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Caleb (Oct 16): Representable Functors and Grothendieck
Topologies

1.1 Representable Functors

We will always denote categories by C.

Definition 1.1.1. Given an object x ∈ C, define the functor hX : Cop → Set by hx = Hom(−, X).

Any morphism f : x → y induces a natural transformation h f : hx → hy. By the Yoneda lemma,
this correspondence is bijective.

Lemma 1.1.2 (Yoneda Lemma). Let x ∈ C and F : Cop → Set be a functor. Then Hom(hx, F) ' F(x).

Proof. Let θ : hx → F. This gives a map θx : hx(x)→ F(x), and we can consider id→ θx(id). Now
given t ∈ F(x), we need hx(U) → F(U). Given U → x, then we have a map F(x) → F(U) and
then t 7→ Ff (t). We can check that these are inverses.

Definition 1.1.3. A functor F : Cop → Set is representable if it is naturally isomorphic to hx for
some x.

Definition 1.1.4. If F is a presheaf, a universal object for F is a pair (X, ξ) such that ξ ∈ FX and for
any (U, σ) where σ ∈ FU, there exists a unique f : U → X such that Ff (ξ) = σ.

Note that representability is equivalent to having a universal object.

Example 1.1.5. 1. For the first example, consider C = Sch/R for some ring R. Then if F =
Γ(O), then clearly this is isomorphic to hA1 and the universal object is (A1, x).

2. Let F(X) = {L, s0, . . . , sn}where L is a line bundle and s0, . . . , sn generate L, then (Pn, x0, . . . , xn)
is a universal object.

1.2 Grothendieck Topologies

According to Wikipedia, this is supposed to be a pun on “Riemann surface.” We want to generalize
the idea of a topology because the Zariski topology is awful. Instead of open sets, we will consider
suitable maps (coverings).
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Definition 1.2.1. A Grothendieck topology on a category C is a specification of coverings {Ui → U}
of U for each U ∈ C. Here are the axioms for coverings:

1. If V → U is an isomorphism, then {V → U} is a covering.

2. If {Ui → U} is a covering, for all V → U, the fiber products {Ui ×U V → V} and form a
covering of V.

3. If {Ui → U} is a covering and
{

Vij → Ui
}

are coverings, then
{

Vij → U
}

is a covering of U.

A category with a Grothendieck topology is called a site.

Example 1.2.2. Here are some topological examples. Let X be a topological space.

1. The site of X is the poset category of open subsets of X. The fiber product is just the
intersection, and a covering is a normal open covering.

2. (Global classical topology) Let C = Top. Here, the coverings are sets of open embeddings
such that the union of the images covers the whole space.

3. (Global étale topology) Here, C = Top and the coverings are now local homeomorphisms.

Returning to schemes, we have several examples of Grothendieck topologies.

1. (Global Zariski Topology). Let C = Sch. The coverings are jointly surjective open embed-
dings.

2. (Big étale site over S) The objects are schemes over S and the morphisms are S-morphisms
that are étale and locally of finite presentation.

3. (Small étale site) This the same as the big étale site, but with the added requirement that
U → S is also étale.

4. (fppf topology) This stands for the French fidèlement plat et présentation finie. The morphisms
are Ui → U flat and locally of finite presentation. A covering is a set of jointly surjective
morphisms such that the map

⊔
Ui → U is faithfully flat and of finite presentation. Note

that flat and locally of finite presentation implies open.

5. (fpqc topology) This stands for the French Fidèlement plat et quasi-compacte. An fpqc morphism
is a morphism X → Y that is faithfully flat and one of the following equivalent conditions:

a) Every quasicompact open subset of Y is the image of a quasicompact open subset of X.

b) There exists an affine open cover {Vi} of Y such that Vi is the image of a quasicompact
open subset of X.

c) Given x ∈ X, there exists a neighborhood U 3 x such that f (U) is open in Y and
U → f (U) is quasicompact.

d) Given x ∈ X, there exists a quasicompact open neighborhood U 3 x such that f (U) is
open and affine in Y.

The fpqc topology is given by maps {Ui → U} such that
⊔

Ui → U is an fpqc morphism.

To check that this is a topology, we have to do a lot of work. However, we will list some
properties of fpqc morphisms and coverings.

Proposition 1.2.3. 1. The composition of fpqc morphisms is fpqc.
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2. Given f : X → Y, if f−1(Vi)→ Vi is fpqc, then f is fpqc.

3. Open and faithfully flat implies fpqc. Moreover, faithfully flat and locally of finite presentation implies
fpqc. This means that fppf implies fpqc.

4. Base change preserves fpqc morphsisms.

5. All fpqc morphsism are submersive. Thus f−1(V) is open if and only if V is open.

Note that Zariski is coarser than étale is coarser than fppf is coarser than fpqc.

1.3 Sheaves on Sites

Recall that a presheaf on a space is a functor Xop
cl → Set. Similarly, if C is a site, then a presheaf is

a functor Cop → Set.

Definition 1.3.1. A presheaf on a site C is a sheaf if

1. Given a covering {Ui → U} and a, b ∈ FU such that p∗i a = p∗i b, then a = b.

2. Given a covering {Ui → U} and ai ∈ FUi such that p∗i aj = p∗j ai (in the fiber product) for all
i, j, there exists a unique a ∈ FU such that p∗i a = ai.

An alternative definition of a sheaf is that FU → ∏ FUi ⇒ F(Ui ×U Uj) is an equalizer.

Theorem 1.3.2 (Grothendieck). A representable functor on Sch/S is a sheaf in the fpqc topology.

