groups, smooth is the same as geometrically reduced.

It should be clear what it means to be a sub-group scheme and a normal sub-group scheme.
In fact, if H ⊆ G is an algebraic subgroup, the inclusion H→ G is a closed immersion.

Proposition 4.0.4. For algebraic groups, connected is the same as being irreducible.

For a homomorphism of algebraic groups G→ H, we have a kernel. Then

1 → A→ B→ C→ 1

is exact if A maps isomorphically to the kernel of B→ C and B→ C is faithfully flat. In fact, any
G→ H factors as G→ image ↪→ H into a faithfully flat map followed by a closed immersion. As
one would expect, we can construct stabilizers of Y ⊆ X when G acts on X. As a special case of
this, we can construct normalizers and centralizers of subgroups.

Example 4.0.5. Some other classical examples of algebraic groups are given by

• SLn = Spec C[tij]/(det−1);

• SO2n+1 = A 7→
{
g ∈ SL2n+1(A) | g

T

(
1

In
In

)
g =

(
1

In
In

)}
.

• SO2n = A 7→
{
g ∈ SL2n(A) | g

T
(

In
In

)
g =

(
In

In

)}
.

• Sp2n = A 7→
{
g ∈ SL2n(A) | g

T
(

−In
In

)
g =

(
In

−In

)}
.

Of course tori are defined to be Gnm.
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Definition 4.0.6. Suppose G,H are smooth and connected with φ : G→ H. Then φ is an isogeny
if kerφ is a finite algebraic group. In general G and H are isogenous if they are connected by a
zigzag of isogenies.

Theorem 4.0.7. An algebraic group G is affine if and only if G is a closed subscheme of GLn.

We will define GLV to be the functor A 7→ AutA(V ⊗k A), and a representation is a morphism
ρ : G→ GLV .

Definition 4.0.8. Let H ⊆ G be a subgroup. Then f : G→ X is H-invariant if G×H π1−→ G
f−→ X is

the same as G×H µ−→ G
f−→ X. Then f : G → X is a quotient of G by H if f is faithfully flat, f is

H-invariant, and if
G×H→ G×X G (g,h) 7→ (g,gh)

is an isomorphism.

All quotients G/H exist and are quasiprojective varieties. If H is a normal subgroup of G, then
G/H is also an algebraic groups. If G,H are affine and H is a normal subgroup, then G/H is also
affine. Note tha this fails for H not normal, because G/B is always projective.

Definition 4.0.9. A filtration or a subnormal series is a sequence

G = G0 ⊵ G1 ⊵ · · · ⊵ Gn = 1.

A composition series is a filtration where dimG0 > dimG1 > · · · For composition series, the
quotients are unique up to reordering and isogeny.

Definition 4.0.10. Define DG = [G,G]. Then the derived series of G is G ⊇ DG ⊇ D2G ⊇ · · · .

Definition 4.0.11. A subgroup G is solvable if DnG = 1. Equivalently, there exists a filtration with
abelian quotients.

Definition 4.0.12. A group G is unipotent if every representaiton has a fixed vector. Equivalently,
G is isomorphic to a subgroup of Un.

Definition 4.0.13. Let G be a smooth connected linear algebraic group. Then the radical RadG is
the maximal smooth connected solvable normal subgroup. In addition, the unipotent radical is the
smallest unipotent normal subgroup. G is semisimple if RadG = 1 and G is reductive if RaduG = 1.

Theorem 4.0.14 (Jordan decomposition). For g ∈ G(k), there exists a unique g = gssgu = gugss
such that

1. If G = GLn, then gss is semisimple (diagonalizable after field extension) and (gu − 1)n = 0 for
some n.

2. This decomposition is functorial under G→ H.

Definition 4.0.15. A group G is diagonalizable if G is isomorphic to a subgroup of Tn. Equivalently,
OG(G) is spanned by a such that ∆(a) = a⊗ a (grouplike elements).

Proposition 4.0.16. There exists an equivalence of categories between the opposite category of finitely-
generated Z-modules and diagonalizable algebraic groups given by M 7→ D(M) = (A 7→ Hom(M,A×))
and G 7→ χ∗(G) = Hom(G, Gm).

Definition 4.0.17. A group G is of multiplicative type if Gk = D(M)k for some finitely generated
abelian group M.



16

Having defined the characters χ∗(G), we can define the cocharacters

χ∗(G) = Hom(Gm,G) = Hom(χ∗(G), Z).

Definition 4.0.18. Let f : Gm → X. If there is an extension f̂ : A1 → X, then we can define
limt→0 f(t) = f̃(0). For λ : Gm → G, we have an action of Gm on G by conjugation. Then we can
define

P(λ) = {g ∈ G | lim tg exists}, U(λ) = {g ∈ G | lim tg = 1}, Z(λ) = {g ∈ G | tg = g}.

These are all subgroups of G.

Note that an action of Gm on G induces a decomposition

LieG = · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · ·

Then U(λ) corresponds to positive weights, P(λ) corresponds to nonnegative weights, and Z(λ)
corresponds to the weight 0 subspace.

Proposition 4.0.19. In characteristic 0, unipotent algebraic groups are the same as finite-dimensional
nilpotent Lie algebras.

Definition 4.0.20. A group G is trigonalizable if G is isomorphic to a subgroup of Bn. Equivalently,
every irreducible representation is finite-dimensional. Also, this is the same as G being an
extension of a diagonalizable group by a unipotent group.

Theorem 4.0.21 (Lie-Kolchin). (Split) solvable implies trigonalizable. In fact, for smooth connected
groups over an algebraically closed fields, the two conditions are equivalent.

Definition 4.0.22. A Borel subgroup of a group G is a maximal smooth connected solvable subgroup.

Borels are minimal parabolic subgroups. We then have G ⊃ B = NGB ⊃ CGT ⊃ T . We also
have N = NGT and B∩N = T . We define NGT/T to be the Weyl group. Also, all pairs (B, T) of a
Borel and a maximal torus are conjugate to each other. For G reductive, we have

G ⊃ B ⊃ C = T ⊃ ZG ⊃ RadG ⊃ RaduG = 1.

The quotient G/ZG is semisimple. For example, GLn/Gm = PGLn, which is isogenous to SLn.
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Fan (Mar 23): localization: d-modules and representationZ

We will warn that the things that we say may be slightly wrong because every source uses a
different convention. Here, localization will take the form

D−Mod/ ∼∼= Ug−Mod/ ∼,

where the D-modules live on G/B and everything is twisted in some way. The three ways to get
the D are by:

1. Using line bundles to twist DX;

2. Doing something like (DG/ ⟨λ− ξ(λ)⟩)B;

3. Taking some quotient of Ug̃ as a Lie algebroid.

All of these strategies are the same.

