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Kevin (Sep 29): Review of semisimple Lie algebras and
introduction to category O

1.1 Review of semisimple Lie algebras

Throughout this lecture, we will work over C.

Definition 1.1.1. A Lie algebra g is semisimple if any of the following equivalent conditions hold:

1. g is a direct sum of simple Lie algebras (those with no nonzero proper ideals).

2. The Killing form κ(x,y) := tr(ad(x) ad(y)) is nondegenerate.

3. The radical (maximal solvable ideal) of g is zero.

Some examples of semisimple Lie algebras include sln, son, sp2n, and in some sense (the
classification of simple Lie algebras), these are essentially all semisimple Lie algebras.

Now given a semisimple Lie algebra g, we will fix a Cartan subalgebra h ⊂ g, which is just a
maximal abelian subalgebra of semisimple elements. This gives us a root decomposition

g = h⊕
⊕

α∈h∗\{0}
gα,

where gα is the subspace of g where h acts with weight α. Some important facts about these root
systems are the following:

• For all α, we have dim gα = 1.

• For all roots α,β, we have [gα, gβ] ⊂ gα+β.

• If α is a root, so is −α.

In addition, the α are required to form a (reduced) root system (denoted Φ), the precise definition
of which is deliberately omitted. Given a choice of Borel subalgebra containing h, we obtain a set
Φ+ of positive roots and a set ∆ of simple roots. In addition, given a root system Φ, there is a
dual root system Φ∨, whose roots are

α∨ =
2α

(α,α)
,α ∈ Φ.
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Now suppose that g is a semisimple Lie algebra with root system Φ. For every α ∈ Φ+, we
may choose xα ∈ gα and yα ∈ g−α, and these determine some hα = [xα,yα] ∈ h. This choice can
be made such that α(hα) = 2.

Recall that the Lie algebra sl2 is spanned by the matrices

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Then the choice of xα,yα,hα gives an embedding sl2 → g. These maps, ranging over all α, cover
all of g. Now a basis of g is given by xα,yα,α ∈ Φ and hαi for the simple roots αi. Therefore, to
specify g, we only need to give commutation relations for the basis elements.

Now suppose that Φ is some root system. We would like to construct a semisimple Lie algebra
g with root system Φ. We want to build a semisimple Lie algebra. To do this, choose a set of
simple roots αi, and consider the Lie algebra〈

xαi ,yαi ,hαi
〉
/relations,

where the relations are as follows:

• [hαi ,hαj ] = 0.

• We have [xαi ,yαj ] = hαi if i = j and this commutator vanishes otherwise.

• [hαi , xαj ] =
〈
αj,α∨i

〉
xαj .

• [hαi ,yαj ] = −
〈
αj,α∨i

〉
yαj .

• ad(xαi)
1−〈αj,α∨

i 〉(xαj) = 0 if i 6= j.

• ad(yαi)
1−〈αj,α∨

i 〉(yαj) = 0 if i 6= j.

The first four relations are called the Weyl relations and the last two are called the Serre relations.
Given this data, we end up with a semisimple Lie algebra gΦ with root system Φ. In addition,
if g is any other semisimple Lie algebra with root system Φ, there is an isomorphism gΦ

∼−→ g.
Moreover, we have a bijection between semisimple Lie algebras and reduced root systems, which
restricts to a bijection between simple Lie algebras and irreducible root systems.

Table 1.1: Root systems and Lie algebras

Irreducible root systems simple Lie algebras

An sln+1
Bn so2n+1
Cn sp2n
Dn so2n

E6,E7,E8, F4,G2 exceptional Lie algebras

We will now discuss the finite-dimensional representation theory of semisimple Lie algebras g.

Theorem 1.1.2 (Weyl’s complete reducibility theorem). Any finite-dimensional representation of g is
decomposes as a direct sum of simple representations.
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Now suppose that M is a finite-dimensional g-representation. Then M has a weight decompo-
sition

M =
⊕
λ∈h∗

Mλ.

These λ are integral weights, which simply means that
〈
λ,α∨

〉
∈ Z for all roots α. For any root

α, xα(Mλ) ⊂Mλ+α and yα(Mλ) ⊂Mλ−α. We would like to think that the xα raise the weights
and yα lower the weights, so we introduce a partial order. We say that λ > µ if λ− µ ∈ Z>0Φ

+.
By Weyl’s complete reducibility theorem, it remains to classify the irreducible representations

of g. These are in bijection with the dominant integral weights, which in particular means that〈
λ,α∨

〉
> 0 for all α ∈ Φ+. For any dominant weight λ, there is a unique highest-weight

representation L(λ). Here, L(λ) is generated by a single maximal vector v of weight λ. This means
that for all positive roots α, xαv = 0.

1.2 Introduction to category O

We would now like to study infinite dimensional representations of g. Of course, this is impossibly
complicated in general, so we will impose some finiteness conditions on our representations.

Definition 1.2.1. The category O is the full subcategory of U(g)-modules M satisfying:

1. M is finitely generated as a U(g)-module.

2. M is h-semisimple and has a weight decomposition M =
⊕
λ∈h∗Mλ.

3. M is locally n-finite, where n =
⊕
α∈Φ+ g. Precisely, this means that the U(n) generated by

any v ∈M is finite-dimensional.

Here are some facts about category O, which are stated without proof.

• For all M in our category and weights λ, the weight space Mλ is finite-dimensional.

• O is a Noetherian (everything satisfies the descending chain condition) abelian category.

We will now describe some infinite-dimensional objects in category O.

Definition 1.2.2. For any weight λ, the Verma module M(λ) associated to λ is the module

M(λ) = U(g)⊗U(b) Cλ,

where b = h+ n is the Borel subalgebra associated to our choice of positive roots and Cλ is the
b-module associated to the 1-dimensional representation of h with weight λ and the identification
b/n = h.
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Fan (Oct 06): Beginnings in category O: Vermas, central
characters, and blocks

Recall the following fact ahout semisimple Lie algebras. If we have a decomposition

g = h⊕α∈Φ gα,

where

1. dim gα = 1;

2. ZΦ ⊂ h∗ is a lattice of maximal rank;

3. α ∈ Φ implies −α ∈ Φ;

4. [[gα, g−α], gα] 6= 0,

then g is a semisimple Lie algebra.
Now recall that the Weyl group W is the group generated by the reflections sα in the roots.

For any w ∈W, we define the length

`(w) = #{α ∈ Φ+ | w(α) ∈ Φ−}.

Next, there is the Bruhat order, where if w2 = sw1 and `(w2) > `(w1), we say w1 < w2.
Finally, throught this lecture, we will denote the weight lattice by Λ and the root lattice by Q.

In addition, we will denote the λ-weight space of a module M by Mλ, and Mλ will be the Verma
associated to λ. Also, we will need the notion of the universal enveloping algebra, which we will
not write down here.

2.1 Definitions

Recall that O is the full subcategory of Mod(Ug) of modules M such that

1. M is finitely generated over Ug.

2. M is h-semisimple.

3. M is locally n-finite.

4. dimMλ <∞.
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5. The set of weights of M is contained in some finite union of cones λ−Q+.

Theorem 2.1.1. The following properties hold for O:

1. O is Noetherian.

2. O is closed under submodules, quotients, finite direct sums, and is abelian.

3. O is closed under tensoring with finite-dimensional representations (in fact, if tensoring with O is
exact and lands in O, then N must be finite-dimensional).

4. M is locally Zg-finite.

5. All M ∈ O are finitely generated over Un−.

2.2 Highest weight modules

Definition 2.2.1. A vector v+ is a maximal vector if n+v+ = 0.

Definition 2.2.2. A module M is a highest weight module if there exists a maximal v+ ∈ M
generateing M.

Definition 2.2.3. Let λ ∈ h∗ and consider the b+-module Cλ. Then the Verma module for λ is the
module

Mλ := Ug⊗Ub Cλ.

Note that we have the standard adjunction Homg(Mλ,−) = Homb(Cλ,−).

Theorem 2.2.4. For any highest weight module M with highest weight λ,

1. M =
〈
f
n1
1 · · · f

n|Φ|

|Φ+|

〉
, and in particular M is h-semisimple.

2. All weights of M are at most λ.

3. For any µ < λ, dimMµ <∞, and dimMλ = 1. In addition, M ∈ O.

4. Any quotient of M is also a highest weight module with highest weight λ.

5. Any submodule of a highest weight module with weight µ < λ is a proper submodule. if M is simple,
all maximal vectors have weight vλ+.

6. There exists a unique maximal submodule, and thus M has a unique simple quotient and thus is
indecomposable.

7. All simple highest weight modules with highest weight λ are isomorphic, so dim EndM = 1.

Corollary 2.2.5. Let M ∈ O. Then M admits a filtration whose successive quotients are highest weight
modules.
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2.3 Verma modules

Let Mλ be a verma module and Lλ be the unique simple quotient, and Nλ be the unique maximal
submodule.

Theorem 2.3.1. Any simple L ∈ O is isomorphic to Lλ for some λ.

Proposition 2.3.2. Let Σ be the set of simple roots and σ ∈ Σ. Let λ ∈ h∗ such that σ∗(λ) ∈N. Choose
vλ+ ∈Mλ a maximal vector. Then

fσ
∗λ+1
σ vλ+ = v

λ−(σ∗λ+1)σ
+ .

In particular, there exists a nonzero morphism Mλ−(σ∗λ+1)σ ↪→Mλ.

Lemma 2.3.3. We have the commutation relations

[ei, fk+1
j ] = 0, [ei, fk+1

i ] = −(k+ 1)fk+1
i (k− hi), [hi, f

j+1
j ] = −(k+ 1)αj(hi)fk+1

j .

2.4 Examples

We will discuss the example of sl2. Let φi be the operator that outputs the i-th diagonal of a
matrix. Then let α = 2φ1 = φ1 −φ2 be the root. Let α† be the matrix such that κ(α†,−) = α(−).
In particular, we have α† = 1

4h.
Then note that if we choose units so that φ1 = 1, then α = 2. If λ = n, then the Verma

module for λ has weights n,n− 2, . . ., and the simple module has weights n,n− 2, . . . ,−n. For
non-integral weights, we just have an infinite-dimensional representation. To see this, note that
hitting any non-integral weight with n− will not reach another maximal vector.

2.5 Finite-dimensional modules

Theorem 2.5.1. For any weight λ, dimLλ <∞ if and only if λ ∈ Λ+ is a dominant integral weight. This
is equivalent to dimL

µ
λ = dimL

w(µ)
λ for all w ∈W.

This result tells us that weights of Lλ are actually symmetric under the Weyl group.

Proof. First, if the span of v ∈ Mλ is finite-dimensional for sl2, then all of h stabilizes Spansl2
v.

This is because if vµ ∈ N := 〈v〉, then

h(eiv
µ) = eihv

µ +αi(h)eiv
µ,

and thus h(fivµ) ∈ Cfiv
µ.

Next, if dimLλ <∞, then after restriction to sl2, we have λ(hi) = α∗i (λ) ∈N, and thus λ ∈ Λ+.
Now suppose that λ ∈ Λ+. Then after restricting Lλ to sli2, the span of vλ+ is isomorphic to

Lα∗i (λ)·φ1
, and in particular it is finite-dimensional. Next, we show that Lλ is a sum of finitely

many sli2-summands. To see this, consider the sum M of all sli2-submodules of Lλ. But then if we
denote a summand by N, we note that g⊗N is a finite-dimensional representation of sl2, so the
natural morphism

g⊗N→ Lλ

lands inside M. But then M = Lλ because M is a nonzero submodule.
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Next, recall that for M ∈ Rep(sl2), then the sets of weights are invariant under reflection across
the origin, so we have isomorphisms

fα(λ) : Mλ �Ms(λ) : eα(λ).