This means that given any fpqc cover {Ui → U}, then applying hX, if we have fi : Ui → X
that glue on Ui ×X Uj → X, then the sheaf condition says we can glue to a unique f : U → X. In
the Zariski topology, this is trivial. This also means that the fpqc topology is subcanonical, which
means that hX are all sheaves.

We will prove this result by reducing to the category of all schemes. Note that the topology on
Sch/S comes from the topology on Sch. Then we can show that if C is subcanonical, then C/S is
subcanonical. Then we use the following lemma.

Lemma 1.3.3. Let S be a scheme and F : Sch/Sop → Set be a presheaf. If F is a Zariski sheaf if V → U is
a faithfully flat morphism of affine S-schemes, then FU → FV ⇒ F(V ×U V) is an equalizer, then F is an
fpqc sheaf.

Proof. Given {Ui → U} an fpqc covering, let V =
⊔

Ui. Then consider the diagram

FU FV F(V ×U V)

FU ∏ FUi F(Ui ×U Uj),

the columns are bijective, so it suffices to check this for single coverings.
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Now if {Ui → U} are finite and all affine and the second assumption holds, we have the
diagram

FU FV F(V ×U V)

∏i F(Ui) ∏i ∏a FUia ∏i ∏ab F(Via ×U Vib)

∏ij F(Ui ∩Uj) ∏ij ∏ab F(Uia ∩Ujb).

Then the middle row is an equalizer.

Proof of Theorem 1.3.2. If X, U, V are affine, then we know that Hom(R,−) is left exact, so the
result follows from commutative algebra. Now it suffices to check the general case for single
covers. If X =

⋃
Xi is a union of affines, then separatedness follows by restricting to the Xi and

using the affine case.
Please read the rest of this yourself.
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Caleb (Oct 23): Sieves and Fibered Categories

Recall that a Grothendieck topology on a site C is a collection of coverings {Ui → U} such that
isomorphisms are coverings, pullbacks preserve coverings, and if {Ui → U} and

{
Uij → Ui

}
are

coverings, then
{

Uij → Ui
}

is a covering.
Also recall from last time that two important examples of Grothendieck topologiyes are

the global Zariski topology and the fpqc topology. We also defined a sheaf and proved that
representable functors are sheaves in the fpqc topology.

2.1 Sieves

A sieve is a way to have “your barrel full and your wife drunk.” The motivating question is:

Question 2.1.1. When do two Grothendieck topologies give rise to the same sheaves?

Definition 2.1.2. A subfunctor G of F : Cop → Set has G(u) ⊂ F(u) and the morphisms are just
restrictions.

Definition 2.1.3. A sieve on U ∈ Ob(C) is a subfunctor of hU .

Example 2.1.4. Given a cover U = {Ui → U}, then hU (T) are arrows that factor through the
covering.

Definition 2.1.5. A sieve S ⊂ hU belongs to a topology T if hU ⊂ S for some covering U in the
topology T.

Definition 2.1.6. A covering V is a refinement of U if hV ⊂ hU .

This gives a poset structure on Grothendieck topologies, where T ≺ T′ if every covering in T
has a refinement that is a covering in T′. For schemes, we have

Zariski ≺ étale ≺ fppf ≺ fpqc.

Then we know that T1, T2 are equivalent if T1 ≺ T2 ≺ T1.

Proposition 2.1.7. Equivalent topologies have the same sheaves.

Proof. Note that F : Cop → Set is a sheaf if and only for S belonging to T, the map FU '
Hom(hU , F)→ Hom(S, F) is bijective.
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A real world application of this is that we can construct the sheafification of a functor
F : Cop → Set by

FaU = lim
→

Hom(Si, Fs),

where Si ranges over sieves belonging to T.

2.2 Fibered Categories

We will consider functors pF : F → C. Our notation will be

ξ η

U V.

pF pF

Definition 2.2.1. A morphism φ : ξ → η in F is Cartesian if for all ψ : ζ → η and h : pFζ → pFξ in
C with pF ◦ h = pFψ, then there exists a unique θ : ζ → ξ such that p f θ = h and φ ◦ θ = ψ.

If φ is a Cartesian arrow, then we say that ξ is a pullback of η. Pullbacks (with a fixed map in
C) are unique up to isomorphism.

Definition 2.2.2. A fibered category is a functor F → C such that for any f : U → V in C and
η ∈ Ob(F) with pFη = V, then we have a cartesian arrow φ : ξ → η with pFφ = f .

Definition 2.2.3. Note that the fiber F(U) is a category. The objects are ξ such that pF(ξ) = U
and morphisms are arrows h that map to the identity of U (i.e. pFh = idU).

Definition 2.2.4. A morphism of fibered categories over C is a functor H : F → G such that
HU : F(U)→ G(U) is a functor.

Definition 2.2.5. A cleavage of F → C is a class K of cartesian arrows such that for all f : U → V
and η ∈ F(U), there exists a unique morphism in K mapping to f .

Question 2.2.6. Does a cleavage give a functor from C to the category of categories?

Unfortunately, the answer is no. This is not a functor, but it does give a pseudofunctor, which
is the same as a lax 2-functor. The idea is that id∗U may not be the identity and f ∗g∗ may not be
(g ◦ f )∗. However, they are canonically isomorphic.

Definition 2.2.7. A pseudofunctor Φ on C (from Cop to Cat) is an assignment such that

1. For all objects U of C, ΦU is a category.

2. For each f : U → V, f ∗ : ΦV → ΦU is a functor.

3. For all U of C, we have an isomorphism εU : id∗U ' idΦU .

4. For all U → V →W we have an isomorphism α f ,g : f ∗g∗ ' (g f )∗ such that given f : U → V
and η ∈ ΦU, we have αidU , f (η) = εU( f ∗η), and α f ,idV (η) = f ∗εU(η). In addition, we require

that for all morphisms U
f−→ V

g−→W h−→ T and θ ∈ F(T), the diagram

f ∗g∗h∗θ (g f )∗h∗θ

f ∗(hg)∗θ (hg f )∗θ

α f ,g(h∗θ)

f ∗αg,h(θ) αgh, f (θ)

α f ,hg(θ)
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commutes.

