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Spectral Sequences

Our goal in this chapter will be to compute the homotopy groups of spheres, but we are not
algebraic topologists so we don’t actually care about that. What we know from the basic theory is
that πi(Sn) = 0 if i < n and πn(Sn) = Z, and this isomorphism is given by the degree. We also
know that π3(S

2) = Z and is generated by the Hopf fibration S1 ↪→ S3 → S2. Note that this map
is the attaching map of the 4-cell of CP2.

There is an analogous decomposition HP2 = pt ∪D4 ∪D8. Then we obtain a fibration
f : S7 → S4, which is an S3-fibration. Using the long exact sequence of the fibration, we see that
π7(S

4) ⊇ Z.
Next, we may consider OP2, the octonionic projective plane. This has a cell decomposition

pt∪D8 ∪D16 and from this we obtain a fibration S7 ↪→ S15 → S8 and compute that π15(S
8) ⊇ Z.

We should note, however, that OP2 is not the set of lines in O3 because the octonions do not form
an associative algebra. There is enough associativity to define some sort of OP2 but not OPn for
n > 3. In fact, we will prove that no space with the expected cohomology ring exists.

More generally, we can study f : S2n−1 → Sn as follows: Consider the mapping cone Sn ∪f
D2n =: Cf. Then the cohomology is

Hi(Cf) =

{
Z i = 0,n, 2n
0 otherwise

.

Then choose generators α ∈ Hn,β ∈ H2n. We then have α2 = H(f)β ∈ H2n for some integer H(f),
called the Hopf invariant.

Example 1.0.1. The attaching maps of CP2, HP2, OP2 all have H(f) = 1. This implies that
H∗ = Z[α]/(α3).

We know that if f,g are homotopic, then H(f) = H(g) because the mapping cones are homotopy
equivalent. Then we obtain a homomorphism H : π2n−1(S

n)→ Z. Note that when n is odd, we
have α2 = −α2 by graded commutativity, and so H(f) = 0.

Example 1.0.2. If n = 2k is even, there exists f : S4k−1 → S2k with H(f) = 2.

Now given a pointed space (X, e) define J2(X) = X× X/(x, e) ∼ (e, x). This is somewhere
between the product and the smash product, and so J2(S2k) is a CW complex with a single cell in
dimensions 0, 2k, 4k.

Exercise 1.0.3. The attaching map of the 4k-cell has H(f) = 2.
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Corollary 1.0.4. π4k−1(S
2k) admits a Z-summand. This is because H surjects onto either 2Z or Z, and

so it splits.

We have the following results:

Theorem 1.0.5 (Serre). πi(Sn) is a finitely generated abelian group. It has rank 1 if i = n or i = 2n− 1
and n is even.

Theorem 1.0.6 (Adams). If [f] ∈ π2n−1(S
n) with H(f) = 1, then n = 2, 4, 8.

Remark 1.0.7. This is related to the following. Suppose Rn admits the structure of a division
algebra. This is a bilinear map ∗ : Rn ⊗Rn → Rn that is invertible for a 6= 0. Then n = 1, 2, 4, 8.
We will prove this result using K-theory.

1.1 The Simplest Case

Here, we will consider πn+1(S
n) for n > 3. By the Freudenthal suspension theorem, we have

maps

π3(S
2)
Σ−→ π4(S

3)
Σ−→
∼
π5(S

4)→ · · ·

Therefore the group we need to compute is π4(S
3). The key strategy is to exploit the interaction

between homotopy and homology. Here, we will consider the Hurewicz map

h : πn(X)→ Hn(X) [f] 7→ f∗[S
n].

Theorem 1.1.1 (Hurewicz). Suppose n > 2 and X is (n− 1)-connected. Then H̃0(X) = H1(X) = · · · =
Hn−1(X) = 0 and h : πn(X) ' Hn(X).

Remarks 1.1.2. When n = 1, H1(X) is the abelianization of π1(X). Also, there is a relative version
of the Hurewicz theorem.

