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Johan (Sep 24): Schlessinger’s paper

The paper by Schlessinger is titled Functors of Artin Rings. Throughout this lecture, k is a field, C
is the category of Artinian local k-algebras A,B,C, . . . with residue field k, and Ĉ is the category
of Noetherian complete local k-algebras R,S, . . . with residue field k.

Remark 1.0.1. Every R ∈ Ĉ is of the form k[[x1, . . . , xn]]/(f1, . . . , fm) by the Cohen structure theorem.
Then R ∈ C if and only if and only if (f1, . . . , fm) contains (x1, . . . , xn)N for some N.

Remark 1.0.2. In the paper, there is a more general setup, where Λ is a complete local Noetherian
ring with residue field k. Then CΛ, Ĉ are defined analogously, which will allow things like
Λ = Zp.

The idea of deformation theory is to look at functors F : C→ Set.

Example 1.0.3. Given R ∈ Ĉ, we set hR : C→ Set sending A 7→ Hom
Ĉ
(R,A). This is not necessarily

representable because R /∈ C in general, but it is pro-representable.

Definition 1.0.4. A functor F is pro-representable if F ' hR for some R ∈ Ĉ.

Example 1.0.5. Let M be a variety over k and m ∈M(k). Then define

DefM,m(A) =
{

SpecA
mA−−→M | mA|Speck = m

}
.

It is easy to see that DefM,m(A) is pro-representable by ÔM,m.

Observe that hR(k) = {∗} is a singleton. Also note that hR(A×B C) = hR(A)×hR(B) hR(C).
Here, A×B C is the fiber product of rings and not the tensor product.

Now consider the following conditions on F: let A→ B← C be a diagram in C and consider
the morphism

F(A×B C)
(∗)−−→ F(A)×F(B) F(C).

• (H1) The morphism (∗) is surjective if C� B;

• (H2) The morphism (∗) is bijective if C = k[ε]� k = B;

• (H3) dimk(tF) <∞ (later, we will see that we need H2 for formulate this). Here, tF is the
tangent space to F;

• (H4) The morphism (∗) is bijective if C� B.
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Example 1.0.6. Fix a group G and a representation ρ0 : G→ GLn(k). Now define

Defnaive
ρ0

(A) =
{
ρ : Gy A⊕n | ρ (mod mA) ∼= ρ0

}
/ ∼= .

Better, we will define

Defρ0(A) =
{
ρ : Gy A⊕n | ρ (mod mA) = ρ0

}
/ ker(GLn(A)→ GLn(k)).

In general these functors fail (H4) and Defnaive
ρ0

even fails (H2).
Namely, if H = Z and ρ0 is the trivial representation, then for Defnaive

ρ0
, we are looking at

subsets of
GLn(A×B C)/conj→ GLn(A)/conj×GLn(B)/conj GLn(C)/conj.

This morphism is always surjective, but in general it is not injective.
For example, if A = k[ε1],B = k,C = k[ε2], we can look at elements of the form 1 + ε1T1 + ε2T2

and see that on the left we can only conjugate together, while on the right we can conjugate both
T1, T2 arbitrarily. Here A×B C = k[ε1, ε2] = k[x1, x2]/(x

2
1, x1x2, x2

2).

Definition 1.0.7. A natural transformation t : F→ G of functors on C is smooth if for all surjections
B� A the map F(B)→ F(A)×G(A) G(B) is surjective.

Note that this is equivalent to the existence of a lift in the diagram below:

SpecA M

SpecB N.

f

This definition is motivated by the following example: let f : M→ N be a morphism of varieties
over k. Let m ∈M(k),n = f(m) ∈ N(k). Then the following are equivalent:

1. DefM,m → DefN,n is smooth.

2. f is smooth at m.

Definition 1.0.8. We say F has a hull if and only if F(k) = {∗} and there exists a smooth t : hR → F

for some R ∈ Ĉ which induces an isomorphism tR ∼= tF.

Now we will say a bit about tangent spaces.

1. When F(k) = {∗}, then tF = F(k[ε]).

2. If F satisfies (H2) and F(k) = {∗}, then tF has a natural k-vector space structure. Here, H2
gives F(k[ε1, ε2]) → F(k[ε])× F(k[ε]) is a bijection, and then we take ε1 7→ ε, ε2 7→ ε, which
defines addition.

3. tR = Homk(mR/m2
R,k) = Hom

Ĉ
(R,k[ε]) = hR(k[ε]) = t(hR).

Theorem 1.0.9 (Schlessinger). Asssume that F(k) = {∗}. Then the conditions (H1), (H2), (H3) hold for F
if and only if F has a hull. In addition, (H3) and (H4) hold if and only if F is pro-representable.
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Very rough idea of proof of⇒ for the hull case. Let n = dimk(tF). Then (H2) and n < ∞ imply the
following: Let S = k[[x1, . . . , xn]] and m = mS = (x1, . . . , xn). We can find ξ1 ∈ F(S/m2) such that

tS = Hom
Ĉ
(S,k[ε])

ξ1−→ tF

is an isomorphism.
Next, we will choose q > 2 and consider pairs (J, ξ) where mq+1 ⊂ J ⊂ m2 and ξ ∈ F(S/J)

such that ξ 7→ ξ1 ∈ F(S/m2). Say that (J, ξ) 6 (J ′, ξ ′) if J ⊂ J ′ and ξ 7→ ξ ′. Choose a minimal
pair (J, ξ) for this ordering. We can choose Jq so that mq+1 + Jq+1 = Jq and ξq+1 maps to ξq for
bookkeeping purposes.

Choose R = limS/Jq, which is a quotient of S. Set t : hR → F given by sending ϕ : R→ A to

the following: choose q such that ϕ factors as R→ S/Jq
ϕq−−→ A and take ξq 7→ F(ϕq)(ξq) ∈ F(A).

Finally, we must show that t is smooth. Consider the diagram

S S/mq+1

S/Jq ×A B B

R S/Jq A

ϕ

ϕ ′
ϕ

pr1

ψ

with B 3 ξ̃ 7→ ξ ∈ A and S/Jq 3 ξq 7→ ξ. First, choose ϕ : S→ B making the diagram commute.
We may increase q such that ϕ(mq+1) = 0, so we now have ϕ : S/mq+1 → B. Now consider the
fiber product S/Jq ×A B and pr1 : S/Jq ×A B→ S/Jq, so we obtain ϕ ′ : S/mq+1 → S/Jq ×A B. By

(H1), we obtain some ˜̃ξ ∈ F(S/Jq ×A B) mapping to ξ̃ and ξq. We may now assume that B→ A
is a small extension, which means that dimk ker(B→ A) = 1, and thus pr1 is a small extension.
Therefore, either ϕ ′ is surjective or its image maps isomorphically via pr1 to S/Jq., so we have ψ
which gives R→ B lifting our given r→ A.

The tricky part is to show that F(ψ)(ψq) =
˜̃
ξ, and this step is deliberately omitted.

A generalization of this is as follows. Consider a functor F : C→ Grpd. We say that F satisfies
the Rim-Schlessinger condition (RS) if

F(A×B C)→ F(A)×F(B) F(C)

is an equivalence whenever C� B. Let x0 ∈ F(k) and set

Fx0 : C→ Set A 7→ {(x,α) | x ∈ F(A),α : X0 → x|k}/ ∼=,

where (x,α) ∼= (x ′,α ′) means that ϕ : x→ x ′ such that the diagram

x|k x ′|k

x0 x0

ϕ

id
α α ′

commutes.



7

Theorem 1.0.10. If F has (RS) then Fx0 has (H1) and (H2). Therefore, if dim tFx0
<∞ then Fx0 has a

hull.

In this situation, Fx0 has (H4) if and only if AutA(x) � AutB(x|B) whenever A � B and
x ∈ Fx0(A).

Example 1.0.11. Let F(A) be the category of representations G y A⊕n with morphisms being
isomorphisms of representations. This has (RS).

Example 1.0.12. Let F(A) be the category of smooth projective families of curves of genus g over
A with morphisms being isomorphisms. This has (RS).

Returning to the example of representations, it turns out that tDefρ0
= H1(G,Mn×n(k)), where

G acts on Mn×n(k) via ρ0 by conjugation.

Example 1.0.13. Consider G = Z ⊕Z and ρ0 to be the trivial representation on k⊕2. Then
tDefρ0

= H1(Z2,M2(k)) =M2(k)⊕M2(k). Given two matrices A,B, we have the representation

Z2 → GL2(k[ε])(1, 0) 7→
(

1
1

)
+ εA

(0, 1) 7→
(

1
1

)
+ εB.

We get a hull Rwith hR → Defρ0 . We know that R is a some quotient of k[[a11, . . . ,a22,b11, . . . ,b22]]
with ρ looking like

(1, 0) 7→
(

1
1

)
+A (0, 1) 7→

(
1

1

)
+B,

and of course R is the quotient of the power series ring by the ideal generated by the coefficients
of AB−BA.
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Ivan and Cailan (Oct 1): Deformations of schemes

2.1 Deformations of affine schemes

We are looking for a Cartesian diagram of schemes

X X

Speck S

π

where π is flat and surjective and S is surjective. This is called an deformation of X over S. For the
beginning of this lecture (the part given by Ivan), we are interested in S = SpecA, where A ∈ C∗

(this category was defined in the previous lecture). This case is called a local deformation, and in
the face where A is Artinian, it is called an infinitesimal deformation.

For the ring theorists, we will make the following digression. Let A be a ring and I ⊂ A be
an ideal with I2 = 0. Suppose that B is an A/I-algebra, J is an B-module, and h : I → J is an
A-module map. Then we are interested in a diagram

0 J ? B

0 I A A/I 0,

h

which we will call a deformation of A. Here are some interesting questions:

1. Is such a deformation unique?

2. If B is flat over A/I, does that mean that B is flat over A?

Returning to the case of schemes, we will say that two deformations X,X ′ of X over S are
isomorphic if there exists an S-isomorphism φ : X ′ → X commuting with the inclusions of the
central fibers X→ X,X ′.

Example 2.1.1. The most basic example of a family is the trivial deformation

X X×k S

Speck S.

8
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Definition 2.1.2. A scheme X is rigid if all deformations of X are isomorphic to the trivial
deformation.

Theorem 2.1.3. If X is a smooth affine k-scheme and S = SpecA for some local Artinian ring, then X is
rigid.

Definition 2.1.4. A closed immersion i : S0 ↪→ S of schemes is called a first (resp. nth) order
thickening if the ideal sheaf I = ker(i[ : OS → OS0) satisfies I2 = 0 (resp. In+1 = 0).

Definition 2.1.5. A morphism f : X→ S is called formally smooth (resp. unfamified, resp. étale) if
for all first order thickenings i : T0 → T of affine schemes and diagrams

T0 X

T S

u0

i f
ũ0

there exists a lift ũ0 (resp. there is at most one such ũ0, resp. there exists a unique ũ0).

Example 2.1.6.

1. Open immersions are formally étale. This is cleaer because T0, T have the same underlying
topological space.

2. Closed immersions are formally unramified. This is clear because X→ S induces an injection
on T -points.

3. An
S → S is formally smooth. To see this, assume S = SpecR is affine and then consider the

corresponding lifting problem in commutative algebra.

Proposition 2.1.7. The classes of formally smooth (resp. étale, resp. unramified) morphisms are closed
under base change, composition, and products and local on both source and target.

Definition 2.1.8. A f : X→ S is smooth if it is formally smooth and locally of finite presentation.

We will now consider differentials. Let X = SpecA be an affine scheme over k and choose a
k-point and consider the diagram

Speck X

Speck[ε] Speck.

If X is smooth, then there exists a lift Speck[ε]→ X. But this is given by a morphism

φ̃ : A→ k[ε]/ε2 a 7→ φ(a) + d(a)ε.

This motivates the following definition:

Definition 2.1.9. Let R → A be a morphism of rings and M be an A-module. A derivation
d : A→M is an A-linear map satisfying the Leibniz rule.
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Proposition 2.1.10. There exists anA-moduleΩ1
A/k

equipped with a derivation d : Ω1
A/k

that is universal

among derivations from A. This means that all derivations d̃ : A→M factor through d, and formally, we
have an identity

DerR(A,M) ' HomA(Ω1
A/k,M).

Definition 2.1.11. For an A-module M with derivation d : A →M, define the ring A[M] as the
module A⊕M with the multiplication

(a,m) · (a ′,m ′) = (aa ′,am ′ + a ′m).

There is a sequence φ : A→ A[M]→ A.