Definition 2.2.8. A cleavage is a splitting if it gives an honest functor.

Apparently every fibered category is equivalent to a split fibered category.

2.3 Examples

1. If a category C has fiber products, then the category of arrows is a fibered category over C,
and the Cartesian arrows are the Cartesian diagrams.

2. If G is a topological group, then there is a “classifying stack” given by principal G-bundles.

3. Consider the category of sheaves on a site C. Given X an object, denote sheaves on X as
sheaves in C/X. Then given f : X → Y, we have f ∗ : ShY → ShX.

4. Let C = Sch/S. Then given f : U → V, we have f ∗ : QCoh→ QCoh(U). However, (gh)∗ '
f ∗g∗ is not an equality. In the affine case, if f : A→ B is a morphism of rings, then recall that
quasicoherent sheaves are modules. Then f ∗M = M⊗A B. The problem is that M⊗B B ' M
but they are not the same object. However, note that f∗g∗ = ( f g)∗ and that f ∗, f∗ are adjoint.
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Caleb (Oct 30): Étale morphisms and the étale fundamental
group

Today we will take a break from the abstract nonsense.

3.1 Flat Morphisms

Definition 3.1.1. Let f : X → Y be a map of schemes. Then f : X → Y is flat at x ∈ X if the map
f ] : OY, f (x) → OX,x is flat. Then f is flat globally if it is flat at all x.

Note if f : Spec B→ Spec A is flat if and only if A→ B is flat. The geometric intuition behind
flatness is that the fibers form a continuous family.

Example 3.1.2. Consider the map Spec k[t]→ Spec k[x, y]/(y2− x3− x2) given by x 7→ t2− 1, y 7→
t3 − t. This is the normalization of the nodal cubic, and we see that the integral closure of the
second ring is given by adjoining the element y

x .
Outside t = ±1, the map of stalks is an isomorphism, but at 0, we see that

(x, y)k[t](t) = (t2 − 1, t3 − t)k[t](t) = k[t](t)

and thus the map is not flat.

Example 3.1.3. Let A ⊂ B be integral domains with the same fraction field. Then Spec B→ Spec A
is faithfully flat if and only if A = B.

Proof. The idea is to use that for any ideal I of A, we have IB ∩ A = I. Then go read your
commutative algebra homework (or your favorite commutative algebra text).

Remark 3.1.4. Normalization is flat if and only if it is an isomorphism.

Example 3.1.5. A closed embedding is flat if and only if it is also open. In particular, closed
embeddings are generically not flat.

Proposition 3.1.6. If f : X → Y is a flat map between irreducibles, then f (U) is dense in Y for all
nonempty U ⊂ X.

11
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Proof. Reduce to the case Spec B → Spec A. We simply need η =
√

0 to be in the image of f .
Writing the diagram

Uη U

Spec k(η) Spec A

we see that Uη = Spec B⊗A k(η). This contains the ring B/ηB by flatness. If B = ηB, then B is
nilpotent and this implies U = ∅.

Theorem 3.1.7. Let f : X → Y be a morphism of locally Noetherian schemes. Then

dimOXy ,x ≥ dimOX,x − dimOY,y

with equality if f is flat.

Sketch of Proof. By schematic nonsense, replace Y by A = SpecOY,n, so Y is Noetherian local. We
can also assume Y is reduced. We will induct on dim Y. Recall that if t ∈ A, then dim(A/tA) =
dim A− 1 for t not a zero divisor or a unit.

Corollary 3.1.8. If f : X → Y be a faithful flat map of algebraic varieties, then Xy is equidimensional and
dim Xy = dim X− dim Y.

3.2 Étale morphisms

From now on we will assume f : X → Y is finite type and locally Noetherian.

Definition 3.2.1. A morphism f of schemes is unramified at x ifOY,y → OX,x satisfies myOX,x = mx
and k(x)/k(y) is separable.

Definition 3.2.2. A morphism is étale if it is flat and unramified.

Example 3.2.3. Let L/K be an extension of fields. Then Spec L → Spec K is étale if and only if
L/K is separable.

Example 3.2.4. Let L/K be a field extension. Then f : SpecOL → SpecOK is flat and the
separability condition holds. Then f is unramified (and hence étale) if and only if it is unramified
in the sense of number theory. Here, we consider the product

pOL =
m

∏
i=1

q
ei
i ,

and f is unramified if all ei = 1. For example, for the extension Z→ Z[i], we see that (2) = (1+ i)2

and thus this map is not unramified.

Example 3.2.5. Consider Spec k[t]/(P)→ Spec k. Then prime ideals are irreducibles Q dividing
P. Then f is étale at Q if and only if Q is separable and is a simple factor of P.

More generally, a standard étale morphism for a monic P(T) ∈ A[T] and b ∈ B = A[T]/P(T)
such that P′(T) is a is a unit in Bb, then φb : Spec Bb → Spec A is standard étale.

Example 3.2.6. Consider Spec k[x, y]/(x2 − y) → Spec k[y]. This map is not étale at 0. To be
explicit, note that 2x is not a unit in k[x, y]/(x2 − y), but it is a unit after localization at x, and
thus Spec Bx → Spec k[y] is étale.
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Theorem 3.2.7. Every étale morphism is locally standard étale.