Definition 5.0.1. A sheaf F on X is G-equivariant if, considering act,π2 : G×X→ X, we equip F

with an isomorphism

φF : act∗ F → π∗2F

such that

1. φF |1×X = id;

2. We have the commutative diagram

(id × act)∗ act∗ F (id × act)∗π∗2F π∗3F

(mult×id)∗ act∗ F (mult×id)∗π∗2F π∗3F

φF id×φF

φF

on G×G×X.

17
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5.1 Universal enveloping algebras

Recall that a central character ϑ : Zg → C is the same as a W-orbit (by the dot action) on h∗ by
Harish-Chandra. Then we define

Ugϑ := Ug/ ker ϑ = Ug/ ⟨z− ϑ(z)⟩ .

Now let G(n) = SpecO(G)/mn+1
1 be the n-th infinitesimal neighborhood of the identity. Then

for an open set U ⊂ X, we obtain a sequence of morphisms

Γ(U,F) act∗−−→ Γ(G(n) ×X,F)
φF−−→ Γ(G(n),OG(n))⊗ Γ(U,F).

This is the same as the data of a map

(O(G)/mn+1
1 )∗ → EndC F(U).

Therefore, we have a morphism aF : Ug → EndC F(U). This satisfies for all ξ ∈ g,ϕ ∈ OX, v ∈ F

the identity
aF(ξ)(ϕv) = ϕaF(ξ)v+ aOX(ξ)(ϕ),

and in particular aOX : g → TX(U).

Definition 5.1.1. A Lie algebroid g̃ is a sheaf isomorphic to OX ⊗C g extending g such that

[ξ,ϕξ2] = ϕ[ξ1, ξ2] + aOX(ξ1)(ϕ)ξ2.

The corresponding construction for the universal enveloping algebra is Ug̃ = OX ⊗C Ug with a
product extending that of Ug such that

ξϕ−ϕξ = aOX(ξ)ϕ.

Now aF extends to ãF : Ug̃ → EndOX F. We can also write Zg̃ = OX ⊗C Zg. Here, we have

b̃ = ker(ãOX : g̃ → TX) =
{
ξ̃ ∈ g̃ | ξ̃(x) ∈ b(x) for all x ∈ X = G/B

}
.

Then for X = G/B, points of G/B are the same as choices of a Borel subgroup B ⊂ G. We can
similarly define ñ = [b̃, b̃]. For all λ ∈ h∗, we have

λ̃ : b̃ ↠ b̃/ñ = h̃ = OX ⊗C h
λ−→ OX.

In particular, we have a ρ̃.
Now we may define

Iλ(g̃) :=
〈
ξ̃− (ρ̃− λ̃)(ξ̃)

〉
Ug.

This is in fact a two-sided ideal, and so we define

DλX = Ug̃/Iλ(g̃).

In this perspective, we have a natural projection Ug̃ ↠ DλX and a natural sequence Ug ↪→
Γ(X,OX)⊗Ug → Γ(X,DλX).
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5.2 Line bundles

Let V be a module over B. Then define L(V) on X = G/B by

Γ(U,L(V)) =
{
ϕ ∈ Oπ−1(U) ⊗ V | ϕ(gb) = b−1ϕ(g)

}
.

Then we have a projection π : G×B V ↠ G/B. When V is actually a representation of G, then
L(V) ∼= OX ⊗C V . Then for a character λ, we can define

Lλ := L(C−λ).

Definition 5.2.1. An L-twisted differential operator of order ⩽ n is D : L → L such that for any
ϕi ∈ OX, we have [ϕn, . . . , [ϕ0,D]] = 0. The sheaf of such twisted operators is called DX,L.

Proposition 5.2.2. For any λ, we have DλX ∼= DX,Lλ−ρ .

Theorem 5.2.3 (Beilinson-Bernstein localization). There are equivalences of categories

Ugϑ−λ−ρ−Mod DλX−Mod

DλX⊗Ug−

Γ(X,−)

whenever λ is regular and dominant.

5.3 Taking B-invariants

Definition 5.3.1. A weakly B-equivariant D-module is a D-module that is B-equivariant as a
quasicoherent sheaf such that the morphism

DG ⊗OGF → F

is B-equivariant.

Consider the map aO : b → End(O(−)) ⊂ DX, which acts on F. Then we define a♮F := aF − aO.
This is in fact a Lie algebra homomorphism to End(F).

Definition 5.3.2. A D-module is strongly B-equivariant if a♮F = 0.

We now define the sheaf Dλ,b
G := DG/DG ⟨ξ− λ(ξ)⟩, which is weakly B-equivariant and has

a♮ = −λ. We will denote the category of weakly B-equivariant D-modules with a♮ = −λ by
DG−ModB,λ. To relate all of the notions we have defined so far, we have

DλX := End
DG−ModB,λ(D

λ,β
G )op = (Dλ,β

G )B.

In this situation, localization becomes

Theorem 5.3.3. We have an equivalence of categories

Ugϑτ(λ)−Mod ∼= Dλ,Gaits
X −Mod.
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Fan (Mar 30): proof of localization: d-modules and
representationz, part 1

6.1 An example with SL2

Let V be a module over B and consider π : G→ G/B = X. We will see that

Γ(U,L(V)) =
{
ϕ ∈ Oπ−1U ⊗ V | ϕ(gb) = b−1ϕ(g)

}
.

Here, L(λ) is the map B→ C× with weight λ. We will consider the case when G = SL2 and thus
G/B = P1.

If we set λ = nρ, then we see that

Γ(D(x),L(nρ)) =
{
ϕ | ϕ(aα,aβ+ bα−1, cα, cβ+ dα−1) = α−nϕ(a,b, c,d)

}
.

But this implies that ϕ ∈ x−nC[y, x], and a similar result is true for D(y). Therefore,

L(nρ) = OP1(−n).

Doing more computations, we note that the action of ∂z acts on D(xy), and in fact we obtain
∂z = −w2∂w +nw. We also have an action of G on DX,L(λ). On the chart D(x), we have

g ·ϕ :

(
x ?
y ?

)
7→ 1

(dx− by)n
P

(
−cx+ ay

dx− by

)
,

and we have ϕ = 1
xnP(z) on D(x) and 1

ynQ(w) on D(y). For the element e ∈ sl2, we note that

d
dt

∣∣∣∣
t=0

exp(te) ·ϕ = hzϕ(z) + z2∂zϕ(z)

on D(x) and −∂wϕ(w) on D(y). Therefore we have

e 7→

{
z2∂z +nz D(x)

−∂w D(y)
f 7→

{
−∂z D(x)

w2∂w +nw D(y)
h 7→

{
2z∂z +n D(x)

−2w∂w −n D(y).

Now we know that L(−nρ) = O(−n) ∈ D
−nρ
P1 −Mod. Taking global sections, consider the basis

vi = (−1)iwi. Then we see that evi = ivn−i, fvi = (n− i)vi+1,hvi = (n− 2i)vi, and this is the
representation Lnρ.

20
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6.2 Main results

There are a few key results:

Theorem 6.2.1. We have the identity

Ug/ϑλ = Γ(X,Dλ+2ρ
X ).

