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Preliminaries

1.1 Givental formalism (Patrick, Feb 01)

1.1.1 Introduction Let X be a smooth projective variety. Then for any g ,n ∈Z≥0,β ∈ H2(X ,Z), there

exists a moduli space Mg ,n(X ,β) (Givental’s notation is Xg ,n,β) of stable maps f : C → X from genus-g ,

n-marked prestable curves to X with f∗[C ] =β. It is well-known that Mg ,n(X ,β) has a virtual fundamental
class

[Mg ,n(X ,β)]vir ∈ Aδ(Mg ,n(X ,β)), δ=
∫
β

c1(X )+ (dim X −3)(1− g )+3.

In addition, there is a universal curve and sections

C Mg ,n(X ,β).
π

σi

In this setup, there are tautological classes

ψi := c1(σ∗
i ωπ) ∈ H 2(Mg ,n(X ,β)).

This allows us to define individual Gromov-Witten invariants by

〈τa1 (φ1) · · ·τan (φn)〉X
g ,n,β =

∫
[Mg ,n (X ,β)]vir

n∏
i=1

ev∗i φi ·ψai
i .

These invariants satisfy various relations. The first is the string equation:

〈τ0(1)τa1 (φ1) · · ·τan (φn)〉X
g ,n+1,β =

n∑
i=1

〈τai−1(φi )
∏
j ̸=i

τa j (φ j )〉X

g ,n,β

.

The next is the dilaton equation:

〈τ1(1)τa1 (φ1) · · ·τan (φn)〉X
g ,n+1,β = (2g −2+n)〈τa1 (φ1) · · ·τan (φn)〉X

g ,n,β.

Finally, we have the divisor equation when one insertion is a divisor D ∈ H 2(X ):

〈τ0(D)τa1 (φ1) · · ·τan (φn)〉X
g ,n+1,β =

(∫
β

D

)
· 〈τa1 (φ1) · · ·τan (φn)〉X

g ,n,β

+
n∑

i=1
〈τai−1(φi ·D)

∏
j ̸=i

τa j (φ j )〉X

g ,n,β

.

It is often useful to package Gromov-Witten invariants into various generating series.
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Definition 1.1.1. The quantum cohomology QH∗(X ) of X is defined by the formula

(a⋆t b,c) := ∑
β,n

Qβ

n!
〈a,b,c, t , . . . , t〉X

0,3+n,β

for any t ∈ H∗(X ). This is a commutative and associative product.

The small quantum cohomology is obtained by setting t = 0 and the ordinary cohomology is obtained
by further setting Q = 0.

Remark 1.1.2. Convergence of the formula does not hold in general, so quantum cohomology needs to be
treated as a formal object.

Definition 1.1.3. Let φi be a basis of H∗(X ) and φi be the dual basis. Then the J-function of X is the
cohomology-valued function

JX (t , z) := z + t +∑
i

∑
n,β

Qβ

n!
〈 φi

z −ψ , t , . . . , t〉
X

0,n+1,β
φi .

Definition 1.1.4. The genus-0 GW potential of X is the (formal) function

FX (t (z)) = ∑
β,n

Qβ

n!
〈t (ψ), . . . , t (ψ)〉X

0,n,β.

The associativity of the quantum product is equivalent to the PDE∑
e, f

FX
abeη

e f Fcd f =
∑
e, f

FX
adeη

e f FX
bc f

for any a,b,c,d , which are known as the WDVV equations. Here, we choose coordinates on H∗(X ) and
set z = 0 (only consider primary insertions). In addition, set ηe f to be the components of the Poincaré

pairing and let ηe f be the inverse matrix.

1.1.2 Frobenius manifolds A Frobenius manifold can be thought of as a formalization of the
WDVV equations.

Definition 1.1.5. A Frobenius manifold is a complex manifold M with a flat symmetric bilinear form
〈−,−〉 (meaning that the Levi-Civita connection has zero curvature) on T M and a holomorphic system of
(commutative, associative) products ⋆t on Tt M satisfying:

1. The unit vector field 1 is flat: ∇1 = 0;

2. For any t and a,b,c ∈ Tt M , 〈a⋆t b,c〉 = 〈a,b⋆t c〉;
3. If c(u, v, w) := 〈u⋆t v, w〉, then the tensor (∇z c)(u, v, w) is symmetric in u, v, w, z ∈ Tt M .

If there exists a vector field E such that ∇∇E = 0 and complex number d such that:

1. ∇∇E = 0;

2. LE (u⋆ v)−LE u⋆ v −u⋆LE v = u⋆ v for all vector fields u, v ;

3. LE 〈u, v〉−〈LE u, v〉−〈u,LE v〉 = (2−d)〈u, v〉 for all vector fields u, v ,

then E is called an Euler vector field and the Frobenius manifold M is called conformal.
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Example 1.1.6. Let X be a smooth projective variety. Then we can give H∗(X ) the structure of a Frobenius
algebra with the Poincaré pairing and the quantum product. Note that the quantum product does not
converge in general, so we must treat this as a formal object. The Euler vector field is given by

EX = c1(X )+∑
i

(
1− degφi

2

)
t iφi ,

where a general element of H∗(X ) is given by t =∑
i t iφi . We will also impose thatφ1 = 1. There is another

very important structure, the quantum connection, which is given by the formula

∇t i := ∂t i + 1

z
φi⋆t

∇z d
dz

:= z
d

dz
− 1

z
EX ⋆t +µX .

Here, µX is the grading operator, defined for pure degree classes φ ∈ H∗(X ) by

µX (φ) = degφ−dim X

2
φ.

Finally, in the direction of the Novikov variables, we have

∇ξQ∂Q = ξQ ∂Q + 1

z
ξ⋆t .

Remark 1.1.7. For a general conformal Frobenius manifold (H , (−,−),⋆,E), there is still a deformed flat
connection or Dubrovin connection given by

∇t i := ∂

∂t i
+ 1

z
φi⋆

∇z d
dz

:= z
d

dz
− 1

z
E ⋆ .

Definition 1.1.8. The quantum D-module of X is the module H∗(X )[z]�Q, t� with the quantum connec-
tion defined above.

Remark 1.1.9. It is important to note that the quantum connection has a fundamental solution matrix
SX (t , z) given by

SX (t , z)φ=φ+∑
i

∑
n,β

Qβ

n!
φi 〈 φi

z −ψ ,φ, t , . . . , t〉
X

0,n+2,β
.

It satisfies the important equation
S∗

X (t ,−z)S(t , z) = 1.

Using this formalism, the J-function is given by S∗
X (t , z)1 = z−1 JX (t , z).

1.1.3 Givental formalism The Givental formalism is a geometric way to package enumerative
(CohFT) invariants cleanly. We begin by defining the symplectic space

H := H∗(X ,Λ)Lz−1M

with the symplectic form
Ω( f , g ) := Resz=0( f (−z)g (z)).
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This has a polarization by Lagrangian subspaces

H+ := H∗(X ,Λ)[z], H− := z−1H∗(X ,Λ)�z−1�

giving H ∼= T ∗H+ as symplectic vector spaces. Choose Darboux coordinates p, q on H. For example,
there is a choice in Coates’s thesis which gives a general element of H as∑

k≥0

∑
i

q i
kφi zk + ∑

ℓ≥0

∑
j

p j
ℓ
φ j (−z)−ℓ−1.

Taking the dilaton shift
q(z) = t (z)− z =−z + t0 + t1z + t2z2 +·· · ,

we can now think of FX has a formal function on H+ near q =−z. This convention is called the dilaton
shift.

Before we continue, we need to recast the string and dilaton equations in terms of FX . Write tx =∑
t i

kφi . Then the string equation becomes

∂1
0F(t ) = 1

2
(t0, t0)+

∞∑
n=0

∑
j

t j
n+1∂

j
nF(t )

and the dilaton equation becomes

∂1
1F(t ) =

∞∑
n=0

t j
n ∂

j
nF(t )−2F(t ).

There are also an infinite series of topological recursion relations

∂i
k+1∂

j
ℓ
∂k

mF(t ) = ∑
a,b
∂i

k ∂
a
0F(t )ηab ∂b

0 ∂
j
ℓ
∂k

mF(t ).

We can make sense of these three relations for any (formal) function F on H+.
Now let

L=
{

(p, q) ∈H | p = dqF
}

be the graph of dF. This is a formal germ at q =−z of a Lagrangian section of the cotangent bundle T ∗H+
and is therefore a formal germ of a Lagrangian submanifold in H.

Theorem 1.1.10. The function F satisfies the string equation, dilaton equation, and topological recursion
relations if and only if L is a Lagrangian cone with vertex at the origin q = 0 such that its tangent spaces L
are tangent to L exactly along zL.

Because of this theorem, L is known as the Lagrangian cone. It can be recovered from the J-function
by the following procedure. First consider L∩ (−z+zH−). Via the projection to −z+H along H−, this can
be considered as the graph of the J-function. Next, we consider the derivatives ∂J

∂t i , which form a basis of
L∩ zH−, which is a complement to zL in L. Then we know that

z
∂J

∂t i
∈ zL ⊂L,

so

z
∂2 J

∂t i ∂t j
∈ L∩ zH−.

Writing these in terms of the first derivatives ∂J
∂t i and using the fact that J is a solution of the quantum

connection, so we recover the Frobenius structure of quantum cohomology.
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We will now express some classical results in this formalism. Let X be a toric variety with toric divisors
D1, . . . ,DN such that D1, . . . ,Dk form a basis of H 2(X ) and Picard rank k. Then define the I -function

IX = ze
∑k

j=1 ti Di
∑
β

Qβ

∏N
j=1

∏0
m=−∞(D j +mz)∏N

j=1

∏〈D j ,β〉
m=−∞(D j +mz)

.

Theorem 1.1.11 ([Giv98]). The formal functions IX and JX coincide up to some change of variables, which
if c1(X ) is semi-positive is given by components of the I -function.

Theorem 1.1.12 (Mirror theorem in this formalism). For any t , we have

IX (t , z) ∈L.

Another direction in Gromov-Witten theory is the Virasoro constraints. In the original formulation,
these involved very complicated explicit differential operators, but in the Givental formalism, there is a
very compact formulation.

Define ℓ−1 = z−1 and

ℓ0 = z
d

dz
+ 1

2
+µ+ c1(X )∪−

z
.

Then define
ℓn = ℓ0(zℓ0)n .

Theorem 1.1.13 (Genus-0 Virasoro constraints). Suppose the vector field on H defined by ℓ0 is tangent to
L. Then the same is true for the vector fields defined by ℓn for any n ≥ 1.

Proof. Let L be a tangent space to L. Then if f ∈ zL ⊂ L, the assumption gives us ℓ0 f ∈ L. But then
zℓ0 f ∈ zL, so ℓ0zℓ0 f = ℓ1 f ∈ L. Continuing, we obtain ℓn f ∈ L for all n.

Later, we will learn that the Quantum Riemann-Roch theorem can be stated in this formalism. Let Ltw

be the twisted Lagrangian cone (where the twisted theory will be defined next week).

Theorem 1.1.14 (Quantum Riemann-Roch). For some explicit linear symplectic transformaiton ∆, we
have Ltw =∆L.

1.1.4 Quantization In the last part of the talk, we will briefly discuss the quantization formalism,
which encodes the higher-genus theory. In Darboux coordinates pa , qb , we will quantize symplectic
transformations by the standard rules

�qa qb = qa qb

× , �qa pb = qa
∂

∂qb
, �pa pb =× ∂2

∂qa ∂qb
.

This determines a differential operator acting on functions on H+.
We also need the genus-g potential

FX
g := ∑

β,n

Qβ

n!
〈t (ψ), . . . , t (ψ)〉X

g ,n,β

and the total descendent potential

D := exp

( ∑
g≥0

×g−1FX
g

)
.

In this formalism, the Virasoro conjecture can be expressed as follows. Let Ln = ℓ̂n + cn , where cn is a
carefully chosen constant.
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Conjecture 1.1.15 (Virasoro conjecture). If L−1D= L0D= 0, then LnD= 0 for all n ≥ 1.

In this formalism, the higher-genus version of the Quantum Riemann-Roch theorem takes the very
simple form

Theorem 1.1.16 (Quantum Riemann-Roch). Let Dtw be the twisted descendent potential. Then

Dtw = ∆̂D.

1.2 Quantum Riemann-Roch (Shaoyun, Feb 08)

We will state and prove the Quantum Riemann-Roch theorem in genus 0, following Coates-Givental.

1.2.1 Twisted Gromov-Witten invariants Again, let X be a smooth projective variety. Let E be
a vector bundle on X . We should note that

M0,n+1(X ,β)
π−→M0,n(X ,β)

is the universal curve, and the universal morphism is simply evn+1. We will consider the sheaf

E0,n,β := Rπ∗ ev∗n+1 E ∈ K 0(M0,n(X ,β)).