The proof uses the following theorem:

Theorem 3.2.8 (Zariski’s Main Theorem). Let φ : X → Y be a quasi-finite morphism of finite type

between Noetherian schemes. Then φ can be factored into X
f−→ X′

g−→ Y, where f is an open embedding
and g is finite.

Definition 3.2.9. A quasi-finite morphism is a morphism with finite fibers.

Remark 3.2.10. If φ : X → Y is a finite-type morphism of schemes of finite type over l, then φ is
étale if and only if φ̂x : ÔY,y → ÔX,x is an isomorphism. Geometrically, this means that the formal
neighborhoods are isomorphic.

3.3 Étale fundamental group

Recall that if X is a nice topological space, there is an equivalence of categories

F : {Covering spaces of X} −→ {π1(X, x)-sets}.

This functor is represented by the universal covering space X̃ → X, and we have π1(X, x) =

Aut(X̃, X̃).
Now we want to make this work for schemes, so we take finite étale morphisms to be the

covers. Then we define a functor

F : {F étale over X} → Set

by F(Y) = HomX(x, Y), where X is a geometric point of X. We see that F is not representable,
but it is a projective limit of representables, so we define the étale fundamental group

πet
1 (X, x) = lim

←
AutX(Xi).

Example 3.3.1. Let X = Spec k. Then π1(Spec k, z) = Gal(ksep/k). Similarly, π1(Spec Z) =
π1(A

1
C) = 1.

If X is a variety over C, then πet
1 (X) = ̂π1(Xan), where Ĝ is the profinite completion. In

particular, πet
1 (P1

C \ {0, 1, ∞}) = F̂2. If X = P1
Q \ {0, 1, ∞}, then we have an exact sequence

1→ F̂2 → π1(X)→ Gal(Q/Q)→ 1.
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Caleb (Nov 6): More on the étale fundamental group and
fibered categories

Recall that étale is the same as flat and unramified. Consider the category of finite étale morphisms
over X and choose a geometric point x ∈ X(k). Then consider the functor F(Y) = HomX(x, Y).
Unfortunately, the morphism Spec k→ X is not étale, so this functor is not representable. If it was
representable, it would be represented by the universal cover, which does not necessarily exist.
We will now construct a Galois theory for schemes.

Definition 4.0.1. For a finite étale morphism Y → X, define the degree [Y : X] := |F(Y)|. This is
invariant of the choice of basepoint.

Proposition 4.0.2. If Y is connected and we have a diagram

Y Z

X

θ

φ

then θ is determined by where it sends a single geometric point of Y. In particular, |AutX Y| ≤ [Y : X].

Corollary 4.0.3. There is a faithful action of AutX Y on F(Y).

Definition 4.0.4. A Galois cover Y → X is a finite étale morphism such that Y is connected and
|AutX Y| = [Y : X]. Equivalently, the action of AutY X on F(Y) is transitive.

Remark 4.0.5. A transitive action is the same as normality in both Galois theory and topological
covering spaces.

Example 4.0.6. Let X = Spec K. Then finite étale morphisms to X are schemes of the form⋃
Spec Li where Li/K is finite separable. Then Spec Li is Galois if and only if Li/K is Galois. For a

degree n extension, the action of Aut(L/K) on F(Spec L) is simply the action on the n embeddings
K ⊂ L ⊂ K.

Lemma 4.0.7. For connected Y ∈ FÉt/X, there exists Z Galois over X such that the diagram

Z Y

X

commutes. In fact, for any pair Y, Z, there exists a Galois W surjecting onto both.
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4.1 Universal Cover

This universal cover is not a scheme, but is a projective limit of schemes. We will define the
universal cover X̃ of X with the following:

1. A poset I indexing Galois covers Xi → X.

2. For any Xi, Xj ∈ I, there k ∈ I such that k > i and k > j.

3. If i < j, then we have φij : Xj → Xi compactible with geometric points and composition.

Example 4.1.1. Take all Galois covers and set i < j if and only if there exists Xj → Xi. To make
everything work, we can adjust the map by an automorphism of Xi because the action of the
Galois group is transitive.

Proposition 4.1.2. Suppose Y is Galois over X and there is a finite étale map Y → Z over X. Then
AutZ Y ⊂ AutX Y is a subgroup and Z is Galois if and only if AutZ Y is a normal subgroup. In this case,
AutX Z ' AutX Y/ AutZ Y.

In particular, if Y, Z are both Galois, then we have a map AutX Y → AutX Z.

Definition 4.1.3. Take X̃ to be the universal cover of X. Then define the étale fundamental group by

πét
1 (X, x) := lim

←−
AutX Xi.

Aternatively, recall the action of AutX(Y) on F(Y). Then we obtain an action of π1(X, x) on

HomX(X̃, Y) := lim
−→

HomX(Xi, Y) ' F(Y).

Proposition 4.1.4. F is the direct limit of the functors HomX(Xi,−).

Theorem 4.1.5. The functor

F : FÉt/X →
{

π1(X, x)-sets
finite discrete

}
is an equivalence of categories.

By Yoneda, we may define π1(X, x) = Aut(F). Here F is the “fiber functor.”

1. Let X = Spec k. Then if we take Galois coverings Li/K whose union is ksep. Then we have

πét
1 (Spec k) = lim

←−
Gal(Li/K) = Gal(ksep/k).

2. Now consider a normal scheme X with function field K(X). Then K(X)un is the composition
of all finite extensions K(Y) such that Y → X unramified. Then we have

πét
1 (X) ∼= Gal(K(X)un/K(X)).