Theorem 6.2.2.

1. If λ is ρ-antidominant, then

Γ : Dλ+2ρ
X −Mod → Ug/ϑλ−Mod

is exact.

2. If λ is ρ-regular, then Γ is faithful.

Theorem 6.2.3. For the action of G on X, then

S•g/S•g · (S•g)G,+ ≃ Γ(X,S•OXTX).

The logical equivalences are that the first two theorems imply localization and that the third
implies the first. Also, Kostant implies the third theorem.

6.3 Proof of localization

Let A be a quasicoherent sheaf of algebras on X and A = Γ(X,A). Then A⊗A − and Γ(X,−) give
an equivalence between A-modules and A-modules. It is clear that ηM is an isomorphism to all
free M because Γ(X,A⊗A A) = A. But then for any M, if we consider a presentation

P1 → P0 →M→ 0

and note that ηPi are isomorphisms and the sequence stays exact after applying Γ(A⊗A −), we
see that ηM is an isomorphism.

To prove that the counit is an isomorphism, note that Γ is conservative, so it suffices to show
that Γ(εF) is an isomorphism. But here we have

id : Γ(F)
ηΓF−−→ Γ(A⊗A ΓF)

Γ(εF)−−−−→ ΓF,

so εF is an isomorphism.

6.4 The technical results

Next, note that if M is a Ug/ϑ-module for ϑ ̸= ϑλ, then Locλ+2ρM = D
λ+2ρ
X ⊗M = 0 because

D⊗M ∋ ξ⊗ v = ξ · (z− ϑ(z))
ϑλ(z) − ϑ(z)

⊗ v = 0.

Proposition 6.4.1. The map pλ+2ρ : Ug → Γ(X,Dλ+2ρ
X ) factors through Ug/ϑλ.
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Proof. Let Jλ := ⟨z− ϑλ(z) | z ∈ Zg̃⟩ ⊂ Ug. It suffices to show that

Jλ → Ug̃ ↠ D
λ+2ρ
X

is the zero map. For x ∈ X, note that

Cx ⊗Dλ+2ρ
x

∼= Ug/ ⟨ξ− (λ+ 2ρx)ξ | ξ ∈ hx⟩
= Cλ+2ρx ⊗bx Ug.

The action of Zg on this is actually ϑλ.
By the discussion from last semester, in the diagram

Zg S•h

S•h,

φHC

ψHC
λ7→λ−ρ

χλ = λ(ψHC(z)) is independent of the choice of Borel. Also, χλ = ϑλ−ρ because Zg acts on
Ug⊗Cλ by ϑλ, on Ug⊗bx Cλ by χλ+ρx , and therefore, taking the transpose, Ug acts on Cλ⊗bx Ug,
and Zg acts by χλ−ρx = ϑλ−2ρx .

Lemma 6.4.2. The inclusion Zg ↪→ Ug induces an isomorphism GrZg ∼= (S•g)G.

Third theorem implies first theorem. Note that Ug inherits the filtration from Ug and consider the
map pλ : Ug/ϑλ → Γ(X,Dλ+2ρ

X ). It suffices to show that the graded version of this is an isomor-
phism. Here we have a sequence of maps

S•g/(S•g)G,+ ↠ GrUg/ϑλ+2ρ → Gr Γ(X,Dλ+2ρ
X ) ↪→ Γ(X, GrDλX) ∼= Γ(X,S•OXTX),

whose total composition is an isomorphism. Here, the second map is Grpλ, the third map comes
from something like

Fi−1D
λ+2ρ
X → FiD

λ+2ρ
X → GriDλ+2ρ

X

and using left exactness of Γ . Finally, S•g → GrUg → GrUg/ϑλ factors through (GrZg)+.
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Fan (Apr 06): proof of localization: d-modules and
representationz, part 2

7.1 Comments on equivariant things

Let B act on Y. Recall the definitions of weakly B-equivariant and strongly B-equivariant D-
modules.

Proposition 7.1.1. Suppose ϖ : Y → X is a principal B-bundle. Then there is an equivalence between
DX-modules and strongly B-equivariant D)Y-modules given by F 7→ ϖ∗F and G 7→ GB.

Proposition 7.1.2. We have an equivalence DλX−Mod ∼= DY−ModB,a♮=−λ.

Proof. In general, if F is a quasicoherent sheaf on X, ϖ∗F is B-equivariant because the diagram

B× Y Y

Y X

π2

act

ϖ

ϖ

commutes. We also need to check compatibility with the DY-action, which means that

act∗(DY ⊗ϖ∗F) π∗2(DY ⊗ϖ∗F)

act∗(ϖ∗F) π∗2(ϖ
∗F)

commutes. Here, we are assuming that Y is locally X×B in the Zariski topology (this is true in the
cases we are interested in), so ϖ∗F = F⊠OB. Now F locally has trivial B-equivariant structure
and OB is strongly B-equivariant by definition, so ϖ∗F is also strongly equivariant.

Next, it is clear that

HomDX(F1,F2) = HomDX×BF1⊠OB,F2⊠OB

= HomDX(F1,F2)⊗ Hom
DX×B−ModB(OB,OB).

This implies that our assignment is fully faithful. Now for a strongly equivariant DY-module G,
we can write G = F⊠OB for some F on X. Finally, we check that

a
♮
F⊠OB

= aF⊠OB
− aOY = aF + aOB − aOB − aOX = aF − aOX = a♮F = 0.

23
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7.2 Proof of Theorem 6.2.2

First we will prove exactness. It suffices to show that

D
λ+2ρ
X −Mod → Ug/ϑλ−Mod → Vect

is exact. However, we identify the first term with DG−ModB,a♮=−(λ+2ρ), and then global sections
take us to g−Mod. This lands inside a non-finitely generated version of category O, and then we
take M 7→ (Mn)−(λ+2ρ) to get a vector space. But now

(Mn)−(λ+2ρ) = Homb(C−(λ+2ρ),M) = Homg(M−(λ+2ρ),M).

This is exact exactly when M−(λ+2ρ) is a projective Verma module, which follows from our
assumptions on λ.

Definition 7.2.1. A sheaf of twisted differential operators is a sheaf of OX-algebras with a filtration
such that

1. OX ↪→ D induces OX ∼= D⩽0;

2. The natural map SOXD
⩽1/D⩽0 → GrD is an isomorphism;

3. The map D⩽1/D⩽0 → TX given by ξ 7→ (ϕ 7→ ξϕ−ϕξ) is an isomorphism.

Note here that DλX = Ug̃/
〈
b̃ − λ(b̃)

〉
is a sheaf of twisted differential operators. This is because

the image of Iλ in Ug̃⩽1/Ug̃⩽0 is b̃, so we get an exact sequence

0 → b̃ → g̃ → TX → 0.