Proposition 2.1.12. Let S← R→ A→ B be a diagram of rings. Then

1. Ω1
A⊗S/S ' Ω

1
A/R
⊗R S;

2. The sequence Ω1
A/R
⊗A B→ Ω1

B/R
→ Ω1

B/A
→ 0 is exact.

3. If B = A/I for some ideal I, we have an exact sequence

I/I2 → Ω1
A/R ⊗A B→ Ω1

B/R → 0.

4. For all f ∈ A, we havae Ω1
A[f−1]/R

' Ω1
A/R
⊗A A[f−1].

Remark 2.1.13. If J = ker(A⊗R A→ A), then Ω1
A/R

= J/J2.

Theorem 2.1.14. Let f : X→ S be locally of finite presentation. The following are equivalent:

1. f is smooth;

2. f is flat with smooth fibers;

3. f is flat and has smooth geometric fibers.

We will finally return to deformation theory.

Lemma 2.1.15. Let Z0 be a closed subscheme of Z determined by a nilpotent ideal sheaf N. If Z0 is affine,
then so is Z.

Proof of this result can be found in EGA, Chapter I.5.9.

Proof of Theorem 2.1.3. Recall that we have a diagram of the form

B B0

A k,

where A→ B is flat and B0 ' B⊗A k is a smooth k-algebra. We need to prove that B0 ' B⊗A k.
The first step is to prove this result for first-order deformations. Suppose that A = k[ε] is a
square-zero extension.

Lemma 2.1.16. For a ring R withM,N flat over R, nilpotent ideal I ⊂ R, and f : M→ N, then if f⊗R R/I
is an isomorphism, then so is f.



11

To prove the lemma, note that the cokernel of f is preserved by I, so it must vanish. Returning
to our case, we know that B is a smooth k[ε]-algebra. Now we obtain a square-zero extension
B0[ε] of B0 and a diagram

B B0

k[ε] B0[ε]
f

with a lift B → B0[ε]. But now by the lemma, we have B⊗k[ε] k = B0[ε]⊗k[ε] k. The rest of the
proof follows using an inductive argument that was verbalized but now written down.

2.2 Deformations of schemes

The main theorem of this section is

Theorem 2.2.1. Assume X is a smooth R-scheme. Then there is a bijection

Defsm
X (k[I]) ' H1(X, TX/k ⊗ I).

Proof. Let X ′ be a smooth deformation over k[I]. Then the diagram

X X ′

Speck Speck[I]

is cartesian. Then if Uk = SpecBk is an affine cover of X and U ′k = SpecDk is an affine cover of
X ′, we have a k[I]-linear ring isomorphism

ϕk : k[I]⊗k Bk → Dk (k, i)⊗ b 7→ s(b) + i.

Modulo I, ϕk is the identity on Bk. Without loss of generality, we may assume that Ukj = Uk ∩Uj
is a distinguished open for both Uk and Uj, so let Ukj = SpecBkj and U ′kj = SpecDkj. Now note
that both

ϕk,ϕj : k[I]⊗k Bkj → Dkj

induce the identity on Bkj modulo I. Now we have the commutative diagram

0 I Dkj Bkj 0

0 I Dkj Bkj 0.

id ϕ−1
j ϕk id

Lemma 2.2.2. The morphism g = ϕ−1
j ϕk must be of the form

g(i+ b) = i+ b+ δ(b),

where δ : Bkj → I is a derivation.
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In particular, this means that ϕ−1
j ◦ϕk(b,b ′) = (b,αkj(b) + b ′), where αkj : Bkj → I⊗k Bkj is

a derivation.
By definition, we have

(TX/k ⊗k I)(Bkj) = HomBkj(Ω
1
Bkj/k

,Bkj)⊗k I

= HomBkj(Ω
1
Bkj/k

,Bkj ⊗k I)

= Derk(Bkj,Bkj ⊗k I).

Therefore, αk ∈ H0(Bkj, TX ⊗k I). Note that

ϕ−1
` ◦ϕj ◦ϕ

−1
j ◦ϕ

−1
k = ϕ−1

` ◦ϕk,

which implies that
(b,αj`(b) +αkj(b) + b ′) = (b,αk`(b) + b ′)

and thus
{
αkj
}
∈ Z1({Uk}, TX ⊗k I).

If two deformations are the same, note that ϕk is defined using a ring section sk : Bk → Dk
of the canonical map πk : Dk → Bk. If ϕ ′k is defined using another section s ′k, then define
θk = s ′k − sk ∈ Der(Bk, I⊗k Bk). We now compute

((ϕ ′j)
−1 ◦ϕ ′k −ϕ

−1
j ◦ϕk)(b,b ′) = (0, θk(b) − θj(b)),

and thus the two differ by the desired coboundaries.

We will now consider some obstructions. We are looking for a diagram of the form

X ′ X ′′

SpecA ′ SpecA ′′.

f

for each pair (j,k), we have a isomorphism ψjk : V
′
j → V ′k and a cocycle

cjk` = ψk` ◦ψjk ◦ψ−1
j` .

This induces Bjk` ∈ DerA(Djk`, J⊗ADk`) = Z2(U, TX ′/A ⊗A J).
Now we will discuss some examples.

Theorem 2.2.3. Let C be a smooth projective curve, T = TC, and K = Ω1
C. We have the following table:

Table 2.1: Cohomology

degree h0 h1 h2

K 2g− 2 g 1 0
T 2 − 2g ε ε+ 3g− 3 0

where ε = 0 where g > 2, ε = 1 if g = 1, and ε = 3 if g = 0.

For g > 2, deg T < 0, and by Riemann-Roch and Serre duality, we have h1(C, TC) = 3g− 3.

Theorem 2.2.4. Pn has no infinitesimal deformations.
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Proof. Consider the Euler sequence

0→ O→ O(1)⊕n+1 → TPn → 0

and use the long exact sequence in cohomology. Because positive degree line bundles have no
higher cohomology, we have H1(TPn) = 0.
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Kevin (Oct 08): Deformations of coherent sheaves

There will be no mixed characteristic funny business during this lecture. Let X be a projective
k-scheme (proper might be fine, but this makes certain facts more true) and F be a coherent sheaf
on X. Consider the deformation functor

DF : Artk → Set A 7→ {FA ∈ Coh(XA) | FA|X ∼= F,FA flat over A}.

We want to study the properties of this functor, which means we will check Schlessinger’s
conditions:1 Let A→ B← C be a diagram in C and consider the morphism

D(B×A C)
r−→ D(B)×D(A)D(C).

• (H1) The morphism r is surjective if C� A;

• (H2) The morphism r is bijective if C = k[ε]� k = A;

• (H3) dimk(tD) <∞ (later, we will see that we need H2 for formulate this). Here, tD is the
tangent space to D;

• (H4) The morphism r is bijective if C� A.

Recall from Johan’s lecture that (H1), (H2), (H3) are equivalent to the existence of a hull and
(H3), (H4) are equivalent to D being pro-representable.

We only need to check (H1) for small extensions, which are extensions by a k-vector spaace

0→ I→ C→ A→ 0,

where I is killed by the maximal ideal of C.

Theorem 3.0.1. The functor DF admits a hull.

Lemma 3.0.2. Let (A,m) be a local Artinian ring.

1. If mM =M, then M ∼= 0.

2. If M→ N induces an isomorphism M/mM ∼= N/mN and N is flat over A, then M ∼= N.

3. If M is flat, then M is free.

1Neither Kevin nor Johan knows why these conditions are called H
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Proof. We know that md = 0, so mdM = 0, and thus M = mM = m2M = · · · = mdM = 0. Next,
suppose M → N induces an isomorphism after killing m. Then we know that the kernel and
cokernel vanish because they are killed by m, so M→ N must be an isomorphism. The last part is
left as an exercise.

Proof of theorem. We will simply prove (H1), (H2), (H3):

1. Suppose that C� A is a small extension and consider a pair (FB,FC) ∈ D(B)×D(A)D(C).
We know that we have isomorphisms FB|XA

∼= FA,Fc|XA ∼= FA, and so we take the fiber
product

FB×AC := FB ×FA FC.

We only need to show that our sheaf is flat over B×A C because it clearly restricts to FB
and FC. We can consider each sheaf as a module M, and so we know MB is free over B by
the lemma. Choose a basis {ei}. Also consider the diagram

MB ×MA
MC MC

MB MA.

v

u

Then MA has A-basis u(ei). Because MC surjects onto MA, we can lift the u(ei) to fi ∈ C,
and these form a C-basis for MC. This all implies that MB ×MA

MC is free with basis
(ei, fi).

2. It suffices to prove injectivity. Suppose G ∈ D(B×k k[ε]) maps to (FB,Fk[ε]) ∈ D(B)×
D(k[ε]), and so we have morphisms

G Fk[ε]

FB F.

We will prove that this diagram is Cartesian. By the lemma, the morphism G→ FB ×F Fk[ε]
is an isomorphism.

3. We will prove that TD = Ext1
X(F,F). We will only prove this in the case where F is a vector

bundle E of rank r. In this case, we have Ext1
X(E,E) = H1(X, End(E)). Now we will associate

cocycles to deformations. To each Ek[ε], we will associate an open cover (Uj) and

hij ∈ Aut(O⊕rXk[ε])(Uij),

and we write gij + εfij, where gij ∈ Aut
O⊕rX

(Uij) and fij ∈ End(O⊕rX )(Uij). The cocycle
condition is that

gik + εfik = (gij + εfij)(gjk + εfjk),

which is the same as
fik = gijfjk + fijgjk,

which is exactly the Čech 1-cocycle condition. Proving that equivalent cocycles give the same
deformation is easy.

Theorem 3.0.3. The condition (H4) holds when F is simple, which means that k ' EndX(F).
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3.1 Tangent-obstruction theory

Suppose D is a deformation functor. Then a tangent-obstruction theory for D is given by finite-
dimensional k-vector spaces (T1, T2). Suppose we have a small extension

0→ I→ B→ A→ 0.

Then we have another exact sequence

T1 ⊗k I→ D(B)→ D(A)
ob−→ T2 ⊗k I,

which means that

1. ξA ∈ D(A) lifts to D(B) if and only if ob(ξA) = 0;

2. T1 ⊗ I acts transitively on the fibers of D(B)→ D(A);

3. If A = k, then the action of T1 ⊗ I acts simply transitively on D(B).

Note that because T1 acts simply transitively on D(k[ε]), we must have T1 = D(k[ε]). On the other
hand, T2 is not canonical.

Theorem 3.1.1. The deformations DF admits a tangent-obstruction theory with T1 = Ext1
X(F,F) and

T2 = Ext2
X(F,F).

Proof. We claim that if D satisfies (H1) and (H2), then D(k[ε])⊗ I naturally acts on D(B) for small
extensions 0→ I→ B→ A→ 0. To see this, note that D(k[ε])⊗k I = D(k[I]). We also note that by
(H2), D(k[I])×D(B) = D(k[I]×k B). Now define α : k[I]×k B→ B by α(1 + i,b) = 1 + b, and this
gives us an action of D(k[I])×D(B) = D(k[I]×k B)

α∗−−→ D(B). To prove transitivity, apply (H1) to
the diagram

k[I]×k B B

B A.

α

πB

Now we will consider obstructions. We will assume again that F is a rank r vector bundle,
which we will call E. Let

0→ I→ B→ A→ 0

be a small extension, so we will consider H2(X, End(E)). Consider an open cover (Ui) and
gij ∈ Aut(O⊕rX ⊗k A)(Uij). We want to lift these to hij ∈ Aut(O⊕rX ⊗k B)(Uij). If this is possible,
we have a cocycle

h−1
ij hijhjk ∈ 1 + End(O⊕rX ⊗k I)(Uij),

and the cocycle condition is satisfied when h−1
ij hijhik = 1. If any other h ′ij = hij + sij, then we

note that
(h ′ij)

−1
h ′ijh

′
jk = h−1

ik hijhjk + (−sikgijgjk + g
−1
ik sijgij + g

−1
ik gijsjk),

and this gives us a class in H2(X, End(E))⊗ I.

Remark 3.1.2. Let R be the hull of D, which means we have a morphism hR → D. Then we know
R = k[[t1, . . . , td11]]/(f1, . . . , fd2). We also know that d1 − d2 6 dimR 6 d1.
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Example 3.1.3 (Good example). Let X be a smooth projective curve and E be a rank r vector
bundle. Then we know that

T1 = H1(X, End(E)), T2 = H2(X, End(E)) = 0,

so deformations of E are unobstructed. Now assume that E is simple. Then H0(X, End(E)) = k by
definition, and we also know that Dε is pro-represented by some ring R with

dimR = h1(X, End(E)) = r2(g− 1) + 1

by Riemann-Roch.