3. Because Q has no unramified extensions, we have πét
1 (Spec Z) = 1. By local class field

theory, for any number field K, we have

πab
1 (SpecOK) ' Gal(H†/K) ' Gal(H/K) ' IK,

where IK is the ideal class group, H† is the maximum abelian extension unramified at finite
primes (narrow Hilbert class field), and H is the Hilbert class field, which is unramified at
all primes.
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4. If X = A1
C, then we can prove using some differential form that πét

1 (X) = 1. In fact, all finite
étale covers are isomorphisms. However, this is not true in positive characteristic.

5. Consider the nodal cubic Spec k[x, y]/(y2 − x3 − x2). Then finite étale morphisms over X
are of the form Spec Rn with AutX Rn ' Z/nZ and thus πét

1 (X) = Ẑ.

6. Let Xk be finite over k with Xk connected. Then we have an exact sequence

1→ π1(Xk)
i−→ π1(Xk)

j−→ Gal(ksep/k)→ 1.

To prove this, first note that the composition of the two middle maps is trivial because the
map Xk → Spec k factors through Spec k (by definition of base change). Then because Xk is
connected, we see that j is surjective by using the fact that for

XL Xk

Spec L Spec k

we have AutXk (XL) ' Gal(L/k). Finally, we use some magic to show that i is injective.
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Caleb (Nov 13): Toproll and fibered categories

We take a break from our regularly scheduled Grothendieck programming for a sponsored
message about armwrestling.

5.1 Toproll Basics

The main goal of Toproll is to crack your opponent’s wrist back and pull through their fingers.
This comes with an abligatory safety precaution to always look at your hand because things can
break if you get pulled back and start looking away.

Definition 5.1.1. The Toproll is a move in which you pronate your wrist to break open your
opponent’s wrist, then pull down while dropping your body down.

Before we get into the specifics, here are some general principles of armwrestling:

1. Keep your hand and fingers high. The higher your hand is, the more leverage you will have.
You should do this starting from when you set up with your opponent.

2. Keep your wrist cupped as much as possible. You want to continually pull in and should
try to do this before the match starts, even if it is cheating.

3. Stay close to your arm so that your body moves as one unit.

4. Pull towards yourself and pull your body back.

There are many varieties of Toproll, which was invented in the 1980s. Before, everyone would
push their shoulder forward. The basic procedure is as follows:

1. (Setup) Get your fingers as high as possible and put your body close to the table. Stand up
tall so you can come crashing down when the referee says “go.” Squeeze your hand and
load up your arm so you start faster.

2. (Beginning of match) Simultaneously cup and pronate your wrists. Pull back1 using your
opposite shoulder as hard as possible and drop your body down.

1There is also a notion of pushforward, but it does not apply here.
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3. (Finishing) Usually your aim is to finish in one move, but this does not always happen. In
this case, you need to maintain your advantage by turning your opponent’s hand upwards.
Climb with your fingers and finish either with the same motion or with a press.2

If you look at professional armwrestling, most people have a toproll. Some famous toprollers
are Travis Bogent, Vitaly Laletin, Matt Mask, and Dimitry Trubin.

What we have described so far is an offensive move, but it can be used as a defensive move.
We will not be covering this today as it is an extremely advanced technique, but it is called the
“King’s move” and has been used by Michael Todd and Devon Lurratt. This is very controversial
as it involves dropping your entire body below the table and is only possible because professional
armwrestlers cannot straighten their arms.

In the toproll, you will deal with opponents who have a strong hand whose writs you cannot
bend back. In this case, you should continue to hit and climb. The idea is to push your elbow
forward to gain leverage and then pull your elbow back to climb. Another thing to try is to use
side pressure, which can throw your opponent off guard.

The main method to defend is to pull your arm back towards yourself and pronate your wrist.
To come back back, you hit with pronation and the let up the side pressure to gain height, and
vice versa. As for actually defending the toproll, here are some strategies:

• Clamp your fingers down.

• Supinate your wrist and push your body forward to set a hook.

• Apply side and down pressure.

Remark 5.1.2. It is very difficult to toproll people with long arms and large hands. Conversely, if
you have long arms and large hands, the toproll is a good move to use.

A way to train3 is to attach a weight to a strap and practice the motion. For left-handed people,
everything should be symmetric. Thank you for tuning in to our sponsored programming about
armwrestling.

5.2 Review of Fibered Categories

Here is a motivating example for fibered categories. Recall that F : Sch/Sop → Set sending a
scheme X to the set of isomorphism classes of elliptic curves over X is not representable. Instead,
we will replace this by a fibered category

p : M1,1 → Sch/S

with objects (X, (E, e)) being a scheme and an elliptic curve over it and morphisms are ( f , g) such
that

E′ E

X′ X

is a Cartesian diagram. This means that E′ ' E×X X′. In particular, when X = X′, the morphisms
are the automorphisms.

Recall the definition of a Cartesian arrow and a fibered category from the second lecture.

2This is a pushforward.
3Besides contacting Caleb to be your trainer



19

Example 5.2.1. Suppose a category C has fiber products. Then the arrow category of C is fibered
over C under (X → Y) 7→ Y.

Definition 5.2.2. In a fibered category F → U, the fiber F(U) is the subcategory mapping down
to U.

Recall that a cleavage is a class of Cartesian arrows such that there is one for every U → V
and η ∈ F(U). This does not give a functor from C to Cat, but it does give a pseudofunctor.

Example 5.2.3. Recall that a group is a category with one object. If G → H is a surjective
morphism, then we can think about G as being fibered over H. Then the sequence G → H → 1
being split is equivalent to the existence of a split cleavage.

5.3 2-Yoneda Lemma

Recall that if F : Cop → Set is a functor, then Hom(hX , F) ' F(X). This is the ordinary Yoneda
lemma, and it tells us that we have an embedding C → Hom(Cop, Set). Now the 2-Yoneda lemma
embeds Hom(Cop, Set) into the 2-category of fibered categories over C.