Next, the image of Iλ in Ug⩽i/Ug⩽i−1 is b̃ · SiOX g̃, so we have

GriDλX = Sig̃/b̃Sg̃ = Sig̃/b̃ = SiTX.

The next fact is that for any λ ∈ Λ, DλX = DX,L(λ). To see this note that L(λ) is G-equivariant,
so the map

ρ̃L(λ) : Ug̃ → DX,L(λ)

factors through Iλ because b acts on L(λ) by eλ for any x ∈ X.
Finally, we will accept as fact that G =

⊔
w∈W BwB, that X =

⊔
w∈W BwB/B, and if BwB/B =:

Xw, then
Xw =

⊔
u⩽w

Xu.

Let ιw : Xw ↪→ X. Here, we have

H∗(n+, Γ(X, ιw∗F)) = H∗dR(Xw,F)[ℓ(w)].

Now we are ready to prove faithfulness. Let F ∈ D
λ+2ρ
X −Mod. We want to show that

Γ(X,F) ̸= 0. Let Zk = Xk =
⊔
ℓ(w)⩽k Xw, where Xk =

⊔
ℓ(w)=k Xw. Now if ℓ is the maximum

length in the Weyl group, consider

Z−1 = ∅ ⊂ Z0 ⊂ · · · ⊂ Zℓ = X,
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consider the filtration
ΓZ0F ⊂ · · · ⊂ ΓZℓF.

Now if ji : X \Zk ↪→ X is the inclusion, we have an exact triangle

RΓZk → id → jk∗Rj
∗
k

+1−−→,

which gives us an exact sequence

0 → ΓZkF → F → jk∗j
∗
kF → 0,

and in particular, we obtain

0 → ΓZkF → ΓZk+1F → jk∗j
∗
kΓZk+1F = Grk+1 F → 0.

The upshot is that we have a filtration of Γ(X,F) such that

Grk Γ(X,F) = Γ(X, jk−1,∗j
∗
k−1ΓZkF)

=
⊕

ℓ(w)=k

Γ(X, ιw∗ι!wF).

Now we have a spectral sequence

E
p,q
1 = Hp+q(n+x , Grℓ−p Γ(X,F)) =⇒ GrpHp+q(n+x , Γ(X,F)).

But now the E1 page is actually⊕
ℓ(w)=ℓ−p

Hp+q(n+x , Γ(X, ιw∗ι!wF)) =
⊕

ℓ(w)=ℓ−p

H
q+ℓ
dR (Xw, ι!wF).
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Fan (Apr 13): some more on D-modules and identifying
some highest-weight modules in the setup

We will discuss important notions like coherence, holonomicity, duality, and then identify the
DX-modules corresponding to important modules in representation theory under localization.

8.1 Coherence and holonomicity

Definition 8.1.1. A filtration for F ∈ DX−Mod is compatible with DX if

D
⩽i
X F⩽j ⊆ F⩽i+j.

Definition 8.1.2. A good filtration of F satisfies one of the following conditions:

• GrF is coherent as a OΩX -module;

• F⩽i is a coherent OX-module for all i and D
⩽1
X ·F⩽i = F⩽i+1 for all sufficiently large i.

Definition 8.1.3. Define the singular support Supps F := Supp GrF ⊂ ΩX, where we take any good
filtration on F. This is in fact independent of the good filtration.

Proposition 8.1.4. A DX-module is DX-coherent if and only if it has a good filtration.

Theorem 8.1.5 (Bernstein’s inequality). Let F be a nonzero coherent DX-module. Then

dim Supps F ⩾ dimX.

Proposition 8.1.6. Let i : X ↪→ Y be a closed embedding. For every F ∈ Coh(DX), i+F ∈ Coh(DY). In
addition,

dim Supps F− dimX = dim Supps i+F− dim Y.

If j : X→ Y is an open embedding and G ∈ Coh(DY), j∗G ∈ Coh(DX). In addition,

dim Supps G = dim Supps j∗G.

Another fact is that if G ⊂ F, in fact Supps F = Supps G∪ Supps F/G.

Definition 8.1.7. F is holonomic if the inequality in Bernstein’s inequality is in fact an equality, that
is if

dim Supps F = dimX.

26
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Define Dhol(DX−Mod) and Dcoh(DX−Mod) to be the categories with holonomic and coherent
cohomology, respectively.

Theorem 8.1.8. Let f : X→ Y. Then f!, f⋆ preserve Dhol.

Now consider the duality functor DX : Dcoh(DX−Mod)op → Dcoh(DX−Mod) given by

F 7→ RHomDX
(F,DΩX )[dimX].

Fortunately, we can compute this by taking a projective resolution, so

D2
XF = HomDX

(HomDX
(P•,DΩX ),DΩX )[dimX] = F.

Theorem 8.1.9. If F is holonomic, then DX is concentrated in degree 0, and so DX is a duality functor on
holonomic DX-modules.

This allows us to construct a six functors formalism for D-modules. Define the pushforward
with compact support

f! = DYf⋆DX : Dhol(DX−Mod) → Dhol(DY−Mod)

and the pullback
f⋆ = DXf

!DY : Dhol(DY−Mod) → Dhol(DX−Mod).

Theorem 8.1.10. This, combined with the existing f⋆, f!, form a six functors formalism. In addition, the
natural map f! → f⋆ is an isomorphism if f is proper and f! = f∗[2(dimX− dim Y)] if f is smooth.

8.2 Representation theory

For any subgroup K ⊆ G, define a (g,K)-module to be a module where the action of k comes from
differentiating an action of K. Then we obtain

Oϑλ = (g,B)−Mod/ϑλ ∼= CohB(Dλ+2ρ
X ).

Sticking to ϑ0, define Mw := Mw◦(−2ρ) and Lw := Lw◦(−2ρ). Then denote their images under
localization by Mw,Lw.

Now consider the inclusion ιw : Xw ↪→ X. Define

Nw := ιw⋆OXw = ιw∗(DX←Xw ⊗DXw
OXw).

Lemma 8.2.1.

1. χΓ(X,Nw) = χMw
;

2. There is no nontrivial submodule of Nw supported on Xw \Xw.

Proof. Define
n1 :=

⊕
α∈Φ+∩w(Φ+)

g−α, n2 =
⊕

α∈Φ+∩−w(Φ+)

gα.

These give algebraic groups N1,N2. For w ∈W = NG(H)/H, choose a lift w̃ ∈ NG(H) of w and
define

φ : N1 ×N2 → G/B (n1,n2) 7→ n1n2w̃B.
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Note that φ(id,N2) = X2 = BwB/B. We now have a diagram

N1 ×N2 Imφ X

id ×N2 Xw.

φ
∼

φ
∼

ιw

Then we compute

Γ(X,Nw) = Γ(X, ιw∗(DX←Xw ⊗DXw
OXw))

= Γ(Xw,DX←Xw ⊗DXw
OXw)

= Γ(N2,DN1×N2←N2 ⊗DN2
ON2).