Sketch of Proof. We can assume X is a CW complex with a single 0-cell and no cells in dimension
1, . . . ,n− 1. Then we can replace X with Xn+1, so we can write

X =

(∨
α

Snα

)
∪βDn+1

β .

By homotopy excision, we have

πn(X) = coker(d : πn+1(X,Xn)→ πn(X
n))

and this is exactly Cn+1(X)→ Cn(X)→ 0.

Our strategy to compute π4(S
3) will be to construct a space whose homology is π4(S

3).
Recall that π3(K(Z, 3)) = Z by definition, and so consider f : S3 → K(Z, 3) be a generator. Then
f∗ : π3(S

3)
∼−→ π3(K(Z, 3)) is an isomorphism. Now we can turn f into a fibration F ↪→ S3 → K(Z, 3).

Considering the long exact sequence of the fibration, we have

0→ π4(F)→ π4(S
3)→ 0→ π3(F)→ π3(S

3)→ π3(K(Z, 3))→ · · ·

and therefore π0(F) = π1(F) = π2(F) = π3(F) = 0. We also have πn(F) ∼= πn(S
3) for n > 4. In

particular, we have π4(S
3) = π4(F) = H4(F).If we can understand F in some reasonable way, then

we will be done.
If we turn F ↪→ S3 into a fibration, then the homotopy fiber is now a K(Z, 2) = CP∞. Now we

have a fibration and we know the homology of both S3 and CP∞, so the question is to compute
H4 from the information we have.
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Question 1.1.3. Given F ↪→ E→ B a fibration, is there a relationship between H∗(B),H∗(E),H∗(F)?

Recall that in the case when E ∼= F×B this relation is given by the Künneth formula. Here, we
see that C∗(E) = C∗(F)⊗C∗(B) as chain complexes, and so we reduce the problem to homological
algebra. This gives us

Theorem 1.1.4. Let R be a principal ideal domain. Then there is a natural short exact sequence

0→
⊕

Hi(F,R)⊗Hn−i(B,R)→ Hn(F×B,R)→
⊕

Tor1
R(Hi(F,R),Hn−1−i(B,R))→ 0

and this sequence splits (but not naturally).

Example 1.1.5. We can compute that H∗(S1 × S2) = Z in dimensions 0, 1, 2, 3.

However, we note that the Kunneth theorem does not hold for fibrations in general. To see
this, consider the Hopf fibration.

Example 1.1.6. Consider the fibration K(Z,n− 1) ↪→ ∗ → K(Z,n). Both the base and fiber have
nontrivial homology, but clearly the total space is contractible, so it has trivial homology. In both
examples, H∗(E) is smaller than what we would get from Künneth.

1.2 Spectral Sequences

Definition 1.2.1. A spectral sequence is a sequence (Er,dr), where Er is an R-module and dr : Er →
Er is a differential. In addition, we require that Er+1 = H∗(Er,dr).

Remark 1.2.2. Note that (Er,dr) determines Er+1, but not dr+1 in general.

Now assume that dr = 0 for r� 0 so that Er = Er+1 = · · · =: E∞.

Definition 1.2.3. We say that (Er,dr)⇒ G, or (Er,dr) converges to G, if G admits a filtration

0 = G−1 ⊂ G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

such that
⊕
Gi/Gi−1 ∼= E∞.

Remark 1.2.4. This says that G is recovered by (Er,dr) up to extension problems.

Example 1.2.5. Consider a short exact sequence 0→ A∗ → C∗ → C∗/A∗ → 0 of chain complexes.
Then we will see that there is a spectral sequence with E1 = H∗(A)⊕H∗(C/A) and (Er,dr) ⇒
H∗(C).

First, consider the long exact sequence in homology. If we consider the boundary homomor-
phism δi, we obtain a long exact sequence

0→ coker δi+1 → Hi(C)→ ker δi → 0.

Now define E1 = H∗(A)⊕H∗(C/A) with d1 =
⊕
δi. Then we have

H∗(E
1,d1) =

(⊕
ker δi

)
⊕
(⊕

coker δi
)
=: E2,

as desired. Then we let d2 = 0.