Given Φ : Cop → Set, we will construct a fibered category FΦ → C. The objects are pairs (U, ξ)
where U ∈ C and ξ ∈ Φ(U). This maps down to U. The morphisms (U, ξ) → (V, η) are maps
U → V such that Φ f (η) = ξ.

If X ∈ C is an object, then hX is sent to the category C/X over X.

Lemma 5.3.1 (Weak 2-Yoneda). For X, Y ∈ C, we have Hom(X, Y) ' Hom(C/X, C/Y) ' Hom(hY, hX).

Lemma 5.3.2 (2-Yoneda lemma). Let F→ C be a fibered category. Then Hom(C/X, F) ' F(X).

5.4 Categories fibered in sets and groupoids

All moduli problems will be fibered in groupoids, and when they are representable by schemes,
this is when the functor is fibered in sets.

Definition 5.4.1. A category is fibered in sets if F(U) is a set, which means there are only identity
morphisms.

Now recall that we have embeddings

C ↪→ Hom(Cop, Set) ↪→ {Fibered categories over C} X 7→ hX 7→ C/X.

Theorem 5.4.2. The functor from presheaves to categories fibered in sets is an equivalence.

Definition 5.4.3. A category is fibered in groupoids if F(U) is a groupoid.

Definition 5.4.4. Recall the Grassmannian Gr(n, k) represents the functor given by

X 7→ {(X/S, q : On
S → f∗Q)}

where Q is a quotient bundle over X that is free of rank n− k.
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Caleb (Nov 20): Stacks and Hooks

6.1 Pursuing Stacks

We have been discussing fibered categories, and now we will be discussing fibered categories over
a site. Our slogan to keep in mind is that a stack is a fibered category over a site with descent.
Alternatively, a stack is a 2-sheaf, or a sheaf taking values in categories.

Remark 6.1.1. Algebraic stacks are very special kinds of stacks and we have the following analogy:
algebraic stacks are to stacks as schemes are to sheaves.

Example 6.1.2. The basic prototype of a stack is the arrow category of Top. Here, this is a fibered
category with fiber F(U) = Top/U. Next, it is easy to see that we can glue functions locally, and
formally, this means that HomS(X, Y) is a sheaf. We can also construct spaces locally, and this is a
cocycle condition. Given an open cover {Ui} of U and maps fi : Xi → Ui with transition maps
φij : f−1

j Uij → f−1
i Uij with φik = φij ◦ φjk, then there exists a space f : X → U such that there exist

isomorphisms f−1
i (Ui) ' Xi and φij = φi ◦ φ−1

j .

Definition 6.1.3. We now define an object with descent data. This is a collection ({εi},
{

φij
}
) for a

cover {Ui → U} such that εi ∈ F(Ui) and φij : pr∗2(ε j) ∼ pr∗1εi.

Remark 6.1.4. The choices of pr∗1 , pr∗2 depend on the cleavage chosen. This can also be phrased in
terms of sieves, where

pr∗13φik = pr∗12φij ◦ pr∗23φjk.

Here, we have the diagram

Uijk Ujk

Uij Uj

Uik Uk

Ui U

pr13

pr12

pr23

20
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Given a covering {Ui → U}, define the category F({Ui → U}) with the following data:

Objects: These are simply objects with descent data.

Morphisms: These are morphisms αi : εi → ηi such that the diagram

pr∗2ε j pr∗2ηj

pr∗1εi pr∗1ηi

φij

pr∗2 αj

ψij

pr∗1 α1

commutes.

Definition 6.1.5. A functor F is a prestack if for each covering {Ui → U} the functor F(U) →
F({Ui → U}) is fully faithful. If this functor is an equivalence, then F is a stack.

Note that this is a sheaf-like condition.

Definition 6.1.6. An object with descent data is effective if it is isomorphic to the image of an
object in F(U).

Thus by definition, stacks are prestacks such that all objects with descent data are effective.

Example 6.1.7. Let C be a site and F : Cop → Set a presheaf. Recall that F is a fibered category in
Set. Then F is a sheaf if and only if F is a stack.

We now give some examples of stacks.

1. Let C be a site. Then Sh/C → C is a stack. This example is called a topos. This was
apparently one of Grothendieck’s most profound ideas.

2. Let S be a scheme. Then the category QCoh/S → Sch/S is a stack in the fpqc topology.
Apparently this is important.

3. The category Aff/S→ Sch/S of affine arrows over S is a stack in the fpqc topology.

4. Because the speaker has been traumatized by combinatorics, we give the following: Let T be
the category of trees with morphisms the embeddings and coverings the jointly surjective
ones.1 Then fiber products are just intersections. We will define F(T) to be the category of
proper colorings of T.

At risk of further infecting these notes with combinatorics, consider the chromatic symmetric
function

XT = ∑
proper

colorings

x#(i appears)
i .

Then the conjecture is that XT defines T. It is easy to see that the category defined above is a
stack.

1I’m sure that Doron Zeilberger will love this.
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6.2 Hooks

There is a spectrum of styles in armwrestling from inside pulling to outside pulling: press, hook,
high hook, toproll, and king’s move. Recall the discussion of the toproll last time.

Definition 6.2.1. A hook is a move where you cup your hand, supinate your wrist, bring your
shoulder forward, and pull down and in. Usually this is accomplished by the following procedure:

1. Cup your wrist and bring your shoulder in.

2. Pull in to yourself and to the side, getting close to your arm.

3. Supinate your wrist and finish with a shoulder press.

Unlike a toproll, expect a long match with a hook. Also, having a high hand in a hook is less
important than in a toproll. The hook is a power game, but hand position is still important. It is
important to do the following:

• Keep carving your wrist and getting tight.