We then have

DN1×N2←N2 = DN2 ⊗DN2
DN2→N1×N2 ⊗f−1DN1×N2

DΩN1×N2

= detΩN2 ⊗ON2DN2→N1×N2 ⊗f−1ON1×N2
f−1 detΩ∗N1×N2

= DN2 ⊗C (detΩ∗N1,id ⊗ON1,id C)⊗C (DN1,id ⊗ON1,id C)

because

DN2→N1×N2 = ON2 ⊗f−1ON1×N2
f−1DN1×N2

= DN2 ,

so we obtain

Γ(X,Nw) = DN1,id ⊗ detΩ∗N1,id ⊗ Γ(N2,ON2)

= Un1 ⊗ det n1 ⊗ Sn∗2 .

If we let H act on N1 ×N2 by h(n1,n2) = (hn1h
−1,hn2h

−1), this becomes an isomorphism of
H-representations, and so we can compute the characters. First, we have

χUn1 =
1∏

α∈Φ+∩wΦ+
(1 − e−α)

.

Next, we obtain

χSn∗2 =
1∏

α∈Φ+∩−wΦ+

(1 − e−α).

The action of h on det n1 has weight ∑
α∈Φ+∩wΦ+

(−α) = −wρ− ρ,

so χdetn1 = e−wρ−ρ = ew◦(−2ρ). In total, the character is

ew◦(−2ρ)∏
α∈Φ+

(1 − e−α)
= χM2 .

We now prove the second part of the lemma. Let j : Imφ ↪→ X and ιZ =: X \ Imφ ↪→ X. We
have an exact triangle

RΓZNw → Nw → j∗j
∗Nw

+1−−→
and because j∗j∗Nw = Nw, we see that ΓZNw = 0.



29

Proposition 8.2.2. We have
Γ(X,Nw) =M†w.

Proof. Induct on ℓ(w). First, for [M] = [M†w], if Hom(Lw ′ ,M) = 0 for all ℓ(w ′) < ℓ(w), then
M = M

†
w. To see this, consider the map Mw → M†. If this is not surjective, then there

exists a morphism M† → Lw ′ and thus Lw ′ is a Jordan-Holder factor of M. But then Lw ′ is a
Jordan-Holder factor of Mw, so ℓ(w ′) < ℓ(w). this gives a nonzero map Lw ′ →M.

By the inductive hypothesis, Lw ′ ⊂M⊥w ′ , so Lw ′ ⊂ Nw ′ for all ℓ(w ′) < ℓ(w). Because Lw ′ is
supported on Xw ′ , which does not intersect Xw, by adjunction we see that Hom(F, ιw∗OXw) = 0
for all F supported inside Xw ′ . Applying global sections, we see that Hom(Lw ′ ,M) = 0.

One can also show that Lw is the image under ι! → ι⋆ of OXw . This is very difficult and uses
the Riemann-Hilbert correspondence. Also, DXNw = Mw.
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Kevin (Apr 20): the Riemann-Hilbert correspondence

Note: these are the speaker’s notes. Minor modifications were made to adapt to my typographical style choices.
Some references include Hotta-Takeuchi-Tanisaki (D-Modules, Perverse Sheaves, and Representation
Theory, Part I), Dimca (Sheaves in Topology, Chapters 4-5), and Borel (Algebraic D-modules).

9.1 Review of constructible sheaves

Since Caleb’s talk last Friday covered this material and (presumably) most of you were there, I’ll
briefly review constructible sheaves and the six functor formalism.

Let X be a complex variety. A stratification of X is a locally finite partition X =
⊔
j Xj, where

each Xj is a smooth connected locally closed subvariety such that each Xj is a union of strata. A
C-sheaf F on X is constructible (with respect to this stratification) if F|Xj is a local system with
finite-dimensional fibers for each j. A complex F• ∈ Db(X) := Db(X, C) is constructible (with
respect to this stratification) if each cohomology sheaf Hi(F•) is. We use Dbc (X) to denote the full
subcategory of Db(X) consisting of constructible complexes.

Why consider constructible sheaves? Local systems are all over the place, but they aren’t
well-behaved under the usual sheaf operations. Constructible sheaves are. Here are the six
operations we can perform (let’s say we have a map f : X→ Y). All the operations are derived, so
we will omit the R and L for the most part.

• f∗ : Dbc (X) → Dbc (Y)

• f∗ : Dbc (Y) → Dbc (X)

• f! : D
b
c (X) → Dbc (Y)

• f! : Dbc (Y) → Dbc (X)

• ⊗L : Dbc (X)×Dbc (X) → Dbc (X)

• RHom : Dbc (X)
op ×Dbc (X) → Dbc (X)

We have adjunctions (f∗, f∗), (f!, f!), (−⊗L F•,RHom(F•,−)). Moreover, there is a Verdier

duality functor D = RHom(−,ωX) : Dbc (X)
op ∼=−→ Dbc (X) such that D2 ∼= id. Here, ωX is the

dualizing sheaf, which is CX[2d] (d is the dimension of X) when X is smooth. D intertwines the
functors: f! = Df∗D, f! = Df∗D.

30



31

9.2 The Riemann-Hilbert correspondence for integrable connections

For the remainder of this talk, all varieties will be smooth, since we want to talk about D-modules.
Let X be a smooth variety. The Riemann-Hilbert correspondence (for varieties) is an equivalence

Dbrh(DX)
∼=−→ Dbc (X) (here, rh stands for regular holonomic; I will define this shortly). To motivate

the general correspondence, we will first discuss the simplest case: integrable connections. Let
(E,∇) be an integrable connection, i.e. a vector bundle with a flat connection. We can get a local
system whose sections are horizontal sections of E, i.e. sections s for which ∇s = 0. This produces
an exact functor from the category of integrable connections on X to the category of local systems
on X: Conn(X) → Loc(X).

Is this functor an equivalence? If we consider the analytic analogue (we consider flat holo-
morphic connections on the complex manifold Xan), the answer is yes: Conn(Xan) → Loc(X) is
an equivalence. When X is proper, the answer is yes by GAGA. However, in general, in the
algebraic case, this functor is not necessarily an equivalence, as the map Conn(X) → Conn(Xan) is
not necessarily an equivalence. We would like to apply GAGA; to do this, we must restrict to the
subcategory of regular integrable connections on X, which are connections that behave well near the
boundary of a compactification X.

We first define regularity for connections on a curve. A smooth curve C can be compactified to
a smooth proper curve C by adding a finite number of points. Let p ∈ C−C, and let (E,∇) be an
integrable connection on C. Letting j : C ↪−→ C be the inclusion, we get a meromorphic connection
j∗E on C with possible poles at C−C. Let p ∈ C−C, let KC,p denote the fraction field of OC,p,
and let x ∈ OC,p be a local parameter at p. Taking the stalk of j∗E at p, we get a KC,p-vector space
M with a connection ∇ : M → Ω1

C,p
⊗OC,p

M. We say that (E,∇) is regular at p if either of the
following equivalent conditions holds:

• (Algebraic) There exists a finitely generated OC,p-submodule L ⊂M such that M = KC,pL

and x∇L ⊂ Ω1
C,p

⊗OC,p
L.