Example 3.1.4 (Bad example). Let X be a smoorh projective variety and E be a rank r vector bundle
on X. Let E1,E2 = DE(k[ε]). Then (E1,E2) ∈ DE(k[ε1, ε2]/(ε

2
1, ε1ε2, ε2

2)), and we would like to lift
to DE(k[ε1, ε2]/(ε

2
1, ε2

2)).
We will compute the obstruction explicitly. We know E1,E2 give us classes u1,u2 ∈ H1(X, End(E)),

and after some magical computation, the obstruction to lifting is given by

u1 ^ u2 + u2 ^ u1,

where the cup product comes from the algebra structure on End(E).
Now let X = C1 ×C2 be a product of curves. Then H1(X,OX) = H1(C,OC1)⊕H

1(C2,OC2) and
H2(X,OX) = H1(C,OC1)⊗j H

2(C2,OC2). Suppose that α1 ∈ H1(C1,OC1) and α2 ∈ H1(C2,OC2)
with nonzero cup product. Then we simply set E = OX ⊕OX and

u1 =

(
0 α1
0 0

)
u2 =

(
0 0
α2 0

)
u1 ^ u2 + u2 ^ u1 =

(
α1 ^ α2

α2 ^ α1

)
.

this gives us our obstructed deformation.
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Patrick (Oct 15): Deformations of singularities

We begin by fixing some notation. Let k be a field and R = P/I, where P = k[x1, . . . , xn] and
I = (f1, . . . , fr) is an ideal. Throughout this lecture, we will denote local Artinian rings with
residue field k by A,B,C, . . . and rings by R,S, T , . . . Finally, denote Z = SpecR.

4.1 Explicit criteria for flatness

We will study (embedded) deformations of singular affine schemes embedded in An. The first
thing we want to understand is to explicitly understand flatness of some RA over A, where
RA ⊗A k = R. We will write RA = PA/IA, where PA = A[x1, . . . , xn] = A⊗k P. Recall that over a
Noetherian local ring S with residue field k, a module M is flat if and only if it is free, and this is
equivalent to TorS1 (M,k) = 0 by standard results in commutative algebra.

Now consider the exact sequence

0→ IA → PA → RA → 0.

After tensoring with k, we have

0→ Tor1(RA,k)→ IA ⊗A k→ P → R→ 0.

Therefore, we know that RA is flat over A if and only if IA⊗A k = I. We would like to understand
this statement.

Consider a presentation
PsA → PrA → IA → 0

of IA. Then we know RA is flat over A if and only if after tensoring with k, we obtain an exact
sequence

Ps → Pr → I→ 0.

Note that to give this presentation Ps → Pr → I → 0 is the same as giving a complete set of
relations among the generators of I.

Proposition 4.1.1. Suppose that

(4.1) Ps → Pr → P → R→ 0

is exact and

(4.2) PsA → PrA → PA → RA → 0

18
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is a complex such that PrA → RA → RA → 0 is exact and tensoring (2) with k gives (1). Then RA is flat
over A.

Proof. Note that the hypotheses are equivalent to the fact that all relations in I can be lifted to IA.
Now given g ′1, . . . ,g ′r ∈ PA such that

r∑
i=1

g ′if
′
i = 0,

this clearly descends to a relation in I by killing the maximal ideal of A. But now if we choose a
complete set of relations for IA, this descends to a complete set of relations in I, so we may in fact
assume that (2) is exact.

In this case, there exists some LA such that the sequence splits as

PsA → LA → 0 0→ LA → PrA → IA → 0 0→ IA → PA → RA → 0.

By right exactness of the tensor product, we know PsA ⊗ k→ LA ⊗ k→ 0 is exact. We also know
that

LA ⊗ k→ PrA ⊗ k→ IA ⊗ k→ 0

is exact, again by right exactness. But this means that IA ⊗ k is the cokernel of Ps → Pr, and
therefore IA ⊗ k = I. This means that RA is flat.

Corollary 4.1.2. Let R = P/I and RA = PA/IA, where I = (f1, . . . , fr) and IA = (f ′1, . . . , f ′r) such that
f ′i is a lift of fi. Then RA is flat over A if and only if every relation among the fi lifts to a relation among
the f ′i.

Remark 4.1.3. This result essentially gives us that first-order embedded deformations of SpecR ⊂
An are given by Hom(I,R). The first-order (not embedded) deformations of Z are given by the
cokernel of

0→ TX → TAn |X → NX/An ,

which arises from the exact sequence

I/I2 → Ω1
An |X → Ω1

X → 0,

and this is supported on the singular points of X, so when X has isolated singularities, this is
finite-dimensional.

Note that if SpecR ⊂An is a complete intersection, then I is generated by a regular sequence,
so in particular the Koszul complex is a free resolution of R and therefore there are only trivial
relations among the fi (this means the relations are generated by fifj − fjfi = 0). Clearly, because
we are only considering commutative rings (after all, this is normal algebraic geometry), this
means that all deformations of SpecR are unobstructed.

4.2 Hilbert schemes of smooth surfaces

We will prove that deformations of finite length closed subschemes of A2 are unobstructed. In
particular, this will imply that the Hilbert scheme Hilb(A2,n) is smooth.

Let Z ⊂A2 be a closed subscheme of dimension 0. Then because P = k[x,y] has dimension 2,
there exists a free resolution

0→ Ps
(gij)−−−→ Pr → P → R→ 0

of R. In this case it is possible to understand the matrix (gij), and in fact this is the special case of
a more general result. First, when we study the local behavior, we have the following result.
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Theorem 4.2.1 (Hilbert, Burch). Let P be a regular local ring of dimension n and R = P/I be a Cohen-
Macaulay quotient of codimension 2. Then there exists an (r− 1)× r matrix G = (gij) whose maximal
minors f1, . . . , fr minimally generate I, and there is a free resolution

0→ Pr−1 (gij)−−−→ Pr
(fi)−−→ P → R→ 0.

Proof. Note that the fact that the free resolution has this length is a corollary of the Auslander-
Buchsbaum formula, which says that for a ring R and module M, we have

depthM+ proj.dimM = depthR

and the fact that depth equals dimension for Cohen-Macaulay things. Thus we have a free
resolution

0→ Pr−1 (gij)−−−→ Pr
(ai)−−−→ P → R→ 0,

where a1, . . . ,ar are a minimal set of generators for I. Let fi is (−1)i times the determinant of the
i-th minor of gij. We will prove that the map (fi) is the same as the map (ai); clearly

0→ Pr−1 (gij)−−−→ Pr
(fi)−−→ P → R→ 0.

is a resolution. This is because at the generic point of P, we know (gij) is injective, so at least one
fi is nonzero. But then we know coker(gij) is torsion-free (because I is torsion-free), and so it in
fact must vanish by rank reasons. Thus (a1, . . . ,ar) and (f1, . . . , fr) are isomorphic as P-modules.

At a codimension 1 point in SpecP, note that 0 → Pr−1 → Pr
(ai)−−−→ P → B→ 0 is split exact

(because I has codimension 2). This implies that at least one fi is a unit, and thus (f1, . . . , fr) has
codimension at least 2. But then the isomorphism I ∼= (f1, . . . , fr) is given by multiplication by
some nonzero element of P which is a unit away from codimension 2. But this means it is a unit
everywhere.

Considering the global picture in An, we obtain the following result.

Theorem 4.2.2 (Hilbert, Schaps). Let Z = SpecR ⊂ An be a Cohen-Macaulay closed subscheme of
codimension 2. Then R = P/I has a free resolution of the form

0→ Pr−1 (gij)−−−→ Pr
(fi)−−→ P → R→ 0

where the fi are the maximal minors of the matrix (gij).

This result in fact holds over any Artinian local ring A, which we will use later.
Next, we want to understand what happens if we choose some Artinian local ring with residue

field k and lift the gij to g ′ij, where g ′ij ∈ PA.

Theorem 4.2.3 (Schaps). If A is a square zero extension of k, then the sequence

0→ Pr−1
A

(g ′ij)−−−→ PrA
(f ′i)−−→ PA → RA → 0

is exact. Moreover, any lifting of R over A arises by lifting the matrix (gij).

Proof. We know that
L•A := Pr−1

A → PrA → PA
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is a complex. This is because composing the two maps amounts to evaluating determinants with
a repeated column. Because PA is free (and therefore flat), we can tensor with the exact sequence

0→ mA → A→ k→ 0

to obtain an exact sequence of complexes

0→ L•A ⊗A mA → L•A → L•A ⊗A k→ 0.

Note that

L•A ⊗A k = Pr−1 (gij)−−−→ Pr
(fi)−−→ P =: L•.

In particular, this term is exact by Hilbert-Schaps. In addition, clearly L•A ⊗A mA = L• ⊗k mA
because A→ k is a square zero extension, so the complex L•A ⊗A mA is exact. By the long exact
sequence in homology, we know that L•A is exact. Note that L• extends to an exact sequence

0→ Pr−1 → Pr → P → R→ 0,

and L•A extends to an exact sequence

0→ Pr−1
A → PrA → PA → RA → 0.

However, by the homology long exact sequence, we have an exact sequence

0→ R⊗k mA → RA → R→ 0.

But this implies that RA ⊗A k = R. Finally, by the local criterion for flatness, we see that RA is flat
over A.

Let RA = PA/IA be a lifting of R over A. Lift fi ∈ I to hi ∈ IA. By Nakayama, these generate
IA, so we obtain a free resolution

0→ Pr−1
A

(g ′ij)−−−→ PrA
(hi)−−−→ PA → RA → 0,

where g ′ij lift the gij. However, we already have a lift

0→ Pr−1
A

(g ′ij)−−−→ PrA
(f ′i)−−→ PA → R ′A → 0,

and so we must show RA = R ′A. But we know that the ideals IA = (h1, . . . ,hr) and I ′A = (f ′1, . . . , f ′r)
are isomorphic as PA-modules. But then if we restrict this isomorphism to An

A \ suppB, we
obtain a unit in H0(An

A \ suppB,OAnA
). Because functions extend over codimension 2, we have

H0(An
A \ suppB,OAnA

) = PA, so this is a global unit. This gives the desired result.

This result holds if we replace A→ k with any square-zero extension of Artinian local rings
B→ A and P,PA with flat things, and so we see that (embedded) deformations of codimension
2 Cohen-Macaulay subschemes of An are unobstructed. In particular, any dimension 0 closed
subscheme Z ⊂ A2 is automatically Cohen-Macaulay (because it is dimension 0), so its embed-
ded deformations are unobstructed. By some cohomological argument, the tangent space to
Hilb(A2,n) is isomorphic to Hom(R,R) and has dimension 2n, so
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4.3 An obstructed deformation

Let R = k[x,y, z]/(z2, xy, xz,yz). Note that this scheme has an embedded point at the origin, so in
particular it is not Cohen-Macaulay.

z

Figure 4.1: Drawing of SpecR

We will study embedded deformations of SpecR and see that they are obstructed. In particular,
we will choose two deformations of R over k[ε] that cannot be simultaneously lifted. We claim
that a complete set of relations (using the ordering (xy, xz,yz, z2) for the generators of I) is given
by the matrix

G =


z −y 0 0
z 0 −x 0
0 z 0 −x
0 0 z −y

.

Now a first-order deformation of SpecR is given by lifting (xy, xz,yz, z2) over k[ε], and the
first candidate is to consider Iε1 = (xy+ ε1y, xz,yz, z2). Then we note that

G


xy+ ε1y
xz
yz

z2

 = ε1


yz
yz
0
0

,

and we can lift G to kill this vector with the matrix

Gε1 =


z −y −ε1 0
z 0 −x− ε1 0
0 z 0 −x
0 0 z −y

 = G+


0 0 −ε1 0
0 0 −ε1 0
0 0 0 0
0 0 0 0

 =: G+G1.

Next consider the deformation given by Iε2 = (xy, xz,yz+ ε2z, z2). We note that

G


xy
xz

yz+ ε2z

z2

 = ε2


0

−xz
0
z2

,
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and we can lift G to kill this vector with the matrix

Gε2 =


z −y 0 0
z ε2 −x 0
0 z 0 −x
0 0 z −y− ε2

 = G+


0 ε2 0 0
0 0 0 0
0 0 0 −ε2
0 0 0 0

 =: G+G2.