This tells us that if H∗(A) = H∗(C/A) = 0, then H∗(C) = 0. Also, if H∗(C) = 0, then
H∗(A) ∼= H∗(C/A) with a shift.
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Theorem 1.2.6 (Serre). Let F ↪→ E→ B be a fibration and let π1(B) = 1. Then there is a spectral sequence
(Er,dr) such that

• E2 ∼= H∗(B;H∗(F));

• (Er,dr)⇒ H∗(E).

Note here that we need to define what it means to converge in this setting. Also, note that E3

is smaller than E2, so this formalizes the notion that H∗(E) is smaller than what we naively expect.

Remark 1.2.7. We actually do not know what d2 is, so it is impossible to compute the homology in
general.

Fortunately, there is more structure:

• Er∗,∗ is bigraded.

• dr has bidegree (−r, r− 1).

• E2
p,q = Hp(B;Hq(F)).

• Erp,q = E∞p,q for r� 0 depending on p,q.

• Hn(E) has a filtration with associated graded
⊕
E∞i,n−i.

Example 1.2.8. Consider the example S1 ↪→ ∗ → CP∞. Then we know that E2
p,q = Hp(B,Hq(S1))

and therefore the spectral sequence is

0 1 2 3 4

0

1

H0(B) H1(B) H2(B) H3(B) . . .

H0(B) H1(B) H2(B) H3(B) . . .

This gives us δi : H2+i(B) → Hi(B), and so d3 has degree (−3, 2) and thus it has to be zero. By
degree reasons, we see that E4 = E3 and d4 = 0, so E∞ = E3. Then, the total space is a point, and
so writing the E3-page

0 1 2 3 4

0

1 coker δ0 coker δ1 coker δ2

H0(B) H1(B) ker δ0 ker δ1 ker δ2

we see that H0(B) = Z,H1(B) = 0 and that ker δi = coker δi = 0. This recovers the usual
computation of the homology of CP∞.

Example 1.2.9. We want to compute H∗(ΩS2). Here, we will use the fiber sequenceΩS2 ↪→ ∗ → S2.
Here, we know that E2

p,q = Hp(S
2,Hq(F)), so the E2-page looks like
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0 1 2

0

1

2

3

H0(F)

H1(F)

H2(F)

H3(F)

H0(F)

H1(F)

H2(F)

H3(F)

g0g0

g1g1

g2g2

Then the E3-page looks like

0 1 2

0

1

2

3

H0(F)

cokerg0

cokerg1

cokerg2

kerg0

kerg1

kerg2

kerg3

and the differential has degree (−3, 2), so d3 = 0. This implies that E∞ = E3, and so the associated
graded pieces are Z, 0, 0, 0. We see that H0(F) = Z and each gi is an isomorphism. This tells us
that Hi(ΩS2) ∼= Z for all i.

Example 1.2.10. We can enhance this example to ΩSn ↪→ ∗ → Sn. In this case, the first possible
nontrivial differential is dn, which has degree (−n,n− 1). This gives us En+1 = E∞ for degree
reasons, so we can compute

Hi(ΩS
n) =

{
Z (n− 1) | i
0 otherwise.

because δi : Hi(F)→ Hi+n−1(F) is an isomorphism.

Recall that our goal was to study CP∞ ↪→ F→ S3. However, we cannot compute this yet, so
we will need to introduce even more structure. To do this, we will need to do some homological
algebra.

Considered a filtered chain complex, which is an abelian group C with a map d : C → C
such that d2 = 0. To this, we attach a filtration 0 = F−1C ⊆ F0C ⊆ · · · ⊆ FnC = C such that
d(FiC) ⊆ FiC.

Remark 1.2.11. (FiC,D) is a subcomplex of C.

Now if X is a topological space with filtration X−1 = ∅ ⊂ X0 ⊂ · · · ⊂ Xn = X. Then if C∗(X),
we can choose FiC = C∗(Xi), and this is a filtration.

Given (C,d) and a filtration, we can associate two objects:
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1. Gr∗C =
⊕
FiC/Fi−1C, the associated graded complex. Then we may consider the homology

of this complex, which is a graded object.