We need to check that this is a well-defined K -theory class. Choose an ample line bundle L → X . By
definition, for N ≫ 1, the cohomology

H i (X ,E ⊗LN ) = 0

whenever i ≥ 1. This gives us an exact sequence

0 → ker(=: A) → H 0(X ,E ⊗LN )⊗L−N (=: B) → E → 0.

For any stable map f : Σ→ X of positive degree, we obtain a long exact sequence

0 → H 0(Σ, f ∗E) → H 1(Σ, f ∗A) → H 1(Σ, f ∗B) → H 1(Σ, f ∗E) → 0,

so we obtain
R0π∗ ev∗n+1 E −R1π∗ ev∗n+1 E = R1π∗ ev∗n+1 B −R1π∗ ev∗n+1 A.

This expresses E0,n,β as a difference of vector bundles.
We will now introduce a universal characteristic class

c(−) = exp

( ∞∑
k=0

sk chk (−)

)
,

where s0, s1, s2, . . . are formal variables and chk is the k-th Chern character

xk
1

k !
+·· ·+ xk

r

k !
,

where xi are the Chern roots.

Example 1.2.1. Let E → X be a vector bundle and equip it with the fiberwise C∗-action by scaling. Let λ
be the equivariant parameter and ρi be the Chern roots. Then

e(E) =∑
i

(λ+ρi ).
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We then rewrite ∏
(λ+ρi ) = exp

(∑
i

(
logλ−∑

k

(−ρi )k

kλk

))

= exp

(
ch0(E) logλ+ ∑

k>0

(−1)k−1(k −1)!

λk
chk (E)

)
,

so for the (equivariant Euler class), we obtain

s0 = logλ

sk = (−1)k−1(k −1)!

λk
, k > 0.

We are now ready to define the (E ,c)-twisted Gromov-Witten invariants.

Definition 1.2.2. Define the twisted Gromov-Witten invariants by

〈α1ψ
k1
1 , . . . ,αnψ

kn
n 〉X ,(E ,c)

0,n,β
:=

∫
[M0,n (X ,β)]vir

n∏
i=1

ev∗i (αi )ψki
i ∪c(E0,n,β)

for αi ∈ H∗(X ) and ki ∈Z≥0.

We will now construct the Lagrangian cone for the twisted theory. Let R be the coefficient ring
containing s0, s1, . . . and define

Htw
X := H∗(X )⊗RLz−1M�Q�.

We also introduce the twisted Poincaré pairing

(a,b)(E ,c) =
∫

X
a ∪b ∪c(E).

The symplectic structure is defined by

Ωtw( f , g ) = Resz=0( f (−z)g (z))(E ,c).

There is a polarization
Htw

X =Htw
+ ⊕Htw

−
with

Htw
+ := H∗(X )⊗R[z]�Q�

Htw
− := H∗(X )⊗R�z��Q�.

Finally, we have the twisted genus-0 descendent potential

F0
X ,tw(t ) := ∑

β,n

Qβ

n!
〈t , . . . , t〉X ,(E ,c)

0,n,β .

Identifying Htw
X with T ∗Htw+ , we obtain the twisted Lagrangian cone Ltw

X as the graph of dF0
X ,tw. Denote

the untwisted Lagrangian cone as LX .

Theorem 1.2.3. We have
Ltw

X =∆LX ,

where

∆= exp

( ∑
m≥0

∑
ℓ≥0

s2m−1+ℓ
B2m

(2m)!
chℓ(E)z2m−1

)
.

Here, the Bernoulli numbers B2m are defined by

t

1−e−t = t

2
+ ∑

m≥0

B2m

(2m!)
t 2m .
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1.2.2 Proof of Theorem 1.2.3 The idea is to use the Grothendieck-Riemann-Roch theorem.

Proposition 1.2.4. We can write

[M0,n(X ,β)]vir ∩chk (E0,n,β) =π∗

 ∑
r+ℓ=k+1

r,ℓ≥0

Br

r !
chℓ(ev∗n+1 E)Ψ(r )

,

where

Ψ(r ) =ψr
n+1 ∩ [M0,n+1(X ,β)]vir

−
n∑

i=1
(σi )∗(ψn−1

i ∩ [M0,n(X ,β)]vir)

+ 1

2
j∗

 ∑
a+b=r−2

a,b≥0

(−1)aψa
+ψ

b
i ∩ [Z̃0,n+1,β]vir

.

Here, Z0,n+1,β is formed by the nodes of π, Z̃0,n+1,β is a double cover of Z0,n+1,β formed by a choice of branch
of the nodes, ψ+ and ψ− are the ψ-classes at the two branches of the nodes, and

j : Z̃0,n+1,β→ Z0,n+1,β→M0,n+1(X ,β)

is the “inclusion.”

Proof. We will first assume that M 0,n+1(X ,β), M0,n(X ,β), and Z0,n+1,β are all smooth and that π(Z0,n+1,β)
is a normal crossings divisor. In general, we need a Cartesian diagram

ev∗n+1 E E

M0,n+1(X ,β) C

Z0,n+1,β Z

M0,n(X ,β) M.

Continuing in the ideal situation, we apply Grothendieck-Riemann-Roch1 to obtain

ch(E0,n,β) = ch(Rπ∗ ev∗n+1 E)

=π∗(ch(ev∗n+1 E) · td∨Ωπ),

where td∨ is the dual Todd class, defined by −x
1−e t x , and Ωπ is the sheaf of relative differentials.

We then have two short exact sequences

0 →Ωπ→ωπ→OZ0,n+1,β → 0

1We need to be careful about directly applying Grothendieck-Riemann-Roch in the stacky setting (and in general we are only
quasi-smooth).
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and

0 →ωπ→ Ln+1 →
n⊕

i=1
ODi → 0,

where Di is the divisor where the marked points i ,n +1 collide and their component has exactly three
special points. Now we obtain

Ωπ = Ln+1 −
n∑

i=1
ODi −OZ0,n+1,β

in K -theory. Using the facts that c1(Ln+1) =ψn+1, Di ∩D j =; for i ̸= j , and Di ∩Z0,n+1,β =;, we see that
Ln+1 is trivial when restricted to Di and Z0,n+1,β. Now we apply the dual Todd class.

Lemma 1.2.5. If x1 ∪x2 = 0, then

(td∨(x1)−1)(td∨(x2)−1) = 0.

Using the lemma, we obtain

td∨(Ωπ) = td∨(Ln+1)
n∏

i=1
td∨(−ODi ) td∨(OZ0,n+1,β )−1

= 1+ (td∨(Ln+1)−1)+
n∑

i=1

(
1

td∨(ODi )
−1

)
+

(
1

td∨(OZn+1,β )
−1

)
.

The first term in the statement comes from the dual Todd class of Ln+1, the second comes from

0 →O(−Di ) →O→ODi → 0

and the relation between O(−Di ) and Li , and the last term can be found in Appendix A of Coates-
Givental.

To obtain the Quantum Riemann-Roch theorem, we use the previous proposition and manipulate the
generating function. If E is convex and Y ⊂ X is a complete intersection defined by E , then Ltw

X is closely
related to LY , so we are able to study the Gromov-Witten theory of Y using this.

1.3 Shift operators (Melissa, Feb 15)

Let X be a semiprojective smooth variety. This means that X is projective over its affinization. Also assume
that X has an action by T = (C×)m such that all T -weights in H 0(X ,O) are contained in a strictly convex
cone in Hom(T,C×)R and H 0(X ,O)T =C. All such X imply that

(a) The fixed locus X T is projective;

(b) The T -variety X is equivariantly formal. This means that H∗
T (X ) is a free module over H∗

T (pt) =
Q[λ] :=Q[λ1, . . . ,λm] and there is a non-canonical isomorphism

H∗
T (X ) ∼= H∗(X )⊗H∗

T (pt)

as H∗
T (pt)-modules.

(c) The evaluation maps evi : X0,n,d → X are proper.

Using (b), we may choose a basis
{
φi

}N
i=0 of H∗

T (X ) over H∗
T (pt). Let τi be the dual coordinates.
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1.3.1 Equivariant big quantum cohomology Let (−,−) be the T -equivariant Poincaré pairing,
which in general takes values inQ(λ). Then the T -equivariant big quantum product is defined by

(φi ⋆τφ j ,φk ) = 〈〈φi ,φ j ,φk〉〉X ,T
0,3

= ∑
d ,n

Qd

n!
〈φi ,φb ,φ j ,τ, . . . ,τ〉X ,T

0,n+3,d .

This can also be defined using the evaluation maps

(evi )∗ : H∗
T (X0,n+3,d ) → H∗−2(c1(X )·d+n)

T (X )

as

φi ⋆τφ j =
∑
d ,n

Qd

n!
(ev3)∗

(
ev∗1 (φi )ev∗2 (φ j )

n+3∏
i=4

ev∗i (τ)∩ [X0,n+3,d ]vir

)
∈ H∗

T (X )�Q��τ0, . . . ,τn�.

1.3.2 Quantum connection We will define

∇i : H∗
T (X )[z]�Q��τ�→ z−1H∗

T (X )[z]�Q��τ0, . . . ,τN �

by setting

∇i = ∂

∂τi
+ 1

z
(φi⋆).

We can view z as the loop variable by setting T̂ = T ×C×. If the extra copy of C× acts trivially on X , then

H∗
T̂

(X ) = H∗
T (X )[z].

This has a fundamental solution

M(τ) : H∗
T̂

(X )�Q,τ�→ H∗
T̂

(X )loc�Q,τ�

where
H∗

T̂
(X )loc := H∗

T̂
(X )⊗Q[λ,z]Q(λ(z)).

This satisfies the differential equation

z
∂

∂τi
M(τ) = M(τ)(φi⋆),

which is equivalent to
∂

∂τi
◦M(τ) = M(τ)◦∇i .

The solution has the form

(M(τ)φi ,φ j ) = (φi ,φ j )+〈〈φi ,
φ j

z −ψ 〉〉
X ,T

0,2
.

1.3.3 Shift operators Let k : C× → T be a cocharacter of T . Then define a T̂ -action ρk on X by

ρk (t , x)x = tuk · x

for t ∈ T,u ∈C×, x ∈ X . Under the group automorphism

φk : T̂ → T̂ φk (t ,u) = (tu−k ,u),
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the identity map (X ,ρ0) → (X ,ρk ) is T̂ -equivariant, so we obtain isomorphisms

Φk : H∗
T̂,ρ0

(X ) → H∗
T̂,ρk

(X ).

Now define the bundle
Ek = (X × (C2 \ 0))/C×,

where C× acts by
s · (x, v1, v2) = (sk x, s−1v1, s−1v2).

This is an X -bundle over P1 with an action on T̂ by

(t ,u) · [x, (v1, v2)] = [t · x, (v1,uv2)].

Setting 0 = [1,0] and ∞= [0,1], we see that T̂ acts on X0 by ρ0 and X∞ by ρk .

Definition 1.3.1. A cocharacter k : C× → T is seminegative if all weights of H 0(X ,O) are nonpositive with
respect to k and is negative if all nonzero weights of H 0(X ,O) are negative.

Lemma 1.3.2. If k is seminegative, then Ek is semiprojective.

Now let π : Ek → P1 be the projection. We now consider section classes, which are those effective
classes in H2(Ek ,Z) satisfying π∗d = [P1]. For the C×-action on X given by k, there is a unique fixed
component Fmin whose normal weights are all positive (one way to see this is to consider the moment
map of the corresponding circle action). Therefore, there is a minimal section class σmin corresponding to
Fmin.

Lemma 1.3.3. Given τ ∈ H∗
T (X ), there exists τ̂ ∈ H∗

T̂
(Ek ) such that τ̂|X0 = τ and τ̂|X∞ =Φk (τ).

Lemma 1.3.4. If k is seminegative, then

Eff(Ek )sec =σmin +Eff(X ).

Definition 1.3.5. Let k : C× → T be seminegative. Given τ ∈ H∗
T (X ), we define the shift operator

S̃k : H∗
T̂,ρ0

(X )�Q�→ H∗
T̂,ρk

(X )�Q�

by the formula

(S̃k (τ)α,β) = ∑
d̂∈Eff(Ek )sec

Q d̂−σmin

n!
〈(ι0)∗α, (ι∞)∗β, τ̂, . . . , τ̂〉Ek ,T̂

0,n+2,d̂
,

where α ∈ H∗
t̂ ,ρ0

(X ) and β ∈ H∗
T̂,ρk

(X ). We also define

Sk (τ) =Φ−1
k ◦ Ŝk (τ).

Theorem 1.3.6. We have the formula

M(τ)◦Sk (τ) = Sk ◦M(τ),

where Sk is defined via the commutative diagram

H∗
T̂

(X )loc H∗
T̂

(X )loc

H∗
T̂

(X T )loc H∗
T̂

(X T )loc.

Sk

ι∗⊕
i ∆i (k)e−2kδλ
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Here, we define

∆i (k) =Qσi−σmin
∏
α

rk Ni ,α∏
j=1

∏0
c=−∞(ρi ,α, j +α+ cz)∏−α·k
c=−∞(ρi ,α, j +α+ cz)

∈ H∗
T̂

(Fi )loc�Q�,

where
Ni = NFi /X =⊕

α
Ni ,α

is the normal bundle of Fi in X and ρi ,α, j are its Chern roots.