Now we consider Iε2
1,ε2

2,ε1ε2
= (xy+ ε1y, xz,yz+ ε2z, z2) and attempt to lift this deformation

to k[ε1, ε2]/(ε
2
1, ε2

2). Note that

(G+G1 +G2)


xy+ ε1y
xz

yz+ ε2z

z2

 =


z −y −ε1 0
z ε2 −x− ε1 0
0 z 0 −x
0 0 z −y− ε2



xy+ ε1y
xz

yz+ ε2z

z2



= ε1ε2


−z
−z
0
0

,

and clearly z /∈ I, so in fact we cannot lift this deformation to k[ε1, ε2]/(ε
2
1, ε2

2). This proves
obstructedness.
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Avi (Oct 22): Local-global methods

5.1 Curves with isolated singularities

Here, we will consider the same lifting problems that we have consider before. Let X be a curve
over k and consider p : DefX → C be the deformations of X as a category cofibered over C.

Definition 5.1.1. A functor F : D1 → D2 is smooth if given ϕ : A ′ � A and (Z,A ′)→ F(Y,Z) over
ϕ over ϕ and (Y ′,A ′)→ (Y,A) over ϕ in D1, then there exists some F(Y ′,A ′)→ (Z,A ′) over the
identity in A ′.

There is an absolute notion, for D1 to be smooth, where we set D2 = Defk to be the category
of trivial deformations. In this case, we also called D1 unobstructed, and this corresponds to being
unobstructed in the tangent-obstruction theory.

Theorem 5.1.2 (Local-to-global). Let X/k be separated of dimension at most 1 and smooth away from
finitely many points. At each singularity p1, . . . ,pn, consider the inclusions

OX,p → OhX,p → ÔX,p

into the henselizations and completions, respectively. Then the functors

DefX →
∏
i

DefOX,p

(2)−−→
∏

DefOhX,p

(3)−−→
∏

Def
ÔX,p

are all smooth and (2), (3) induce isomorphisms on tangent spaces.

This means that we only have to check unobstructedness at the completions of the local rings
at each singular point.

Proof. First, we can reduce to the affine case.1 If X is a curve, then X = U1 ∪U2 can be covered by
two affine opens such that U1,U1 ∩U2 are smooth. Because deformations of smooth affine schemes
are unobstructed, we can essentially ignore U1. To do this, we will prove that DefX → DefU2 is
smooth.

Because smoothness (roughly) respects products, the functor

DefX → DefU1 ×DefU1∩U2
DefU2

1Avi says that Johan sketched this proof and then said not to give it.
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is smooth by formal reasons. Because U1,U1 ∩U2 are smooth, we can ignore DefU1 , DefU1∩U2 (in
fact, the arrow is an equivalence) and project down to DefU2 .

Now U2 = SpecP is affine. Then each pi gives a maximal ideal mi, and so we set J =
⋂
imi. If

we consider the completion P̂J with respect to J, this decomposes as

P̂J =
∏
i

P̂i.

Applying Lemma 91.12.5 in the Stacks Project, the functor

DefP → Def
P̂J
'
∏
i

Def
P̂i

=
∏
i

Def
ÔX,pi

is smooth and an isomorphism on tangent spaces. The henselization step is similar.

Example 5.1.3. Let X = Speck[x,y]/(xy). Then ÔX,0 = k[[x,y]]/(xy). We will show that all
deformations look like k[x,y]/(xy− t) in some sense. Really, we will show that DefX has a hull,
which is given by k[[t]] with universal deformation

Xt := Speck[[t]][x,y]/(xy− t)→ Speck[[t]].

We want T such that Hom(T ,−) → DefX is smooth and induces an isomorphism on tangent
spaces. Given a morphism

f : k[[t]]→ A 3 f(t),

we obtain a deformation
A[[x,y]]/(xy− f(t))

of k[[x,y]]/(xy). We can check that this is smooth, and so we need to check that we have an
isomorphism of tangent spaces.

We want to compute DefX(k[ε]). If S ∈ DefX(k[ε]), set R = k[[x,y]]/(x,y), and we have a
diagram

k[ε] k

S R.

If we consider the exact sequence

0→ k→ k[ε]→ k→ 0

and tensor with S, by flatness we have an exact sequence

0→ k⊗k[ε] S→ S→ k⊗k[ε] S→ 0.

But because k⊗k[ε] S = R, we have a decomposition S = R⊕ εR. If we choose lifts x̃, ỹ of x,y, the
product x̃ỹ lifts xy = 0, so x̃ỹ = (f(x) + g(y))ε. If we choose different lifts x̃ ′ = x̃+ εh, ỹ ′ = ỹ+ εh,
we see that

x̃ ′ỹ ′ = x̃ỹ+ (xj+ yh)ε.

But now xj+ yh ∈ (x,y), and so if we set t = f(0) + g(0), then we can write x̃ỹ ∈ tε+ (x,y)ε, and
so there is a canonical choice of the element of (x,y)ε, namely 0. Thus we can set

St = k[ε][[x̃, ỹ]]/(x̃ỹ− tε),

https://stacks.math.columbia.edu/tag/0DZ5
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and now we have a diagram

0 R St R 0

0 R S R 0.

By the five lemma, St ' S, and so we are done.

5.2 Smooth curves with a finite group action

In this section, we will consider lifting from characteristic p > 0 to characteristic 0. This means
we will have to redefine what lifting. Here, we will suppose k = k with characteristic p. Let Λ
be a Noetherian complete local ring with residue field k. We define CΛ be the category of local
Artinian Λ-algebras with residue field k.2

Forgetting about the requirement that k is algebraically closed, if k = Fp, then we can set
Λ = Zp. Let W = W(k) be the ring of Witt vectors in k. This is apparently some universal
Noetherian local ring lifting k, and for example, W(Fp) = Zp, and W(Fp) = O

Q̌p
. We will

consider some extension O/W of rings and write K for the fraction field of O.
We are interested in deforming smooth proper curves X/k with the action of some finite group

G, conveniently denoted as a pair (X,G).

Definition 5.2.1. The pair (X,G) lifts to characteristic 0 if there exists O and X/O a projective smooth
curve with an action of G such that (X×0 k,G) ' (X,G).

Given the action of G on X, we can construct the quotient X/G. To remember the data of the
action, we remember the ramified Galois cover π : X→ X/G.3

Consider the action of PGL2(Fq) on P1
k. This includes in P1

O, which has an action of PGL2(O) ⊂
PGL2(K). We want an embedding PGL2(Fq) ⊆ PGL2(K), but generally this is not possible. For
example, set q = 9 and consider the matrices(

0 −1
1 −1

)
,

(
a+ 1 a
−a 1 − a

)
,

which generate a (Z/3)3. But then all finite subgroups of PGL2(K) are cyclic, dihedral, A4, A5, or
S4, so this action clearly cannot lift.

Proposition 5.2.2. Suppose (X,G) is such that for all x ∈ X, the stabilizer Gx has order |Gx| prime to p.
Then (X,G) lifts to characteristic 0.

Note that this is some local statement, so we need some kind of local-to-global method. Recall
that ÔX,x = k[[t]], and this has an action of Gx. Thus we define a local action as some action of a
finite group G on k[[t]], and this lifts if there exists O with an action of G on O[[t]] specializing to
the original action on k[[t]].

Theorem 5.2.3. For (X,G), suppose that the local action of Gx on ÔX,x lifts to characteristic 0. Then
(X,G) lifts to characteristic 0.4

2Apparently this is interesting in infinite combinatorics number theory.
3This is useful if you want to look at some of the omitted proofs.
4Avi was lured in to a paper with French title and French body but English abstract, and in the end did not read this

paper.



27

It is a fact that if G acts faithfully on k[[t]], then G = PoC, where P is P-Sylow and C is cyclic.

Proof of proposition. We will simply prove that if |Gx| is prime to p, then the local action lifts. Then
we know that Gx = G is cyclic of order n with generator σ. If we write

σit =
∑
m>0

am,it
i,

then of course if a0,i 6= 0, then σit is a unit and hence t is a unit, so a0,i = 0. Our goal is to replace
t by some generator with a more explicit action of σ. Let V be the vector space spanned by σit.
Then on our designated basis, we have

σ =



1
1

1
1

. . .
1


.

This has eigenvalues the n-th roots of 1, so we choose z ∈ V such that σz = ζnz and replace
k[[z]] = k[[t]]. But now the action of µn clearly lifts to characteristic 0, so we are done.

We have essentially proved that local actions of cyclic groups of order prime to p lift to
characteristic 0. Here is a mild generalization:

Conjecture 5.2.4 (Oort5). The local action on k[[t]] by the action of any cyclic G lifts to characteristic 0.

This is now a theorem due to (among others?) Obus, Wewers, and Pop. Because of this, if the
stabilizers Gx are all cyclic, then (X,G) lifts. However, this is not a necessary condition for lifting.
If we consider an action of (Z/2)2 on P1

k, this does lift (because D4 = (Z/2)2).

5Fun fact: Oort was Johan’s advisor.
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Caleb and Morena (Oct 29): Lemma 0E3X and applications
to contracting curves

6.1 One lemma in the Stacks Project

Lemma 6.1.1. In Example 0DY7 let f : X → Y be a morphism of schemes over k. If f∗OX = OY and
R1f∗OX = 0, then the morphism of deformation categories

DefX→Y → DefX

is an equivalence.

Let A be an Artinian local ring with residue field k. Remember that DefX(A) is the set of
isomorphism classes of diagrams

(6.1)

X XA

Speck SpecA

α

with α flat. Also, DefX→Y consists of diagrams of the form

Y YA

X XA

Speck SpecA

β

f fA

α

with α,β flat.

Lemma 6.1.2 (Lemma 063Y). Let (f, f ′) : (X,X ′)→ (S,S ′) be a morphism of first order thickenings such
that f is flat. Then the following are equivalent:

1. f ′ is flat and X = S×S ′ X ′;

2. The canonical map f∗CS/S ′ → CX/X ′ is an isomorphism, where C is the conormal sheaf.

28

https://stacks.math.columbia.edu/tag/0E3X
https://stacks.math.columbia.edu/tag/0DY7
https://stacks.math.columbia.edu/tag/063Y
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Proof. In the affine case, write X = SpecB,X ′ = SpecB ′,S = SpecA,S ′ = SpecA ′. Then we are
looking for a diagram of the form

0 I A ′ A 0

0 J B ′ B 0.

f ′ f

The two conditions become

1. f is flat and B = B ′ ⊗A ′ A;

2. I/I2 ⊗A B = J/J2 and I⊗A B = J.

To begin, note that B = B ′ ⊗ ′A A is equivalent to B ′/J = B ′ ⊗ ′A A
′/I, and this implies that J = IB ′

and thus that I⊗A B ′ → J is surjective. To prove injectivity, by flatness of B ′, the map 0→ I→ A ′

remains injective after tensoring with B ′, so I⊗A ′ B ′ → B ′ is injective.
In the other direction, we may cite Lemma 051C. Alternatively, we give the following argument.

Assuming that I⊗A B→ J is an isomorphism, we know J = IB ′, and thus B = B ′ ⊗A ′ A. To prove
that B ′ is flat over A ′, we know that B ′/IB ′ is flat over A because B/A is flat and J = IB ′. We will
prove that if a ⊂ A ′ is an ideal, then a⊗A ′ B ′ → B ′ is injective.

By some inexplicable brilliancy, we simply need to fill in the diagram

? a⊗A ′ B ′ ? 0

0 IB ′ B ′ B ′/IB ′ 0.

?

By diagram chasing reasons, we will have exactness. Consider the exact sequence

0→ I∩ a→ a→ (I+ a)/I→ 0.

After tensoring with B ′, we obtain a right exact sequence

(I∩ a)⊗A ′ B ′ → a⊗A ′ B ′ → (I+ a)/I⊗A ′ B ′ → 0.

This gives us the desired items in the question marks.
Now we want to prove that (I∩ a)⊗A ′ B ′ → IB ′ is injective. If we consider 0→ I∩ a→ I and

tensor with B ′/IB ′, we obtain

0→ (I∩ a)⊗A B ′/IB ′ → I⊗A B ′/IB ′,

but this is clearly actually
(I∩ a)⊗A ′ B ′ ↪→ I⊗A B ′.

For the other part, we simply take
0→ (I+ a)/I→ A

and tensor with B ′/IB ′.

https://stacks.math.columbia.edu/tag/051C
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Proof of Lemma 0E3X. We need to prove that β : (Y, f∗OXA)→ SpecA is flat. We can compose any
thickening as a sequence

X X2 · · · Xn−1 XA

Speck SpecA/m2
A · · · Specmn−1

A SpecA.

α1 α2 αn−1 αn

Now we apply Lemma 063Y to each square and obtain

OX ⊗k miA/m
i+1
A = α∗i (m

i
A/m

i+1
A ) = miAOXA/m

i+1
A OXA .

Now if we consider the exact sequence

0→ miAOXA/m
i+1
A OXA → OXA/m

i+1
A OXA → OXA/m

i
AOXA → 0.