Because Lλ is a sum of finite-dimensional representations of sl2, for any v ∈ Lµλ , consider the
finite-dimensional sl2-module containing it. If we add them up, we know that Lµλ is some finite-

dimensional sl2-module Nµ. But then the si generate W, and thus for all w ∈W, Lµλ ∼= L
w(µ)
λ .

Finally, for any orbit of W, there exists exactly one representative in the dominant weight
lattice, and because there are only finitely many dominant integral weights less than λ, there must
only be finitely many orbits, so Lλ is finite-dimensional.

2.6 Central actions

Here, we will consider the action of Zg on a module M. Suppose that M is a highest weight
module for weight λ. Then we note that

h(z · vλ+) = zhvλ+ = λ(h)zvλ+,

and therefore zvλ+ = ϑλ(z)v
λ
+. Therefore z acts by Vλ(z) on any highest weight module of weight

λ, and we call the function ϑλ : Zg → C a central character. In general, all algebra morphisms
Zg→ C arise in this way. Then we have the decomposition

z ∈ Ug = Un− ⊗Uh⊗Un+,

and write πh : Ug→ Uh for the morphism killing n±. Then ϑλ(z) = λ(πh(z)), so πh : Zg→ Uh is
an algebra homomorphism, and we will call this ϕHC =: $, the Harish-Chandra morphism. In
particular, we obtain a morphism

Adimh → SpecZg.

Also, we will consider $ ◦w·, where w ◦ λ = w(λ+ ρ) − ρ, where

ρ =
1
2

∑
Φ+

α.

If we can identify the two morphisms on a Zariski-dense subset, they must agree in general. First,
note that $(λ) = ϑλ, and now it suffices to show that ϑλ = ϑw◦λ for λ ∈ Λ.

To prove this, if there exists σ ∈ Σ such that σ∗(λ) ∈ N, thenMsσ◦λ ⊂Mλ, and thus θλ = θsσ◦λ.
In addition, if σ∗(λ) = −1, we have sσ ◦ λ = λ, and if σ∗λ 6 −2, we can reverse the roles of λ,σ ◦ λ
because

σ∗(sσ ◦ λ) = σ∗λ− 2σ∗λ− 2 > 0.

2.7 More on Harish-Chandra

Consider the twisted Harish-Chandra morphism

Zg
ϕHC−−−→ Sh

λ7→λ−ρ−−−−−→ Sh.

This gives us a morphism ψHC. In particular, we have

ϑλ(z) = (λ+ ρ)ψHC(z) = λ(ϕHC(z)).
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Theorem 2.7.1. The image of ψHC is contained in (Sh)W .

To see this, note that

ϑw◦λ = ψHC(w ◦ λ) + ρ = ψHC(w(λ+ ρ)) = ψHC(λ+ ρ).

Theorem 2.7.2.

1. ψHC is an isomorphism Zg→ ShW ;

2. If λ,µ are linked, then ϑλ = ϑµ;

3. Every element of HomAlg(Zg, C) arises in this way.

There is a simple way to see the last two parts of the theorem if we assume some algebraic
geometry.

For a central character ϑ : Zg→ C, consider the module

Mϑ := ker∞(ker(ϑ)) = {v ∈M | (z− ϑ(z))nv = 0 for all z},

where n depends on z. We have a decomposition

Mµ =
⊕
ϑ

Mµ ∩Mϑ,

which gives us
M =

⊕
Mϑ.

Now we may define subcategories of O given by

Oϑ :=
{
M |M =Mϑ

}
.

Some examples are that all highest weight modules of weight λ are contained in Oϑλ .

Proposition 2.7.3. We have a decomposition ⊕
ϑ=ϑλ

Oϑ.

We will now consider blocks of category O. We say that simple modules S1,S2 are in the
same block if there is a nontrivial extension of S2 by S1. For general M, we know that M has
a finite Jordan-Hölder decomposition because O is Artinian, so M is in some block if all of its
Jordan-Hölder quotients are.

Proposition 2.7.4. If λ ∈ Λ, then Oϑλ is a block of O.

To prove this, if µ < λ are linked, then we have the diagram

Mµ ↪→ Nλ →Mλ

giving us an exact sequence

0→ Lµ ↪→ Nλ/ ImNµ � Lλ → 0.
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Che (Oct 13): Formal characters and applications to
finite-dimensional modules

3.1 Weyl character and dimension formulas

Today we will see what Category O tells us about finite-dimensional modules. We will fix a
semisimple Lie algebra g = n+ ⊕ h⊕ n−.

Definition 3.1.1. Given M ∈ O, define the function chM : h∗ → Z>0, where λ 7→ dimMλ.

Also let eλ be the characteristic function of λ. Now given f,g : h∗ → Z>0, define the convolution
product

f ∗ g(λ) =
∑

µ+ν=λ

f(µ)g(ν).

For example, eλ ∗ eµ = eλ+µ. Here, we assume that f,g are supported on a finite union of things
of the form λ− Γ , where Γ are the non-negative weights. We will call the set of such functions X.

Proposition 3.1.2.

1. If 0→M ′ →M→M ′′ → 0 is an exact sequence, then ch(M) = ch(M ′) + ch(M ′′).

2. If M ∈ O and L is finite-dimensional, then ch(L⊗M) = ch(M) ∗ ch(L).

Proof.

1. Note that dimMµ = dimM ′µ + dimM ′′µ for any such exact sequence.

2. Note that dim (L⊗M)λ =
∑
µ+ν=λ dimLµ dimMν.

Last time we considered central characters for a highest weight module of weight λ and highest
weight vector v+

χλ : Z(g)→ C z 7→ z · v+

v+
= λ(pr(z)).

If L(µ) is a subquotient of the Verma module M(λ), then, then χµ = χλ. Equivalently, µ and λ
are linked by some element w of the Weyl group. Because O is Artinian, for all M ∈ O we have a
finite filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M,

12
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where all Mi+1/Mi is simple, so they must be isomorphic to some L(λi). But then we have

chM =
∑
i

chL(λi)

=
∑
w∈W

a(λ,w)L(w ◦ λ).

Our goal is now to compute the a(λ,w).
Let λ1, λ2, . . . , λn be weights linked to lambda arranged such that if λi > λj, then i > j. Then

we should have some identity of the formchM(λ1)
...

chM(λn)

 =

1 ∗ ∗

0
. . . ∗

0 0 1


chL(λ1)

...
ch(λn)

.

This implies that chL(λ) =
∑
w∈W b(λ,w) chM(w ◦ λ). Note that b(λ, 1) = 1.

Definition 3.1.3. Define the Kostant function

p : h∗ → Z>0 ν 7→ #
{
(cα)α>0 ∈ Z>0 |

∑
cαα = ν

}
.

Proposition 3.1.4. p = chM(0). More generally, eλ ∗ 0 = chM(λ).

Proof. By the PBW theorem, we know thatM(0) is spanned by U(n−). This is apparently equivalent
to the definition of p.

Definition 3.1.5. Define the function

q =
∏
α>0

(eα/2 − e−α/2).

Also define

fλ = e0 + e−λ + · · · =

{
1 ∗α −kλ,k ∈ Z>0

0 otherwise.

Note that fα ∗ (1 − e−α) = 1. Also note that

q ∗
∏
α>0

fα = eρ
∏
α>0

(1 − e−α)
∏
α>0

fα = eρ.

Next, p =
∏
α>0 fα and if α is a simple root, then sα · q = −q. The reason for this is that

sα(α) = −α but sα fixes the other positive roots. This implies that w · q = (−1)`(w)q.

Theorem 3.1.6 (Weyl character formula). If λ ∈ Λ+, then

q ∗ chL(λ) =
∑
w∈W

(−1)`(w)ew◦λ+ρ.

Proof. If we apply q ∗− to the formula

chL(λ) =
∑
w∈W

b(λ,w) chM(w ◦ λ),
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we obtain

q ∗ chL(λ) =
∑
w∈W

q ∗ ch(w ◦ λ)

=
∑
w∈W

b(λ,w)ew◦λ+ρ.

Because λ ∈ Λ+, we know that L(λ) is finite-dimensional and all weight spaces are symmetric. If
α is a simple root, then we apply sα to both sides, and we obtain

−q chL(λ) =
∑
w∈W

b(λ,w)sα(w ◦ λ+ ρ) = esαw◦λ+ρ

because sα(w ◦ λ+ ρ) = sαw(λ+ ρ) = sαw ◦ λ+ ρ. Therefore we see that b(λ, sαw) = −b(λ,w),
so b(λ,w) = (−1)`(w).

We would now like to compute dimL(λ) for dominant integral weights λ. We want something
like

sum(q) · dimL(λ) =
∑
w∈W

(−1)`(w),

except that both sides here vanish, so this is too naïve. For example, if we consider sl2, we have

(e1 − e−1) chL(λ) = eλ+1 − e−λ−1.

If we divide, we actually obtain chL(λ) = eλ + eλ−2 + · · ·+ e−λ.
In the general case, let µ ∈ h∗ and t ∈ R. Define Fµ,t : X → R by extending eλ 7→ et(λ,µ)

linearly. Applying Fρ,t to the Weyl charaacter formula, we obtain

et(ρ,ρ)
∏
α>0

(1 − e−t(ρ,α))Fρ,t chL(λ) =
∑
w∈W

(−1)`(w)et(ρ,w(λ+ρ))

=
∑
w∈W

(−1)`(w)et(w
−1ρ,λ+ρ)

=
∑
w∈W

(−1)`(w)et(wρ,λ+ρ)

= Fλ+ρ,t
∑
w∈W

(−1)`(w)ewρ

= Fλ+ρ,t

(
eρ
∏
α>0

(1 − e−α)

)
= et(ρ,ρ+λ)

∏
α>0

(1 − e−t(α,λ+ρ)).

Note here that Fρ,t(eλ ∗ eµ) = Fρ,t(eλ) · Fρ,t(eµ). In the t → 0 limit, we have Fρ,t chL(λ) →
dimL(λ) and et(ρ,ρ) → 1. Therefore we obtain

dimL(λ) = lim
t→0

∏
α>0

1 − e−t(α,λ+ρ)

1 − e−t(α,λ)

=

∏
α>0(α, λ+ ρ)∏
α>0(α, λ)

.

This is called the Weyl dimension formula.
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3.2 Maximal submodules of Verma modules

Theorem 3.2.1. Let λ ∈ Λ+ and α1, . . . ,αk be simple roots of g. Then∑
M(sαi ◦ λ)

is the maximal submodule of M(λ).

Remark 3.2.2. Last time we saw that M(sαi ◦ λ) ⊂M(λ).

Lemma 3.2.3. Let a,b ∈ Ug. Then

[ak,b] = k[a,b]ak−1 +

(
k

2

)
[a[a,b]]ak−2 + · · ·+ [a, · · · , [a, [a,b]]].

This is proved by induction, so like a certain Fields medalist, we omit the proof.
If xα, xβ correspond to roots α,β, then note that eventually we will have [xα, · · · [xα, [xα, xβ]]] =

0. In fact, four times is enough.

Lemma 3.2.4. Let α be a simple root. Then for any v ∈M(λ), there exists N� 0 such that yNα · v = 0 in
M(λ)/

∑
M(sαi ◦ λ).

Proof. We proceed by induction. Suppose that v = yi1yi2 · · ·yitv
+. When t = 0, then y(α,λ)+1

α v+ =
0. For t > 0, we have

yNα yi1 · · ·yitv
+ = yi1y

N
α yi2 · · ·yitv

+ + [yNα ,yi1 ]yi2 · · ·yitv
+.

The first term on the right hand side vanishes by the inductive hypothesis, and the second term
becomes (−) · yN−3

α yi2 · · ·yi+ = 0 by the inductive hypothesis.

Proof of Theorem. By the discussion last time and the second lemma, we know thatM(λ)/
∑
M(sαi ◦

λ) is finite-dimensional. This implies that M(λ)/
∑
M(sλi ◦ λ) = L(λ)⊕M

′, but we know that the
left hand side is a highest weight module, so M ′ = 0.