• (Analytic) All locally defined horizontal sections of E (local in the analytic topology) grow at
most as fast as |x|−N for some N as x→ 0.

We say that (E,∇) is regular if the meromorphic connection j∗E is regular at all p ∈ C−C.
One way to make sense of the algebraic condition is to pick an OO,p basis y1, . . . ,yr of L and

work analytically. In terms of this basis, the set of conditions for horizontal sections of E near p is
a set of r ODEs

∂y1

∂x
=

∑
j=1

A1jyj

...
∂yr

∂x
=

∑
j=1

Arjyj,

where the Aij are some meromorphic functions defined near r (these form the connection matrix).
The condition x∇L ⊂ Ω1

C,p
means that xAij is holomorphic for all i, j. This translates to the

condition about moderate growth. For instance, the ODE dy
dx = AxNy has solution ce

AxN+1
N+1

for N ̸= −1 and cxA for N = −1. When N ⩾ −1, the solution is a meromorphic function with

moderate growth. When N < −1, e
xN+1
N+1 has an essential singularity at p and, in particular, doesn’t

have moderate growth.
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Now consider a smooth variety X of any dimension. By resolution of singularities, we can
find a smooth compactification X such that Y := X− X is a divisor. We say that an integrable
connection (E,∇) on X is regular if for every map from a smooth curve iC : C→ X, the induced
integrable connection i∗CE is regular. It can be shown that this notion is independent of choice
of X. For the complex manifold Xan, we can similarly define regular integrable connections as
certain meromorphic connections on Xan with respect to Yan, except that we consider maps from
the unit disc i : B→ X

an such that i−1(Yan) = {0}. Unlike the algebraic case, analytic connections
on Xan don’t have unique meromorphic extensions to Xan, so it doesn’t make sense to say that a
particular integrable connection on Xan is regular.

Here’s a big theorem of Deligne, known as Deligne’s Riemann-Hilbert correspondence.

Theorem 9.2.1 (Deligne). The restriction defines an equivalence of categories

Connreg(X
an, Yan)

∼−→ Conn(Xan).

Corollary 9.2.2. The functor
Connreg(X) → Loc(X)

is an equivalence.

Sketch of proof. After picking a compactification X with divisor boundary Y, we can factor this
functor as

Connreg(X) → Connreg(X, Y) → Connreg(X
an, Yan) → Conn(Xan) → Loc(X).

The functor Connreg(X) → Connreg(X, Y) is an equivalence because algebraic connections on X
extend to unique meromorphic connections on X with respect to Y. The functor Connreg(X, Y) →
Connreg(X

an, Yan) is an equivalence by a GAGA argument; here, we need regularity because
GAGA only applies to coherent sheaves on X. The functor Connreg(X

an, Yan) → Conn(Xan) is an
equivalence by the preceding theorem. We’ve already noted that the functor Conn(Xan) → Loc(X)
is an equivalence.

Deligne’s Riemann-Hilbert correspondence provides an algebraic description of the category
Loc(X). The Riemann-Hilbert correspondence of Mebkhout and Kashiwara does the same thing
for Dbc (X).

9.3 The Riemann-Hilbert correspondence for regular holonomic D-modules

Recall that a coherent D-moduleM is holonomic if its characteristic variety Ch(M) = supp grFM ⊂
T∗X has dimension d, where F is a good filtration. We can define the characteristic cycle CC(M) of
a holonomic D-module as the formal sum

∑
ZmultZ(M)Z over the irreducible components Z of

Ch(M). Since Ch(M) is conic Lagrangian, any irreducible component Z ⊂ Ch(M) must be of the
form T∗VX, where V is a smooth locally closed subvariety of X.

For a short exact sequence of holonomic D-modules

0 →M→ N→ L→ 0,

CC(N) = CC(M) + CC(L). Moreover, CC(M) = 0 iff M ∼= 0. Thus, holonomic D-modules
have finite length. The simple holonomic D-modules are the minimal extensions L(V ,E) =

Im
(∫
j E→

∫
j! E
)

, where V is a smooth locally closed subvariety such that j : V ↪→ X is affine and



33

E is a simple integrable connection on V . This means that we can think of holonomic D-modules
as D-modules built from integrable connections, in the same way that constructible sheaves are
built from local systems. CC(L(V ,E)) = rk(E)[T∗VX], so CC(M) tells us where the composition
factors of M are supported.

We say that a holonomic D-module M is regular holonomic if for all its composition factors are
of the form L(V ,E) for E a regular integrable connection on V . We let Dbh(DX) (resp. Dbrh(DX))
denote the full subcategory of Db(DX) consisting of complexes with holonomic (resp. regular
holonomic) cohomology sheaves. To get a constructible complex from a holonomic complex M•,
we apply the de Rham functor DR(M•) := ΩdXan ⊗LDXM

an•. Concretely,

DR(M•) := Tot[0 →Man• → Ω1
Xan ⊗OXan M

an• → · · · → ΩdXan ⊗OXan M
an• → 0],

where ΩdXann ⊗OXan M
an is in degree 0. Here, if we pick local coordinates x1, . . . , xd, the map

ΩiXan ⊗OXan M
an• → Ωi+1

Xan ⊗OXan M
an• sends α⊗m 7→ dα⊗m+ (−1)|α|

∑n
j= dzj ∧α⊗ ∂jm.

Theorem 9.3.1 (Kashiwara’s constructibility theorem). For M• ∈ Dbh(DX), DR(M•) ∈ Dbc (X).

Theorem 9.3.2 (Riemann-Hilbert correspondence). The functor DR : Dbrh(DX) → Dbc (X) is an
equivalence respecting the six functor formalism on each category. The natural t-structure on Dbrh(DX)

corresponds to the perverse t-structure on Dbc (X).

We can also do this with the solution functor Sol : Dbrh(X)
∼=−→ Dbc (X)

op defined by Sol(M•) :=
RHomDXan (M

•an,OXan)[d]. The de Rham and solution functors are related by DR(DM•) ≃
Sol(M•).

When (M,∇) is an integrable connection on X, DR(M•) is the de Rham complex of M with
differential ∇. By the holomorphic Poincaré lemma, DR(M) is quasi-isomorphic to the local
system of horizontal sections of M in degree −d (and Sol(M) is the dual local system in degree
−d). This matches our expectation from the Riemann-Hilbert correspondence for integrable
connections.
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Kevin (Apr 27): the Kazhdan-Lusztig conjectures

Note: These are the speaker’s notes. Minor modifications were made to adapt to my typographical
conventions. Some references include Yi Sun’s notes “Perverse sheaves and the Kazhdan-Lusztig
conjectures” and de Cataldo-Migliorini’s notes “The Decomposition Theorem, perverse sheaves
and the topology of algebraic maps.”