Applying f∗ and the assumption that R1f∗OX = 0, we obtain an exact sequence

0→ f∗OX ⊗k miA/m
i+1
A → f∗(OXA/m

i+1
A OXA)→ f∗(OXA/m

i
AOXA)→ 0.

Now if we consider the diagram

Y Y2 · · · Yn−1 YA

Speck SpecA/m2
A · · · Specmn−1

A SpecA,

β β βn−1 β

we want to prove that β is flat starting with β1 being flat. But here, we know

OYA = f∗OXA ,

and therefore we have

β∗i (m
i
A/m

i+1
A ) = OYi ⊗A/miA miA/m

i+1
A

= OY ⊗k miA/m
i+1
A

= mAOYA/m
i+1
A OYA .

Now we may apply Lemma 063Y repeatedly to obtain flatness of β.

6.2 Application to moduli of curves

In this part of the lecture, we wish to define a contraction map Mg,n+1 → Mg,n that deletes a
marked point. This was used by Knudsen to prove that Mg,n is a smooth and proper stack over
Spec Z. Other applications include relations between MG and Mg+1 and their Chow groups. The
roadmap for this section is:

1. We will discuss stable curves over an algebraically closed field k and define Mg,n.

2. We will define Mg,n+1 →Mg,n in the wrong way.

3. We will define contraction of rational tails and bridges over an algebraically closed field
correctly.

4. Finally, we will use Lemma 0E3X to define contraction over any scheme.

https://stacks.math.columbia.edu/tag/0E3X
https://stacks.math.columbia.edu/tag/063Y
https://stacks.math.columbia.edu/tag/0E3X
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6.2.1 Stable curves We will define n-marked genus g stable curves C over k = k. Here, we
will take C to be a connected 1-dimensional scheme of finite type over k. We will work only with
nodal curves, which are curves where for every x ∈ C(k) either x is smooth and OC,x is a regular
local ring and thus a UFD by Auslander-Buchsbaum or x is a node and

ÔC,x ' k[[x,y]]/(xy).

Remark 6.2.1. In fact, ÔX,x is reduced and thus OX,x is reduced, so every nodal curve is reduced.

Now let ⋃
C̃i = C̃

ν−→ C =
⋃
i

Ci

be the normalization. We know that ν−1(node) = Speck t Speck. To check this, recall that the
normalization of a reduced scheme is constructed by gluing the local maps

Spec(Ared
Q(Ared))→ SpecAred.

But now we know that
Q(Ared) =

∏
pi minimal

Q(Ared/pi).

However, we know that

k[[x,y]]/(xy)
Q(k[[x,y]]/(xy))=k((x))×k((y))

= k[[x]]× k[[y]].

This implies that OC,p
Q(OC,p) is not local because k[[x]]× k[[y]] is not local.

Proposition 6.2.2. The arithmetic genus is given by

g =
∑
i

g(C̃i) + #(nodes) − #(components) + 1.

Proof. Recall that ν−1(node) = Speckt Speck. Then we have the exact sequence

0→ OC ↪→ ν∗OC̃ →
⊕
p node

Kp → 0.

Taking the long exact sequence in cohomology, we obtain

0→ H0(C,OC)→ H0(C,ν∗OC̃)→ k#(nodes) → H1(C,OC)→ H1(C,ν∗OC̃).

Because ν is finite, the Leray spectral sequence computing H1(C̃,O
C̃
) degenerates at the E2-page,

and thus
Hp(C,ν∗OC̃) = H

0(C̃,O
C̃
).

But then we know H1(C,ν∗OC̃) =
⊕
H1(O

C̃i
) =
∑
g(C̃i). By connectedness of C, we know that

H0(C,OC) = k and H0(C,ν∗OC̃) = k
#(components).

We now need to add marked points.

Definition 6.2.3. A n-marked, genus g nodal curve C over k is a nodal curve of genus g with n
smooth points x1, . . . , xn ∈ C(k).
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This definition allows too many curves, so we want to define a notion of stability.

Definition 6.2.4. A genus g nodal curve C with n marked points is stable if for all irreducible
components C̃i, we have

2g− 2 + #(special points) > 0,

where a special point is a node or a marked point.

Example 6.2.5. Over C, consider a genus 2 curve with two marked points x,y, an elliptic curve
with marked point z, and a nodal cubic with no marked points all intersecting in a triangle. Here,
we have three marked points and four nodes.1 By observation, this curve is stable.

Remark 6.2.6. All of the C̃i are stable if and only if g(C̃i) > 2, g(C̃i) = 1 and C̃i has at least one
special point, or if g(C̃i) = 0 and there are at least three special points.

6.2.2 Contraction done wrong We will denote by Mg,n be the fibered category whose
objects over a scheme S are given by the following data:

• A map f : C→ S proper and flat with sections σ1, . . . ,σn : S→ C and for any geometric point
s ∈ S, the map fs : Cs → k(s) and sections σ1,s, . . . ,σn,s form a stable curve of genus g.

• Morphisms are given by cartesian diagrams

C ′ C

S ′ S

σ ′i σi

that respect the sections.

Clearly the forgetful functor simply forgets the last section. Unfortunately, this does not
actually respect the stability condition. The problem is when the component containing σn+1(s)
satisfies 2gi − 2 + #(special) = 1, because when we delete σn+1 we lose stability. This only
happens when g(C̃i) = 1 and there is exactly one marked point (which is actually smooth and
integral, so is an elliptic curve) or when g(C̃i) = 0 and there are exactly three special points. In the
second case, we may have P1 with three marked points, two marked points and a node (rational
tail), or one node and two marked points (rational bridge). Also, we may have a nodal cubic with
one marked point.

6.2.3 Contraction done right In this part, we construct from a prestable curve Ck(s) a
stable curve C̃k(s). In the rational tail case, we are contracting the entire P1 to the node and
in the rational bridge case we identify the two nodes and collapse the P1 to that point, leaving
the two other components intersecting at a node (locally; globally this can be either one or two
components). Of course, we need to check that f∗OCk(s) = O

C̃k(x)
and R1f∗OCk(s) = 0. Next,

we need to check that contraction can be extended to a neighborhood in a canonical way when
S = SpecOhS,s.

1Anna commented that Morena’s drawing had the curves tangent to each other, but we can just pretend that they are
nodes.



7

Morena (Nov 05): Contraction morphisms between moduli
stacks of curves

7.1 Recap of last time

Recall that for f : X→ Y, if f∗OX = OY and R1f∗OX = 0, then we have an equivalence of categories

DefX→Y ' DefX.

We also attempted to construct a morphism Mg,n+1 →Mg,n using the forgetful functor, but this
does not work. Remember the bad cases were called the rational tail and rational bridge. Also
recall that the stability condition for every component was 2g− 2 + #(special points) > 0, where
special points are nodes and marked points.

7.2 Contraction of rational tails and bridges

In the rational tail case, our stable curve should be the scheme-theoretic closure (so just topological
closure) C/Ci, where Ci is the rational tail. Because C is reduced, we see that C is the pushout

Speck Ci

C \Ci C.

Of course, this gives us a map C→ C \Ci by contracting Ci. Now we need to check that C \Ci is
a prestable curve of genus g which is actually stable and that if c : C→ C \Ci, then c∗OC ' O

C\Ci

and R1c∗OC = 0.
To check the sheafy conditions, we have an exact sequence

0→ OC → j∗O
C\Ci

⊕ ji∗OCi → ix∗k→ 0.

This gives us a longer exact sequence

0→ c∗OC → c∗j∗OC\Ci
⊕ c∗ji∗OCi → c∗ix∗k→ R1c∗OC → R1c∗j∗OC\Ci

⊕ R1c∗ji∗OCi .

33
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To see that R1c∗OC = 0, we only need to check that R1c∗j∗OC\Ci
= 0 because R1c∗ji∗OCi =

H1(Ci,OCi) = 0. But here we have c∗j∗OC\Ci
= 0 because c∗j∗ = 0, and so we need to prove

surjectivity of the direct sum onto the skyscraper sheaf. This is clear.
Considering

Speck C \Ci

Speck C \Ci,

we see that c∗OC ' O
C̃

and

O
C\Ci

= c∗j∗OC\Ci
×ix∗k c∗ji∗OCi .

To check stability of C \Ci, we simply note that stability condition of the component Cj
attached to Ci is unchanged, and everything else was untouched, so we have a stable curve.

We now check the rational bridge case. Here we consider the pushout

{x1}t {x2} C \Ci

{y} C.

This exists and has nice properties. What this really means is that we contract Ci and introduce a
new self-intersection at x1 = x2. Now the contraction morphism is given by considering the total
pushout of

{x1}t {x2} C \Ci

Ci C

{y} C.

Restricting to an affine piece, where C = SpecA and C \Ci = SpecA ′, we obtain a fiber product
diagram of rings

A k

A ′ k× k.

We can now tensor with Ay, and we need to show that that Ây = k[[x,y]]/(xy). Because
completions are exact, we can consider the fiber product diagram

Ây k

A ′ ⊗A Ây k× k.
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Because A ′ ⊗A Ây = Â ′x1
× Â ′x2

= k[[t1]]× k[[t2]], we see that

Ây = {`+ t1p(t1) + t2p(t2)} = k[[t1, t2]]/(t1t2),

and thus y is a node.

7.3 Contraction over any base scheme

Theorem 7.3.1. Let (S, f : C→ S,σ1, . . . ,σn+1) ∈Mg,n+1(S). Then there exists a contraction such that

f = C
c−→ C

g−→ S

and the following conditions hold:

1. (S,g : C→ S, c ◦ σ1, . . . , c ◦ σn) ∈Mg,n(S).

2. c∗OC ' OC and R1c∗OC = 0, and this is stable under base change. In addition, for all geometric
points s→ S, cs is either an isomorphism or a contraction of a rational tail or rational bridge.

Moreover, c : C→ C is unique up to unique isomorphism.

Corollary 7.3.2. The morphism Mg,n+1 →Mg,n is defined over Z.

Proof. We know what happens to objects. We know that morphisms are cartesian diagrams

S ′ S

C ′ C

S ′ S.

σ ′i σi

b

a

But now we have two candidate contractions of C ′, namely C ′ and C×S S ′. But these have a
unique isomorphism. These fit into the diagram

C×S S ′ C

C ′ C×S S ′ C

S ′ S.

This gives us compatibility with morphisms.

To prove the theorem, we want to work étale locally over S, with a cover (Si → S). Then there
exists a factorization Ci

a−→ Ci → Si, and then we need to check that the cocycle condition works
on the overlaps. The existence of a global factorization means that our data is effective, and this is
the same as Mg,n is a stack.

To prove existence of a factorization étale locally, over s ∈ Si, we have a contraction cs : Cs →
Cs. We want to prove that there exists an étale neighborhood (U,u)→ (S, s) such that there exists
a factorization CU → CU extending cs. In order to do this, we need to do some reduction. If
S = SpecA is affine is of finite type over Z, we want Ai ⊆ A such that A = lim−→Ai, and thus
S = SpecA = lim←− SpecAi.
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Theorem 7.3.3 (0E6U, 0E6V, 0DSS, 0CMV). The fibered category Curves
prestable
g is limit-preserving.

Lemma 7.3.4. The category of schemes of finite presentation over S is the colimit of the categories of
schemes of finite presentation over Si.

Now if S = SpecA, then OhS,s = colim(U,u)→(S,s) OU(U). Thus we may consider S =

Spec(OhS,s). Write Λ for this henselization. Then if we consider Λ → Λ/mnΛ, we have fiber
product diagrams

Cs Cu C

Speck SpecΛ/mnΛ S.

This gives us a formal object of DefCs(Λ̂). But now we know that

DefCs→Cs ' DefCs ,

and thus we actually have deformations of Cs → Cs over Λ/mnΛ. But this gives us a formal
element of

DefCs→Cs(Λ̂).

Now using 01W0, we have Cn ∈ Curveg.

Theorem 7.3.5. The data Curveg is effective.

For a sketch of this, note that the first stability condition is an open condition. If p1, . . . ,pn
are the marked points, then write D = p1 + · · ·+ pn. Stability is equivalent to ωC(D) being
ample, and so over Cs we have an ample line bundle ωCs(D). We can lift this to (Cn,Ln) because
obstructions live in

H2(Cn−1, (1 +m)nO
C
∗
n
) = 0.

Using the Grothendieck algebraization theorem, we see that if Xi → Si is proper and Li is ample,
there exists a proper morphism X→ S and L an ample line bundle such that base change to Sn
recovers (Xn,Ln).