Remark 3.2.5. We have a resolution

· · · →
⊕
`(w)=1

M(w ◦ λ)→M(λ)→ L(λ)→ 0.

This is called the BGG resolution.1

1This does not imply that the terms are projective.
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Kevin (Oct 20): Duality and projectives in category O

4.1 Duality

Recall from the finite-dimensional story that g-representation M have duals M∨ with g-action

(xf)(v) = −f(xv)

for x ∈ g, f ∈M∗, v ∈M. This is not well-behaved for infinite-dimensional representations (for
example, M∗∗ 6∼=M), so in this case we would like to construct a better-behaved duality functor.

Note that every semisimple Lie algebra g has a transpose τ : g→ g (if g is a matrix Lie algebra,
this is literally the transpose) which is an anti-automorphism. Here, we have

τ(xα) = yα, τ(yα) = xα, , τ(hα) = hα.

This allows us to define1

Definition 4.1.1. Let M =
⊕
λMλ ∈ O. Then the dual of M is defined by

M∨ =
⊕
λ

M∨
λ (xf)(v) = f(τ(x)v).

Proposition 4.1.2. M∨ ∈ O.

Proof. To prove finite generation, note that M∨ has finite length (here, L(λ)∨ = L(λ) because
duality preserves formal characters and exchanges quotients and submodules). Clearly the weight
spaces are finite-dimensional by assumption, and the weights lie in some union

⋃
λ−Λ because

formal characters are preserved, so we have local n-finiteness.

Here are some more facts about duality.

• Duality is a contravariant functor. This is obvious because everything is defined on the level
of weight spaces.

• There is a natural isomorphism M∨∨ ∼= M. This is clear because we are taking double
duals of finite-dimensional things and adding them up, so in particular duality is an
anti-equivalence of categories.

1Kevin is unsure how he is doing on time here.
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• We have L(λ)∨ ∼= L(λ). On the other hand, duality for M(λ) is complicated.

• τ fixes Z(g) by an exercise in Humphreys.2 In particular, this means that (Mχ)∨ = (M∨)
χ.

4.2 Projectives

Recall that P is projective if Hom(P,−) is right exact.3 Our goal is to prove that O has enough
projectives (which will mean that we can do homological algebra). The first thing we will do is
introduce dominance and antidominance.

Recall that for λ ∈ Λ, Wλ contains one dominant weight and one antidominant weight. This
gives us two(!) good choices for representatives of Wλ. Unfortunately, we care about nonintegral
weights,4 and we cannot choose representatives of Wλ for general λ ∈ h∗.

Remark 4.2.1. From now on we will use the w ◦− action (because this is all we care about), and
therefore our new notion of (anti)dominance will not restrict to the old notion of dominance.5

Definition 4.2.2. A weight λ ∈ h∗ is dominant if
〈
λ+ ρ,α∨

〉
/∈ Z<0 for all α ∈ Φ+. A weight

λ ∈ h∗ is antidominant if
〈
λ+ ρ,α∨

〉
/∈ Z>0 for all α ∈ Φ+.

Note that this is not the same as the undotted definition. For example, −ρ is dominant. Also,
the set W ◦ λ can have multiple dominant and/or antidominant weights.

Definition 4.2.3. We define the subgroup

W[λ] := {w ∈W | w ◦ λ− λ ∈ Λr},

where Λr is the root lattice. We also define

Φ[λ] :=
{
α ∈ Φ |

〈
λ,α∨

〉
∈ Z
}

.

In fact, W[λ] is the Weyl group of Φ[λ]. We may similarly define ∆[λ].

Proposition 4.2.4. The following are equivalent:

1. λ is dominant.

2.
〈
λ+ ρ,α∨

〉
> 0 for all α ∈ ∆[λ].

3. λ > sα ◦ λ for all α ∈ ∆[λ].

4. λ > w ◦ λ for all w ∈W[λ].

Proof. Clearly 1 implies 2, and 2 implies 1 because positive roots are sums of simple roots with
nonnegative coefficients. To prove that 2 is equivalent to 3, note that

sα ◦ λ = λ−
〈
λ+ ρ,α∨

〉
α.

2Professor Humphreys, I hope you don’t descend upon us from heaven for not having done this exercise. Also please
forgive me (the note taker) for never interacting with you when I was an undergrad.

3I (note taker) considered not putting this definition in the notes.
4Apparently Kevin is speaking for us all here.
5Said old definition has now been Stalined. Unfortunately, Humphreys just ignores the ambiguity.
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Finally, to see that 3 is equivalent to 4, note that 4 implies 3 automatically. To prove that 3 implies
4, we induct on `(w). If w = w ′sα with `(w ′) = `(w) − 1, we see that

λ−w ◦ λ = (λ−w ′ ◦ λ) +w ′ ◦ (λ− sα ◦ λ).

It is clear that λ−w ′ ◦ λ > 0 while λ− sα ◦ λ is a nonnegative multiple of α. Because of the length
condition, we see that w ′ ◦α is positive.

Corollary 4.2.5. The orbit W[λ] ◦ λ has a unique (anti)dominant weight.

Proof. This is because 1 is equivalent to 4 in the proposition.

Theorem 4.2.6.

1. If λ is dominant, then M(λ) is projective.

2. If P ∈ O is projective and L ∈ O is finite-dimensional, then P⊗ L is projective.

3. O has enough projectives.

Proof.

1. Consider M � N and suppose v ∈ N is a maximal weight vector with weight λ (coming
from a map M(λ)→ N). Assume that M =Mχ,N = Nχ. Our goal is to lift v to a maximal
weight vector in M, but because M → N is surjective, we can lift v to v ′ ∈ Mλ. If v ′ is
maximal, then we are done, so suppose that v ′ is not maximal.

In this case, there exists x ∈ Un such that xv ′ is a maximal vector with weight greater than λ.
However, this weight must be linked to λ, so by dominance of λ, it cannot exist.

2. Here, we use the tensor-Hom adjunction

HomO(P⊗ L,M) ∼= HomO(P,L∗ ⊗M).

Because L∗ ⊗− is exact and HomO(P,−) is exact, the functor HomO(P⊗ L,−) is exact and
thus P⊗ L is projective.6

3. The first thing we want to do is to find projectives mapping onto L(λ). For large n, λ+nρ is
dominant. This implies that M(λ+nρ) is projective, but then M(λ+ rρ)⊗L(nρ) is projective.

In fact, there exists a surjection M(λ+nρ)� L(nρ). To see this, if M is a Ug-module and L
is a Ub-module, then

(Ug⊗Ub L)⊗M ∼= Ug⊗Ub (L⊗M).

This is known as the tensor identity and is apparently not obvious unless you have the
arrogance level of a certain Chinese mathematician. Because M(λ+nρ) = Ug⊗Ub Cλ+nρ,
we obtain

M(λ+nρ)⊗ L(nρ) ∼= Ug⊗Ub (Cλ+nρ ⊗ L(nρ))� Ug⊗Ub Cλ ∼=M(λ).

The surjection comes from the fact that the lowest weight of L(nρ) is −nρ, so we can kill all
of the higher weights.

6Apparently Stalinization is an invertible operation, although to be fair it is unclear what the history of the USSR says
about this.
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The rest of the proof is simply homological algebra. For a general M ∈ O, because O is
Artinian, we can induct on the length of M. First consider a short exact sequence

0→ L(λ)→M→ N→ 0.

By assumption, there exists a surjection P � N, and this morphism lifts to P →M. If P does
not surject onto M, then Im(P →M) cannot intersect L(λ) (otherwise it would contain all
of L(λ) and thus surject onto M). This implies that Im(P →M) ∼= N, which splits the exact
sequence.

By standard homological algebra, because O is Artinian and has enough projectives, then O

has projective covers (i.e. unique minimal projectives surjecting onto M). If we define P(λ) to
be the projective cover of L(λ), the P(λ) are precisely the indecomposable projectives. Therefore
every projective is a direct sum of P(λ).

Theorem 4.2.7.

1. P(λ) has a standard filtration, which is a filtration with subquotients that are Verma modules.

2. (BGG reciprocity) The multiplicity of M(µ) in the composition series for P(λ) is given by

(P(λ) :M(µ)) = [M(µ) : L(λ)].
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Fan (Oct 27): more on tHe strUcture, simplicity criterioN,
ANd embedding of verma modules

We will be discussing the following results during this lecture:

Theorem 5.0.1. Let λ ∈ h∗. Then Mλ = Lλ if and only if λ is ρ-antidominant (this is the notion of
antidominance that we discussed last time).

Theorem 5.0.2. For any λ ∈ h∗, if α ∈ Φ+ has sα ◦ λ 6 λ, then Msα◦λ ↪→Mλ.

5.1 Basic facts

Recall that the socle of a module M is defined to be the direct sum of its simple submodules. A
fact from ring theory1 is that if R is left noetherian and has no right zero-divisors, then any two
left ideals intersect nontrivially.

Proposition 5.1.1. for all λ ∈ h∗, Mλ has a unique simple submodule.

Proof. Recall that Mλ ∼= Un−, but then simple submodules of Mλ are ideals in Un−, which
intersect nontrivially.

Theorem 5.1.2. For any λ,µ ∈ h∗,

1. Any nonzero ϕ : Mµ →Mλ is an injection.

2. dim HomO(Mµ,Mλ) 6 1.

3. If Lµ ⊆Mλ is the unique simple submodule, then Lµ =Mµ.

Proof.

1. ϕ is determined by the image ϕ(vµ+) = y · vλ+ for some y ∈ Un− of the highest weight vector.
But then ϕ(y ′vµ+) = y

′ · y · vλ+, and this follows from the fact that Un− has no zero divisors.

2. If ϕ1,ϕ2 are morphisms and L is the unique simple submodule of Mµ, then ϕ1(L),ϕ2(L)
are both simple and thus isomorphic, so there exists c such that (ϕ1 − cϕ2)(L) = 0, and so
ϕ− cϕ2 = 0 because it is not injective.

1that was not in my graduate algebra course as an undergrad

20
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3. Suppose Lµ is the unique simple submodule of Mλ. Then we have the sequence

Mµ � Lµ ↪→Mλ,

and so Mµ must inject into Mλ and thus Mµ = Lµ.

Proposition 5.1.3. For λ ∈ Λ+ − ρ, if w = sn · · · s1 is a reduced word expression, then there exists a
sequence of embeddings

Mw◦λ ⊆Msn−1···s1◦λ ⊆Ms1◦λ ⊆Mλ.

Proof. We will induct on `(w). Choose some 0 < k < n. Recall that `(sαw) > `(w) if and only if
w−1α ∈ Φ+. Note that `(sk+1 · · · s1) > `(sk · · · s1). Thus if w ′ = sk · · · s1, then w ′−1

σk+1 > 0. We
now compute

σ∗k+1(sk · · · s1 ◦ λ+ ρ) = σ∗k+1(sk · · · s1(λ+ ρ))

= (s1 · · · skσk+1)
∗(λ+ ρ) ∈N.

Then we know Msk+1···s1◦λ ⊆Msk···s1◦λ.

5.2 Proof of first theorem

If λ is ρ-antidominant, we will prove that Mλ = Lλ. Recall that antidominance is equivalent to
λ 6 w ◦ λ for all w ∈Wλ. But the Jordan-Holder factors of Mλ look like Mµ for µ 6 λ with µ is
linked to λ. This is the same as µ ∈ Wλ ◦ λ. But then the only weight that can appear is λ, so
Mλ = Lλ.

Now we will prove that if Mλ = Lλ, then λ is antidominant. This is hard, so we will assume
for now that λ ∈ Λ. Because Mλ is simple, then Nλ = 0. Now assume that for some σ ∈ Σ,
σ∗(λ+ ρ) > 0. Then

sσ◦λ = λ− σ∗(λ+ ρ)σ < λ,

and so Msσ◦λ ↪→Mλ. This gives a contradiction.
We now finish the proof in the general case. Assume there exists α ∈ Φ+ such that α∗(λ+ ρ) ∈

Z+. Then sα ◦λ = λ−α∗(λ+ρ)α < λ. By the second theorem, we have an injectionMsα◦λ ↪→Mλ,
and thus Mλ is simple.