The idea of the proof is to decompose

E T̂
k,0,n+2,d̂

=⊔
i

⊔
I1∪I2=[n+2]

⊔
d0+d∞+σ̂=d̂

(X0)T
0,I1⊔p,d0

×Fi (X∞)T
0,I2⊔q,d∞ .

Using the exact sequence

0 → Aut(C , x) → Def( f ) → T 1 → Def(C , x) → Obs( f ) → T 2 → 0,

we obtain the explicit formulae

Aut(C , x)m = Aut(C0, x0)m +Aut(C∞, x∞)m

Def(C , x)m = Def(C0, x0)m ⊕Def(C0, x0)m ⊕TpC0 ⊗TpP
1 ⊕TqC∞⊗TqP

1.

This gives the virtual normal bundle, and using virtual localization, we obtain

(S̃k (τ)α,β) = (S̃k M(τ, z)α, M ′(τ′,−z)β),

where
M ′(τ′, z) =Φk ◦M(τ, z)◦Φ−1

k .

Using the unitarity property of M , we obtain the desired result.

1.4 Orbifold stuff (Patrick, Apr 04)

1.4.1 Orbifold Gromov-Witten theory Let X be a smooth and separated Deligne-Mumford
stack of finite type over C.

Definition 1.4.1. The inertia stack of X is the fiber product in the diagram

I X X

X X ×X .

∆

∆

More concretely, we may think about I X as parameterizing pairs (x, g ), where x ∈ X and g ∈ Aut(x).
There is another description of I X if X lives over C. In general, I X is disconnected. We will write

I X = ⊔
i∈I

Xi .

It also has an important morphism inv: I X → I X given by (x, g ) 7→ (x, g−1).

Definition 1.4.2. A morphism X → Y of algebraic stacks is representable if for all schemes S and mor-
phisms S → Y , the fiber product X ×S Y is an algebraic space.
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Theorem 1.4.3. Let
IµX := ⊔

r≥0
Homrep(Bµr , X )

denote the stack of representable morphisms from classifying stacks of roots of unity to X (the cyclotomic
inertia stack). Then IµX ≃ I X .

We need to make one more definition, which will appear as a degree shift on cohomology. Let
(x, g ) ∈ Xi . Because 〈g 〉 ⊂ Aut(x) is cyclic, there is a decomposition

Tx X = ⊕
0≤ℓ<ri

Vℓ,

where Vℓ is the eigenspace with eigenvalue e
2π

p−1 ℓ
ri and ri is the order of g . Then the function

age := 1

ri

∑
0≤ℓ<ri

ℓ ·dimVℓ

is constant on Xi , so we denote its value by age(Xi ).
Recall that by the Keel-Mori theorem, X (which has finite inertia) has a coarse moduli space |X |, which

is an algebraic space satisfying two properties:

• The morphism π : X →|X | is bijective on k-points whenever k is an algebraically closed field;

• |X | is initial for morphisms from X to any algebraic space.

From now on, we will assume that |X | is quasiprojective, and in particular that it is a scheme.

Moduli of stable maps

Definition 1.4.4. The moduli space of stable maps Mg ,n(X ,β) parameterizes objects

(C , {Σi }) X

T,

f

where

1. C is a prestable balanced twisted curve of genus g . This means that C has stacky structure only at
nodes and marked points, and the nodes are formally locally [(SpecC[x, y]/x y)/µr ], where µr acts
by ζ(x, y) = (ζx,ζ−1 y);

2. Σi ⊂C is an étale cyclotomic gerbe over T with a trivialization for all i ;

3. f : C → X is representable and the induced morphism between coarse moduli spaces is a stable
map of degree β with n marked points.

We see that Mg ,n(X ,β) has evaluation maps evi : Mg ,n(X ,β) → I X . It is also disconnected, with the
connected components being indexed by components of I X . Let

Mg ,n(X ,β, i1, . . . , in) :=
n⋂

j=1
ev−1

j (Xi j ).
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Then
Mg ,n(X ,β) = ⊔

i1,...,in

Mg ,n(X ,β, i1, . . . , in).

Each component has a virtual fundamental class

[Mg ,n(X ,β, i1, . . . in)]vir ∈ H∗(Mg ,n(X ,β, i1, . . . , in),Q)

of virtual dimension ∫
β

c1(X )+ (1− g )(dim X −3)+n −
n∑

j=1
age(Xi j ).

given by the relative perfect obstruction theory (Rπ∗ f ∗T X )∨, where π : C →Mg ,n(X ,β) is the universal
curve, over the moduli stack Mtw

g ,n of prestable twisted curves. Because we chose to work with trivialized
gerbe markings, we need to multiply the virtual fundamental class as follows. Note that the j -th marked
point is

Σ j
∼=Mg ,n(X ,β, i1, . . . , in)×Bµri j

.

Here, if x = [Bµr → X ] ∈ Xi j ⊂ I X , then ri j = r . Then set

[Mg ,n(X ,β, i1, . . . in)]w :=
(

n∏
j=1

ri j

)
[Mg ,n(X ,β, i1, . . . in)]vir.

Now consider the morphism p : Mg ,n(X ,β) →Mg ,n(|X |,β) given by taking the coarse moduli space.

Let C|X | →Mg ,n(|X |,β) be the universal curve and σi ,|X | be the marked points. Then the descendant
classes2 are defined to be

ψ j := p∗c1(σ∗
j ωC|X |/Mg ,n (|X |,β)).

Quantum cohomology We are now able to define Gromov-Witten invariants. Let α j ∈ H p j (Xi j ,C). Then
define

〈α1ψ
k1 , . . . ,αnψ

kn 〉X
g ,n,β :=

∫
[Mg ,n (X ,β,i1,...,in )]w

n∏
j=1

ev∗j α jψ
k j

j .

We are still able to form generating series Fg , JX , . . . as before, and the invariants satisfy the string, dilaton,
and divisor equations (although we have to be careful that the marked point we delete is a scheme point),
so the orbifold Gromov-Witten theory has a Lagrangian cone LX ⊂H.

The orbifold Poincaré pairing is defined by the formula

(α,β) :=
∫

I X
α∪ inv∗β,

where ∪ denotes the usual cup product. This is well-defined because of the formula

age(Xi )+age(Xinv(i )) = dim X −dim Xi

when X is proper. When X is not proper, we will assume we are working equivariantly. Now we may define
the quantum product by the formula

(a⋆τ b,c) := ∑
n,β

Qβ

n!
〈a,b,c,τ, . . . ,τ〉X

0,n+3,β

2Most people call these ψ, but I am extremely lazy.
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for a,b,c,τ ∈ H∗(I X ,C). Restricting to the degree 0 part and setting τ = 0, we obtain the orbifold cup
product, which is given by

(a⋆b,c) = 〈a,b,c〉X
0,3,0.

Denote H∗
CR(X ) := (H∗(I X ,C),⋆). The orbifold cup product is graded for the grading deg(a) = p+2age(Xi )

for a ∈ H p (Xi ). Using the quantum product, we may define the quantum connection and its fundamental
solution.

1.4.2 Toric Deligne-Mumford stacks We will assume the reader is familiar with the fan presen-
tation of a toric variety. If you are not, there are many references.

Definition 1.4.5. An extended stacky fan is a quadruple Σ= (N ,Σ,β,S) of

1. A finitely generated abelian group N of rank n;

2. A rational simplicial fan Σ in NR = N ⊗R;

3. A homomorphism β : Zm → N . We will write bi = β(ei ) ∈ N for the image of the standard basis
vector ei ∈Zm and bi for its image in NR;

4. A subset S ⊂ {1, . . . ,m}

satisfying the following conditions:

1. The set Σ(1) of 1-dimensional cones is exactly the set
{
R≥0 ·bi | i ∉ S

}
;

2. For all i ∈ S, bi ∈ |Σ|.

We will now assume that |Σ| is convex and full-dimensional and, that there is a strictly convex piecewise
linear function f : |Σ|→Rwhich is linear on each cone, and that β is surjective. From this data, we will
now obtain a GIT presentation. Define L by the exact sequence

0 → L−→Zm β−→ N → 0.

Then define K := L⊗C×. Then define Di ∈ L∨ to be the image of the i -th standard basis vector in (Zm)∨
under the last arrow in the exact sequence

0 → N∨ → (Zm)∨ → L∨

Finally, set

Aω = {
I ⊂ {1, . . . ,m} | S ⊂ I ,σI is a cone of Σ

}
.

Choose a stability condition

ω ∈Cω := ⋃
I∈Aω

{∑
i∈I

ai Di | ai ∈R>0

}
.

Then we define

XΣ := [(Cm)s /K ].

The ample cone is C ′
ω ⊂ L∨

R
/
∑

i∈S RDi
∼= H 2(XΣ,R), which is defined in the same way as Cω after

deleting S from the extended stacky fan, and the cone of effective curve classes is its dual.
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Orbifold cohomology First, we will describe the equivariant cohomology of XΣ. Let Q= (C×)m/K . Then if
ui is Poincaré dual to (xi = 0 ⊂ (Cm)s )/K , we have

H∗
Q(XΣ,C) = H∗

Q(pt,C)[u1, . . . ,um]/(I+J),

where

I := 〈χ−
m∑

i=1
〈χ,bi 〉ui |χ ∈ N∨

C 〉

J := 〈∏
i∉I

ui | I ∉Aω〉.

There is a combinatorial description of the components of the inertia stack I XΣ. Because XΣ is a
global quotient, the components of the inertia stack correspond to elements g ∈ K such that ((Cm)s )g is
nonempty. Equivalently, if we define

K := {
f ∈ L⊗Q | {i ∈ {1, . . . ,m} | Di · f ∈Z} ∈Aω

}
,

then the components of I XΣ are in bijection withK/L. To give a description in terms of the fan, for any
σ ∈Σ(n), define

Box(σ) :=
{

v ∈ N | v = ∑
ρi⊆σ

ai bi | 0 ≤ ai < 1

}
and then

Box(Σ) := ⋃
σ∈Σ(n)

Box(σ).

Then there is a natural bijection K/L∼= Box(Σ). For any f ∈K/L, X f is a toric DM stack with K ,L,ω the
same as for Xω and characters Di for i such that Di · f ∈Z. At the level of fans, this corresponds to killing
the minimal cone of Σ containing the corresponding v .

We will now give the orbifold cohomology of XΣ. Define the deformed group ring C[N ]Σ as the vector
space C[N ] with product given by

yc1 · yc2 :=
{

yc1+c2 there exists σ ∈Σ such that c1,c2 ∈σ
0 otherwise.

Then there is an isomorphism of rings [BCS05]

H∗
CR(XΣ) ∼= C[N ]Σ

〈∑i∉S χ(bi )ybi |χ ∈ N∨〉 .

Remark 1.4.6. This result also works in families over a base B [Jia08], where Cm is replaced by a direct
sum of m line bundles on B . Then we need to add a c1(Lχ) to the relations and obtain

H∗
CR(X B

Σ ) := H∗(B)[N ]Σ

〈c1(Lχ)+∑
i∉S χ(bi )ybi |χ ∈ N∨〉 .

1.5 Gamma-integral structure (Patrick, Apr 04)

Let I X =⊔
v∈B Xv and qv : Xv → X be the restriction of I X → X . Let E be a T -equivariant vector bundle

on X . Recall that v corresponds to some gv ∈ K , so we obtain an eigenbundle decomposition

q∗
v E = ⊕

0≤ f <1
Ev, f ,
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where Ev, f is the subbundle where gv acts by e2πi f . We now define the orbifold Chern character to be

c̃h(E) = ⊕
v∈B

∑
0≤ f <1

e2πi f ch(Ev, f ).

Now let δv, f , j be the Chern roots of Ev, f . We define the orbifold Todd class to be

T̃d(E) := ⊕
v∈B

( ∏
0< f <1

∏
j

1

1−e−2πi f −δv, f , j

)∏
j

δv,0, j

1−e−δv,0, j
.

The Γ̂-class should be a square root of this and is defined by

Γ̂(E) = ⊕
v∈B

∏
0≤ f <1

∏
j
Γ(1− f +δv, f , j ),

where we expand Γ around 1− f . The reflection formula for the Γ-function implies that the Xv -component
of Γ̂(E∨)∪ Γ̂(E) is given by

[Γ̂(E∨)∪ Γ̂(E)]v = (2πi )rk(q∗
v E)mov

[
e−πi (age(q∗E)+c1(q∗E))(2πi )

deg0
2 T̃d(E)

]
inv(v)

.

Here, deg0 is the grading operator given by the degree without age shifting.