2. Given a subcomplex (FiC,d) ↪→ (C,d), we have a map H(FiC,d)→ H(C,d). The image of
this is FiH(C,d), so we get a filtration on the homology H(C). So then we obtain a graded

Gr∗H(C,d) =
⊕

FiH(C)/Fi−1H(C).

Now we want to consider therelationship between the two. Note that the first one is bigger,
because x ∈ GriC is a cycle if dx ∈ Fi−1C, while x ∈ C is a cycle if dx = 0.

Theorem 1.2.12 (Leray). There exists a spectral sequence (Er∗,dr) such that

• E1
∗ ∼= H∗(Gr∗C,d0).

• The spectral sequence converges to H(C), or more precisely, E∞∗ ∼= Gr∗H(C).

Proof. Consider the group

Erp =
FpC∩ d−1(Fp−rC)

(Fp−1C∩ d−1Fp−rC) + (FpC∩ d
(
Fq+r−1C

)
)

.

Notice that

E0
p =

FpC

Fp−1C+ d(Fp−1C)
=

FpC

Fp−1C

E1
p =

FpC∩ d−1Fp−1C

Fp−1C+ d(FpC)
= Hp(Gr∗C, d0)

E∞p =
FpC∩ ker d

(Fp−1 ∩ kerd) + (FpC∩ Imd)
=

FpH(C)

Fp−1H(C)
,

so all the groups are as expected. For the differential, we define dr : Er∗ → E∗r and in fact dr : Erp →
Erp−r and thus has degree −r. Choose α ∈ Erp and choose a ∈ FpC∩ d−1(Fp−rC) a representative.
Then d da = 0 implies that da ∈ d−1(0) ⊂ d−1(Fp−2rC) and therefore da ∈ Fp−rC∩d−1(Fp−2rC).
Therefore da defines an element in Erp−r, so we set drα = [da] ∈ Erp−r.

The things that need to be checked are that this is well-defined, (dr)2 = 0, and thatH∗(Er∗, dr) ∼=
Er+1
∗ canonically. All of this is painful homological algebra and is omitted.

However, we will need something even more painful. Now we will considered a filter graded
chain complex (C∗, d), where d has degree −1. Now for a filtration, we can consider the bigraded

Gr∗,∗ =
⊕
p,m

FpCm

Fp−1Cm
.

Also, we note that Hm(C) is naturally filtered with FpHm(C) = Im(Hm(FpC)→ Hm(C)).

Theorem 1.2.13 (Leray). There is a spectral sequence (Er∗,∗, dr) such that

• E1
∗,∗ ∼= H∗,∗(GrC).

• The spectral sequence converges to H(C), where

E∞p,q =
FpHp+q(C)

Fp−1Hp+q(C)
.
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Proof. We write

Erp,q =
FpCp+q ∩ d−1(Fp−rCp+q−1)

[Fp−1Cp+q ∩ d−1(Fp−qCp+q−1)] + [FpCp+q ∩ d
(
Fp+r−1Cp+q+1

)
]
.

The differential has degree (−r, r− 1). Note that it decreases the filtration by r and the total degree
by 1. For α ∈ Erp,q, choose a representative a ∈ FpCp+q with da ∈ Fp−rCp+q−1. Then d2a = 0
and therefore da ∈ d−1(0) ⊆ d−1(Fp−2rCp+q−1), so we set drα = [da] ∈ Erp−r,q+r−1.

Returning to topology, consider a filtration ∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xn = X, which givs a
filtration on C∗(X). This now defines a spectral sequence by setting FpCp+q(X) = Cp+q(Xp). The
E0 page of this is simply

E0
p,q =

FpCp+q

Fp−1Cp+q
=

Cp+q(Xp)

Cp+q(Xp−1)
= Cp+q(Xp,Xp−1)

and d0
p,q is ∂ : Cp+1 → Cp+q−1.

The E1-page of the spectral sequence is

E1
p,q = Hp+q(Xp,Xp−1)

and d1 : Hp+1(Xp,Xp−1)→ Hp+q−1(Xp−1,Xp−2) is the connecting homomorphism for the triple
(Xp,Xp−1,Xp−2).