5.3 More basic facts

Proposition 5.3.1. Let λ,µ ∈ h∗ and σ ∈ Σ. If Msσ◦µ ⊆Mµ ⊆Mλ, then:

• If σ∗(λ+ ρ) 6 0, then Mλ ⊆Msσ◦λ.

• If σ∗(λ+ ρ) > 0, then Msσ◦µ ⊆Msσ◦λ (Mλ.

Proof. In the first case, then we know that

σ∗(sσ ◦ λ+ ρ) = σ∗(sσ(λ+ ρ))
= (sσσ)

∗(λ+ ρ)

= −σ∗(λ+ ρ)

> 0,

and so Mλ ↪→Msσ◦λ.
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In the second case, let vλ+, vµ+ be maximal vectors of Mλ,Mµ. Then we know that

f
σ∗(λ+ρ)
σ ∈Msσ◦λ

and because Msσ◦µ ⊆Mµ, fσ
∗(µ+ρ)
σ v

µ
+ ∈Msσ◦µ is a maximal vector. Also because Mµ ⊆Mλ,

there exists y ∈ Un− such that y · vλ+ = vµ+.
It is a fact that if n is a nilpotent Lie algebra and ξ ∈ n, x ∈ Un, for any n ∈ Z+ there exists

k ∈ Z such that ξkx ∈ Un 〈ξn〉. Applying this fact to fσ ∈ n−, y ∈ Un−, and n = σλ+ρ ∈ Z+,
there exists k such that

fkσy ∈ Un−
〈
f
σ∗(λ+ρ)
σ

〉
.

But then
fkσv

+
µ = fkσyv

λ
+ ∈ Un−

〈
fσ
∗(λ+ρ)

〉
⊆Msσ◦λ.

If k < σ∗(µ+ ρ), then we know Msσ◦µ ⊆Msσ◦λ. On the other hand, if k > σ∗(µ+ ρ), we have

[eσ, fkσ] · v
µ
+ = kfk−1

σ (h0 − k+ 1)vµ+
= kfk−1

σ (µ(hσ) − k+ 1)vµ+
= (σ∗(µ+ ρ) − k)kfk−1

σ v
µ
+,

but this is equal to eσfkσv
µ
+, so we are done.

5.4 Proof of second theorem

We will prove this result in the integral case. Assume that λ ∈ Λ and µ := sα ◦ λ 6 λ. If µ ∈ Λ,
then there exists w such that µ ′ := w−1 ◦ µ ∈ Λ+ − ρ. Thus there exists w = sn · · · s1 such that if
we write µn = µ,µn−1 = sn−1 · · · s1 ◦ µ ′, . . ., then

Mµn ⊆Mµn−1 ⊆Mµ1 ⊆Mµ ′ .

If we define λ ′ = w−1 ◦ λ and λn, . . . , λ1 analogously and assume that µ < λ and thus µk 6= λk,
then we have

µk = sβk ◦ λk,

where βk = sk+1 · · · sn(α) so that

µk − λk = −β∗k(λk)βk + sβk(ρ) − ρ.

Note that this is the difference of a multiple of βk and a sum of positive roots.
Continuing, note that λk,µk are linked to λ. These satisfy µ ′ = µ0 > · · · > µn = µ, µ < λ, and

µ ′ > λ ′. Thus there exists k such that λk < µk and λk > µk+1. But then

0 < µk − λk = −β∗k(λk)βk −
∑

positives,

and in fact we obtain a multiple of βk. Now there exists Mµk+1 ⊆Mλk+1 and Mµk2
⊆Mλk+2 , so

Mµn =Mµ ⊆Mλn =Mλ. To construct this, note that

0 > µk+1 − λk+1 = sk+1 ◦ µk − sk+1 ◦ λk = sk+1(µk − λk).

This implies that sk+1 flips βk and thus βk = σk+1. Also, βk+1 = −σk+1. Therefore,

µk+1 = s−σk+1 ◦ λk+1 = sσk+1 ◦ λk+1 < λk+1.



23

But then the coefficient of σk+1 in λk+1 − sk+1 ◦ λ is positive, and thus Mµk+1 6Mλk+1 .
We then have Mµk+2 ⊆Mµk+1 ⊆Mλk+1 , and therefore either Mλk+1⊆Msk+2◦λk+1 =Mλk+2 or

Mµk+2 ⊆Mλk+2 ⊆Mλk+1 , and so we are done.
We sketch the rest of the proof. Fix α ∈ Φ+ and n > 0 is an integer. Then define

X̃ := {λ ∈ h∗ |Mλ−nα ↪→Mλ}.

Then define H = {λ | α∗(λ+ ρ) = n}. We know that Λ ∩H ⊆ X̃ ⊆ H. But now Λ ∩H is Zariski-
dense in H, so we need to prove that X̃ is a closed subscheme of H. But now Mλ−α ↪→M exactly
when there exists y ∈ Un− such that y ∈ (Un−)−nα. But now n+ ·y · vλ+ = 0, and this is equivalent
to

e1yv
λ
+ = · · · = eryvλ+ = 0,

and this is equivalent to
[e1,y]vλ+ = · · · = [er,y]vλ+ = 0.

Finally we have [ei,y] = yi + y ′ihi. If we write y = f−1 · · · f
−
` , we have a map

(Un−)−nα → (Un−)⊕` y 7→
i∑
i=1

yi + λ(hi)y
′
i

by an argument about passing from eif1 · · · f` to f1 · · · f`ei. But now our chain of equivalences
continues to (yi + λ(hi)y

′
i) = 0 for all i. But now X̃ is given by the rank of the map being lower

than usual, so it is a closed subscheme.



6

Patrick (Nov 03): CAts, bOndage, and why you can’T do
representAtioN theory without Geometry

Note: these are the speaker’s notes.

6.1 Introduction

Our goal is to prove the following theorem, due to Bernstein-Gelfand-Gelfand.

Theorem 6.1.1 (BGG). Let λ,µ ∈ h∗.

1. If µ is strongly linked to λ, then M(µ) ↪→M(λ). This implies [M(λ) : L(µ)] 6= 0.

2. If [M(λ) : L(µ)] 6= 0, then µ is strongly linked to λ.

We first need to define what it means for weights to be strongly linked. Then we will state
a result of Jantzen that we will use to prove this theorem. Next, we will do some linear algebra
before proving the result of Jantzen. Finally, we will use Jantzen to prove BGG. Note that this is a
different order than in which Humphreys does things.

Example 6.1.2 (Cursed example). Consider g = sl4. Number the simple roots and fundamental
weights as usual. This means that the simple roots and fundamental weights are

α1 = e1 − e2,α2 = e2 − e3,α3 = e3 − e4; $1 = e1,$2 = e1 + e2,$3 = e1 + e2 + e3.

Write c1$1 + c2$2 + c3$3 as (c1, c2, c3). This means that

α1 = (2,−1, 0), α2 = (−1, 2,−1), α3 = (0,−1, 2).

Consider λ = (1,−2,−1). Then we note that λ+ρ = α1 but if w = s2s3s2s1s2, then w(λ+ρ) = −α3.
But this implies that

λ−w ◦ λ = λ− (w(λ+ ρ) − ρ) = λ+ ρ−w(λ+ ρ) = α1 +α3,

and therefore w ◦ λ < λ. However, apparently there is no embedding of M(w ◦ λ) inside M(λ).
The reason for this is actually that if you inspect the Bruhat order for W = S4. The weight

in Λ+ − ρ linked to λ is µ = (0,−1, 0). Here, we note that λ = s2s3 ◦ µ while w ◦ λ = s3s2s1 ◦ µ.
However, s3s2s1 and s2s3 are incomparable.

24
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6.2 Strong linkage

The first thing we need to do is to define what it means for two weights µ, λ to be strongly linked.

Definition 6.2.1. Let λ,µ ∈ h∗. Write µ ↑ λ if µ = λ of there exists a root α > 0 such that
µ = sα ◦ λ < λ. Note that this is equivalent to

〈
λ+ ρ,α∨

〉
∈ Z>0. More generally, if µ = λ or

there exists α1, . . . ,αr ∈ Φ+ such that

µ = (sα1 · · · sαr) ◦ λ ↑ (sα2 · · · sαr) ◦ λ ↑ · · · sαr ◦ λ ↑ λ,

we say that µ is strongly linked to λ and write µ ↑ λ.

Note that if we repeatedly apply Theorem 4.6 (the second big theorem in Fan’s lecture), we
immediately obtain the first part of the theorem. The second part of the proof is more involved.

Before we proceed, we need to discuss the Bruhat order on the Weyl group (in fact, this can
be defined for any Coxeter group, but we will not need this). Let λ be a regular integral weight
which is antidominant. Then suppose that α > 0 is a positive root and that sα ◦ (w ◦ λ) < w ◦ λ
for some w ∈W. By the second main theorem of the previous lecture, we know that

M(sαw ◦ λ) ↪→M(w ◦ λ).

But we know that this is equivalent to〈
w(λ+ ρ),α∨

〉
=
〈
λ+ ρ,w−1α∨

〉
=
〈
λ+ ρ, (w−1α)∨

〉
inZ>0

Because λ is antidominant, we know w−1α < 0. This tells us that if w ′ = sαw, then

`(w) = `(sαw
′) = `((w ′)−1sα) > `((w

′)−1) = `(w ′).

All of this is reversible, so by definition we see that w ′ ◦ λ < w ◦ λ if and only if w ′ < w. This
implies, after we prove the main theorem, that

Corollary 6.2.2. Let λ be a regular antidominant weight and let w,w ′ ∈ W. Then [M(w ◦ λ) :
L(w ′ ◦ λ)] 6= 0 if and only if w ′ 6 w.

6.3 Jantzen filtration

Proposition 6.3.1 (Jantzen). Let λ ∈ h∗. Then M(λ) has a filtration by submodules

M(λ) =M(λ)0 ⊃M(λ)1 ⊃M(λ)2 ⊃ · · ·

such that M(λ)i � 0 for i large enough and the following conditions hold:

1. Each nonzero quotient M(λ)i/M(λ)i+1 has a nondegenerate contravariant form in the sense of 3.14.

2. M(λ)1 = N(λ) is the unique maximal submodule of M(λ).

3. At the level of formal characters, we have∑
i>0

chM(λ)i =
∑

α>0,sα◦λ<λ
chM(sα ◦ λ).
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This filtration is called the Jantzen filtration and the formal character formula is called the
Jantzen sum formula. We will write

M(λ)i :=M(λ)i/M(λ)i+1.

Also note that the summation on the right side of the sum formula is over a set of positive roots
which we will call Φ+

λ . In fact, if M(λ)n 6= 0 but M(λ)n+1 = 0, the sum formula tells us that
n =

∣∣Φ+
λ

∣∣.
Example 6.3.2. Let λ be regular, antidominant, and integral. Then we know that Φ+

w◦λ is the set
of all α > 0 satisfying sα ◦ (w ◦ λ) < w ◦ λ. But this is the same as〈

w ◦ λ+ ρ,α∨
〉
=
〈
w(λ+ ρ),α∨

〉
=
〈
λ+ ρ,w−1α∨

〉
> 0,

but of course this is equivalent to w−1α∨ < 0 by defintion of λ being integral and antidominant.
Therefore in fact here n = `(w).

Here are some reasonable questions about these things:

1. Is the Jantzen filtration unique relative to properties such as the sum formula and existence
of nondegenerate contravariant forms on the quotients?

2. What are the composition factor multiplicities in each filtration layer M(λ)i?

3. Are the filtration layers semisimple? If so, does the filtration coincide with one of the
standard module filtrations with semisimple quotients?