10.1 The Kazhdan-Lusztig conjecture

I gave this talk last semester, but I forgot everything, so here it is again, possibly with different
conventions. The Hecke algebra of a Weyl group W is the Z[q1/2,q−1/2]-algebra H(W) with
Z[q1/2,q−1/2]-basis Tw for w ∈W and multiplication given by T1 = 1 and relations

TsTw =

{
Tsw if ℓ(sw) > ℓ(w)
(q− 1)Tw + qTsw if ℓ(sw) < ℓ(w).

H(W) carries an involution (−) given by q1/2 = q−1/2 and Tw = T−1
w−1 . There is a special basis

C′w (w ∈W) of H(W) satisfying the given properties:

• C′w = C′w.

• C′w = q−ℓ(w)/2 ∑
v⩽w Pv,w(q)Tv with Pv,w ∈ Z[q] of degree ⩽ 1

2 (ℓ(w) − ℓ(v) − 1) for v < w
and Pw,w = 1.

The Kazhdan-Lusztig polynomials Pv,w describe the change of basis matrix from Tw to C′w.
The Kazhdan-Lusztig conjecture states that these polynomials describe the change of basis matrix
from the Verma modules Mw :=M(w · (−2ρ)) to the simple modules Lw := L(w · (−2ρ)) in K(O0):

[Lw] =
∑
v⩽w

(−1)ℓ(w)−ℓ(v)Pv,w(1)[Mv].

10.2 Sheaves on the flag variety

To prove the Kazhdan-Lusztig conjecture, we translate everything to sheaves. Let Xw (resp.
Xw =

⊔
v⩽w Xv) be the Schubert cell (resp. Schubert variety) corresponding to w, and let

jw : Xw ↪−→ X denote the inclusion.
We have the following functors from the last couple talks:

34
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• Beilinson-Bernstein localization Loc : Mod(g,χ0)
∼−→ Mod(DX).

• The Riemann-Hilbert correspondence DR : Modrh(DX)
∼−→ Perv(X). I haven’t defined the

category of perverse sheaves Perv(X) ⊂ Dbc (X), so here it is. Perv(X) is the full subcategory of
Dbc (X) consisting of complexes K such that

dim SuppHi(K) ⩽ −i

dim SuppHi(DK) ⩽ −i.

Perv(X) is the heart of the perverse t-structure, so it is naturally an abelian category. Examples
of perverse sheaves include intersection cohomology complexes, which we will define
shortly.

It can be shown that Loc maps O0 to Modrh(DX), so that we can consider the image DR(Loc(O0)) ⊂
Perv(X). It is possible to upgrade Loc and DR to functors on categories of B-equivariant sheaves, so
that the image DR(Loc(O0)) is contained in the subcategory of Perv(X) constructible with respect
to the Schubert stratification of X. We are concerned with the images of the Vermas and simples
in Perv(X). Fan showed two weeks ago that

Loc(Lw) = jw!∗OXw
:= Im(jw!OXw) → jw∗OXw)

Loc(Mw) = jw!OXw .

Since DR commutes with the six functors, we have

DR(Loc(Lw)) = jw!∗DR(OXw)
= ICXw
:= jw!∗CXw [ℓ(w)]

= Im(jw!CXw [ℓ(w)]) → jw∗CXw [ℓ(w)]))

DR(Loc(Mw)) = jw!CXw [ℓ(w)].

Implicitly, here we are using the fact that jw is an affine locally closed embedding, so that jw! and
jw∗ are exact functors (both for the ordinary t-structure on regular holonomic D-modules and for
the perverse t-structure on Dbc (X)). We’ll abuse notation by writing CXw for the sheaf jw!CXw on
X.

10.3 Categorification of the Hecke algebra

The Kazhdan-Lusztig conjecture predicts the change of basis matrix for two bases Lw,Mw of
K(O0). Having done all this geometric work, we have shown that this is the change of basis matrix
for two bases ICXw , CXw [ℓ(w)] of K(Perv(X)W) (here, Perv(X)W ⊂ Perv(X) is the full subcategory
of complexes constructible with respect to the Schubert stratification). We can rephrase the
Kazhdan-Lusztig conjecture purely in terms of sheaves:

Theorem 10.3.1 (Kazhdan-Lusztig conjecture). In K(Perv(X)W),

[ICXw ] =
∑
v⩽w

(−1)ℓ(w)−ℓ(v)Pv,w(1)[CXw [ℓ(w)]].
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Figuring out the change of basis matrix amounts to figuring out the stalks of ICXw along
the Schubert cells. For a complex of sheaves K on X constructible with respect to the Schubert
stratification, let

h(K) :=
∑
w

(∑
i

hi(K)wq
i/2

)
Tw ∈ H(W).

Here, hi(K)w is the dimension of any stalk of Hi(K) along Xw.

Theorem 10.3.2. h(ICXw) = C
′
w

To prove the theorem, we’ll show that perverse sheaves categorify the Hecke algebra: ICXw
will correspond to C′w, whereas CXw will correspond to Tw. It’ll be convenient for us to work with
X×X rather than X. Just as the Bruhat decomposition gives us a stratification of X by B-orbits, we
get a stratification of X×X by G-orbits, where G acts diagonally. We have X×X =

⊔
wOw, where

Ow is the G-orbit of (B,wB). The projection p1 : Ow → X (resp. p1 : Ow → X) is a Zariski fibration
with fiber Xw (resp. Xw). Thus, ICOw = p∗1 ICXw [δ], where δ = dimX = number of positive roots.
Thus, hi(ICOw)v = hi+δ(ICXw)v, and for a complex of sheaves K on X× X constructible with
respect to the decomposition into G-orbits (we’ll call this the Schubert stratification as well), define

ĥ(K) :=
∑
w

(∑
i

hi−δ(K)wq
i/2

)
Tw ∈ H(W).

By the above observation, ĥ(ICOw) = h(ICXw), so we’ll want to show that ĥ(ICOw) = C
′
w.

We’ll need an operation on sheaves to correspond to the multiplication on the Hecke algebra.
Let C ⊂ Dbc (X×X) be the full subcategory of complexes constructible with respect to the Schubert
stratification such that Hi(K) ∼= 0 either for all odd i or for all even i (this is called parity vanishing).
Given K,K′ ∈ C, we can define the convolution K ⋆K′ to be q∗i∗(p∗12K⊗ p∗34K

′), where the maps fit
in the following diagram that I’ve stolen from de Cataldo-Migliorini:

Proof of Theorem 10.3.2. We’ll prove Theorem 10.3.2 by induction. The base cases consist of w = 1
and w = s for a simple reflection s. We have O1 = X, so ICO1

∼= CO1
[δ], and ÎCO1

= T1 = C′1.
p1 : Os → X is a Zariski fibration with fiber Xs ∼= P1, so Os is smooth of dimension 1 + δ, and
ICOs

∼= COs [1+ δ]. The Schubert stratification gives Os = O1 ⊔Os, so ĥ(ICOs) = q
−1/2(Ts+ T1) =

C′s. In particular, ICO1
, ICOs ∈ C.