• Make micro-adjustments with your hand and elbow to cut your opponent off from their
power.

Remark 6.2.2. If you get pulled down in a hook, try to keep your shoulder close to your arm and
keep looking at your arm.

Some exceptional hookers are John Brzenk (who is the greatest armwrestler of all time),
Devon Larratt, Todd Hutchings, Farid Usmanov, Dave Chaffee, Denis Cyplenkov, and Levan
Sagnisashvilli (the current World #1).

Now we discuss the high hook. This was popularized by and is the namesake of the Ottowa
High Hookers, which is a club run by Devon Larratt. This uses the same principles of the hook
with a higher hand. If executed well, this leads to the can opener move which is essentially a
transition between hook and toproll.
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Caleb (Dec 04): Jacobians I and Shoulder Press

7.1 Divisors and Picard Groups

Let X be Noetherian, integral, separated, and regular in codimension 1.

Definition 7.1.1. The group Div X of WEil Divisors is the group generated by codimension 1
closed integral subschemes.

Because X is integral, it has a function field K. If we choose f ∈ K∗, we can choose Y ⊂ X
of codimension 1. Then at ηY, the stalk OηY is a DVR with fraction field K. Then we can write
( f ) = ∑Y vY( f )Y. This is a finite sum by the Noetherian condition. Divisors of this form are
called principal.

Example 7.1.2. Let X = P1. Then Weil divisors of P1 are sums ∑ niPi, where Pi is a point. If
Pi = [2 : 1], then VPi ( f ) is the order of the zero (or pole) at 2.

Definition 7.1.3. The Class group Cl X is the group Div X/K∗, where we identify K∗ with the
principal divisors.

Definition 7.1.4. The principal divisors of P1 is all sums ∑ niPi where ∑ ni = 0. Thus Cl P1 ' Z.

Now let X/k be a projective curve over an algebraically closed field k.

Definition 7.1.5. We define the degree of ∑ niPi to be ∑ ni[k(Pi) : k] = ∑ ni.

Now if f ∈ K(X)∗, we know that ( f ) = ϕ∗({0} − {∞}) and thus deg( f ) = 0. Therefore we
have a map Cl X� Z, and the kernel is Cl0 X.

Example 7.1.6. Define X = Proj k[x, y, z]/(y2z− x3 + zx2). We will show that Cl0 X is in bijection
with the set of closed points. In one direction, let p0 = [0 : 1 : 0]. Then f (p) = p − p0.
Then the line (z = 0) intersects C with multiplicity 3 at p0. Thus if L ∩ C = {P, Q, R}, then
(L/Z) = P + Q + R− 3P0. On the other hand, if D is a degree 0 divisor, we can eventually replace
it by Pi − P0 because C is not rational.

Definition 7.1.7. The Picard group Pic X is defined to be the set of isomorphism classes of line
bundles on X with group operation the tensor product.

If X is locally factorial, then Cl X ' Pic X.
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Example 7.1.8. Let X = Spec Z[
√
−5]. This is not a UFD, so its class group is nontrivial. The line

bundles are fractional ideals and we have Pic X ' C2 with generator I := (2, 1 +
√

5). Over D(2),
we have I = 1 and over D(3), I becomes generated by 1 +

√
−5.

7.2 Jacobian Functor

Now we will always assume X is a smooth curve. Then we can define the degree of an invertible
sheaf L = ∑ ni[k(pi) : k] by translation to Weil divisor language. Next, χ(C, Ln) = n deg L + 1− g.

Definition 7.2.1. Define the functor F(T) by

T 7→ {line bundles on C×k T | deg 0 fiberwise}.

However, we don’t want line bundles on T interfering, so we now define

P0
C(T) = F(T)/q∗ Pic T.

Unfortunately, this is still not necessarily representable.

Theorem 7.2.2. There exists an abelian variety J over k and a morphism of functors f : P0
C → J that is an

isomorphism if C(T) is nonempty. In particular, if T = Spec k and C has a rational point, then J represents
P0

C.

Now let G = Gal(K′/K). We need the map P0
C(Spec k)→ P0

C(Spec K′)G to be bijective for P0
C

to be representable.

Proposition 7.2.3. There exists an exact sequence

0→ Pic(X)→ Pic(XK′)
G → Br(k′/k) = H2(G, k∗)

where Br(k′/k) is the Brauer group.

The idea of the proof is that to show injectivity, let L, L′ ∈ Pic C. If they become isomorphisc
over k′, we show the isomorphism descends to Pic X. Choose σ ∈ G. If i : Lk′ → L′k′ is an
isomorphism, then we can apply σ to get another isomorphism between the two. This differs from
i by cσ ∈ Aut(Lk′) = (k′)×, and then cσ ∈ H1(G, (k′)×) = 0 is a coboundary by Hilbert Theorem
90. Thus c0 = σ(α)

α for some α ∈ k′. The upshow now is that α−1i is Galois invariant, so this
descends to an isomorphism L→ L′ over k.

Now suppose L ∈ Pic (Xk′)
G that does not come from Pic X. Here, for σ, τ ∈ G, we have

iτσ = cτσ(σ∗iτ ◦ iσ), and thus cστ ∈ H2(G, (k′)×).

Proposition 7.2.4. Suppose X(k) 6= ∅, or equivalently X has a rational point. Then P0
C is an étale sheaf

and it is representable.