Definition 1.5.1. Define the K -group framing s : KT (X ) → H∗
CR,T (X )⊗RT RT [log z]Lz− 1

k M�Q,τ� by the
formula

s(E)(τ, z) := 1

(2π)
dim X

2

L(τ, z)z−µzρΓ̂X ∪ (2πi )
deg0

2 inv∗ c̃h(E),

where L(τ, z) is the fundamental solution to the quantum connection, µ is the usual grading operator
given by 1

2 (deg−dim X ) on homogeneous elements, and ρ = c1(T X ) ∈ H 2(X ).

Proposition 1.5.2. Define the equivariant Euler pairing by

χ(E ,F ) :=∑
j

(−1)k chT (Extk (E ,F ))

and the modified version χz (E ,F ) by replacing the equivariant parameters λ j by
2πiλ j

z . Then

(s(E)(τ,e−iπz),s(F )(τ, z)) =χz (E ,F ).

Remark 1.5.3. Everything we have discussed so far makes sense for toric DM stacks after specializing
Q = 1.
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Crepant transformation conjecture

2.1 Toric wall-crossings in GW theory (Davis, Apr 11)

Our goal is to study GIT wall-crossing in toric Gromov-Witten theory. For toric varieties X± related across
a wall, we want to define M⊃U± such that X± ∈U±, as well as quantum connections on U± that restrict
to X± appropriately.

2.1.1 GIT wall-crossing Recall that the data of an (extended) stacky fan is equivalent to GIT data
consisting of

1. A vector space V of dimension m;

2. A torus K ;

3. Characters Di ∈ char(K ) for i = 1, . . . ,m;

4. A stability condition ω ∈ charR(K );

5. A set of anticones Aω = {
I ⊂ {1, . . . ,m} |ω ∈∑

i∈I ai Di , ai ∈R>0
}
.

Remark 2.1.1. The DM stack Xω is defined to be [Uω/K ], where

Uω := ⋃
I∈Aω

(C×)I ×CI c

is the semistable locus. Therefore, if ω1, . . . ,ω2 are stability conditions, there is a birational map Xω1 99K
Xω2 induced by identifying the dense open tori.

Suppose that ω1 ∈C1,ω2 ∈C2 are separated by a wall W in the space of stability conditions. Choose
ω0 ∈W ∩C1 =W ∩C2 and let

X0 = [Uω0 /K ],

which may not be Deligne-Mumford. Choose a resolution X̃ of Xω1 , Xω2 completing the diagram

X0

Xω1 Xω2

X̃ .

g1

g2

f2

f1

22
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We will assume that
∑M

i=1 Di ∈W . Under this assumption, the wall-crossing is crepant:

f ∗
1 KXω1

= f ∗
2 KXω2

.

Example 2.1.2. If e is a vector perpendicular to W , the Gm it generates may not be fixed. For example, let
K =G2

m and V =C3. Let D1 = (1,0), D2 = (1,2), and D3 = (0,2). Therefore,∑
ai Di = (a1 +a2,2a2 +2a3).

Let ω := (ωx ,ωy ). If ωx ,ωy > 0, then Aω ⊃ {{1,2,3}, {1,3}}. Then D2 appears if either

(ωx ,ωy ) = a1(1,0)+a2(1,2) if ωx > ωy

2
> 0

(ωx ,ωy ) = a2(1,2)+a3(0,2) if
ωy

2
>ωx > 0.

Therefore, there is a wall givven by 2ωx =ωy . In the chamber ωy > 2ωx > 0, we have

Aω = {{1,2,3}{1,3}, {2,3}}

and therefore Uω = (C2 \ 0)×C×. Taking the quotient, we see that

Uω/K =P1/Bµ2 .

In the other chamber, we have
Aω = {{1,2,3}{1,3}, {1,2}},

which implies that Uω =C×× (C2 \ 0), so
Xω =P(2,2).

For a stability condition ω0 on the wall, we will obtain

U0 = (C2 \ 0)×C×∪C×× (C2 \ 0)∪C×C××C.

The middle C× is fixed by the cocharacter (2,−1), so X0 is non-DM.

2.1.2 The secondary variety

Definition 2.1.3. The wall and chamber structure on charR(K ) defines a fan on charR(K ) called the
secondary fan. The associated toric variety is called the secondary toric variety. For us, we will consider
the subfan consisting of cones Cω1 ,Cω2 , and their faces. Call the corresponding toric variety M. This is a
moduli space of Landau-Ginzburg models mirror to the Xi .

Unfortunately, M is generally singular, so we will consider a smooth finite cover Mreg. Explicitly, we
see that

M = SpecC[C∨
1 ∩cochar(K )]∪SpecC[C∨

2 ∩cochar(K )].

Call the charts U+,U−. Define

Ki := {
f ∈ cocharQ(K ) | Di f ∈Z for all i ∈ I ⇒ I ∈ Aω

}
and let L̃i be the free Z-submodule of cocharQ(K ) generated byKi .

Example 2.1.4. Continung with the previous example, recall that

Aω1 = {{1,2,3}{1,3}, {2,3}}

If we want ( fx , fy ) · (0,2) ∈Z, then we see that fy ∈ 1
2Z, so L̃1 =Z× 1

2Z.



24

Remark 2.1.5. Recall that
H 2(Xω,R) ≃ charR(K )/

∑
i∈S
RDi ,

where
S = {

i | i c ∉ Aω

}
is the set of indices contained in every anticone. Therefore, we can split

charR(K ) = ⋂
j∈S

ker(ξ j )⊕⊕
j∈S
RD j .

Claim 2.1.6. There exist ξ±j such that

1. ξ+j |W = ξ−j |W for all j ∈ S+∩S−;

2. For all j ∈ S+∆S−, ξ±j |W = 0;

3. All ξ±j ∈K±.

Claim 2.1.7. We have a decomposition

L̃∨± = (H 2(X±,R)∩ L̃∨±)⊕ ⊕
j∈S±

ZD j .

Furthermore, W ∩ L̃∨+ =W ∩ L̃∨−.

Proof. If j ∈ S+, then j ∈ I for all I ∈ Aω+ , so D j f ∈ Z. Thus D j ∈ L̃+
i . In the other direction, if v ∈ L̃∨+,

vξi ∈Z because ξ j ∈K+. Therefore,

w = v − ∑
i∈S+

〈v,ξi 〉Di ∈
⋂
j∈S

ker(ξ j )∩ L̃∨
+.

Corollary 2.1.8. There exists an integral basis for L̃∨
i of the form{

p±
1 , . . . , p±

ℓ

}∪{
D j

}
j∈S

such that p±
k ∈C

′
± live in the closure of the ample cones of Xi and p+

k = p−
k as classes of C ′

W .

Now we have maps
C[C∨

± ∩cochar(K )] →C[y±
1 , . . . , y±

ℓ± ,
{

x j
}

j∈S ]

given by the formulae

yd 7→
ℓ±∏
j

y
±p±·d

j

j

∏
j∈S

x
D j ·d
j

for cocharacters d ∈ cochar(K ).

Remark 2.1.9. We may reorder the basis pi as
{

q1, . . . , qr
}

such that qr is the unique vector not on the wall
W . Dually, we may write

{
yi , x j

}
as {z1, . . . , zr } such that zr is dual to qr . In these coordinates, we can write

U+ = SpecC[z+
1 , . . . , z+

r−1, z
+ 1

B
r ]

U− = SpecC[z−
1 , . . . , z−

r−1, z
− 1

A
r ].

Let M̂reg be the analytification of Mreg =U+∪U−.
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2.1.3 Extending the I -functions Let

d = d + ∑
j∈S±

(D j ,d)ξ j

be the decomposition of some d ∈ cochar(K ). Then the I -functions of X± are given by

I temp
± = ze

σ
z

∑
d∈K±

eσd
∏

j∈S±
x

D j ·d
j

(
m∏

j=1

∏
a≤0,〈a〉=〈D j ·d〉(u j +az)∏

a≤D j ·d ,〈a〉=〈D j ·d〉(u j +az)

)
.

Precisely, we have
I± ∈ H∗

CR,T (Xω± )⊗RT RT Lz−1M[Q,σ, x].

In the above formula, we will make the substitutions Q = 1 and

σ± =
ℓ±∑
j=1

θ±(p±
j ) log(y j )− ∑

j∈S±
λ j log x j + c0λ.

Here, λ j = θ+(D j ), where θ+ is the restriction to H 2, and c0λ=∑
λi .

A more explicit formula is given by

I+ = ze
σ+

z
∑

d∈K+
yd

∏
j∈S±

x
D j ·d
j

(
m∏

j=1

∏
a≤0,〈a〉=〈D j ·d〉(u j +az)∏

a≤D j ·d ,〈a〉=〈D j ·d〉(u j +az)

)
1[−d ],

where [−d ] ∈K/L is the twisted sector.

Claim 2.1.10. The I -function I+ defines a convergent power series.

Idea of proof. Choose f ∈K/L and d such that [−d ] = f . Then X f
+ ⊂ I X+ is a connected component and a

closed substack of X+. The restriction

H∗
T (X f

+ ) → H∗
T (X f ,T

+ )

is injective. Then
I+|X T

f
∝Φ(β, X ),

where β j = u j

z , x = y
p+

r ·e
r , and

Φ(β, x) = ∑
k∈Z

xk

∏
a≤0,〈a〉=〈D j ·d〉(β j +a)∏

a≤D j ·d+kD j ·e,〈a〉=〈D j ·d〉(β j +a)
.

For k ≪ 0, because R j = 〈D j ·d〉 = 0 for j ∈ δ ⊂ I f and D j · e > 0, the xk -term vanishes. Convergence
follows by the ratio test.

Because Φ solves an explicit differential equation1 with singularities only at 0,∞,
∏

(D j ·e)D j ·e , it can
be analytically continued to

M̃+ = (
Û+ \

{
ve = conifold

}
/Deck

)univ cover
.

For just X+, there are differential operators Pi such that

(z−1P1I+, . . . , z−1P2I+, . . .) = L−1Γ,

where L−1 = 1+O(z−1) and Γ= const+O(z). Therefore, we may determine L−1 by Birkhoff factorization.
This gives us quantum connections on M̃±.

1We can write the coefficient of xk as a ratio of products of gamma functions.
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2.2 Crepant transformation conjecture for toric complete intersections
(Davis, Apr 18)

Our goal is now to relate I± to each other. More precisely, they will differ by a gauge transformation, which
is a Fourier-Mukai transform. The main tool will be to compute in localized equivariant cohomology.

2.2.1 Gauge transformation First, we will rewrite the I -functions as ratios of Γ-functions:

I+(y, z) = ze
σ+

z
∑

d∈K+

yd

z
∑

Di ·d
m∏

j=1

Γ
(
1+ u j

z −〈D j ·d〉
)

Γ
(
1+ u j

z +D j ·d
) 1[−d ]

z ι[−d ]
,

where ι[−d ] is the age. We will not work directly with these. Instead, we will consider

H+(y) = e(2πi )−1σ+Σd∈K+ yd
m∏

j=1

1

Γ(1+u j (2πi )−1 +D j ·d)
1[−d ].

Using the Γ̂ class, it is related to the I -function by the formula

z−1I+(y, z) = z
−c0λ
2πi − dim X+

2 z−µ+zρ
+

(Γ̂X+ ∪ (2πi )
deg0

2 inv∗ H+(z− deg(y)
2 y)).

Recall that T -fixed points on IX+ correspond to pairs (δ, f ), where δ is a minimal anticone and
f ∈K+/L. Then we compute

ι∗(δ, f )H+ = ∑
d∈K+
[d ]= f

yd∏
j∈δΓ(1+ (2πi )−1u j (δ)+D j ·d)

· e(2πi )−1σ+δ∏
j∉δΓ(1+ (2πi )−1)u j (δ)+D j ·d

.

Note that for j ∈ δ, u j (δ) = 0. In addition, D j ·d ∈Z, so if it is negative, then the corresponding Γ-function
vanishes. Therefore, we define

δ∨ := {
d ∈ LQ | D j ·d ∈Z≥0 for all j ∈ δ}

and the I -function becomes

ι∗(δ, f )H+ = ∑
d∈δ∨
[d ]= f

yd∏
j∈δΓ(1+ (2πi )−1u j (δ)+D j ·d)

· e(2πi )−1σ+δ∏
j∉δΓ(1+ (2πi )−1)u j (δ)+D j ·d

.

If δ ∈Aω+ ∩Aω− , then ι∗(δ, f )H+ = ι∗(δ, f )H−. Otherwise, δ has the form
{

j1, . . . , jr−1, j+
}

, where all D ji ∈W

for i < r and D j+ ·e > 0 for the normal vector to W pointing towards ω+.

Definition 2.2.1. A pair (δ± ∈Aω± ) are next to each other if both are of the form

δ± = {
j1, . . . , jr−1, j±

}
,

where ±D j± ·e > 0. Likewise, (δ±, f±) are next to each other if (δ±) are and f− = f++αe ∈ LQ/L.

Lemma 2.2.2. If δ+ is next to δ−, for all j and for any j− ∈ δ−∩δc+,

u j (δ+)−u j (δ−) = D j ·e

D j− ·e
u j− (δ+).
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Proof. Expand

D j =
r−1∑
i=1

c j D ji + c−D j− .