To induct, we’ll show that convolution with ICOs corresponds to multiplication by C′s in the
Hecke algebra.

Lemma 10.3.3. For K ∈ C, ĥ(ICOs ⋆K) = C
′
sĥ(K). In particular, ICOs ⋆K ∈ C.
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Proof. This is proven by a direct computation. We have

p∗12ICOs
∼= COs×X×X[1 + δ],

so
ICOs ⋆K

∼= q∗i
∗(p∗34K)|Os×X×X[1 + δ].

Let p = (B,wB) be a point of Ow. Then q−1(p) ∩ i−1(Os × X× X) = {(B, x,wB)|x ∈ Xs} ∼= P1.
Let Y denote this P1. Then Hi(ICOs ⋆ K)p

∼= Hi+δ+1(Y,K|Y). By constructibility on X× X, K|Y
is constructible with respect to Y = U ⊔ u0, where U ∼= C and u0 is a point. Because U is
contractible and K|U is a complex with locally constant cohomology, each Hi(K) is a constant
sheaf, and K|U ≃

⊕
iH

i(K)[−i]. The decomposition Y = U ⊔ u0 gives us a long exact sequence
in compactly supported cohomology · · · → Hic(U,K|U) → Hi(Y,K|Y) → Hi(K)|u0 → · · · . By
parity vanishing, this long exact sequence splices into short exact sequences 0 → Hic(U,K|U) →
Hi(Y,K|Y) → Hi(K)|u0 → 0. Poincaré duality tells us that dimHic(U,K|U) = dimHi−2(U,K|U) =
dimHi−2(U)|u for any u ∈ U. Thus, hi(ICOs ⋆ K)w = dimHi(Y,K|Y) = dimHi−2(U)|u +

dimHi(U)|u0 .
To finish, we must identify which strata of X×X contain u and u0. If sw > w, then u ∈ Osw,

and u0 ∈ Ow, so that hi(ICOs ⋆ K)w = hi+δ+1(K)|w + hi+δ−1(K)|sw. If sw < w, then u ∈ Ow,
and u0 ∈ Osw, so that hi(ICOs ⋆ K)w = hi+δ+1(K)|sw + hi+δ−1(K)|w. This turns out to be the
formula for multiplication by C′s.

To finish the proof, we must compute the remaining ICOw . Unlike the Os, Ow might not be
smooth, so ICOw might not just be a shifted constant sheaf. To compute ICOw , we apply the
decomposition theorem to the Bott-Samelson resolution π : Õw → Ow. For a reduced expression
w = s1 . . . sℓ, we define Õw := {(B1, . . . ,Bℓ+1) ∈ Xℓ+1|(Bi,Bi+1) ∈ Osi }. Õw is smooth because
Õw → P1 is a (P1)ℓ-fibration. π : Õw → Ow is defined by π(B1, . . . ,Bℓ+1) = (B1,Bℓ+1); this is an
isomorphism over Ow, so it is a resolution of singularities.

By definition, π∗CÕw [δ+ ℓ] = ICOs1
⋆ · · · ⋆ ICOsℓ

. Thus, by Chapter 10.3.3, ĥ(π∗CÕw [δ+ ℓ]) =

C′s1
· · ·C′sℓ = q−ℓ/2(Ts1 + T1) · · · (Tsℓ + T1). Since Õw is smooth, C

Õw
[δ + ℓ] = IC

Õw
, and the

decomposition theorem (which I will not state or explain) states that π∗CÕw [δ+ ℓ] is a direct sum
of shifted ICOv ’s: π∗CÕw [δ+ ℓ]

∼= ICOw ⊕
⊕
v<w

⊕
i ICOv ⊗ V

i
v[−i] for some finite-dimensional

C-vector spaces Viv. Since ICOw is a direct summand of π∗CÕw [δ+ ℓ] ∈ C, ICOw ∈ C. Applying

ĥ, we have C′s1
· · ·C′sℓ = ĥ(ICOw) +

∑
v<w Fv(q)ĥ(ICOv), where Fv(q) =

∑
j(dimV

j
v)q

j/2. Since
C
Õw

[δ+ ℓ] is self-dual and π is proper, D pHi(π∗CÕw [δ+ ℓ])
∼= H−i(π∗CÕw [δ+ ℓ]), and dimViv =

dimV−i
v . This implies that Fv(q) = Fv(q−1).

By induction on length, we have ĥ(ICOw) = C′s1
· · ·C′sℓ −

∑
v<w Pv(q)C

′
v. Since everything

on the RHS is self-dual in H(W), ĥ(ICOw) must be self-dual. It remains to see that if we write
ĥ(ICOw) = q−ℓ/2 ∑

v⩽w P̃v,w(q)Tv, then (1) P̃v,w(q) ∈ Z[q], (2) P̃w,w = 1, and (3) deg P̃v,w ⩽
1
2 (ℓ(w) − ℓ(v) − 1):

(1) This follows from the fact that ICOw ∈ C.

(2) This follows from the equation ĥ(ICOw) = C′s1
· · ·C′sℓ −

∑
v<w Pv(q)C

′
v, as the first term

contributes q−ℓ/2Tw and no other terms contribute any.
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(3) This follows from the support condition on ICOw : Hi−ℓ(w)(ICOw)v
∼= 0 if dimOv ⩾

−(i− ℓ(w)). Since dimOv = δ+ ℓ(v), this says that i+ δ ⩾ ℓ(w) − ℓ(v). Thus, deg P̃v,w(q) <
1
2 (ℓ(w) − ℓ(v)), as desired.

By the uniqueness of the Kazhdan-Lusztig polynomials, P̃v,w = Pv,w, and h(ICXw) =

ĥ(ICOw) = C
′
w, as desired.

To finish the proof of the Kazhdan-Lusztig conjecture, for K ∈ Perv(X)W , we define χW(K) :=∑
v

∑
i(−1)iHi(K)vv ∈ Z[W]. By parity vanishing (in particular, Hi(ICXw) ̸= 0 only when

i ≡ ℓ(w) (mod 2)),

χW(ICXw) =
∑
v

∑
i

(−1)ihi(ICXw)vv =
∑
v

(−1)ℓ(w)
∑
i

hi(ICXw)v =
∑
v

(−1)ℓ(w)Pv,w(1)v.

We have χW(CXw) = (−1)ℓ(w)w. From these computations, we see that χW : K(Perv(X)W) →
Z[W] is an isomorphism of Z-modules. Since χW(ICXw) =

∑
v(−1)ℓ(w)−ℓ(v)Pv,w(1)χW(CXv),

we see that [ICXw ] =
∑
v(−1)ℓ(w)−ℓ(v)Pv,w(1)[CXv ] in K(Perv(X)W), which is exactly what we

want.
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