4. How does the Jantzen filtration behave with respect to M(µ) ↪→M(λ)?

A more precise formulation of the last question is called the Jantzen conjecture, and this can only
be proved (as of whenever the book was published) using geometric tools like Beilinson-Bernstein
localization. For completeness, it is stated here:

Conjecture 6.3.3 (Jantzen). Suppose that µ ↑ λ and set r :=
∣∣Φ+
λ

∣∣− ∣∣Φ+
µ

∣∣. Then M(µ) ⊂ M(λ)i if
i > r while M(µ)∩M(λ)i =M(µ)i−r if i > r.

Example 6.3.4. Let g = sl3. Suppose that λ is regular, antidominant, and integral. We will
write down the Jantzen filtration for M(w ◦ λ) and then deduce that all composition factors have
multiplicity 1. Let α,β be the simple roots and write w = sαsβ. The sum formula tells us that∑

i>0

chM(w ◦ λ)i = chM(sα ◦ λ) +M(sβ ◦ λ)

= chL(sα ◦ λ) + chL(sβ ◦ λ) + 2 chL(λ).

But this implies that the Jantzen filtration is

M(w ◦ λ)0 =M(w ◦ λ) ⊃ N(w ◦ λ) ⊃ L(λ) ⊃ 0.

This implies that there are four composition factors each with multiplicity 1.
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6.4 Proofs of results

We will now prove Jantzen’s theorem and apply it to prove the main theorem. I assume that
everyone is familiar with the basic theory of finitely generated modules over a principal ideal
domain.1

Let A be a principal ideal domain and p ∈ A be a prime element. Suppose that M is a
free A-module of rank r with a nondegenerate symmetric bilinear form (−,−). Let D be the
determinant of the bilinear form – this is well-defined up to a unit. Let M =M/pM, which is a
vector space over A := A/pA. For n ∈ Z, define

M(n) := {e ∈M | (e,M) ⊂ pnA}.

For notation, we will write M∗ = Hom(M,A) and M∨ ⊆ M∗ for the image of M under the
bilinear form. We will write e1, . . . , er for a basis of M and f1, . . . , fr for the dual basis.

Lemma 6.4.1.

1. We have the identity
vp(D) =

∑
n>0

dimAM(n).

2. For all n, the modified bilinear form (−,−)n = p−n(−,−) induces a nondegenerate form on
M(n)/M(n+ 1).

Proof. Write f =
∑
ajfj for some f ∈M. Then writing (ei, fj) = fjδij, we know that (ei, f) = aidi.

On the other hand, we know that f ∈M(n) if and only if

n 6 vp((ei, f)) = vp(aidi) = vp(ai) + vp(di)

for all i. But if we write ni := vp(di), then we know that M(n) is spanned by fi for all i where
n 6 ni together with pn−iifi for the i such that n > ni. But this implies that

dimM(n) = #{i | n 6 ni},

and in particular M(n) = 0 for n� 0.2 This means the sum is defined, and therefore we have

∑
n>0

dimM(n) =
∑
n>0

#{i | n 6 ni} =
r∑
i=1

vp(di) = vp(D).

For the second part, it ic clear that this form takes values in A, but we need to check that there
is an induced form on M(n). But here, if e ∈ pM∩M(n), we see that

(e,M(n))n = p−n(e,M(n)) ⊂ p1−n(M,M(n)) ⊂ pnp1−nA = pA.

But if f ∈ M(n+ 1), the same argument gives us (f,M(n))n ⊂ pA. This gives us a form on
M(n)/M(n+ 1). Finally we know that if n 6 nj, then (ei, fj) = δijp

−ndj 6= 0, and thus we
conclude that the form is nondegenerate.

Before we continue, we will state some facts about contravariant forms that were not covered
by Kevin.

1This would not be possible at certain meme-tier schools.
2Humphreys refers to this last 0 as 0.
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Definition 6.4.2. Let (−,−) be a symmetric bilinear form on a module M. Then (−,−) is
contravariant if (u · v,w) = (v, τ(u) ·w) for all u ∈ Ug and v,w ∈M.

It is not even clear that these exist, but here are some properties:

1. If M has a contravariant form, then Mλ ⊥Mµ for λ 6= µ.

2. If M is a highest weight module, then it has a unique (up to scalars) nonzero contravariant
form.

3. If N ⊂M is a submodule, then N⊥ is also a submodule.

4. Any contravariant form on a highest weight module M must induce the zero form on its
maximal submodule. Moreover, the maximal submodule is the radical of the form and the
form is nondegenerate if and only if M = L(λ) is simple.

Proof of Jantzen. The reason we did all of that linear algebra above is because we will extend to
the field K := C(T). Also write A = C[T ]. Then apparently we can adapt the entire theory of Lie
algebras to gK := g⊗C K and gA := g⊗C A. I will not check this, and you should not ask me to
do so. We will use the lemma to construct filtrations here and then kill T to obtain the Jantzen
filtration.

Let λ ∈ h∗ be a weight and write λT := λ+ Tρ ∈ h∗K. Clearly λT is antidominant, and thus
M(λT ) is simple. But now we know that the contravariant form on M(λT ) is nondegenerate by
Theorem 3.15 in Humphreys. Here, recall that the contravariant form satisfies for all v,w ∈M
and y ∈ Ug the identity

(y · v,w) = (v, τ(y) ·w).
Now recall that UgA = A ⊗C Ug ⊂ K ⊗C Ug = UgK is an A-form. This induces an A-form
M(λT )A ⊂ M(λT ). Each weight space is a free A-module of finite rank and the contravariant
form is nondegenerate after restricting to each weight space. If Γ is the space of positive linear
combinations of simple roots, then write MλT−ν for the A-form of M(λT )λT−ν. Set

M(λT )
i
A :=

∑
ν∈Γ

MλT−ν(i).

These form a decreasing filtration of M(λT )A.
Now we can quotient by the ideal (T) ⊂ C[T ] and we obtain a decreasing filtration M(λ)i

on M(λ) ∼= M(λT )A/TM(λT )A. By the lemma, the quotients M(λ)i/M(λ)i+1 have induced
nondegenerate contravariant forms. Also, we know that the filtration of each individual weight
space eventually ends at 0, and thus for large enough i we have M(λ)i = 0 because only finitely
many weights are linked to λ.

Next, we note thatM(λ)/M(λ)1 is a highest weight module with a nondegenerate contravariant
form and therefore is simple. Because M(λ) has a unique simple quotient, we see that M(λ)1 =
N(λ). First, we will express the sum ∑

i>0

chM(λ)i

in terms of the determinants of the contravariant forms on the steps of the filtration. Here, by
some magic involving Shapovalov elements that was discovered by Jantzen and Shapovalov
independently while working on their PhD theses, the determinant of the contravariant form on
the λT − ν weight space of M(λT ) is given by

Dν(λT ) =
∏
α>0

∏
r>0

(〈
λT + ρ,α∨

〉
− r
)P(ν−rα)

,
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where P is the Kostant partition function. Note that the Kostant partition function gives the
number of ways to write a weight as a sum of positive roots with non-negative coefficients. This
is actually unique only up to a unit, but this means that vT (Dν(λT )) is well-defined. But now we
know that 〈

λT + ρ,α∨
〉
− r =

〈
λ+ ρ,α∨

〉
− r+ T

〈
ρ,α∨

〉
.

This is not a multiple of T unless
〈
λ+ ρ,α∨

〉
= r. But this means that α ∈ Φ+

λ and vT for this
term is 1. But this implies that for fixed ν and α, the contribution is given by

P(ν−
〈
λ+ ρ,α∨

〉
α)e(λ− ν).

Finally, we compute formally and obtain the result∑
i>0

chM(λ)i =
∑
ν

∑
α

P
(
ν−

〈
λ+ ρ,α∨

〉
α
)
e(λ− ν)

=
∑
α

∑
ν

P(ν)e
(
λ−

〈
λ+ ρ,α∨

〉
α− ν

)
.

This comes from a variable change ν 7→ ν+
〈
λ+ ρ,α∨

〉
α in ν. But now we precisely have

sα ◦ λ = λ−
〈
λ+ ρ,α∨

〉
α,

and therefore if we fix α the sum becomes∑
i>0

chM(λ)i =
∑
α

chM(sα ◦ λ),

as desired.

Remark 6.4.3. Remember that ρ disappears when we kill T . Remember we only needed the fact that〈
ρ,α∨

〉
6= 0. We may consider what ahppens if we replace ρ by another weight, but a definitive

answer to this is only provided by Belinson-Bernstein using a geometric approach.

Proof of BGG. We will finally prove the BGG theorem. We will induct on the number of linked
weights µ 6 λ. If λ is minimal in its linkage class, then we know M(λ) = L(λ), so we are done.
Now suppose that µ < λ and [M(λ) : L(µ)] > 0. But this implies that

[M(λ)1 : L(µ)] > 0.

But now the sum formula for the Jantzen filtration gives us

[M(sα ◦ λ) : L(µ)] > 0

for some α ∈ Φ+
λ . By the inductive hypothesis, there exists α1, . . . ,αr ∈ Φ+ such that

µ = (sα1 · · · sαr)sα ◦ λ ↑ (sα2 ◦ sαr)sα ◦ λ ↑ · · · ↑ sαrsα ◦ λ ↑ sα ◦ λ.

Because sα ◦ λ < λ, we are done.
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Fan (Nov 10): why You shoUld care about the bgg
resolutioN, aNd more on homologicAl consideratioNs in

category o

7.1 The BGG resolution

Let λ ∈ Λ+ be a dominant (in the old sense) weight. A BGG resolution is something of the form

Mw0◦λ → · · · →
⊕

`(w)=k

Mw◦λ → · · · →Mλ � Lλ → 0.

Later, we will see that there is something called the BGG resolution, but we will probably not
prove it.

Theorem 7.1.1 (Weak BGG). There exists a resolution

0→Mw0◦λ = Dλ` → · · · → Dλ0 =Mλ → Lλ → 0

such that the standard filtration of Dλk consists of the weights {w ◦ λ | `(w) = k}.

A fact is that For all subalgebras g ⊇ a there exists a resolution of the trivial resolution

· · · → Ug⊗Ua Λ
k(g/a)→ · · · → C0

where the differentials are given by

x⊗ ξ∧ 7→
n∑
i=1

(−1)i+1xξi ⊗ ξ∧\i +
∑
i<j

(−1)i+jx⊗ [ξi, ξj]∧ ξλ\i,j.

Lemma 7.1.2. For a finite dimensional representation V of b which is h-semisimple, the standard filtration
of Ug⊗Ua V contains precisely the weights of V , respecting multiplicity.

Recall the following theorem from your first course on Lie algebras:

Theorem 7.1.3 (Lie). For V a finite dimensional representation of a solvable b, there exists

V = V0 ⊃ · · · ⊃ Vn

such that dimVi/Vi+1 = 1, and there exists a nonzero v ∈ V and λ : b→ k such that ξv = λ(ξ)v for all
ξ ∈ b.

30
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Proof of lemma. Using the previous theorem, we have a filtration

Ug⊗ V = Ug⊗b V0 ⊃ · · · ⊃ Vn

and the quotients are Ug⊗ Vi/Vi+1 =Mλ, where λ is a weight of V .

Lemma 7.1.4. For ϑ a central character and M having a standard filtration, we have

StdMϑ = {λ ∈ StdM : ϑλ = ϑ}.

Proof. Choose a standard filtration

0 =M0 ⊂ · · · ⊂Mn =M

such that Mi/Mi−1 =Mλi . Then we have

0 =Mϑ0 ⊂ · · · ⊂Mϑn =Mϑ

a standard filtration of Mϑ, and also we note that Mϑi /M
ϑ
i−1 = (Mi/Mi−−1)

ϑ =Mϑλi .

Proof of weak BGG for λ = 0. Consider the resolution

Ug⊗Ub Λ
k(g/b)→ · · · → C0 → 0.