Then D j ·e = c−D j− ·e. Because

θ(D j ) = u j −λ j

=∑
ci (u ji −λ ji )+ ci (u j− −λ j− )

and u j− (δ−) = 0, we see that

u j (δ+)−λ j =−∑
ciλ ji + c−(u j− (δ+)−λ j− )

u j (δ−)−λ j =−∑
ciλ ji + c−(u j− (δ−)−λ j− ).

This implies that
u j (δ+)−u j (δ−) = c−u j− (δ+).

Claim 2.2.3. We have the formula

ι∗(δ+, f+)H+ = ∑
(δ−, f−)
next to
(δ+, f+)

cδ−, f−
δ+, f+ ι

∗
(δ−, f−)H−,

where c is some explicit matrix2 made of products of things like

∏
j |D j ·e<0

j ̸= j−

sinπ((2πi )−1u j (δ+)+D j · f+)

sinπ((2πi )−1u j (δ−)+D j− · f−)
.

Proof. Idea of proof If d ∈ δ+, then D j ·d ≥ 0 for all j ∈ δ+, so we can write d = D++ke, where d+ ∈ δvee+
and D+−e ∉ δ∨+. We now obtain

ι∗(δ+, f+)H+ =∑
d+

yd+
∞∑

k=0

(ye )k e(2πi )−1σ+δ+∏m
j=1Γ(1+ (2πi )−1u j (δ+)+D j ·d++kD j ·e)

.

Using the reflection formula

Γ(1+ (2πi )−1u j (δ+)+D j ·d++kD j ·e) =(−1)kD j ·e sinπ(−(2πi )−1u jδ+−D j ·d+)

π

×Γ(−(2πi )−1u jδ+−D j ·d+−kD j ·e),

we may write

ι∗(δ+, f+)H+ = Ress=k (· · · )Γ(s)Γ(1− s)
∏

D j ·e<0
Γ(−(2πi )−1u j (δ+)−D j ·d+− sD j ·e).

We obtain poles at the following locations:

(1) Γ(1− s) gives poles at s = 1,2,3, . . .;

(2) Γ(s) gives poles at s = 0,−1,−2, . . .;

2The reason the formulae are so complicated is because we are using the wrong basis.
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(3) The last term gives poles at s = (−D j− ·e)−1((2πi )−1u j (δ+)+D j− ·d+−n).

We can then rewrite this as a contour integral where the contour is such that all poles of type (1) are on the
right and all poles of types (2) and (3) except the one at 0 are on the left. For small y , we have

ι∗δ+, f+ H+ =
∮

right
,

and for large y , we have

ι∗δ+, f+ H+ =
∮

left
=∑

cδ−, f−
δ+, f+ ι

∗
δ−, f− H−.

Choose some j− for which D j−e < 0, we obtain

Res j− = ∏
D j ·e<0, j ̸= j−

Γ

sin
.

Setting δ− = {
j1, . . . , jr−1, j−

}
and

d− = d++ D j− ·d+−1

−D ji ·e
e,

we use the lemma to rewrite some Γ(. . .u j (δ+)) in terms of u j (δ−) and conclude.

We have therefore obtained the formula

ι∗(δ+, f+)H+ = ∑
(δ−, f−)
next to
(δ+, f+)

∑
d−∈δ∨−

minimal
[d−]= f−

yd−
∞∑

k=0

e(2πi )−1σiδ−(ye )−k∏m
j=1Γ(1+ (2πi )−1u j (δ−)+D j ·d−−kD j ·e)

cδ−, f−
δ+, f+ ι

∗
δ−, f− H−.

Now define

UH (α) := ∑
δ∈A+∩A−, f

(ι∗δ, f α)
1δ, f

eT (Nδ, f )
+ ∑
δ+, f+

∑
δ−, f−

next to
δ+, f+

cδ−, f−
δ+, f+ (ι∗δ−, f−α)

1δ−, f−
eT (Nδ−, f− )

.

We have a commutative diagram

H∗
T (I Xi )comp

loc H∗
T (I X+)comp

loc

H∗
CR,T (X−)loc[log z]Lz− 1

k M H∗
CR,T (X+)loc[log z]Lz− 1

k M.

UH

z−µ− z−ρ− (
á

ΓX−∪(2πi )
deg0

2 inv∗α)

U

2.2.2 The Fourier-Mukai transform We will now prove that U is given by the Fourier-Mukai

transform. Here, let X̃ be a common toric blowup of X± as in

X̃

X+ X−
f+

f−

and FM := ( f+)∗( f−)∗ := K 0
T (X−) → K 0

T (X+). We see that K 0
T (X±) is generated by [L±(ρ)], where ρ ∈ char(K )

and K 0
T (X̃ ) is generated by [L±(ρ,n)]. We will now move to the fixed point basis and see that

eδ,ρ = L±(ρ)
∏
i∉δ

(1−L(Di )−1 ⊗e−λi ).
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Remark 2.2.4. Let xδ be a fixed point of X± and ρ be in its isotropy. Then eδ,ρ = (ιδ)∗ρ.

We now compute FM(eδ,ρ).

1. If δ ∈A−∩A+, then FM(eδ,ρ) = eδ,ρ ;

2. Otherwise, we have a complicated formula.

The computation involves doing localization and relating anticones of X± to those of X̃ . We then obtain a
commutative diagram

(2.1)

K 0
T (X−) K 0

T (X+)

H∗
T (I Xi ) H∗

T (I X+)

FM

c̃h c̃h
UH

by direct computation.

2.2.3 Crepant transformation conjecture We are now ready to state the crepant transforma-
tion conjecture.

Theorem 2.2.5. Let H(X±) := H∗
CR,T (X±)Lz−1M. Then there exists a degree-preserving symplectic transfor-

mation
U :=H(X−) →H(X+)

such that

1. I+ =UI− after analytic continuation;

2. If g± : X±X = is the map to the toric blowdown, then

U◦ (g∗
−v∪) = (g∗

+v∪)◦U

for all v ∈ H 2
T (X 0);

3. U fits into the commutative diagram (2.1).

Theorem 2.2.6 (Crepant transformation conjecture for toric DM stacks). Let (F±,E±,∇±) be the quantum
connections on X±. Then there exists a gauge transformation

Θ ∈ Hom(H∗
CR,T (X−), H∗

CR,T (X+))⊗RT (OU 0 ⊗RT )[z]�y1, . . . , yr−1�

such that

1. ∇+Θ=Θ∇−;

2. Θ is homogeneous of degree 0;

3. Θ preserves the orbifold Poincaré pairings.

The proof starts by applying differential operators to UI− = I+ to obtain

z−1P⃗±I± = e
σ±

z L−1
± γ±.

We then set Θ= γ+γ−1− and obtain

(e
σ+

z L+(y, z)−1)Θ(y, z) =U(e
σ−

z L−(y, z)−1).
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2.3 Wall-crossing for Grassmannian flops (Kostya, Apr 25)

We will now consider a wall-crossing in a nonabelian situation. This relies on reducing to the abelian case
and citing CIJ.

2.3.1 Geometric setup Let B be a smooth projective variety and let E ,F be vector bundles on B
which split as direct sums of line bundles

E =
n⊕

i=1
Li , F =

n⊕
i=1

Mi .

Now let
V = Hom(F,Cr )⊕Hom(Cr ,E)

and G =GLr . G acts on the total space of V by the formula

(X ,Y )◦ g = (g−1X ,Y g ).

Let X± =V �±det G be the corresponding GIT quotients of V . We obtain

X+ = tot(S+⊗p∗F∨) Gr(r,E)

B

X− = tot(S−⊗p∗E) Gr(r,F∨).

p

p

The birational transformation here is known as a Grassmannian flop.

Example 2.3.1. Consider the quiver given by

k r k n .

The corresponding moduli of semistable representations is

(Ck →Cr )× (Cr ×Ck )× (Ck →Cn)�GLr ×GLk .

Then
X+ = tor(Ŝ⊕k

r ) → Fl(r,k,n), X− = tot(S
∨
r ⊗Sk ) → Gr(r,k)×Gr(k,n).

There is an action ofT= (C×)2n on the total space of E ⊕F , which induces an action ofT on V . Denote

xi = cT1 (L∨
i ) zi = cT1 (M∨

i ).

Let R =Cr , viewed as a right G-representation. Then R ×V →V is a G-equivariant vector bundle on V
which descends to X± and are the pullbacks of S∨+ and S−, repsectively. Now denote by

y1, . . . , yr

the Chern roots of R∨. Then
H∗
T(X±) = H∗

T(B)[Xi , zi ][Yk ]Sn /I±,
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where I+ is the ideal given by

I+ =
{[ ∏n

i=1(1−xi )∏r
j=1(1+ y j )

]
ℓ

∣∣∣∣∣ ℓ> n − r

}
and I− is defined similarly. Let RT = H∗

T
(pt) and ST = RT,loc. Finally, let ŜT be a completion of ST containing

exponentials and Γ-functions. The T-fixed loci in X± correspond to r × r minors of the corresponding
Grassmannians. We encode them by

δ : {1, . . . ,r } → {1, . . . ,n}

which are strictly order-preserving, as in δi := δ(i ) < δ( j ) =: δ j if i < j . In other words,

XT
± =⊔

δ±
Bδ± ∼= B.

Lemma 2.3.2. We have

R|Bδ− =
r⊕

i=1
M∨
δ−i

R|Bδ+ =
r⊕

i=1
L∨
δ+i

.

This implies that

yi |Bδ− =−zδ−i
yi |Bδ+ =−xδ+i

.

2.3.2 Abelianization Let (C×)r ⊂G = GLr be the maximal torus which acts diagonally on Cr . Then
the abelianized quotients are

XT,− =V �θ− T

= tot(OP(F∨)(−1)⊗p∗E)×B · · ·×B tot(OP(F∨)(−1)⊗p∗E)

XT,+ =V �θ+ T

= tot(OP(E)(−1)⊗p∗F∨)×B · · ·×B tot(OP(E)(−1)⊗p∗F∨).

Note that T has many more stability conditions than T . Denote

θ j :=
j∏

k=1
tk

r∏
k= j+1

t−1
k

and the GIT quotient
XT, j :=V �θ j T.

Therefore, XT,0 = XT,− and XT,r = XT,+.
The cohomology of XT, j is given by

H 0
T(XT, j ) = H∗

T(B)[xi , zi ][yk ]/I ab
j ,

where the ideal I ab
j is given by

I ab
j =

{
n∏

i=1
(−xi − yk )

∣∣∣∣∣ 1 ≤ k ≤ j

}
∪

{
n∏

i=1
(zi + yk )

∣∣∣∣∣ j +1 ≤ k ≤ r

}
.
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The T-fixed loci are indexed by points in Pn−1. These are denoted by arbitrary functions

f : {1, . . . ,r } → {1, . . . ,n}.

Note that f is not required to be injective. Thus we have a decomposition

XT
T, j =

⊔
f

B f
∼= B.

The first abelianization in cohomology is

H∗
T(X±) ∼= H∗

T(V ±ss/T )W .

Next, note the diagram

X±

V ±ss(G)/T XT,±

gives us a rational map between the abelian and nonabelian quotients. This gives us a surjection

H∗
T(XT,±)↠V ±ss(G)/T.

The kernel of this morphism are those f which are not injective.

2.3.3 Fourier-Mukai transform Consider the mutual blowup

X̃

X+ X−
f+

f−

and let
f+ := f+,∗ f ∗

− : KT(X−) → KT(X+).

Here,
X̃ = (F →Cr )× (Cr →Cr )× (Cr → E)�(det−1,det) GL2

r .

Then the morphisms are

f+((X ,U ,Y ), (g1, g2)) = ((X ,Y U ), g1), f−((X ,U ,Y ), (g1, g2)) = ((U X ,Y ), g2).

The fixed loci in X̃ are indexed by δ+,δ−.

Lemma 2.3.3. The projections f± map B(δ+,δ−) isomorphically to Bδ+ or Bδ− , respectively. Moreover,

R1|B(δ+ ,δ−)
=

r⊕
i=1

M∨
δ−i

R2|B(δ+ ,δ−)
=

r⊕
i=1

L∨
δ+i

.

Lemma 2.3.4. The localized T-equivariant K -theory of X− is spanned by classes of the form

π∗(A)⊗eδ− =π∗A⊗ ∏
j∉δ−

Λ∗(M∨
j ⊗R∨)∨

for A ∈ K (B) and similarly for X+.
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Lemma 2.3.5. We have
FM(eδ− ) = ∏

j∉δ−
Λ∗(M∨

j ⊗R∨)∨ ∈ KT(X+).

Proposition 2.3.6. The following diagram commutes:

KT(X−) KT(X+)

H∗
T

(X−)⊗ ŜT H∗(X+)⊗ ŜT.