The E∞-page of the spectral sequence is

E∞p,q =
Im(Hp+q(Xp)→ Hp+q(X))

Im(Hp+1(Xp−1)→ Hp+1(X))
,

which is the associated graded of Hp+q(X) for the filtration Xp ↪→ X.

Example 1.2.14. Consider the cellular homology of X. Set Xp = Xp, the p-skeleton. Then we note
that E1

p,q is the homology Hp+1(Xp,Xp−1), and now if Cp(X) is the cellular complex, the E2-page
is precisely the cellular homology of X and is the same as the E∞-page. This proves that cellular
homology is the same as singular homology.

Remark 1.2.15. This discussion works for infinite filtrations as long as X =
⋃
Xn and X has the

weak topology induced by the filtration.

If you are interested in working through the pain1 of spectral sequences, the book A User’s
Guide to Spectral Sequences is a good resource. In this course, we will not open this Pandora’s box.

Proof of Serre Spectral Sequence. Consider F ↪→ E
π−→ B and assume π1(B) = 1. For simplicity,

assume that B is a CW complex and π is a fiber bundle. Now B has a filtration by skeleta

ϕ = B−1 ⊆ B0 ⊆ · · ·

and therefore E has a filtration induced by pulling back π. Therefore there is a spectral sequence
converging to H∗(E) with

E1
p,q = Hp+q(π

−1(Bp),π−1(Bp−1)).

1Francesco’s words
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We want to compute the E2-page, so by excision we have

E1
p,q =

⊕
p-cells

Hp+q(π
−1(ei),π−1(∂ei)).

By contractibility of ei, so

Hp+q(π
−1(ei),π−1(∂ei)) ∼= Hp+q(D

p × F,Sp−1 × F) = Hp(F).

Unfortunately, this identification is not canonical, which is why we need the assumption that
B is simply-connected. In general, for a path γ, transport (homotopy lifting) gives us a map
γ∗ : H∗(F0) ' H∗(F1) depending only on the relative homotopy class. For example, if we consider

S1 2−→ S1, then the two paths between p0,p1 give different identifications. Therefore, we have a
canonical identification

E1
p,q =

⊕
p-cells

Hq(F) = Cp(B,Hq(F)).

Finally, we note that d1
p,q : E

1
p,q → E1

p−1,q is exactly the cellular boundary map ∂× 1Hq(F), so
E2
p,q = Hp(B;Hq(F)), as desired.

Remark 1.2.16. The theorem holds provided the action of π1(B) on H∗(F) is trivial, which means
that the fibration is homologically simple.

Example 1.2.17. Consider a sphere bundle Sn ↪→ E→ B. This is homologically simple if and only
if it is orientable.

Even more generally, we need to use homology with local coefficients. Here, we will take

E1
p,q =

⊕
p-cells

Hq(Fi)

and d1
p,q will have components given by composing δ with transport. An alternative interpretation

is to consider the universal cover B̃ → B. Now π1(B) acts on C∗(B̃) and on H∗(F), so we obtain
modules over the group ring Z[π1(B)]. Therefore we have

E1
∗ = C∗(B̃)⊗Z[π1(B)]

H∗(F).

Now we will use groups on the edges of each page to compute H∗(F)→ H∗(E).H∗(E)→ H∗(B).
Degree reasons tell us that Hn(F) = E2

0,n � E3
0,n � · · ·� E∞0,n ⊆ Hn(E).

Proposition 1.2.18. E∞0,n ⊆ Hn(E) is the image of Hn(F)→ Hn(E).

Similarly, we can consider the groups H0(B), . . . ,Hn(B) on the bottom of the E2 page. This
tells us that Hn(B) = E2

n,0 ⊇ · · · ⊇ E
∞
n,0, which is a quotient of Hn(E).

Proposition 1.2.19. E∞n,0 ⊆ Hn(B) is the image of Hn(E)→ Hn(B).