Here, we know that C→ Spec Λ̂ is finite type and separated while C→ Spec Λ̂ is proper, and
so there exists a unique C→ C. We now need to return back to SpecΛ. But now we know that Λ̂
is the direct limit of its finitely-generated (over Λ) subalgebras. This gives us Λ ⊆ Λ1 ⊆ Λ̂. We
know that

Λ = OhS,s → ÔS,s

is regular, it is flat, and thus Λ̂/mΛ̂ is noetherian and geometrically regular over k(m) by Popescu.
We have the diagram

Λsm Λét

Λ Λ/mΛ.

u

Because Λ is henselian, we have a section Λét → Λ, and thus we have a base change to Λ.

https://stacks.math.columbia.edu/tag/0E6U
https://stacks.math.columbia.edu/tag/0E6V
https://stacks.math.columbia.edu/tag/0DSS
https://stacks.math.columbia.edu/tag/0CMV
https://stacks.math.columbia.edu/tag/01W0
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Baiqing (Nov 12): Deformations of group schemes

8.1 Deformations of abelian schemes

Definition 8.1.1. An abelian scheme p : X→ S is a proper smooth group scheme over a connected
scheme S with geometrically connected fibers.

If S = Speck is a field, then X is projective. However, this is not true in general.

Definition 8.1.2. The deformation functor DefAS
X : ΛW → Set is defined for an abelian variety X

over k and ΛW the category of local Artinian W-algebras with residue field k. It is given by

A 7→
{
(X ′,ϕ) | X ′ → SpecA abelian scheme,ϕ : X ′k ' X

}
/

where (X ′1,ϕ ′1) ∼ (X ′2,ϕ ′2) if there exists an isomorphism ψ : X ′1 → X ′2 of abelian schemes such that
ϕ2 ◦ψk = ϕ1.

Theorem 8.1.3. Let X be an abelian variety of dimension g over k. Then the deformation functor DefAS
X is

pro-representable by W(k)[[t1, t2, . . . , tg2 ]].

Recall Schlessinger’s criterion from Johan’s lecture.1 Note that if F is formally smooth and
F(R ′) → F(R) is surjective for all R ′ � R, then F is pro-representable by a power series ring
W[[t1, . . . , td]], where d = dimk F(k[ε]).

We will prove the conditions (H3), (H4) and then prove that the deformation functor is formally
smooth. Before this, we will consider the geometry of abelian schemes.

Lemma 8.1.4 (Rigidity lemma). Given a diagram

X Y

S,

f

p

q

suppose that S is connected, p is flat and proper, and H0(Xs,OXs) ' k(s) for all s ∈ S. If for some point
s ∈ S, f(Xs) is set-theoretically a single point, then there exists a section η : S→ Y such that f = η ◦ p.

Corollary 8.1.5. Let X, Y be abelian schemes over S and f : X → Y. If f ◦ εX = εY , then f is a
homomorphism. Here, εX refers to the identity section.

1Baiqing wrote them all down on the board, but I am too lazy to type them yet again.
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This result holds in general if we replace Y be an arbitrary group scheme.

Sketch of proof. Consider the diagram

X×S X GX

X.

Consider the morphisms X×S X → G×S X given by ψ1(x1, x2) = (f(x1x2), x2) and ψ2(x1, x2) =
(f(x1), x2). Now we argue that f(g1g2) = f(g1)f(g2).

Also, it is clear that abelian schemes are commutative because inversion takes the identity to
itself and thus is a homomorphism. If φ1,φ2 : X→ Y are two homomorphisms and (φ1)s = (φ2)2
for some s ∈ S, then φ1 = φ2. Next, if f : X → Y is a morphism of schemes between abelian
schemes, then f− f(0) = f− f ◦ ε ◦ p is a homomorphism.

We will now prove (H4) for DefAS
X . For a small extension R ′′ → R, we show that

DefAS
X (R ′′ ×R R ′)→ DefAS

X (R ′′)×DefAS
X (R)

DefAS
X (R ′)

is a bijection. This is equivalent to proving that in the diagram

DefAS
X (R ′′ ×R R ′) DefAS

X (R ′′)

DefAS
X (R ′) DefAS

X (R),

π ′ π

if (X ′,ϕ ′) 7→ (X,ϕ) along the bottom arrow, then π ′−1((X ′,ϕ ′)) = π−1((X,ϕ)).

Proposition 8.1.6. π−1((X,ϕ)) is the set of isomorphism classes of (X ′′,ϕ ′′R) such that X ′′ is flat over
R ′′ and X ′′R → X is an isomorphism as schemes over R.

Choose (X ′′,ϕ ′′) ∈ π−1((X,ϕ)). Then there exists an isomorphism φ : X ′′R → X of abelian
schemes. Now we will send (X ′′,ϕ ′′) 7→ (X ′′,φ). Checking uniqueness is easy with the diagram

X ′′k Xk

X

φk

ϕ ′′

ϕ

Now we check that if (X ′′1 ,ϕ ′′1 ) ∼ (X ′′2 ,ϕ ′′2 ), then they are sent to the same thing. This was erased
from the board by Baiqing before I could process it.

Now we prove injectivity. If (X ′′1 ,ϕ ′′1 ), (X
′′
2 ,ϕ ′′2 ) map to equivalent (X ′′1 ,φ1), (X ′′2 ,φ2), then

there exists ψ : X ′′1 ' X ′′2 such that φ2 ◦ψR = φ1. This implies that ϕ ′′2 ◦ψk = ϕ ′′1 . Unfortunately,
ψ is not an isomorphism of abelian schemes, so we can replace it by ψ̃ = ψ−ψ(0).

Finally, we prove surjectivity, which is the difficult part of the argument.

Proposition 8.1.7. Let S = SpecA, where A is an Artinian local ring, m ⊂ A be the maximal ideal, and
I ⊂ A such that m · I = 0. Let π : X→ S be proper and smooth, ε : S→ X be a section of π, S0 = SpecA/I,
and X0 = X×S S0. Then if X0 is an abelian scheme with identity ε|S0 , then X is an abelian scheme with
identity ε.
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Theorem 8.1.8. Let X, Y/R are smooth schemes. Suppose that π : R ′ � R is a small extension. Let
X ′ ∈ DefX(R ′) and Y ′ ∈ DefY(R ′). For any f : X → Y over R, there is a canonically associated class
o(f) ∈ H1(Xk, f∗kTYk/k)⊗k kerπ. If o(f) = 0, then H0(Xk, f∗kTYk/k)⊗k kerπ.

Proof of proposition. Given (m, ε, ι), we want (µ, ε), where µ(x,y) = x− y. We have µ on X0, and
so we want to deform this to µ ′ on X. We know that

o(µ) ∈ H1(Xk ×k Xk,µ∗kTXk/k)⊗k kerπ,

but because Xk is an abelian variety, we have

TXk/k = H0(Xk,ΩXk/k)
∗ ⊗k OXk .

We want to show that o(µ) = 0. Consider g1 = ∆ : X0 → X0 × S0X0 and g2 = (id, εp) : X0 →
X0 ×S0 X0. Then µ ◦ g1 = ε0 ◦ π, and thus o(µ ◦ g1) = 0. Also, µ ◦ g2 = 1X0 and o(µ ◦ g2) = 0. We
know that

o(µ ◦ g1) = (g1)
∗
ko(µ) = 0, o(µ ◦ g2) = (g2)

∗
ko(µ) = 0.

Consider the morphisms (g1)
∗
k : H

1(Xk×Xk,µ∗kTX/k)→ H1(Xk, (ε ◦π)∗TX/k) and (g2)
∗
k : H

2(Xk×
Xk,µ∗k(TX/k))→ H1(Xk, (ε ◦ π)∗TX/k). But now we see that they are given by (g1)

∗
k : (x,y)⊗ v 7→

(x+ y)⊗ v and (x,y)⊗ v 7→ x⊗ v, and so o(µ) = 0.
Now consider H0(Xk×k Xk,µ∗kTXk/k)⊗k kerπ ∼= t⊗k I and let µ ′ be a deformation of µ. Then

S
(ε,ε)−−−→ X×S X

µ ′−→ X

is a deformation of ε0. Under the identification

H0(Speck, (ε0)
∗
kTXk/k)⊗k kerπ ' t⊗k I

and using what we have done previously, we have µ ′ ◦ (ε, ε) = ε and therefore an abelian scheme
structure.

Finally we prove that DefAS
X (R ′) → DefAS

X (R) is surjective for R ′ � R. Let (X,ϕ) ∈ DefAS
X (R).

Then o(X) ∈ H2(X, TX/k)⊗k kerπ = t⊗k (t∗∧ t∗). We want to prove that π−1((X,ϕ)) is nonempty.
We know that ι∗ induces −1 on t, t∗, and so o(X) = −o(X), and if we are working not in
characteristic 2, o(X) = 0.

To compute the dimension of the tangent space, we want to compute DefAS
X (k[ε]), but this is

H1(X, TX/k) ' t⊗ t∗, which has dimension g2.

8.2 Deformations of smooth affine group schemes

We will now discuss deformations of Gm and Ga. Let G/k be an affine smooth algebraic group
scheme. We will consider the deformation problem

DefG(R) =
{
(G ′,φ) | G ′/R group scheme,Gs

φ−→ ∼G
}
/iso.

For example, for Gm, we know that Speck[ε][t, t−1] is a deformation of Gm. We want to deform
the multiplication, and so we have m ′ : T → T1T2(1 + ε∆(T1, T2)). To check associativity, we obtain

∆(T1, T2) +∆(T1T2, T2) = ∆(T1, T2T3) +∆(T2, T3).

We will also consider ∆,∆ ′ equivalent if there exists f such that ∆ ′(T1, T2) = ∆(T1, T2) + f(T1T2) −
f(T1) − f(T2). Therefore we have

DefGm(k[ε])
∼=

{∆ | associative}
{f(T1T2) − f(T1) − f(T2)}

.
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Proposition 8.2.1. In fact, we have DefGm(k[ε]) = 0.

Proof. let f(T) =
∑
aiT

i. Then f(T1T2) − f(T1) − f(T2) =
∑
ai(T

i
1T
i
2 − T i1 − T i2 ). If we set

∆(T1, T2) = λijT
i
1T
j
2 ,

adjust ∆ by f such that λi0 = 0. Now we have the equation∑
λijT

i
1T
j
2 =
∑
i,j

T i1T
i
2T
j
3 −

(∑
λijT

i
1T
j
2T
j
3 +
∑

λijT
i
2T
j
3

)
,

and thus λij = 0.

For the additive group, our deformed multiplication is given by T → T1 + T2 + ε∆(T1T2).
Associativity is equivalent to the condition

∆(T1, T2) +∆(T1 + T2, T3) = ∆(T2, T3) +∆(T1, T2 + T3).

The trivial deformations are given by f(T1 + T2) − f(T1) − f(T2), and thus we have

DefGa(k[ε]) '
∆ | associative

{f(T1 + T2) − f(T1) − f(T2)}
.

This deformation space vanishes in characteristic 0 and is infinite-dimensional in positive charac-
teristic. If we apply ∂

∂T3
to the associativity relation, we obtain

∆2(T1 + T2, T3) = ∆2(T2, T3) +∆2(T1, T2 + T3),

and if we apply ∂
∂T1

, we obtain

∆12(T1 + T2, T3) = ∆12(T1, T2 + T3),

and therefore ∆12(T1, T2) = f(T1 + T2). In characteristic 0, f has a primitive, and so taking the
primitive twice we obtain a desired F̃. Primitives do not exist in positive characteristic, so this
proof does not work. However, it is possible to work out the following:

Proposition 8.2.2. In positive characteristic p, ∆ is a linear combination of Bp(T1, T2)
pn for n > 0 and

T
pn

1 T
pm

2 for m > n+ 1, where Bp(T1, T2) =
(T1+T2)

p−Tp1 −Tp2
p ∈ Z[T1, T2].
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Haodong (Nov 19): Artin’s axioms

9.1 Prestacks and stacks

First, we will generalize the Zariski topology a little bit.

Definition 9.1.1. Let S be a category. Then a Grothendieck topology on S is given by a set Cov(X) for
each x ∈ X, where each element in Cov(X) is a collection of morphisms {xi → x}I in S. We require
that

1. All isomorphisms x ′ ∼−→ x are in Cov(x).

2. If {xi → x}I ∈ Cov(X) and y→ x, then xi ×x y exist and {xi ×x y→ y}I ∈ Cov(y).

3. If {xi → x}I is a covering of X and
{
xij → xi

}
Ji

is a covering of xi for all i, then
{
xij → x

}
is a covering of X.

A site is a category with a Grothendieck topology.