FM

chT− chT+
UH

Here, UH is an explicit ŜT-linear operator given by the formula

UH

(
α

eT(Nδ− )

)
=∑

δ+
Cδ−,δ+

φδ+,δ− (α)

eT(Nδ+ )
,

where

Cδ−,δ+ =
r∏

i=1
e

(n−r )(xδ+
i
−zδ−

i
)/2 ∏

j−∈δ−

sin

(
xδ+

i
−z j−
2i

)
sin

( zδ−
i
−z j−
2i

) .

The strategy to prove this result is first to replace cohomology by the symplectic space and replace
the Chern character by the K -group framing. Then we use abelianization for I -functions [Web23] and
repeatedly apply CIJ to each wall-crossing from the X j . We then compose the symplectic transformations
from CIJ and check that it equals the one given above. Finally, a statement about deforming the contour
into the Weyl-invariant part gives the desired result.
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Quantum cohomology of projective bundles

3.1 Mirror theorem (Che, Feb 22)

3.1.1 Setup Let X be a smooth projective variety,
{
φi

}s
i=0 be a basis of H∗(X ),

{
φi

}s
i=0 be the dual

basis, and

τ=
s∑

i=0
τiφi ∈ H∗(X ).

We will let

JX (τ) = 1+ τ

z
+ z−1

∑
d ,n

s∑
j=0

〈τ, . . . ,τ
φ j

z −ψ 〉
X

0,n+1,d

Qd

n!
,

which is the J-function in Definition 1.1.3 multiplied by z−1.1. Also, recall the inverse of the fundamental
solution of the quantum D-module

MX (τ) ∈ End(H∗(X ))[z−1]�Q,τ�,

which is defined by

(M X (τ)φi ,φ j ) = (φi ,φ j )X +∑
d ,n

〈φi ,τ, . . . ,τ,
φ j

z −ψ 〉
X

0,n+2,d

Qd

n!
.

Remark 3.1.1. By the string equation, we have

JX (τ) = MX (τ) ·1.

3.1.2 The vector bundle case Now let V → B be a vector bundle with rkV ≥ 2. This has an
action of C× scaling the fibers. Then we have

H∗
C× (V ) = H∗(B)⊗C[λ].

Now we may take τ0, . . . ,τs to be C[λ]-valued coordinates.

Remark 3.1.2. Equivariant localization is required to define the Gromov-Witten invariants of V , which lie
in C[λ,λ−1].

1This is in fact the older definition of the J-function, but the one in Definition 1.1.3 lies on the Lagrangian cone

34
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In order to avoid this issue, we will assume that V ∨ is globally generated. This implies that V is
semiprojective, meaning that the evaluation maps ev: V0,n,d →V are proper. As before, we may define
the fundamental solution

MV (τ) ∈ End(H∗(B))[λ, z−1]�Q,τ�
and the J-function

JλV (τ) = MV (τ) ·1.

Because the evaluation maps are proper, they can be defined without localization.

3.1.3 Statement and discussion of the mirror theorem

Theorem 3.1.3. Define the H∗(P(V ))-valued function

IP(V )(τ, t ) =
∞∑

k=0

ept/z qk ekt∏k
c=1

∏
δ(p +δ+ cz)

J p+kz
V (τ),

where δ are the Chern roots of V , q is the Novikov variable, and p = c1(OP(V )(1)). Then zIP(V )(τ, t ) lies on
the Lagrangian cone of P(V ).

Let Lorig
X be the Lagrangian cone for X , which has the explicit form

(3.1) −z + t (z)+∑
d ,n

∑
k≥0

s∑
i=0

φi

(−z)k+1
〈t (ψ), . . . , t (ψ),φiψ

k〉X
0,n+1,d

Qd

n!
.

Definition 3.1.4. For a set of variables x = (x1, x2, . . .), we say that f ∈HX �x� is a C�Q, x�-valued point on

L
orig
X if f is of the form 3.1 for some t (z) ∈H+�x� with t (z)|Q=x=0 = 0.

Example 3.1.5. The point z JX (τ)|z 7→−z is a C�Q,τ�-valued point on L
orig
X .

Given this, define LX :=L
orig
X |z 7→−z . By Theorem 1.1.10, we obtain

LX =⋃
τ

zMX (τ)H+,

which means that any C�Q, x�-valued point on LX can be written as zMX (τ) f for some τ ∈ H∗(X )�Q, x�
and f ∈H+�x� such that τ|Q=x=0 = 0 and f |Q=x=0 = 1. This property will be used to construct the Fourier
transform later.

3.1.4 Proof of Theorem 3.1.3 We will now sketch a proof of Theorem 3.1.3. First, we will need
Quantum-Riemann-Roch for a vector bundle W → X in two cases:

(a) When the vector bundle W is convex, which means that H 1(C , f ∗W ) = 0 for all stable maps f : C →
X of genus 0, and c = e(λ) is the equivariant Euler class, which corresponds to setting

sk =
{

logλ k = 0

(−1)k−1(k −1)!λ−k k > 0.

(b) When W is globally generated and c = e−1
λ

.
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In the first case, we obtain the Gromov-Witten invariants of the zeroes of a regular section Z ⊂ X of W
via

lim
λ→0

〈α1ψ
k1 , . . . ,αnψ

kn 〉X ,(W,eλ)
0,n,d = ∑

i∗d ′=d

〈i∗α1ψ
k1
1 , . . . ,αnψ

kn
n 〉Z

0,n,d ′ .

In the second case, we obtain the Gromov-Witten invariants of W via

〈α1ψ
k1 , . . . ,αnψ

kn 〉X ,(W,e−1
λ

)

0,n,d = 〈i∗α1ψ
k1
1 , . . . ,αnψ

kn
n 〉W

0,n,d .

We are now ready to begin the proof. Because V ∨ is globally generated, there is a surjection

O⊕N →V ∨.

This gives an exact sequence

0 →V →O⊕N →Q → 0

embedding P(V ) ,→ B ×PN−1. By a result of Brown-Elezi, we have

JB×PN−1 (τ, t ) =
∞∑

k=0

ept/z qk ekt∏k
c=1(p + cz)N

JB (τ).

Now define

Q(1) :=π∗
1 Q ⊗π∗

2O(1)

on B ×P1. This has a section s given by

π∗
2O(−1) →O⊕N

B×PN−1 →π∗
1 Q

which satisfies s−1(0) =P(V ). Because Q(1) is convex, we use Quantum-Riemann-Roch in case (a) to relate
the Gromov-Witten theory of P(V ) to the (Q(1),eλ)-twisted Gromov-Witten theory. We now require two
more techinical ingredients.

Moving points on the Lagrangian cone via differential operators

Lemma 3.1.6. Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be formal variables. Let

F ∈C[z]�x�〈z ∂x1 , z ∂x2 , . . .〉�Q, y�

be a differential operator. Then exp(F /z) preserves C�Q, x, y�-valued points on LX .

Definition 3.1.7. A C�Q,τ, y�-valued point f on LX is called a miniversal slice if

f |Q=y=0 = z +τ+O(z−1).

For example, the J-function is a miniversal slice.

Lemma 3.1.8. Any miniversal slice on LX can be obtained from z JX (τ) be applying exp(F /z) for some
differential operator F as in the previous lemma satisfying F |Q=y=0 = 0.
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The rest of the proof (ignoring convergence issues) First, we introduce

∆λW := erk(W )(λ logλ−λ)/z∆(W,e−1
λ

).

Because log∆λW and logΓ(x) have similar asymptotic expansions, we have

∆λ+kz
W /∆λW =

k∏
c=1

∏
δ

(λ+δ+ cz).

Using the exact sequence
0 →V →O⊕N →Q → 0,

we see that
∆λV ∆

λ
Q =∆λ

O⊕N ,

which preserves the Lagrangian cone LB . We see that

∆λQ : LB ,(V ,e−1
λ

) →LB .

Applying Quantum-Riemann-Roch in case (b), we see that

z JλV (z) ∈ LB ,(V ,e−1
λ

),

and thus
∆λQ z JλF (z) ∈LB .

By Lemma 3.1.8, there exists F such that

∆λQ z JλV (z) = eF (λ)/z z JB (τ).

By Lemma 3.1.6, we obtain
eF (λ+z∂t )/z JB×PN−1 (τ, t ) ∈LB×PN−1 .

Now we compute

Iλ(τ, t ) := (∆λQ(1))
−1eF (λ+z∂t )/z JB×PN−1 (t au)

= ∑
k=0

ept/z qk ekt∏k
c=1(p + cz)N

(∆λQ(1))
−1eF (λ+p+kz) JB (τ)

= ∑
k=0

ept/z qk ekt∏k
c=1(p + cz)N

(∆λQ(1))
−1(∆λ+p

Q )−1∆
λ+p+kz
Q Jλ+p+kz

V

= ∑
k≥0

ept/z qk ekt

∏k
c=1

∏
ε(λ+p +ε+ cz)∏k

c=1(p + cz)N
Jλ+p+kz

V ,

where ε runs over the Chern roots of Q. Taking the non-equivariant limit λ→ 0, we obtain the I (τ, t) in
the statement of Theorem 3.1.3.

3.2 Fourier transform (Kostya, Feb 29)

Technically, there are two different Fourier transforms:

1. The discrete Fourier transform QDMS1 (V )
FT−→ QDM(P(V ));

2. The continuous Fourier transform QDM(P(V ))loc →
⊕r−1

i=0 QDM(B).



38

3.2.1 Quantum D-modules and symplectic spaces Let V → B be a rank r vector bundle.
The quantum D-module of V will be

H∗
S1 (V )⊗C[z,λ]�Q,τ �,

where λ is the equivariant variable, Q is the Novikov variable, and τ = {
τi ,k

}
for i counting a basis of

H∗(V ) and k records the degree of λ. It is equipped with the Dubrovin connection

∇ : QDMS1 (V ) → z−1 QDMS1 (V )

given by

∇τi ,k = ∂

∂τi ,k
+ z−1λk (φi ⋆−)

∇ξQ∂Q = ξQ ∂Q + z−1(ξ⋆−)

∇z∂z = z ∂z − z−1(ES1 ⋆−)+µS1 .

Note the last line is only C-linear. Recall the fundamental solution M−1
V (τ , z) is a fundamental solution in

the cohomology directions (but not the conformal direction) in the sense that

∂τi ,k MV = MV ∇τi ,k

(εQ ∂Q + z−1ξ)MV = MV ∇εQ∂Q

and intertwines the shift operator by
SMV = MVS(τ ),

where
S= eλ(V )ez∂λ .

Now, the symplectic space for V is

HS1

V := H∗
S1 (V )Lz−1M�Q,τ�

with its Lagrangian cone LV . It has the important property that f (τ ) is in LV means that there exists τ̂(τ )
and f̃ ∈ QDMS1 (V ) such that

f = zMV (τ̂(τ ), z) f̃ ,

which can be seen as a Birkhoff factorization.
We now turn to P(V ). There is a decomposition

H∗(P(V )) = H∗(V )[p]/
∏
δ

(δ+p),

where δ runs over the Chern roots of V . This receives the Kirwan map

κ : H∗
S1 (V )↠ H∗(P(V )), κ(λ) = p.

Thus the quantum D-module for P(V ) is

QDM(P(V )) = H∗(P(V ))⊗C[z, q]�Q, τ̂ �,

where τ̂ = {τ̂i } is a basis for H∗(P(V )) and q is the Novikov variable of the fiber curve class. It is equipped
with the connections ∇τ̂i ,∇ξQ∂Q ,∇q∂q ,∇z∂z .
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Remark 3.2.1. Note there are no shift operators, but there is an additional q-direction in the quantum
D-module for P(V )

We also have the symplectic space HP(V ), the Lagrangian cone LP(V ), and the fundamental solution
MP(V )(τ̂ , z). Finally, we will recall the mirror theorem in the form that

IP(V ) =
∑
k≥0

κ(S−k Jλ+kz )qk

lies on LP(V ).

3.2.2 Discrete Fourier transform

Definition 3.2.2. The discrete Fourier transform HV →HP(V ) is the transform

Jλ 7→ Ĵ = ∑
k≥0

κ(S−k Jλ+kz
)qk .

In this framing, the mirror theorem states that the discrete Fourier transform of the J-function of V
lies on the Lagrangian cone of P(V ).

Theorem 3.2.3. There exists a “mirror map”

τ̂ = τ̂ (τ ) ∈ H∗(P(V ))[q]�Q,τ�
and an isomorphism

FT: QDMS1 (V ) → τ̂ ∗ QDM(P(V ))

of C[z]�Q,τ �-modules intertwining the connections in the natural ways.

Remark 3.2.4. One has to be careful with the Novikov variables and think about approximately eight other
points of the theorem, but we will ignore these for now.

Because the Fourier transform intertwines the connections, we have the commutative diagram

QDMS1 (V ) τ ∗ QDM(P(V ))

HV HP(V ).