Returning to algebra, suppose we have a chain map f∗ : (C∗,d) → (C̃∗, d̃) that preserves
filtration. This gives a morphism of spectral sequences fr∗,∗ : (Er∗,∗,dr)→ (Ẽr∗,∗, d̃r) such that f1, f∞
are the maps on the associated graded objects and fr is a chain map such that the induced map
on homology is fr+1.

Example 1.2.20. An example here is filtered spaces with f : X→ X̃ such that f(Xp) ⊆ X̃p.
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Note that the propositions follow by looking at the maps on spectral sequences induced by

F E E B

∗ B B B.

π

π

π

Now consider the map dm : Emm,0 → Em0,m−1. Note that Em0,m−1 is a quotient of Hm−1(F) and
Emm,0 is a subgroup of Hm(B), so we have dm : Hm(B) 99K Hm−1(F), which is the analogue of

πm(B)
∂x−−→ πm−1(F).

Definition 1.2.21. We call this the transgression map.

Proposition 1.2.22. The transgression is given by Hm(B) = Hm(B, pt) 99K Hm(E, F)→ Hm−1(F).

Example 1.2.23. Let Xn be a closed smooth oriented manifold. Then there is a fibration Sn−1 ↪→
SX → X, where SX is the unit sphere bundle. This is homologically simple, and then we have
dn : Hn(X)→ Hn−1(S

n−1), which is multiplication by χ(X).

Remark 1.2.24. We can prove this result if we know the relationship between χ and zeroes of vector
fields.

Example 1.2.25. Consider the fibration ΩX → ∗ → X. If X is (n − 1)-connected, then ΩX is
(n− 2)-connected. Then Hn(X),Hn−1(ΩX) are the first possibly nonzero homology groups. Now
we consider the spectral sequence

0 1 2 3 4

0

1

2

3

Z

Hn−1(ΩX)

Hn(X)

and thus the map dr = τ : Hr(X)→ Hr−1(ΩX) is an isomorphism for r 6 2n− 2.

Remark 1.2.26. We can interpret this very explicitly as π : ΣΩX→ X, and this is the inverse of

Hr−1(ΩX)
Σ−→ Hr(ΣΩX)

π∗−−→ Hr(X).

1.3 Spectral Sequences in Cohomology

Theorem 1.3.1. Let F ↪→ E → B and π(B) = 1. Then there exists (E∗,∗r ,dr) ⇒ H∗(E) and Ep,q
2 =

Hp(B,Hq(F)) and dr has degree (r, 1 − r). Furthermore,

1. There is a multiplication Ep,q
r ⊗ Ep

′,q ′
r → E

p+p ′,q+q ′
r
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2. dr : E∗,∗r → E∗,∗r is a derivation, which means

dr(α ·β) = dr(α) ·β+ (−1)p+qα · dr(β).

3. The multiplication on E∗,∗r+1 is induced by the one on E∗,∗r .

4. The multiplication on E∞ is compatible with the one on H∗(E). This means that E∞ is the associated
graded of the cohomology.

Example 1.3.2. Consider CP∞ ↪→ F→ S3. We want to compute H4(F), which will compute π4(S
3).

Now the E2-page of the spectral sequence for cohomology looks like

0 1 2 3

0

1

2

3

4

5

6 Zx3

Zx2

Zx

Z1 Zy

Zxy

Zx2y

Zx3y

and now d3(x) = y because H2(F) = H3(F) = 0. But then

d3(x
2) = (d3x)x+ x(d3x) = yx+ xy = 2xy, d3(x

m) = mxm−1y.

This tells us that the E4-page is

0 1 2 3

0

1

2

3

4

Z

Z2

Z3
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and therefore H1(F) = · · · = H4(F) = 0 and H5(F) = Z2. By the universal coefficients theorem, we
see that H4(F) = Z2.

Corollary 1.3.3. For n > 3, we have πn+1(S
n) = Z/2Z and the group is generated by the suspension of

the Hopf map.

Theorem 1.3.4. H∗(SU(n), Z) ∼=
∧

Z[x3, . . . , x2n−1] and |xi| = i.