7.3 Relation to Complex Analysis

Consider H0(C, Ω1), which has dimension g. We have an integration pairing H1(C, Z) →
H0(C, Ω1)

∨. The quotient of this map is Jan = H0(C, Ω1)
∨/H1(C, Z) is a torus. Via Poincare

duality, we have a pairing H1(C, Z)⊗ H1(C, Z)→ Z satisfying the Riemann bilinear equations.
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These conditions are called a Riemann form on Jan and give it the structure of an abelian variety.
Now we have a map f : H0(J, Ω1

J )→ H0(C, Ω1
C). This gives a map

H0(C, Ω1)
∨ → H0(J, Ω1)

∨ ' T0 J
exp−−→ Jan

with kernel H1(C, Z) by Abel’s theorem and Jacobi inversion. This gives an isomorphism between
the algebraic and analytic constructions.

7.4 Shoulder Press

This is an inside move where you move your shoulder forward.

Definition 7.4.1. The flop wrist press move is a move where you bring your shoulder forward,
push down with your palm, and allow your wrist to get bent back.

The most well known flop wrist presser is Jerry Cadorette. This move can also be used
defensively. Here are some examples of this move:

1. Flop wrist press by Jerry Cadorette: https://www.youtube.com/watch?v=A2VgWQNiKGg

2. Defensive shoulder press by Marcio Barboza: https://www.youtube.com/watch?v=pBKwuXQfOzc

3. Defensive shoulder press by Devon Larratt: https://www.youtube.com/watch?v=PDbmiSpFajg

https://www.youtube.com/watch?v=A2VgWQNiKGg
https://www.youtube.com/watch?v=pBKwuXQfOzc
https://www.youtube.com/watch?v=PDbmiSpFajg
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Caleb (Dec 11): Jacobians II and the History of Armwrestling

8.1 Construction of the Jacobian

Let X be a curve over k. Recall the functor

G(T) = {L ∈ Pic(X× T) | deg Lt = 0}/q∗ Pic T.

If X has a k-point, then it is representable. Assume x ∈ X(k). We will now construct the Jacobian
representing the functor G. Recall that for an elliptic curve over C, we have Jac(X) ∼= X. For a
higher genus curve X, the Jacobian is birational to X(g) = Xg/Sg.

We will use the correspondence between k′-points of X(g) and effective Cartier divisors of Xk′

of degree g. Here, a Cartier divisor is an element α ∈ Γ(X, K∗x/OX) and a Cartier divisor is effective
if we have charts Ui such that αui ∈ OUi . For example, if we consider the Weil divisor n[0], this is
the Cartier divisor (A1, xn).

Recalling the Riemann-Roch formula `(D)− `(K−D) = deg D− g+ 1, chose effective divisors
D, D′ of degree g. Then `(D + D′ − g[x]) ≥ 1 and semicontinuity and an instruction gives that
the set U ⊂ X(g) × X(g) such that equality holds is open and nonempty. Up to scaling, there exists
a unique f such that D′′ = ( f ) + D + D′ − g[x] is effective.

Now we may define the map U → X(g) by (D, D′) → D′′. This gives a rational map
X(g) × X(g) 99K X(g). By general results of Weil, we can upgrade this to an abelian variety
X(g) → J.

Theorem 8.1.1. For any birational group V over k, there exists a unique group variety G over k and a
birational f : V → G such that f (ab) = f (a) f (b).

In our case, we have V = X(g) and J is proper (or complete), so X(g) → J is an honest
morphism.

Theorem 8.1.2. J represents the functor G.

The idea of the proof is to define a map f : Pic0(X) → J. Let D ∈ Pic0(X) and suppose

D + g[x] is effective. Then if we consider the diagonal map X ∆−→ X(g) h−→ J, then we define
f (D) = h ◦ ∆(D + g[x]). Otherwise, we can take D′ such that D + D′ + g[x] and D′ + g[x] are
effective, and we set f (D) = f (D + D′)− f (D′).
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8.2 Some results about the Jacobian

Here are some results about Jacobians. We are very far away from proving any of them.

Theorem 8.2.1. For any abelian variety A over an infinitely field k, there exists a Jacobian J such that
J � A.

Theorem 8.2.2 (Torelli). Let k be an algebraically closed field. Then a curve C over k is uniquely
determined by its canonically polarized Jacobian (J, λ), where λ is a certain ample line bundle giving a map
J → Ĵ. Over C, λ is given by the image of

Cg−1 → J(C) (x1, . . . , xg−1) 7→ (ω 7→∑
i

∫ xi

q
ω).

The proof allegedly involves complicated combinatorial arguments. For arithmetic geometers,
there is the Shafarevich conjecture:

Conjecture 8.2.3 (Shafarevich). Let K be a number field and S be a finite set of primes of K. Then there
are finitely many isomorphism classes C/k of genus g with good reduction outside of S.

Using various facts about Jacobians, this implies Faltings’s theorem.

Theorem 8.2.4 (Faltings). Let X be a curve of genus g ≥ 2 over Q. Then X has finitely many rational
points.

Finally, there is a very roundabout way to prove the Riemann Hypothesis for curves. We can
prove it for abelian varieties and then deduce it for a curve using the Jacobian.

8.3 History of Armwrestling

The first definitive instances of armwrestling appear to be from 18th century Japan. Around the
1850s, Japan began having armwrestling competitions. The first major armwrestler was Tetsu
Yamamoto, known as the God of armwrestling. In the US, armwrestling was born in a California
bar in the 1950s and there was a World championship in the 1960s. Broadcasts began in the 1970s.

The first major event came in the 1985 movie (with attached armwrestling competition) Over
the Top, which introduced the world to John Brzenk, who is the greatest armwrestler ever. He was
dominant from 1985 to 2010. In 2008, he was supplanted by Devon Larratt.
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