FT

MV (τ ) MP(V )(τ̂ (τ ))

J→ Ĵ

Idea of proof. The idea of the proof is to start from the mirror theorem (the bottom row) and apply Birkhoff
factorization. The mirror theorem states that

(MV (τ )1)∧ = M(τ̂ (τ ))Υ ∈LP(V )

for some mirror map τ̂ (τ ) and Υ ∈ QDM(P(V )). Using the intertwining properties of M , we see that

(MV (τ )(φiλ
k ))∧ = M(τ̂ (τ ))zτ ∗∇ ∂

∂t i ,k
Υ.

Defining
FT(φiλ

k ) := zτ ∗∇∂
τi ,k
Υ

and τ̂ to be the mirror map appearing in the Birkhoff factorization, we are done.

Remark 3.2.5. The mirror map satisfies

τ̂ (τ )|q=Q=0 = κ(τ )

and the Fourier transform satisfies
FT(φiλ

k )|Q=τ=0 =φi pk .

Remark 3.2.6. The Fourier transform intertwines the natural pairings on the quantum D-modules.
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3.2.3 Continuous Fourier transform

Definition 3.2.7. Define

QDM(P(V ))loc := QDM(P(V ))⊗C[z]Lq− 1
r ′ �Q, τ̂ �,

where r ′ = r or 2r depending on parity.

Theorem 3.2.8. For j = 0, . . . ,r −1, there exist maps H∗(P(V )) → H∗(B) given by

τ̂ 7→ ζ j (τ̂ ) ∈−c1(V ) log

(
e

2π
p−1 j

r q
1
r

)
+H∗(B)Lq− 1

r �Q, τ̂ �

and an isomorphism

Φ : QDM(P(V ))loc
∼=

r−1⊕
j=0

ζ∗j QDM(B)loc

intertwining the pairings and quantum connections in a natural way, namely that

Φ∆=⊕
ζ∗j ∆Φ.

Writing Φ= (Φ0, . . . ,Φ j ), we have

Φ j (φi pk )|Q=τ̂=0 =
1p
r
λ

k− r−1
2

j (φi +O(q− 1
r )).

Idea of proof. We use another realization of the Fourier transform on QDMS1 (V ) and

FT: QDMS1 ∼= τ̂ ∗ QDM(P(V )).

If we consider ∆λV arising from Quantum Riemann-Roch, it is given as

∆λV ≍∏
ρ

√
z

2π
z
λ+ρ

z Γ

(
ρ+λ

z
+1

)
.

Shifting by −z, we see that

∆λ−z
V =∆λV

∏
ρ

1

ρ+λ =∆λV
1

eS1 (V )
.

We now consider the transformation

s 7→
∫

q
λ
z (∆λV )−1MV (τ ) · s dλ

for s ∈ QDMS1 (V ). Because this integral intertwinesSwith q and λwith z∇q∂q , it formally gives a solution
to QDM(P(V )).

To make sense of this terrible expression, we use the stationary phase expansion of the integral. Setting

I (s) =
∫

e−
ϕ(λ)

z λ− c1(V )
z λ− r

2 (∆̃λV )−1 Jλdλ,

where ϕ(λ)
z is the Stirling asymptotics of ∆λV , given by

ϕ(λ) = r (λ logλ−λ)−λ log q.
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The critical points of ϕ are given by

∂

∂λ
ϕ(λ) = r (logλ)− log q = 0,

which tells us that λr = q . Thus, we obtain r solutions

λ j = e
2π

p−1 j
r q

1
r .

We now consider the formal expansions around λ j . These produce a “continuous Fourier transform”

J 7→F j (J )

such that

I (M−1 J ) ≍p
2πzer

λ j
z F j (J ).

These intertwine the quantum connection and multiplication by λ, as in

F j (λJ ) = (λ j + zq ∂q )F j (J )

F j (SJ ) = qF j (J ),

so zF j (JV (τ )) is on the Lagrangian cone of B . We then use the following result:

Proposition 3.2.9. We have
F j (JV (τ )) = MB (σ j (τ))ν j

for some σ j ,ν j .

Unfortunately, F j does not intertwine ∇z∂z correctly. To fix this, define

ζ j (τ̂ ) =σ j (τ (τ̂ ))+ rλ j

and Φ j by a shift of ν j .

3.2.4 Discrete equals continuous

Warning 3.2.10. Everything in this subsection may be false.

Consider the Fourier transform ∫ ∏
ρ
Γ

(
−ρ+λ

z

)
JλV q

λ
z dλ.

This can be computed either using residues or using stationary phase asymptotics. Using residues, we
obtain ∑

k≥0
Resp=0Γ

(
−k − ρ+λ

z

)
Jλ+kz

V q
p
z qk ,

which is precisely
1∏k

c=0 ep+λz (V )
Γ

(
−ρ−λ

z

)
.

Using stationary phase asymptotics, we obtain the I (s) defined previously.
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Quantum cohomology of blowups

4.1 Setup (Kostya, Mar 07)

Let X be a smooth projective variety, Z ⊂ X be a smooth closed subvariety of codimension r , and

ϕ : X̃ = BlZ X → X

be the blowup of X with center Z . Denote the exceptional divisor by

j := D ∼=P(NZ /X ) ,→ X̃ .

As a vector space, there is an isomorphicm

H∗(X ) = H∗(X )⊕
r−2⊕
i=0

H∗(Z ).

Our goal is to upgrade this to the level of quantum cohomology. However, this is very tricky because of
convergence issues, so it will be a corollary of a decomposition theorem for quantum D-modules.

Recall that the quantum D-module of X is given by

QDM(X ) = H∗(X )[z]�Q,τ�

with the Dubrovin connection
∇∂τ ,∇ξQ∂Q ,∇z∂z

and pairing

( f (z), g (z)) =
∫

X
f (−z)g (z).

4.1.1 Statement of the theorem The first problem we need to fix is that the cohomological and

Novikov variables of X , Z , X̃ are different.

Definition 4.1.1. The extended Novikov ring is defined as

C�Q� :=C�Q, x y−1,Qϕ∗d̃ y−[D]·d̃ �,

where d ∈ NEN(X ) and d̃ ∈ NEN(X̃ ).

42
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Introducing another formal variable q , we can embed the Novikov rings of Z , X , X̃ into CLq− 1
s M�Q�,

where s is either r −1 or 2(r −1) depending on the parity of r (we want s to be even):

• C�Q� embeds as Qd 7→Qd ;

• C�Q̃� embeds as Q̃ d̃ 7→Qϕ∗d̃ q−[D]·d̃ ;

• C�QZ � embeds as Qd
Z 7→Q ι∗d q− ρz ·d

r−1 , where ρZ = c1(NZ /X ).

Later, we will see that q = yS−1, where S−1 will be an equivariant variable for a C∗ action. Denote

QDM(X )La := QDM(X )⊗C�Q�C�Q�.

We can now state the main result.

Theorem 4.1.2. There exists a formal invertible change of variables

H∗(X̃ ) → H∗(X )⊕H∗(Z )⊕r−1

denoted by

τ̃→
(
τ(τ̃),

{
ζ j (τ̃)

}r−2
j=0

)
and an isomorphism

Ψ : QDMLa(X̃ )
∼=−→ τ∗ QDM(X )La ⊕

r−2⊕
j=0

ζ∗j QDM(Z )La

such that Ψ intertwines the quantum connections and the pairings.

4.1.2 The master space

Definition 4.1.3. Define the master space

W := BlZ×{0} X ×P1 ϕ̂−→ X ×P1

to be the degeneration to the normal cone of Z ⊂ X . This is endowed with a T =C×-action extending the
action

λ · (x,u) = (x,λu)

for (x,u) ∈ X ×P1. See Figure 4.1 for a picture of W .

The fixed locus of the C∗-action is given by

W C∗ = X ⊔ X̃ ⊔Z .

We can also see that

N 1
T (W ) = ϕ̂∗N 1

T (X ×P1)⊕Z[D̃]

∼= N 1(X )⊕Z3 ∋ (ω, t ,ε, a).

Note here that
N 1

T (X ×P1) = pr∗1 N 1(X )⊕Z[X ]⊕Zλ,

so a general class in N T
1 (W ) can be written as

ϕ̂∗ pr∗1 ω+ t [X ]−ε[D̂]+a ·λ.
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X̃

X = X × {∞}

D

D̂

Z

Z ×P1

t

ϵ

0

µ

Figure 4.1: W = BlZ×{0}(X ×P1) and a moment map µ : W →R

The dual notion is the group of 1-cycles, which is given by

N T
1 (W ) ∼= N1(X )⊕Z3 ∋ (d ,k,ℓ,m) =:β,

whose Novikov variable is
Qd xk yℓSm .

Note that
[X ] ·β= k, −[D̂] ·β= ℓ.

The effective curve classes are those which are equivariant, so they either lie in the fixed loci or are
1-dimensional orbits. There are classes C1 lying entirely inside X , classes C2, which are x ×P1 for x ∉ Z ,
classes C3 ⊂ Z ×P1, and classes C4 ⊂ D̂. The corresponding Novikov variables are Qd , x, x y−1, and y ,
respectively.

Lemma 4.1.4. The monoid of effective curve classes is generated by C1,C2,C3,C4,S.

Example 4.1.5. Let X = P1 ×P1 and Z = (0,0). Then a toric diagram for W with C1,C2,C3,C4 is given
in Figure 4.2.

The T -ample cone CT (W ) of W is the dual to the cone of effective curve classes. Then ω̂ ∈CT (W ) if
the set of ω̂-stable points under the C∗-action is nonempty. Then there is a decomposition

CT (W ) =C X ∪C X̃

into pieces where the GIT quotient
W �ω̂ T ∼= X or X̃ ,

respectively. The stable points are

• For ω̂ ∈CX , the stable points are X ×C∗;

• For ω̂ ∈C X̃ , the stable points are OX̃ (−D̂) \ X̂ .

The dual cones C∨
X and C∨

X̃
correspond to embeddings of the effective cones of X and X̃ , respectively,

into the effective cone of W as in Figure 4.3.
Recall the Kirwan map

κY : H∗
T (W )↠ H∗

T (W s ) = H∗(Y )

κ∗Y : NEN(Y ) → N T
1 (W ),



45

X̃

X

Z

D ⊂ D̂

C3 ⊂ Z ×P1

C1

C2

C4

Figure 4.2: Toric diagram of W for X =P1 ×P1 and Z = (0,0) with curve classes C1,C2,C3,C4.

NE(W )

yS−1 y−1S

xS−1

S

X̃

X

Figure 4.3: A schematic picture of the cones C∨
X and C∨

X̃
in N T

1 (W ).

where Y is either X or X̃ .

Now consider the equivariant quantum D-module

QDMT (W ) = H∗
T (W )[z]�Q,θ�

endowed with the quantum connection and the action of the shift operators

Ŝβ(θ), β ∈ N T
1 (W ) ∼= N1(X )⊕Z3,

which are defined by

Ŝβ(θ) =Qd xk yℓS(θ)m ,

where β is identified with (d ,k,ℓ,m) under the factorization N1(X )⊕Z3.

We can obtain the quantum D-modules for X and X̃ from the equivariant quantum D-module of W
by taking affine charts and completing. Here, we think of QDMT (W ) as a global Kähler moduli space.
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q

x y−1

yq−1

q−1

x y−1q

y

MX̃

MX

Figure 4.4: Global Kähler moduli space associated with QDMT (W ). See also Figure 4.3.

4.1.3 Fourier transforms To construct the map in Theorem 4.1.2, Iritani uses both the discrete
and continuous Fourier transforms. For f ∈HW , the discrete Fourier transform is given by

FY ( f ) := ∑
k∈Z

SkκY (S−k f ) ∈Hext
Y .

The continuous Fourier transform for Z ∈π0(W T ) is given by sending f ∈HW to the element of HZ given
by the formal asymptotic expansion of ∫

eλ log S
z ∆−1

Z f |Z dλ.

Remark 4.1.6. We can think of X and X̃ either as fixed components X , X̃ ∈ π0(W T ) (corresponding to
the continuous Fourier transform) or as GIT quotients W �ω̂ T , corresponding to the discrete Fourier
transform. These are in fact equal up to a factor.

Note that Z is not a GIT quotient of W , but is a fixed component, so there is a continuous Fourier
transform to W . In total, we have three morphisms

QDM(X̃ )

QDMT (W ) QDM(X )

QDM(Z ).

∼=

r−1

4.2 Fourier analysis for blowups (Sam, Mar 21)

In this section, denote the Chern roots of NZ /X by ε1, . . . ,εr .

4.2.1 Extended Kirwan maps We will begin by describing the Kirwan maps in coordinates. On

H 2
T (W ), we have

κX : ϕ̂∗ pr∗1 α 7→α

[X ] 7→ 0

− [D̂] 7→ 0

λ 7→ 0
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for Y = X

κX̃ : ϕ̂∗ pr∗1 α 7→ϕ∗α
[X ] 7→ 0

− [D̂] 7→ −[D]

λ 7→ [D]

for Y = X̃ . The dual Kirwan maps on N1(Y ) are given by

κ∗X : N1(X ) → N T
1 (W ) ∼= N1(X )⊕Zλ∨⊕Z[X ]∨⊕Z(−[D̂])∨

d 7→ (d ,0,0,0)

κ∗
X̃

: N1(X̃ ) → N T
1 (W ) ∼= N1(X )⊕Zλ∨⊕Z[X ]∨⊕Z(−[D̂])∨

d̃ 7→ (ϕ∗d̃ ,0,−[D] · d̃ , [D] · d̃)

when Y = X and Y = X̃ , respectively. It may appear that we don’t see the equivariant parameters in the
dual Kirwan map, but we will fix this.