Taking central characters with ϑ0, we have a new resolution

· · · → (Ug⊗Ub Λ
k(g/b))ϑ0 → C0 → 0.

But we also know that

Std(Ug⊗Ub Λ
k(g/b)) = WtΛk(g/b)

=

{∑
α∈S

α

}
S⊆Φ−
|S|=k

=
{
−
∑

α | ϑ−
∑
α = vartheta0

}
|S|=k
S⊆Φ+

=

{
−
∑

α | −
∑
S

α = wρ− ρ

}

Now recall that wρ− ρ = −
∑

α∈Φ+

w−1α∈Φi
α. Also we will use the fact that if S ⊆ Φ+ has

∑
α∈S

α =
∑
α∈Φ+

w−1α∈Φ−

α,

then S =
{
α ∈ Φ+ | w−1α ∈ Φ−

}
:= Φw. This tells us that

Std(Ug⊗Ub Λ
k(g/b)) =

−
∑
Φw

α


`(w)=k

= {wρ− ρ}`(w)=k

= {w ◦ 0}`(w)=k.
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To prove the general case, we will use the translation functor Tλµ . This is given by projecting
onto ϑµ, tensoring by Lλ−µ, and then including into ϑλ.

Proof in general. Let Bk = (Ug⊗b g/b)
θ0 . Then recall we have a resolution

· · · → Bk → · · · → C0 → 0.

Tensoring by Lλ, which is finite-dimensional, we obtain

· · · → Bk ⊗ Lλ → · · · → Lλ → 0.

Finally, projecting to ϑλ, we have

· · · → (Bk ⊗ Lλ)ϑλ → · · · → Lλ → 0.

Now if we consider Std(Bk ⊗ Lλ), we have the filtration

Bk,0 ⊗ Lλ ⊂ Bk,1 ⊗ Lλ ⊂ · · · ⊂ Bk ⊗ Lλ.

Also we know that Bk,i ⊗ Lλ/Bk,i−1 ⊗ Lλ = Mwi◦0 ⊗ Lλ. We will use the fact that if 0 = M0 ⊂
· · · ⊂Mn =M, then StdM =

⊔
StdMi/Mi−1. Therefore

Std(Bk ⊗ Lλ) =
⊔
i

Std(Mwi◦0 ⊗ Lλ)

=
⊔
i

{wi ◦ 0 + µ}µ∈WtLλ

= {w ◦ 0 + µ}µ∈WtLλ
`(w)=k

.

Projecting onto the central character ϑλ, we have

Std(Bk ⊗ Lλ)ϑλ = {w ◦ 0 + µ | µ ∈WtLλ, `(w) = k, λ ∼ w ◦ 0 + µ}

=

Now we know that w ◦ 0 + µ = u ◦ λ for some u ∈W and this means that

µ+wρ− ρ = uλ+ uρ− ρ,

and thus λ = u−1(µ+wρ− uρ). Because ρ > u−1wρ and u−1µ 6 λ, we know that

λ+ ρ > u−1µ+ u−1wρ.

Using the previous equality for λ, we see that ρ = u−1wρ, which means that u = w and
µ = uλ.

Theorem 7.1.5. Let λ,µ ∈ h∗.

1. If Ext1
O(Mµ,Mλ) 6= 0, then µ ↑ λ and µ 6= λ.

2. If λ ∈ Λ+ and ExtO(Mw◦λ,Mu◦λ), then u < w.

Proof of Strong BGG. We induct on
∣∣StdDλk

∣∣. The base case is length 2. Here, we have

0→Mw◦λ → Dλk → Dλk/Mw◦λ =Mu◦λ → 0.

Because u,w have the same length, the Ext1 vanishes, and so the exact sequence must split. In the
inductive step, we can pull the direct sum out of the Ext functor, and each individual Ext vanishes,
so we are done.
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This argument in fact proves that weak BGG is strong BGG. Note that this was not available to
BGG in their original paper.

Proof of theorem. By proposition 3.1 of Humphreys, we know µ 6= λ. Thus there exists a non-split
extension

0→Mλ →M→Mµ → 0.

We know that there exists a lift ϕ : Pµ → M. If Imϕ ∩Mλ = 0, then it must be Mµ and so
Mµ ∩Mλ = 0, and so it splits. This means that Imϕ∩Mλ 6= 0. Now take the standard filtration

Pµ = Pn ⊃ · · · ⊃ P0 = 0.

We know that StdPµ contains weights at least µ with µ appearing exactly once. But then by BGG
reciprocity, we know that

(Pµ :Mµi) = [Mµi : Lµ] > 0

and this is equivalent to µ ↑ µi.
Because Imϕ ∩Mλ 6= 0. We can consider the images ϕ(Pµ) ⊃ · · · ⊃ ϕ(P0) = 0. Choose the

smallest i such that ϕ(Pi) ∩Mλ 6= 0. Thus Mλ has a submodule isomorphic to the image of
ϕ(Pi/Pi−1) = ϕ(Mµi) If we quotient out more stuff, we get a copy of Lµi inside Mλ. But now
[Mλ : Lµi ] > 0, and thus µi ↑ λ. By definition, µ ↑ λ.

Now we will state another fact. Let λ be integral, dot-regular, and ρ-antidominant. Then
u ◦ λ ↑ w ◦ λ if and only if u 6 w.

7.2 Why you should care

We will now explain why you should care about the BGG resolution.

Theorem 7.2.1 (Bott, Kostant). Let λ ∈ Λ+. Then

Hk(n−,Lλ) =
⊕

`(w)=k

C−w◦(−w0λ)

as h-modules, where w0 is the longest element of W.

Proof. Recall that Hk(n−,Lλ) = RkLn
−

λ = RkHomn−(C,Lλ) = RkHomn−(L∗λ, C). But we know
that L∗λ = L−w0λ. We now consider the BGG resolution of L−w0λ, and so we have

· · · →
⊕

`(w)=k

Mw◦(−w0λ) → · · · → L−w0λ → 0.

Note that Homn−(M, C) = HomC(M/n
−M, C) = (M/n−M)∗. Therefore

Homn−

 ⊕
`(w)=k

Mw◦(−w0M), C

 =
⊕

`(w)=k

Cw◦(−w0λ) =
⊕

`(w)=k

C−w◦(−w0λ).

Apparently there are two facts that if w1,w4 differ by length 2, then either there are two w2,w3
between them or there is nothing. Also, the BGG resolution is apparently unique.

Next, for λ a ρ-antidominant weight, we can define Oλ = {M | µ ∈ JHM⇒ µ ∈Wλ ◦ λ}.
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Theorem 7.2.2. The projective dimension of Mw◦λ is `(w), the projective dimension of Lw◦λ is 2`− `(w),
and the homological dimension of Oϑλ is 2`.

We will now state some more facts. First, ifM,N have standard filtrations, then Ext>0
O (M,N∨) =

0.

Theorem 7.2.3. The following are equivalent:

1. M has a standard filtration;

2. Ext>0
O (M,M∨

λ ) = 0 for all λ ∈ h∗;

3. Ext1
O(M,M∨

λ ) = 0 for all λ ∈ h∗;

4. H0(n+,M∨) = 0 (H1(n+,M∨) = 0);

5. H0(n
−,M) = 0 (H1(n−,M) = 0).

Proposition 7.2.4. We have the identity

χM =
∑
λ

(∑
i

(−1)i dim ExtiO(Mλ,M)

)
χMλ

.
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Fan (Nov 17): VERmas and sImpleS undEr the translation
functor, facets, chambers, anD walls

The reason we should care about translation functors is the following:1 for any antidominant λ,
Pλ = P†λ is self dual. Also,

(Pλ :Mw◦λ) = [Mw◦λ : Lλ] = 1.

Before we continue, we will do some more homological stuff. If we consider Homb(Cλ,−): O→
Vect, this is actually the same as Homg(Mλ,−). Of course, this does not remain true in the derived
category, but we also have Homb(Cλ,−) = ((−)n

+
)λ. If we consider

R((−)n
+
)λ = C•(n+,−)λ : D+(O)→ D+(Vect),

we need to be careful about how we derive things. Recall that Lie algebra cohomology is computed
by the Koszul complex

Un⊗C Λ
kn→ · · · → C0 → 0.

Note that Un is most definitely not n-finite, but somehow ExtO can be computed in the category
of g-modules that are h-semisimple and locally h-finite. Now we have

RHomb(Cλ,−) = (R(−)n
+
)λ

= (RHomn+(C0,−))λ

= Homn+(P•(C0),−)λ

=
∏
k∈N

HomC(Λ
kn, (−)•−k)λ

8.1 The actual content of this lecture

Definition 8.1.1. Let λ,µ ∈ h∗ such that λ ≡ µ (mod Λ). Then λ− µ ∈ Λ. Denote by (λ− µ)+ ∈
Λ+ the representative of the orbit of λ− µ under the undotted action. Then the translation functor
Tλµ is given by

M 7→ (Mϑµ ⊗ L(λ−µ)+)ϑλ .

Proposition 8.1.2. Tλµ is exact, preserves projectives, commutes with taking duals, and TλµMµ has a
standard filtration.

1Because Fan was too busy playing Age of Empires, he did not finish preparing this talk.
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Proof. Exactness is obvious. Preserving projectives and commuting with duals are both from
Kevin’s talk, and TλµMµ having a standard filtration follows fromMµ⊗L(λ−µ)+ having a standard
filtration follows from

(Mµ ⊗ L(λ−µ)+ :Mµ+w(λ−µ)+) = 1

and the only M that works is Mλ.

Proposition 8.1.3. For λ,µ compatible, the functors Tλµ , Tµλ are both left and right adjoints.

From now on, all chambers will be discussed with respect to −ρ.

Definition 8.1.4. A facet F is a subset of E determined by Φ+ = ΦF+ tΦF0 tΦF−. F is given by

F =

λ ∈ E | α∗(λ+ ρ) =


> 0 α ∈ ΦF+
= 0 α ∈ ΦF0

< 0 α ∈ ΦF−.

.

We can define F by making our inequalities weak. We can also define F̂ by allowing 6 0 and F̂ by
allowing > 0.

We will assume the following facts without proof:

1. {α | ±α ∈ ΦF0} is a root system. It has the Weyl group given by the subgroup of W fixing F
pointwise.

2. If there exist λ,w such that w ◦ λ ∈ λ, then w ◦ λ < λ ′ for all λ ′ ∈ F.

For any λ ∈ h∗, let Eλ ⊆ E be spanned by Φλ over R. Let λ\ ∈ Eλ be such that for all α ∈ Φλ,
α∗(λ) = α∗(λ\).

Definition 8.1.5. Define W◦λ = StabWλ
λ.

We will use the following facts without proof:

1. For all w ∈Wλ, λ−w ◦ λ = λ\ −w ◦ λ\ and (w ◦ λ)\ = w ◦ λ\.

2. We have StabWλ
λ = StabWλ

λ\ = StabW λ.

3. If Φλ = Φµ = Φλ+µ, then (λ+ µ)\ = λ\ + µ\.

Lemma 8.1.6. For λ,µ ∈ h∗ compatible with µ\ ∈ F and λ\ ∈ F, for all ν 6= (λ− µ)+ ∈ WtL(λ−µ)+ ,
µ+ ν /∈Wλ ◦ λ.

Theorem 8.1.7. Let λ,µ be antidominant and compatible. For µ\ ∈ F ⊆ Eµ and λ ∈ F,

TλµMw◦µ =Mw◦λ

for all w ∈Wλ =Wµ.