Example 9.1.2. Let S be a scheme and let C = Sch/S. For every T → S, we say that {fi : Ti → T } is
a covering if all fi are open immersions and the fi are jointly surjective. This gives the big Zariski
site of S. If we replace open immersion with étale morphism, then we obtain the big étale site.

9.1.1 Prestacks

Definition 9.1.3. Let S be a category and p : X→ S be a functor. We will denote objects of X by
a,b, . . . and objects in S by S, T , . . .. We will denote morphisms in X, S by α, f respectively. We say
that p is a prestack if the following conditions are satisfied:

1. If p(b) = T and S → T is a morphism, there exists a and a morphism a → b such that
p(a) = S filling the diagram

a b

S T .f

41
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2. If we have

a b c

R S T ,

there exists a unique morphism a→ b filling in the above arrow.

Exercise 9.1.4. For every s ∈ S, the category X(s) over s has morphisms those lying over the
identity and is thus a groupoid.

Example 9.1.5. Let F : S→ Set be a functor. We will define XF to have objects (a, s), where s ∈ S

and a ∈ F(s). Then morphisms (a, s)→ (a ′, s ′) are morphisms f : s→ s ′ such that F(f)(a ′) = a.
We will define p : (a, s) 7→ s, and this defines a prestack, which we will simply call F.

Example 9.1.6. Let S be a scheme and C = Sch/S. If T → S is an S-scheme, then Hom(−, T) is a
presheaf on C and by the previous example defines a prestack over C, which we will call T .

Example 9.1.7. Consider the functor Mg → Sch/C where the objects are morphisms C→ S, where
S is a scheme over C and C→ S is smooth and proper with all geometric fibers connected curves
of genus g. Morphisms are simply pairs α : C→ C ′, f : S→ S ′ such that C = C ′ ⊗S ′ S.

Definitions 9.1.8. Let S be a site.

1. A morphism of prestacks X→ Y is a functor f such that for all a ∈ X, pX(a) = pY(f(a)).

2. If f,g : X→ Y are morphisms of prestacks, then a 2-morphism α : f→ g is a natural transfor-
mation such that for all a ∈ X, αa : f(a)→ g(a) lies over the identity in S. In particular, α is
an isomorphism.

3. A diagram

X Y

Y ′ Z

f ′

g ′ g

f

is a 2-commutative diagram if there exists a 2-morphism α : fg ′ → gf ′.

4. f : X→ Y is called an equivalence if there exists g : Y→ X such that f ◦ g ∼−→ id and g ◦ f ∼−→ id.

Lemma 9.1.9 (2-Yoneda lemma). Let X→ S be a prestack and s ∈ S. Then HomS(−, s) is a prestack on
S and the functor Hom(s,X)→ X(s) given by f 7→ fs(ids) is an equivalence of categories.

Now we want a fiber product of prestacks for X→ Y,Y ′ → Y, which is simply the final object
in all 2-commutative diagrams

Z X

Y ′ Y.

Fortuantely, these do exist.

Example 9.1.10. The product X×X exists and is a prestack. We also have a diagonal ∆ : X→ X×X.
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Example 9.1.11. Let X be a prestack and a : Y→ X,b : Y ′ → X be morphisms. Then there exists a
2-cartesian diagram

Y×X Y ′ Y× Y ′

X X×X.

(a,b)

∆

9.1.2 Stacks

Definition 9.1.12. A prestack X over a site S is called a stack if for every {Ui → U} ∈ Cov(U), we
have

1. (morphisms glue) There exists a unique a→ b filling in the diagram

a|Ui

a|Uij a b

a|Uj

lying over

Ui

Uij U

Uj.

Precisely, this means that given a,b ∈ X(U) and φi : a|Ui → b such that φi|Uij = φj|Uij ,
then there exists a unique φ : a→ b such that φ|Ui = φi for all i.

2. (objects glue) Given ai,aj and isomorphisms αij : ai|Uij → aj|Uij satisfying the cocycle
condition on Uij, there exists a ∈ X(U) and isomorphisms φi : a|Ui → ai such that αij ◦
φi|Uij = φj|Uij .

Example 9.1.13. Consider the prestack Sheaves over Sch with objects (S, F), where F is a sheaf
on S. Then (S, F) → (S ′, F ′) is a pair f : S → S ′ and α : F ′ → f∗F such that the adjoint of α is an
isomorphism F ' f−1F ′. We know that sheaves and their morphisms can be glued in the Zariski
topology, so the prestack Sheaves is a stack over SchZar.

Example 9.1.14. Consider the prestack Schemes over Sch with objects (T → S) and morphisms
(T → S) → (T ′ → S ′) is a pair f : T → T ′ and g : S → S ′ such that the two compositions T → S ′

agree. Of course schemes can be glued in the Zariski topology, so Sch is a stack in SchZar.

Proposition 9.1.15. Mg is a stack over Schét for g > 2.

Remark 9.1.16. The stackiness conditions mainly come from descent theory.
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9.2 Algebraic stacks and Artin’s axioms

From now on, we will work in the category Sch/S of schemes over S.

9.2.1 Algebraic stacks

Definition 9.2.1. A morphism X → Y of prestacks is representable by schemes if for all schemes
T → Y, the fiber product X×Y T is also a scheme. A representable X→ Y is surjective, smooth, etc
if for all schemes T → Y, the morphism X×Y T → T is surjective, smooth, etc.

Definition 9.2.2. An algebraic space is a sheaf F on (Sch/S)ét such that there exists a scheme U and
a surjective étale U→ F which is representable by schemes.

Definition 9.2.3. A morphism X → Y is called representable if for all schemes T → Y, X×Y T
is an algebraic space. Moreover, a representable f : X → Y is called surjective, smooth, etc if
U� X×Y T → T is surjective, smooth, etc.

Definition 9.2.4. A algebraic stack over (Sch/S)ét is a stack such that there exists a scheme U with
a morphism U→ X that is smooth, surjective, and representable.

This is equivalent to the following conditions (taken together):

1. The diagonal X ∆−→ X×X is representable.

2. There exists a scheme U and a smooth surjective morphism U→ X.

A useful fact that the product and fiber products of algebraic stacks exist (in the category of
algebraic stacks), and this is the same as their fiber products as prestacks.

Definition 9.2.5. We say that f : X→ Y of algebraic stacks is locally of finite type if for all (for some)
smooth presentations V → Y and U→ X×Y V , the composition

U→ X×Y V → V

is locally of finite type.

9.3 Artin’s Axioms

Definition 9.3.1. Let X be a stack over (Sch/S)ét. Then X is limit-preserving if

lim−→X(SpecBi)→ X(Spec(lim−→Bi))

is an equivalence of categories. Explicitly, this means:

1. Every object on the right hand side comes from ai|SpecB for some i and some ai ∈
X(SpecBi).

2. For a,b ∈ X(SpecBi), we have

HomRHS(a|SpecB,b|SpecB) = lim−→
i ′>i

HomX(SpecBi ′)
(a|Bi ′ ,b|i ′).

This should be viewed as a finiteness condition because if f : X→ S is a scheme, then Hom(−,X)
is limit-preserving if and only if f is locally of finite presentation.
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Definitions 9.3.2. Let X be a prestack over Sch/k. A formal object of X is (R, {ξn}, {fn}), where R is
a complete local Noetherian k-algebra, ξn : SpecR/mnR → X, and fn : ξn → ξn+1 are morphisms
in X lying over SpecR/mnk ↪→ SpecR/mn+1

R .
A morphism of formal objects (R, {ξn}, {fn}) → (T , {ηn}, {gn}) is a collection of morphisms

αn : ξn → ηn such that

ξn ηn

ξn+1 ηn+1

αn

fn gn

αn+1

commutes. These define morphisms SpecR/mnR → Spec T/mnT that are compatible, and hence a
morphism SpecR→ Spec T .

There is a functor from X(SpecR) to the category of formal objects (R, . . .). We say that a formal
object is effective if it is in the essential image of this functor.

Definition 9.3.3. Let R be a complete local Noetherian k-algebra and ξ ∈ X(SpecR). We say that ξ
is versal if for any diagram

Speck SpecB SpecC

SpecB ′ X

ξ

η ′

such that B ′ � B is a surjection of local Artinian k-algebras and α : ξ_SpecB → η ′|SpecB is an
isomorphism, then there exists SpecB ′ → SpecR such that α ′ = ξ|SpecB ′ ' η ′ extending α.

A formal object (R, {ξn}, {fn}) is versal if in the same diagram, if we replace ξ wuth ξn and R
with R/mn, we can find a lift to SpecR/mm for some m > n.

Theorem 9.3.4 (Artin’s axioms). Let X be a stack over (Sch/S)ét. Then X is an algebraic stack locally of
finite type over k if and only if

0. X is limit-preserving.

1. The diagonal ∆ : X→ X×X is representable.

2. (formal deformations) for every x : Speck→ X, there exists a complete local Noetherian k-algebra
(R,m) and a versal formal object (R, {ξn}, {fn}) such that ξ1 = x.

3. Every formal object is effective.

4. (openness of versality) Let ξU : U→ X, where U is a scheme of finite type over k, and u ∈ U be a
k-point such that ξU|Spec ÔU,u

is versal. Then ξU is versal at all k-points in an open neighborhood of
u.

Remark 9.3.5. Suppose we want to prove that Artin’s axioms imply that X is an algebraic stack
locally of finite type over k. Given a formal object (R, {ξn}, {fn}), we have an actual object
ξ ∈ X(SpecR). By approximation and algebraization, we have U → X finite type and versal at
X = U. Now U→ X is smooth, so we have

⊔
U→ X smooth, surjective, and representable.
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Remark 9.3.6. In many modular problems, the condition about formal deformations follows from
the Rim-Schlessinger condition that for a diagram

A×B C C

A B

of Artinian local k-algebras, the map

X(SpecA×B C)→ X(A)×X(B) X(C)

is an equivalence of categories. Here, if x0 ∈ X(Speck), define FC,x0 by A 7→ x ∈ X(SpecA)
such that x0 → x lies over Speck → SpecA. Then TFC,x0 = FC,x0(k[ε]) is a k-vector space. If
dimk TFC(x0) < ∞, then we have the condition on formal deformations. Then smoothness of
U→ FC,x0 gives versality.

Remark 9.3.7. The third condition follows from Grothendieck’s existence theorem, and a deformation-
obstruction theory gives openness of versality.
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Che (Dec 03): Stack of coherent sheaves

Let k be an algebraically closed field of characteristic 0, (Sch/k)ét be the étale site of schemes over
k, and X be a projective scheme over k.

Definition 10.0.1. Let CohX be the category defined as follows:

• Objects are tuples (T ,F) of a scheme T and F is a quasicoherent sheaf on X× T of finite
presentation flat over T .

• Morphisms from (T ,F) to (T ′,F ′) are pairs (h,ϕ), where h : T → T ′ is a morphism of
schemes and ϕ : (h ′)∗F ′ → F is an isomorphism of OXT -modules. Here, h ′ : XT → XT ′ is
the morphism induced from h.

There is a functor p : CohX → (Sch/k)ét given by (T ,F) 7→ T , and we want to prove that
X := CohX is an algebraic stack. Also, we will abuse notation and write h for h ′. We will prove
that X satisfies Artin’s axioms. Recall that these are

(0) X is a stack. This means that X is a prestack and objects and morphisms glue.

(1) ∆ : X→ X×X is representable by algebraic spaces.

(2) X is limit-preserving.

(3) X satisfies the Rim-Schlessinger condition.

(4) The tangent spaces TFX,X0 and Inf(FX,X0) are finite-dimensional.

(5) Every formal object is effective.

(6) X satisfies openness of versality.

These will imply that there is a smooth surjective covering of X by a scheme.

10.1 X is a stack

First, we will prove that X is a prestack. We note that X(T) has objects finitely presented F on
XT flat over T and morphisms (idT ,ϕ), where ϕ : F ′ → F is an isomorphism. Thus X(T) is a
groupoid. We now want to prove that pullbacks exist, which is clear because given h : T → T ′ and
an object (T ′,F ′), our pullback is simply (T ,h∗F ′). To show that pullbacks are universal, consider
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h1 : T1
h−→ T2

h2−→ T . Now suppose that we have morphisms (T1,F1)→ (T ,F) and (T2,F2)→ (T ,F).
Now we want to prove that there exists an isomorphism F1 ' h∗F2. But we know that

h∗F2 ' h∗h∗2F ' h∗1F ' F1,

and so we are done.
Now we want to check that objects glue. Given T and a covering {ai : Ti → T }, suppose we

have Fi on XTi flat over Ti. Suppose that the Fi are isomorphic on intersections and satisfy the
cocycle condition. We want to construct a F on XT of finite presentation, flat over T . This follows
from étale descent, so we are done.