Definition 4.2.1. The extended Givental space is

Hext
Y := H∗(Y )[z±]�C∨

Y ,N �,

which is a base change of HY .

The shift operators on Hrat
W = H∗

loc(W )[Z±]�Q� are now given by

Sι∗( fX , fZ , f X̃ ) = (S f |X ,S f |Z ,S f |X̃ ),

where

Sk fX = xk
∏0

c=−∞(−λ+ cz)∏k
c=−∞(−λ+ cz)

e−kz∂λ fX

Sk fZ = yk

∏0
c=−∞

∏r
i=1(εi −λ+ cz)

∏0
c=−∞(λ+ cz)∏k

c=−∞
∏r

i=1(εi −λ+ cz)
∏k

c=−∞(λ+ cz)
e−kz∂λ fX

Sk f X̃ =
∏0

c=−∞([D]+λ+ cz)∏k
c=−∞([D]+λ+ cz)

e−kz∂λ f X̃ .

4.2.2 Discrete Fourier transform We are now able to make the following definition.

Definition 4.2.2. The discrete Fourier transform is

FY : Hrat
W [Q−1] 99KHext

Y [Q−1],

defined by
FY ( f ) = ∑

k∈Z
SkκY (S−k f ).

Because we invert the equivariant parameters, this may not necessarily be well-defined. However, we
do have the following result.

Proposition 4.2.3. The discrete Fourier transform FY is well-defined on tangent spaces to LW .
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To prove this result, we need various ingredients:

1. Some regularity at λ= 0, which follows from properness;

2. Not needing arbitrarily high powers of Q−1 (landing in the target).

As in the case of projective bundles, the shift operators satisfy various nice properties. For example,
because

[λ,Sk ] = zkS,

we obtain the formulae

FY (Sℓ f ) = SℓFY ( f )

FY (ξ f ) = (zξQ ∂Q +κY (ξ))FY ( f )

for any ξ ∈ H T
2 (W ).

4.2.3 Continuous Fourier transform Let F ∈ {
X , X̃ , Z

}
be a fixed component in W T . Denote

the Chern roots of NF /W by ρ1, . . . ,ρn . Now define

GF :=∏
ρ

1p−2πz
(−z)−

ρ
z Γ

(−ρ
z

)
.

More specifically, for each individual fixed component, we have

GX = 1

−2πz
(−z)

λ
z Γ

(
λ

z

)
GZ = 1

p−2πz
r+1 (−z)−

λ
z Γ

(−λ
z

) r∏
i=1

(−z)
λ−εi

z Γ

(
λ−εi

z

)
G X̃ = 1p−2πz

(z)
[D]−λ

z Γ

(
[D]−λ

z

)
.

This GF actually intertwines all Ŝβ, which are defined for all

β ∈ N T
1 (W ) → H2(BT ) ∋β.

Given F , we have
σk (F ) ∈ N1(Ek ) → N T

1 (W ),

which are obtained by section classes on Ek as in Figure 4.5. Now GF satisfies the equation

GF (Ŝβ f )F = (Qβ+σF (−β)e−zβ∂λ )GF f ,

which follows from the same argument as in the projective bundle case.
We are now able to describe the continuous Fourier transform formally as an integral which has the

same properties as the discrete one. Define

FT∞ : f 7→
∫

eλ log
S f
z GF fF dλ,

where SF =σ1(F ). Formally, we see that

FT∞(Ŝβ f ) =
∫

eλ log
SF
z Qβ+σ1(−β)ezβ log

SF
z GF fF dλ

= ŜβFT∞( f ),
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σk (Z )

σk (X̃ )

σk (X )

Figure 4.5: Toric diagram of Ek when X , Z are as in Figure 4.2.

which suggests that this is the right object to study the asymptotics of. Recall the Stirling approximation

logGF ≍∑
ρi

−ρi logρi −ρi

z
− 1

2
logρi −

∞∑
n=2

Bn

n(n −1)

(
z

ρi

)n−1

,

= ∑
α∈wts(NF /W )

(
−rα

α logα−α
z

− log∆α

)
,

where we have the decomposition

NF /W =⊕
α
Nα,

ρα = c1(Nα) is the first Chern class, rα = rkNα, and ∆α is the quantum Riemann-Roch operator. We now
obtain

FT∞ ≍
∫

e
λ logSF −∑

α rα(α logα−α)
z

∏
α
∆−1
α fF dλ.

We have a critical point

λ0 = S
1
c
F

∏
α

w
−rα

wα
cF

α ,

where

cF =


−1 F = X

1 F = X̃

−(r −1) F = Z .

Also, for j = 0, . . . , |cF |−1, we have critical points

λ j = e
2π

p−1 j
cF λ0.

Definition 4.2.4. The continuous Fourier transform is given by the asymptotic expansion∫
eλ log

SF
z GF fF dλ≍p

2πzer
λ j
z FF, j ( f ),
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where we take the asymptotics as z → 0 and substitute

λ=λ j exp

 u√
cλ j


and expand in u-powers as u → 0.

Via taking a formal asymptotic analysis of what we did before, we have

Proposition 4.2.5.

1. The continuous Fourier transform intertwines the shift operators as

FF, j (Ŝβ f ) = ŜβFF, j ( f );

2. The continuous Fourier transform intertwines the equivariant parameter via

FF, j (λ f ) = (zS +λ j )FF, j ( f ).

3. There is a similar property for the Euler vector field.

Now let
Ĵ tw

F, j =FF, j (ι∗ J tw
F (t )).

Proposition 4.2.6. There exists

τ(t ) ∈ H∗(F )�S
− 1

c
F ,QF S− ρF

c , tS
∗
c

F �
and

v(t ) ∈ H∗(F )[z]�S
− 1

c
F ,QF S− ρF

c , tS
∗
c

F �
such that

Ĵ tw
F, j = S

− ρF
cz

F MF (τ(t )QF S
− ρF

cz
F )v.

In other words, we can recover QDMF from FF, j after a change of basis and an étale cover of the Kähler
moduli space.

Proposition 4.2.7. The discrete and continuous Fourier transforms agree for Y ∈ {
X , X̃

}
. In other words, we

have

eS
1

cY
Y FY ,0( f ) = c−1

Y S
− ρY

cY z

Y FY ( f ).

4.3 Decomposition (Sam, Mar 28)

4.3.1 A general picture We begin by stating some general conjectures that the blowup result fits
into.

Conjecture 4.3.1 (Dubrovin). Let X be smooth and projective. If there exists a semiorthogonal decomposi-
tion

Db(X ) = 〈Db(X1), . . . ,Db(Xn)〉,
then there is a decomposition

QDM(X ) =⊕
i

QDM(Xi ).
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More specifically, if X admits a full exceptional collection, QDM(X ) can be extended to Oan�z�. In addition
the Gram matrix of the pairing χ(−,−) on K (X ) is recovered as the Stokes matrix

S =Φarg z∈(−π,0+ε)Φ
−1
arg z∈(0,π)

of flat sections of the irregular connection

z ∂z + 1

z
EX ⋆τ+µX .

On the level of derived categories, we have a decomposition

Db(X̃ ) = 〈Db(X ),Db(Z )0, . . . ,Db(Z )r−2〉,

so we expect a decomposition
QDM(X̃ ) = ⊕

µ∈Spec(E X̃⋆τ)
QDM(X̃ )µ.

In the limit Qτ→ 0, we obtain QDM(X ) at µ= 0 and r −1 copies of QDM(Z ) at roots of unity. The shift
away from µ= 0 will correspond to the shift of saddle points in the Fourier transform.

In the equivariant setting, we have semiorthogonal decompositions

Db
T (W ) = 〈Db(W �θ T ), . . .〉.

We then expect

Conjecture 4.3.2. Setting W �θ T =: Y , then

I :=∑
β

κY (Ŝ−β JW (τ))Ŝβ

lies on the Lagrangian cone of Y .

4.3.2 Decomposition of the quantum D-module First, we would like to give a more precise
formulae for the quantities appearing in Proposition 4.2.6. First, τ is given by

τ|Q=0 = hF, j +·· · ,

where

hF, j = 2πi j
c1(NF /W )

CF
+∑

α

(
rkα wα

c1(NF /W )

cF
− c1(Nα

F /W )

)
.

Then we have
v |Q=0 = qF, j (1+·· · ),

where

qF, j =
√

c−1
F λ j

∏
α

(wαλ j )
rkα

2

for λ j = e
1πi j
cF λ0.

For X , X̃ , the continuous Fourier transform FF, j intertwines Sβ and λ with ξS ∂
∂S and E T

W ⋆τ+µW with

E X̃ ⋆τ+µX + 1
2 . On the other hand, for F = Z , the critical points are different, so there is a shift in λ. For

example, we have

FF, j (λ f ) =
(

zS
∂

∂S
+λ j

)
FF, f ( f )
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because the integral satisfies the formula

zS
∂

∂S

∫
e log

SF
z (λ−λ j ) f G dλ=

∫
(λ−λ j )e log

SF
z (λ−λ j ) f G dλ.

A similar argument yields

FF, j

((
z ∂z +µZ + 1

2

)
f

)
= (z ∂z + z−1(c1(F )+ cFλ j +µF ))FF, j ( f ).

We next need a space on which to compare QDM(X ), QDM(X̃ ), and QDMT (W ) via the dual Kirwan
maps. Define

QDM(Y )ext := QDM(Y )⊗C�C∨
Y ,N�

and extend ∇ trivially on C∨
Y ,N. As in Figure 4.4, we have MX̃ and MX , but we also need

M0 = SpfC[z]�NET
N(W )��θ�.

The three charts can be compared on the chart

U= SpfC[z]�NET
N(W )��θ�Lq− 1

s M.

The comparison of the effective cones of curves is given in Figure 4.3.
The comparison also requires a completion and localization of QDMT (W ). In order to compare with

QDM(X̃ ) we need the action of extended shift operators Sβ. Define

QDMT (W )X̃ :=C[C∨
X̃ ,N

] ·QDMT (W ) ⊂ QDMT (W )(Q−1).

The completion is given by �QDMT (W )X̃ = QDMT (W )�S, yS−1�.

Now let

τ(θ) = xS +·· ·
v(θ) = 1+·· ·
τ̃(θ) = S +·· ·
ṽ(θ) = 1+·· ·

such that

FX (Jw (θ)) = MX (τ(θ))v(θ)

FX̃ (Jw (θ)) = MX̃ (τ̃(θ))ṽ(θ).

By taking derivatives ∂θi k , the Fourier transform is lifted to a map of quantum D-modules.

Theorem 4.3.3. There is an isomorphism

F̂TX̃ : �QDMT (W )X̃ → τ̃∗ QDM(X̃ )ext

and a projection
F̂TX : �QDMT (W )X̃ → τ∗ QDM(X )ext.

They intertwine the quantum connection and the pairing up to a 1
2 shift in µ.
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These extend to the completions, but we will not prove this here.
For F = Z and any j , there are coordinates

σ j (θ) = hZ , j +·· ·
u j j (θ)=qZ , j +·· ·

such that

q
c1(NZ /W )

(r−1)z FZ , j (Jw (θ)) = M(σ j (θ))u j (θ).

Theorem 4.3.4. There are projections

F̂TZ , j : �QDMT (W )X̃ →σ∗
j QDM(Z )ext,loc

which intertwine λ with z∇S∂S +λ j and z∇ξQ∂Z with z∇Ŝ∂Ŝ
+ ι∗ptξ|λ=λi . Here, QDM(Z )ext,loc is defined by

the extension

C[z]�QZ ,θ�→C[z]�q− 1
s ��Q,θ� Qd

Z 7→Q(ιZ )∗d q− c1(NZ /W )·d
r−1 .

We will now shift our variables in order to make our comparison. Let

ς j (θ) =σ j (θ)− (r −1)λ j .

Then
F̂TςZ , j : �QDMT (W ) → ς∗j QDM(Z )ext,loc

intertwines the quantum connections up to a 1
2 shift in µZ . Combining the Fourier transforms for the

different fixed loci, we obtain

Theorem 4.3.5 (Main theorem). The diagram

τ∗ QDM(X )ext

τ̃∗ QDM(X̃ )ext �QDMT (W )X̃

⊕
j ς

∗
j QDM(Z )ext,loc

F̂T−1
X

F̂TX

⊕
j F̂TZ , j

induces an isomorphism

τ̃∗ QDM(X̃ )ext ≃ τ∗ QDM(X )ext ⊕⊕
j
ς∗j QDM(Z )ext,loc

over U that intertwines the quantum connections and Poincaré pairings.
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