Proof. We consider (Mϑµw◦µ ⊗ L(λ−µ)+)ϑλ . The standard filtration of this is given by{
w ◦ µ+ ν | ν ∈Wt(λ−µ)+ ,w ◦ µ+ ν ∼ λ

}
,

Also, (TλµMw◦µ : Mw◦λ) = 1 because w ◦ λ = w ◦ µ−w(λ− µ). But (w ◦ µ)\ = w ◦ µ\ ∈ w ◦ F.
Also w ◦ λ ∈ w ◦ F. By the lemma, for any ν 6= (λ− µ)+ ∈WtL(λ−µ)+ , µ+ ν /∈Wλ ◦ λ. But now
only w ◦ λ can appear in the standard filtration, and so we are done.
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Corollary 8.1.8. For the setting of the theorem, if M ∈ Oµ has a standard filtration, then TλµM has a
standard filtration.2

Proof. Induct on the size of the standard filtration. Consider

0→ N→M→Mw◦µ → 0.

Applying the translation functor, we have

0→ TλµN→λµ M→Mw◦λ → 0.

By the inductive hypothesis, we are done.

Proposition 8.1.9. In the same setting, we have

TλµLw◦µ =

{
0
Lw◦λ.

Proof. Consider Mw◦µ → Lw◦λ → 0. Applying the translation functor, we have

Mw◦λ → TλµLw◦µ → 0.

If TλµLw◦µ is nonzero, it is a highest weight module. But now we have

0→ Lw◦µ →M†w◦µ,

and this becomes
0→ TλµLw◦µ →M

†
w◦λ.

This gives a morphismMw◦λ → TλµLw◦µ →M
†
w◦λ. But now recall that dim Hom(Mµ,M†λ) = δµλ,

and therefore, Lw◦λ ∼= TλµLw◦µ.

Theorem 8.1.10. Consider the same setting as before. Then TλµLw◦µ = Lw◦λ if and only if w ◦ λ\ ∈ ŵ ◦ F.

Proof. We know that Tλµ is exact, so it does not increase the length of the Jordan-Hölder filtration.
Thus it brings a unique Luw◦µ to Lw◦λ. But TλµLuw◦µ = Luw◦λ = Lw◦λ, and thus uw ◦ λ = w ◦ λ.

Now let λ\ ∈ G be a facet in Eλ. Suppose that w ◦ λ\ ∈ ŵ ◦ F. For all α ∈ wΦG0, w−1α ∈ ΦG0.
Thus (w−1α)∗(λ\ + ρ) = 0 and α∗(w ◦ λ\ + ρ) = 0. But now α ∈ Φ(w◦F)0 or Φ(w◦F)−, and we
know that w ◦ µ\ ∈ F, so α∗(w ◦ µ\ + ρ) 6 0. Thus

sαw ◦ µ\ = sα(w ◦ µ\ + ρ) − ρ
= w ◦ µ\ −α∗(w ◦ µ\ + ρ)α
> w ◦ µ\

for all α ∈ wΦG0. Because W◦w◦λ is the Weyl group of
{
α | ±α ∈ Φ(w◦G)0

}
, uw ◦ µ\ > w ◦ µ\ for

all µ ∈W0
w◦λ. Thus uw ◦ µ > w ◦ µ, so uw ◦ µ = w ◦ µ. Therefore Tλµ brings Lw◦µ to Lw◦λ.

2Humphreys deleted this without explanation in the errata, and Fan thinks that the proof still works (and therefore
that he’s smarter than Humphreys).
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If w ◦ λ\ /∈ ŵ ◦ F, we know that w ◦ λ\ ∈
̂
w ◦ F. But now because w ◦ µ\ ∈ w ◦ F, α ∈ Φ(w◦F)+

has α∗(w ◦ µ\ + ρ) > 0. But now sαw ◦ µ\ < w ◦ µ\, and thus sαw ◦ µ < w ◦ µ. This implies that
there exists Msαw◦µ ↪→MPw ◦ µ, and so after the translation functor, we have

0→Msαw◦λ →Mw◦λ → TλµLw◦µ → 0,

except sαw ◦ λ = w ◦ λ.
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Kevin (Dec 01): Kazhdan-Lusztig theory

So far, we have cared about the Verma modules Mλ and the simple modules Lλ in category O.
Recall that we have two bases [Mλ], [Lλ] of K(O). We would like to know the change of basis
matrix. There is an answer when λ is regular and integral. If λ, λ ′ are regular and integral, we
know that Oλ ∼= Oλ

′
via the translation functors. Therefore, we only need to consider the principal

block O0. The answer in this case is the following:

Conjecture 9.0.1 (Kazhdan-Lusztig). For all w ∈ W, let Mw,Lw have highest weight −w(ρ) − ρ.
Then we have

[Lw] =
∑
y6w

εyε2Py,w(1)[My],

where εw = (−1)`(w). Also, we have

[Mw] =
∑
y6w

Pw0w,W0y(1)[Ly],

where w0 is the longest element of W. The Py,w(q) are called the Kazhdan-Lusztig polynomials (which
arise from the study of Hecke algebras) and are only nonzero for y 6 w.

This result was proved by Beilinson-Bernstein and by Brylinski-Kashiwara using the theory of
D-modules.

9.1 Combinatorics

Definition 9.1.1. Let H̃ be the associative Z[q]-algebra with basis Tw for all w ∈W subject to the
following relations:

• TwTw ′ = Tww ′ if `(ww ′) = `(w) + `(w ′);

• (Ts + 1)(Ts − q) = 0 if s is a simple reflection.

The Hecke algebra is defined to be H := H̃⊗Z[q] Z[q±1/2]. This has a duality operation defined by∑
w

awTw =
∑
w

awT
−1
w−1

and q1/2 = q−1/2.

39
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Apparently this comes from number theory,1 and you are supposed to specialize q to a prime
power so that it has number-theoretic meaning. Here are some good properties:

• If we set q = 1, H specializes to Z[W].

• If we set q to be a prime power, then H⊗Z[q±1/2] C is the algebra of intertwining operators
on the space of functions on the flag variety of G(Fq).

The Kazhdan-Lusztig polynomials Py,w(q) arise from the following theorem as a change of
basis:

Theorem 9.1.2 (Kazhdan-Lusztig). For any w ∈W, there exists a unique cw ∈ H such that cw = cw
and

cw =
∑
y6w

εyεwq
1/2
w q−1

y Py,wTy.

The Py,w are polynomials in q of degree at most 1
2 (`(w) − `(y) − 1) with Pw,w = 1.

Proof. First define Rx,y ∈ Z[q1/2,q−1/2] for all x,y ∈W by

T−1
y−1 =

∑
x

Rx,yq
−1
x , Tx.

We can check that

Rx,y =


Rsx,sy sx < x, sy < y
Rxs,ys xs < x,ys < y
(q− 1)Rsx,y + qRsx,sy sx > x, sy < y.

The relations and the fact that R1,1 = 1 tell us that Rx,y 6= 0 if and only if x 6 y. Also, Rx,y is a
polynomial of q of degree `(y) − `(x) when x 6 y and Rx,x = 1.

Now we will prove that if the cw exist, then they are unique. Because cw = cw, we have∑
x6w

εxεwq
1/2
w q−1

x Px,wTx =
∑
y6w

εyεwq
−1/2
w qyPy,wT

−1
y−1

=
∑
y6w
x6y

εyεwq
−1/2
w qyPy,wRx,yq

−1
x Tx.

Comparing coefficients of Tx, we have

εxεwq
1/2
w q−1

x Px,w =
∑

x6y6w

εyεwqyq
−1
x Rx,yPy,w.

After cancelling, we obtain

q
1/2
w q

−1/2
x Px,w − q

−1/2
w q

1/2
x Px,w =

∑
x6y6w

εxεyq
−1/2
x qyq

−1/2
x Rx,yPy,w.

Note that the first term on the left has only positive powers of q−1/2 and the second term only
has positive powers of q1/2. This means that the Px,w are uniquely determined by downward
induction on the length of y.

1Kevin asked if we were satisfied with this “motivation” and the only number theorist in the room was not satisfied.
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We will now prove the existence of the cw inductively on the length of w. We begin with
c1 = T1 = 1 and cs = q−1/2Ts − q

1/2. Now assume that cw ′ for all w ′ with `(w ′) < `(w). Write
w = sv, where `(w) = `(v) + 1. Introduce a relation ≺, where y ≺ w when y < w and Py,w is a
polynomial in q of degree exactly 1

2 (`(w) − `(y) − 1). If y ≺ w, define µ(y,w) to be the coefficient
of highest degree of Py,w. Now define

cw = cscv −
∑
z≺v
sz<z

µ(z, v)cz.

Clearly, cw = cw. From the second relation, we obtain

Py,w = q1−cPsy,v + q
cPy,v −

∑
y6z≺v
sz<z

µ(z, v)q−1/2
z q

1/2
v q1/2Py,z.

Here, c = 1 if sy < y and c = 0 if sy > y. We simply check that all terms are polynomials of low
enough degree. This is clear except when c = 1 and y ≺ v, in which the two terms qcPy,v and
µ(y, v)q−1/2

y q
1/2
v Py,y could be problematic. However, the two terms cancel out, and so we are

done.

9.2 Geometry

Let G be the simply-connected semisimple group over C corresponding to g. The flag variety
B is defined as the set of Borel subgroups of G with the geometric structure coming from an
identification with G/B for a fixed Borel B. This is a smooth projective variety. By the Bruhat
decomposition, we have G =

⊔
w∈W BwB, and this gives us a decomposiion

B =
⊔
w∈W

Bw.

We can check that Bw ∼= A`(w). Taking the closures Bw, we obtain the Schubert varieties. These
are singular, so we need to consider the intersection cohomology instead of the usual cohomology.

Suppose we have a variety X of dimension n. Define the intersection complex ICX ∈ Db(X, Q)
as follows. First, there exists a nice stratification X = Xn ⊇ Xn−1 ⊃ · · · ⊃ X0 such that

• Each Xi is closed;

• Xi −Xi−1 is smooth of pure dimension i;

• The stratification is a Whitney stratification.

Given such a stratification, let Ui = X−Xn−i. We know that U1 is smooth and that

U1 ⊂ U2 ⊂ · · · ⊂ Un+1 = X.

Denote the inclusions Ui ⊂ Ui+1 by ji. Then we define

ICX := τ6n−1Rjn∗τ6n−2Rj(n−1)∗ · · · τ60Rj1∗QU1 .

This is independent of the choice of Whitney stratification. Of course, we may now define
intersection cohomology IH∗(X) as the hypercohomology of this complex. For smooth X, ICX =
QX, and so intersection cohomology is the same as ordinary cohomology. Also, intersection
cohomology satisfies Poincaré duality and hard Lefschetz.

We can relate intersection cohomology to the Kazhdan-Lusztig stuff as follows:
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Theorem 9.2.1 (Kazhdan-Lusztig). 1. We have

Py,w(q) =
∑
i

dim IH2i
y (Bw)q

i,

where IHy means relative to By ⊆ Bw.

2. We have the relation
`(w)∑
i=0

IH2i(Bw)q
i =
∑
x6w

q`(x)Px,w(q).

Corollary 9.2.2. Py,w has nonegative coefficients.
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Patrick (Dec 08): Koszul duality for people who aren’t Peter
May

Note: these are the speaker’s notes.
Before we begin, we will establish some notation.

Notations 10.0.1. Let A =
⊕
Aj be a graded ring. We will denote by A-Mod the category of left

A-modules and A-mod the category of graded A-modules. These carry functors Hom, Ext, . . . and
hom, ext, . . ., respectively. Also, the subcategories of finitely-generated modules will be called
A-Mof and A-mof. Finally, we will denote the grading shift 〈n〉 by (M 〈n〉)i = Mi−n. Finally,
write k := A0. Here, we will assume that k is a field, but after certain adjustments we may allow k
to be a noncommutative semisimple ring.

10.1 Koszul duality

Definition 10.1.1. A graded ring A =
⊕
j>0Aj is a Koszul ring if A0 is semisimple and admits a

graded projective resolution
· · · → P2 → P1 → P0 → A0

such that Pi is generated by its degree i component Pii .