We now want to prove that morphisms glue. To do this, we need to introduce some new
notions.

Definition 10.1.1. Given X = (T ,F) and Y = (T ,G), define the Isom presheaf IsomX(X, Y) sending a
scheme S→ T to the set Hom(F|S,G|S) in X(S).

It is easy to see that morphisms glue if and only if this is a sheaf, and we will omit the proof.

10.2 Representability of the diagonal

We want to prove that for all schemes S over k, the stack Y given by pullback in the diagram

Y S

X X×X
∆

is an algebraic space. By the 2-Yoneda lemma, a map S→ X×X is given by ξ = (S,F),η = (S,G) in
X(S). If we compute the fiber product S×X×XX, we actually obtain the Isom presheaf IsomX(ξ,η).
We will use without proof the fact that IsomX(ξ,η) is a closed subfunctor of Hom(F,G) (defined
by T 7→ Hom(FT ,GT )).

We will only prove that Hom(F,G) is representable by an algebraic space when F,G are locally
free (and X is a point apparently).1 In this case,

Hom(F,G)(T) = Hom(Ft,GT ) = H0((F∨ ⊗ G)T ).

But now this is clearly represented by the total space Spec Sym(F⊗ G∨) because2

HomS(T , Spec Sym(F⊗ G∨)) = HomOS(Sym(F⊗ G∨), f∗OT )

= HomOS(F⊗ G∨, f∗OT )

= HomOT (f
∗(F⊗ G∨),OT )

= H0((F∨ ⊗ G)T ).

10.3 Preservation of limits

Given T = lim Ti, we want to prove that X(T) is the colimit of the X(Ti). Given F on X× T of finite
presentation and flat over T , we want to show that there exist Ti,Fi such that F = (X→ Xi)

∗Fi.

1Here, Johan intervened and came to the board to talk about cohomology and base change things.
2Apparently the following is wrong, but is preserved here for recordkeeping.
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Proposition 10.3.1. Let R,Ri be rings such that R is the colimit of the Ri. Let M be an R-module of finite
presentation. Then there exists i and a finitely-presented Ri-module Mi such that M =Mi ⊗Ri R.

Proof. We know that M is finitely presented, so we have an exact sequence

R⊕m
(ajk)−−−→ R⊕n →M→ 0.

Because R is the colimit of the Ri, there exists i such that ajk lift to Ri. If we define Mi by

R⊕mi
(ajk)−−−→ R⊕ni →Mi → 0,

this is clearly the desired Mi.

Checking flatness is too hard, so we will not do it.

10.4 Rim-Schlessinger

We will not prove this, but we will see that this is a natural condition to satisfy. Given a pushout
diagram

U U ′

V V ′

where U,U ′,V ,V ′ are spectra of local Artinian rings of finite type over k and U→ U ′ is a closed
embedding, we want the functor

X(V ′)→ X(V)×X(U) X(U
′)

to be an equivalence of categories.

10.5 Finiteness

We want to prove that the tangent space TFX,X0 and the infinitesimal automorphisms Inf(FX,X0)
are finite-dimensional. Given X0 : Speck→ X (which is just a finitely presented sheaf F on X), the
tangent space is

TFX,X0 :=
{
F ′/X× k[ε] finitely-presented, flat over k[ε],F ′|X ∼= F

}
/ ∼= Ext1(F,F).

In addition, we know that

Inf(FX,X0) = ker(Aut(F⊗ k[ε]/X× k[ε])→ Aut(F/X)) = Ext0(F,F).

Because X is projective, these Ext groups are finite-dimensional.

10.6 Formal objects are effective

We will now prove that formal objects are effective. Let R ∈ Ĉ be a complete Noetherian local ring.
Recall that a formal object is {ξn}, where ξ ∈ X(SpecR/mnR) along with fn : ξn → ξn+1 living over
the natural inclusions. A formal object is effective if it comes from an actual object over R.

In our case, a formal object is given by Fn on X× SpecR/mnR flat and finitely presented and
fn : i

∗
nFn+1 ∼= Fn. We want to show that there exists F over SpecR restricting to each Fn.
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Theorem 10.6.1 (Grothendieck existence theorem). Let A be a Noetherian ring which is complete with
respect to some ideal I. Let f : X→ SpecA be a proper morphism. Let I = IOX. Then the functor

Coh(X)→
{
F∞ ← F∈ ← · · · | F\ coherent, annihilated by In,Fn+1/I

nFn+1 ' Fn

}
is an equivalence.

In our case, take A = R and I = m, and now we are done.
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Johan (Dec 10): Openness of versality

Let k be an algebraically closed field. In this lecture, all schemes live over k for simplicity.

11.1 Moduli of curves

Recall that Mg is a stack such that a morphism U → Mg is a family C → U of stable curves of
genus g. Assume that U is of finite type over k and let u0 ∈ U(k).

Definition 11.1.1. We say that U→Mg is versal at u0 if ÔU,u0 and the map

h
ÔU,u0

→ DefCu0

given by C|Spec ÔU,u0
are a hull.

Lemma 11.1.2. U→Mg is versal if and only if U is smooth at u0 and Tu0U→ TDefCu0
is surjective.

Proof. Earlier, we discussed that deformations of Cu0 are unobstructed. Therefore any hull is
a power series ring over k. Thus U must be smooth at u0. If U is smooth at u0, then look at
ÔU,u0 ← R, where R is the deformation ring of Cu0 . But now this is a map of power series rings,
and therefore defines a smooth transformation of functors if and only if the map on tangent spaces
is surjective.

Lemma 11.1.3. We have openness of versality for Mg and Mg.

Proof for Mg. By the previous lemma, we may assume that U is smooth. Call f : C → U and
consider the exact sequence

0→ TC/U → TC → f∗TU → 0.

This gives TU = f∗f∗TU → R1f∗TC/U. Taking fibers aat u0, we obtain

Tu0U = TU ⊗ κ(u0)→ R1f∗TC/U ⊗ κ(u0) = H
1(Cu0 , TCu0

) = Tu0DefCu0
.

Also, R1f∗TC/U is a vector bundle of rank 3g− 3 over U. By the lemma and the assumption of
versality at u0, we see this is surjective. Thus this is surjective in an open neighborhood.
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Proof for Mg1. Consider the exact sequence

0→ f∗ΩU/k → ΩC/k → ΩC/U → 0.

We think of this as ΩC/U → f∗ΩU/k[1] in the derived category, and now if we tensor with the
relative dualizing sheaf, we have

ΩC/U ⊗ωC/U → f∗ΩU/k ⊗ωC/U[1] = f!(ΩU/k),

where f! is the right adjoint to Rf∗ in this case. This gives

Rf∗(ΩC/U ⊗ωC)→ ΩU/k.

By positivity properties, Rf∗(ΩC/U ⊗ωC/U) = f∗(ΩC/U ⊗ωC/U). Taking the fiber at u0, we
have

H0(ΩCu0/k
⊗ωCu0

)∨ = Ext1(ΩCu0/k
⊗ωCu0

,ωCu0/k
) = Ext1

Cu0
(ΩCu0

,OCu0
) ∼= Tu0DefCu0

.

By the same argument as before, we are done.

11.2 Properties of cotangent complexes

Suppose that U is of finite type over k. Then there is a complex LU/k ∈ D
60
coh(OU) such that

H0(LU/k) = ΩU/k called the cotangent complex. Suppose we write

ÔU,u0
∼= k[[x1, . . . , xn]]/(f1, . . . , fm) = k[[x]]/I

with n,m minimal. This implies that f1, . . . , fm ∈ (x1, . . . , xn)2. Then H0(LU/k ⊗ κ(u0)) is the
cotangent space of U at u0 and thus has dimension n. Next we note that

H−1LU/k ⊗ κ(u0)] = I/mI,

and this has dimension m.
Now let g : U→ V be a morphism of schemes of finite type over k. Write u0 7→ v0. Then if we

consider the distinguished triangle

Lg∗Lv/k → LU/k → LU/V ,

we see that g is smooth at u0 if and only if H0(LU/k ⊗ κ(u0))← H0(LV/k ⊗ κ(v0)) is injective and
H−1(LU/k ⊗ κ(u0))← H−1(LV/k ⊗ κ(v0)) is surjective.

Remark 11.2.1. Suppose that f : X→ U is a proper flat morphism corresponding to U→ X, where X

is the prestack pramaterizing families of of flat proper schemes. Then we have LX/U → Lf∗LU/k[1],
and tensoring with the dualizing complex, we have

LX/U ⊗ω•X/U → Lf∗LU/k ⊗ω•X/U[1] = f
!(LU/k)[1].

We should consinder instead

canX/U : Rf∗(LX/U ⊗ω•X/U)[−1]→ LU/k.

Versality is then related to properties of Hi(canX/U ⊗L κ(u0)) for i = 0,−1.
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11.3 Coherent sheaves

Let X→ Speck be proper. Then CohX/k is a stack such that for all U/k of finite type, a morphism
U→ CohX/k is a coherent sheaf F on X×U which is flat over U.

Lemma 11.3.1. We have openness of versality for U→ CohX/k.

Easy case. We will assume that Fu0 is a vector bundle and Ext2
X(Fu0 ,Fu0) = 0. As before, we may

assume that U is smooth and F is a vector bundle. We then have the Atiyah extension

0→ F⊗Ω1
X×U → P(F)→ F → 0

and a map F⊗Ω1
X×U/k → F⊗ p∗ΩU/k. Then we have the Atiyah class

F → (F⊗⊗∞X×U/‖)[∞].

Dually, we have f∗TU/k → Hom(F,F)[1],

TU/k → Rf∗f
∗TU/k → Rf∗(Hom(F,F))[1],

etc. By similar arguments as before, we obtain the desired result.

General case (terrible). We have an Atiyah class

F F⊗ LX×U/k[1]

F⊗ Lp∗LU/k[1].

ξ

ξ ′

This yields
ξ ′′ : F⊗ RHom(F,q∗ω•X/k)→ p∗LU/k ⊗ q∗ω•X/k[1] = p

!(LU/k).

The adjunction gives us

Rp∗(F⊗ RHom(F,q∗ω•X/k))[−1]→ LU/k.

We need to show that formation of the left hand side commutes with base change and that

Hi(X,Fu0 ⊗Fu0 ,ω•X/k) = Ext−iX (Fu0 ,Fu0),

and then we can use cohomology and base change.

11.4 A trick

Sometimes we can get openness of versality for a prestack X. Here, openness of versality holds
for the prestack X if

1. X→ X×X is representable by algebraic spaces.

2. We have the condition (RS∗), which is a version of RS where the rings do not need to be
Artinian.

3. X is limit-preserving.
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4. The following effectiveness holds: If A = limAn where

A→ · · · → A3 → A2 → A1

where each An → A− 1 is surjective with square zero kernel, then X(A) = limX(An).

In the example on CohX/k, we have Fn on X⊗An, and then we can attempt to take the limit
F of the Fn. This fails because the limit is not quasicoherent, but we can fix it.


	Contents
	Johan (Sep 24): Schlessinger's paper
	Ivan and Cailan (Oct 1): Deformations of schemes
	Deformations of affine schemes
	Deformations of schemes

	Kevin (Oct 08): Deformations of coherent sheaves
	Tangent-obstruction theory

	Patrick (Oct 15): Deformations of singularities
	Explicit criteria for flatness
	Hilbert schemes of smooth surfaces
	An obstructed deformation

	Avi (Oct 22): Local-global methods
	Curves with isolated singularities
	Smooth curves with a finite group action

	Caleb and Morena (Oct 29): Lemma 0E3X and applications to contracting curves
	One lemma in the Stacks Project
	Application to moduli of curves
	Stable curves
	Contraction done wrong
	Contraction done right


	Morena (Nov 05): Contraction morphisms between moduli stacks of curves
	Recap of last time
	Contraction of rational tails and bridges
	Contraction over any base scheme

	Baiqing (Nov 12): Deformations of group schemes
	Deformations of abelian schemes
	Deformations of smooth affine group schemes

	Haodong (Nov 19): Artin's axioms
	Prestacks and stacks
	Prestacks
	Stacks

	Algebraic stacks and Artin's axioms
	Algebraic stacks

	Artin's Axioms

	Che (Dec 03): Stack of coherent sheaves
	X is a stack
	Representability of the diagonal
	Preservation of limits
	Rim-Schlessinger
	Finiteness
	Formal objects are effective

	Johan (Dec 10): Openness of versality
	Moduli of curves
	Properties of cotangent complexes
	Coherent sheaves
	A trick