Example 10.1.2. The Koszul resolution

S•V ⊗Λ•V = · · · → S•V ⊗Λ2V → S•V ⊗ V → S•V → k

shows that S•V is a Koszul ring.

There is an alternative characterization of Koszul rings.

Definition 10.1.3. Let M be a graded module. Then M is pure of weight n if and only if M =M−n.

In the cases we will consider, any simple A-module is pure and any pure module is semisimple.

Proposition 10.1.4. Let A be a graded ring with A0 semisimple. Then the following are equivalent:

1. A is Koszul.

2. For any pure A-modules M,N of weights m,n we have extiA(M,N) = 0 whenever i 6= m−n.

3. We have extiA(A0,A0 〈n〉) = 0 whenever i 6= n.

43
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We will list some more properties of Koszul rings:

Proposition 10.1.5. If A is a Koszul ring, so is the opposite ring Aop.

Proof. Define M� by M�i =M∗−i. Then consider a projective resolution

· · · → P2 → P1 → P1 → k

such that Pi = APii . But now we note that

k→ (P0)� → (P1)� → (P2)� → · · ·

is an injective resolution of k in mod-A. Now we note that

homAop(k 〈−n〉 , (Pi)�) = (k⊗A Pi)�n = (Pii)
∗
n = 0

whenever i 6= n. Thus extiAop(k 〈−n〉 ,k) = 0 whenever i 6= n, and so Aop is Koszul.

Definition 10.1.6. A graded ring A is quadratic if the natural map

TA1 =
⊕
n>0

A⊗n1 → A

is surjective and the kernel R ⊆ TA1 is generated by R∩A1 ⊗A1.

Proposition 10.1.7. Any Koszul ring is quadratic.

We will now assume that all Ai are finitely generated k-modules (I guess we will call it locally
k-finite). We will now define a candidate dual algebra.

Definition 10.1.8. Let A = TkV/ 〈R〉 be a locally k-finite quadratic ring over k, where R ⊆ V ⊗ V .
Then define its quadratic dual A! := TkV

∗/
〈
R⊥
〉
, where R⊥ ⊆ V∗ ⊗ V∗ is the annihilator of R.

Remark 10.1.9. Clearly A!! = A.

Proposition 10.1.10. Let A be a locally finite Koszul ring. Then A! is also Koszul.

Proof. We will use the fact (without proof) that the Koszul complex of A is actually

· · · → A⊗ (A!
2)
∗ → A⊗ (A!

1)
∗ → A

with differential given by Hom(A!
i+1,A)→ Hom(A!

i+1⊗V ,A⊗V)→ Hom(A!
i,A). In coordinates

if idV =
∑
v∗α ⊗ vα, this is given by

df (a) =
∑

f(av∗α)vα.

Therefore, we have a bigraded space

A⊗ (A!)� =
⊕
i.j

Ai ⊗ (A!
−j)
∗

where the differential has bidegree (1, 1) and the cohomology appears in bidegree (0, 0). Taking
duals, we obtain the space

A! ⊗A� =
⊕
i,j

A!
j ⊗A

∗
−i

where the differential has degree (1, 1) and the cohomology appears in degree (0, 0). Except this
is a graded projective resolution of k as an A!-module, so A! is Koszul.



45

Theorem 10.1.11. Let A be a locally finite Koszul ring over k. Then Ext•A(k,k) is canonically isomorphic
to (A!)op.

We will write Ext•A(k,k) =: E(A). It is easy to see that E(E(A)) = A.
We will now give a numerical criterion for a ring to be Koszul. Suppose that the Ai are

finite-dimensional for all i and that A0 is a product of copies of a field F. Then define the Hilbert
polynomial to be the matrix with entries

P(A, t)x,y =
∑

ti dim(1xAi1y).

Lemma 10.1.12. Suppose that A is Koszul. Then P(A, t)P(A!,−t)T = 1.

Theorem 10.1.13. Let E = E(A). Then A is Koszul if and only if P(A, t)P(E,−t) = 1.

Now we are finally able to define a derived category version of Koszul duality, which is what
we really wanted. Write C(A) for the homotopy category of complexes in B-mod. We will use
Mi for the grading in the complex and Mij for the grading in the module Mi. Now define the
category C↑(A) to be the full subcategory of C(A) where Mij = 0 if i� 0 or i+ j� 0. Similarly,
define C↓(A) to be the full subcategory of C(A) where Mij = 0 if i� 0 or i+ j� 0. Define the
derived categories D↑(A),D↓(A).

Theorem 10.1.14. Let A be a locally finite Koszul ring. Then there exists an equivalence of triangulated
categories D↓(A) ∼= D↑(A!).

We will not prove this result, but we will construct a functor. Let M ∈ C(A). Then consider
the bigraded vector space

FM = A! ⊗M =
⊕
`,i

A!
` ⊗M

i =
⊕
`,i

HomA(A⊗A!∗
` ,Mi)

with the differentials coming from the Koszul complex and from M and given by

d ′(a⊗m) = (−1)i+j
∑

av∗α ⊗ vαm,

d ′′(a⊗m) = a⊗ ∂m,

where v∗α, vα are as before. Now we consider the total differential d = d ′ + d ′′ and write

(FM)pq =
⊕
i+j=p
`−j=q

A!
` ⊗M

i
j.

In fact, F sends C↓(A) to A↑(A!) and takes acyclic complexes to acyclic complexes, so it induces a
derived functor DF : D↓(A)→ D↑(A!).

The inverse functor is given as follows. Let N ∈ C(A!). Then define

(GN)`,i = Homk(A−`,Ni).

This will have anticommuting differentials given by

(d ′f)(a) = (−1)i
∑

v∗αf(vαa),

(d ′′f)(a) = ∂(f(a)).
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Then we consider the total differential d = d ′ + d ′′ and write

(GN)pq =
⊕
p=i+j
q=`−j

Homk(A−`,Nij).

One can check that G sends C↑(A!) to C↓(A) and that G takes acyclic things to acyclic things.
Thus there is a derived functor DG : D↑(A!)→ D↓(A).

We will write K := DF for the Koszul duality functor. Here are some more properties of this
functor.

Theorem 10.1.15. There is a canonical isomorphism K(M 〈n〉) = (KM)[−n] 〈−n〉.

Theorem 10.1.16. Let A be a Koszul ring over k that is a finite-dimensional k-vector space. Also suppose
that A! is left Noetherian. Then there are embeddings Db(A-mof) ⊆ D↓(A) and Db(A!-mof) ⊆ D↑(A!)
such that Koszul duality induces an equivalence

K : Db(A-mof)→ Db(A!-mof).

10.2 Parabolic-singular duality

Let S ⊂W be the set of simple reflections. Then for any subset Sι ⊂ S, letWι ⊂W be the subgroup
generated by Sι, wι be its longest element, and Wι ⊂W be the set of longest representatives of
the cosets W/Wι.

Let λ ∈ h∗ be integral and dominant (but possibly singular). Set Oλ ⊂ O to be the full
subcategory of objects with the same central character is L(λ). Set

Sλ := {s ∈ S | s ◦ λ = λ}.

Then the simple objects in Oλ are precisely the L(x ◦ λ) for all x ∈Wλ.
Let b ⊂ q ⊂ g be a parabolic subalgebra. Define Oq ⊂ O0 to be the subcategory of all objects

that are locally q-finite. Let Sq ⊂ S be the simple reflections corresponding to q. For all x ∈Wq set
L
q
x := L(x−1w0 ◦ 0) ∈ Oq. These represent the simple objects in Oq. Call their projective covers Pqx.

The main theorem of this part of the talk is

Theorem 10.2.1. Suppose that Sλ = Sq. Then there are isomorphisms of finite-dimensional algebras

EndOλ

(⊕
P(x ◦ λ)

)
∼= Ext•Oq

(⊕
Lqx,
⊕

Lqx

)
EndOq

(⊕
Pqx

)
∼= Ext•Oλ

(⊕
L(x ◦ λ),

⊕
L(x ◦ λ)

)
,

where the summations are over x ∈ Wλ = Wq. The algebras on the right are both Koszul rings and are
Koszul dual to each other.

Note that Ob = O0. In particular, in this case, we obtain the following:

Corollary 10.2.2 (Soergel ’90). Let L ∈ O be the direct sum of all simple modules with the same central
character as C = L(0). Let P ∈ O be the direct sum of their projective covers. Then there exists an
isomorphism

EndO(P) ∼= Ext•O(L,L).

Moreover, Ext•O(L,L) is a self-dual Koszul ring.
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The proof of the theorem is geometric and developing the machinery would take to long, so
we will prove the equality of dimensions for the first isomorphism. Using BGG reciprocity and
the Kazhdan-Lusztig conjectures, we have

dim EndOλ

(⊕
P(x ◦ λ)

)
=
∑

x,y∈Wq

[P(x ◦ λ) : L(y ◦ λ)]

=
∑

x,y,z∈Wq

(P(x ◦ λ) :M(z ◦ λ))[M(z ◦ λ) : L(y ◦ λ)]

=
∑

x,y,z∈Wq

[M(z ◦ λ) : L(x ◦ λ)][M(z ◦ λ) : L(y ◦ λ)]

=
∑

x,y,z∈Wq

Pz,x(1)Pz,y(1).

By an argument involving localization (translating the problem to geometry), this is precisely the
dimennsion of ExtOq

(⊕
L
q
x,
⊕
L
q
x

)
.

Now write AQ = Ext•O(
⊕
L
q
x,
⊕
L
q
x) and AQ = Ext•O (

⊕
L(x ◦ λ),

⊕
L(x ◦ λ)). Also, write

Aq = EndO

(⊕
P
q
x

)
.

Corollary 10.2.3. There is a ring isomorphism AQ = E(AQ).

Proof. By the theorem, there is an equivalence Oλ ∼= AQ-Mof. This is because if A is an abelian
category whose objects have finite length and P ∈ A is a projective generator, then there is an
equivalence HomA(P,−): A → Mof-E, where E = EndA P. But now this equivalence identifies
L(x ◦ λ) with A0

Q1x, and from this we deduce the desired isomorphism.

Proposition 10.2.4. The rings AQ and AQ are Koszul.

Proof. First, note that Oq = Mof-Aq. But now the simples correspond under this equivalence, and
therefore

Ext•Oq

(⊕
Lqx,
⊕

Lqx

)
∼= Ext•Aq,op(A

q
0 ,Aq

0).

This tells us that AQ = E(Aq,op). Once we prove that Aq is Koszul, we are done.
To prove this, consider that Ob ∼= Mof-AB. But now we know that Oq consists of objects in Ob

such that if [M : Lbx] 6= 0, then x ∈Wq, and therefore Oq ∼= Mof-(AB/IQ), where IQ is generated
by everything in W \Wq. Thus Aq ∼= Oq because they are both endomorphism algebras of the
same progenerator. Now restricting modules over AB/IQ to AB induces injections on Ext groups,
so we now only need to prove that AB is Koszul.

To prove that AB = AB is Koszul, we will use the numerical criterion. We will simply use
the fact (proved geometrically) that the Hilbert polynomial of AQ is given essentially by the
intersection cohomology matrix

PQ := IC(G/Q, t)x,y = Px,y(t
−2)t`(y)−`(x).

In fact, we have P(AQ, t) = (PQ)TPQ. But now we know that Ob = O0 and that Lbx = L(x−1w0 ◦ 0),
and thus we have E(AB) = AB = AB with 1x corresponding to 1x−1w0

. Therefore, we may define

(PB)x,y := PB
w0x−1w0y−1
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and we have P(E(AB), t) = PTBPB. We now have

P(AB, t)P(E(AB),−t) = (PB(t))TPB(t)(PB(−t))
TPB(−t)

= 1

by some magic of Kazhdan-Lusztig, which says that PB(t)(PB(−t))T = 1.

Remark 10.2.5. You could also prove that AB is Koszul by using a result of Bezrukavnikov that if
A0,A1 are finite-dimensional and A ∼= E(A), then A is Koszul.
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