Proof. Let n = 2. We know that SU(2) ∼= S3. Now for general n, consider the fiber bundle
SU(n− 1) ↪→ SU(n) → S2n−1. Now assume that H∗(SU(n− 1)) =

∧
Z[x3, . . . , x2n−3]. Then the

E2n−1-page of the spectral sequence is

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6 H∗(SU(n− 1))

H∗(SU(n− 1))

and therefore we see that d2n−1(x3) = · · · = d2n−1(x2n−3) = 0 by grading reasons. In particular,
we see that d2n−1(x3x5) = 0, and in general we see that d2n−1 = 0. Therefore we see that
E∞ = H∗(SU(n− 1))⊗ S∗(S2n−1) =

∧
Z[x3, . . . , x2n−1].

To conclude, we know that E∞ = GrH∗(E), so for some xj ∈ E∞, we can choose a lift in H∗(E).
Because H∗ is torsion free and for degree reasons, the lifts satisfy the desired identities.

Remark 1.3.5. The ring E∞ does not determine H∗(E). There are S2 ↪→ E→ S2 and S2 ↪→ E ′ → S2

with H∗(E) ∼= H∗(E ′). For example, we can consider P1 ×P1 and Bl1 P2 (the intersection forms
are different).

Example 1.3.6. Let chark = 0. Then H∗(SO(2m + 1),k) ∼= H∗(S3 × S7 × · · · × S4m−1) and
H∗(SO(2m),k) ∼= H∗(S3 × · · · × S4m−5 × S2m−1). However, we have

H∗(SO(n), Z2) ∼= H∗(S1 × S2 × · · · × Sn−1; Z2)

as groups, but not as rings.
To study this, we will consider the Stiefel manifold V(n,k) of k-orthonormal frames in Rn. Note

that V(n.k) = SO(n)/SO(n− k). In the simplest case, V(n, 1) = Sn−1 and V(n, 2) = S(Sn−1),
the unit sphere bundle of Sn−1. Now we have Sn−1 ↪→ V(n, 2) → Sn−1, so we have a spectral
sequence
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0 1 2 3

0

1

2

Z

Z

Z

Z

Observe that a finite CW complex might not have even finitely generated homotopy groups.
For example, we have π2(S

1 ∨ S2) ∼=
⊕
i∈Z Z.

Theorem 1.3.7 (Serre). Let X be a 1-connected CW complex such that Hq(X, Z) is finitely generated for
all q. Then πq(X) is finitely generated for all q.

The key ingredients to the proof are:

1. Show that for K(G,n) with G finitely generated (resp. finite), then H∗ is finitely generated
(resp. finite).

2. Inductively, kill homotopy groups using fibrations. This generalizes F ↪→ S3 → K(Z3).

Consider the Whitehead tower of X, which is a sequence · · · → X3 → X2 → X1 → X, where Xn is
n-connected and Xn → X is an isomorphism in πi for i > n+ 1. Also, we require Xn+1 → Xn to
be a fibration with fiber K(πn+1(X),n). For example, we had F = (S3)3 and S3 = (S3)2. We have
πn+1(X) = πn+1(Xn) = Hn+1(Xn).

To construct the Whitehead tower, we work inductively. Suppose we have Xn. Then
Kπn+1(X),n+1 is obtained by attaching cells to Xn, so we have a map Xn → K(πn+1(X),n+ 1) that
is an isomorphism on πn+1. Turning this into a fibration, we take Xn+1 to be the homotopy fiber.

Lemma 1.3.8. Consider a fibration F ↪→ E→ B such that π1(B) = 1. Then if Hq(F),Hp(B) are finitely
generated, then Hn(E) is finitely generated for all n.

Proof. Consider the Serre spectral sequence. Then E2
p,q is finitely generated for all p,q, so because

Z is Noetherian, then E∞p,q must also be finitely generated. This implies that Hn(E) has a filtration
by finitely generated objects, so it must be finitely generated.

We will apply this to K(πn+1(X)) ↪→ Xn+1 → Xn.

Proposition 1.3.9. Hp(K(G,n)) is finitely generated for p > 0 whenever G is finitely generated.

Proof. Write G =
⊕

Zr ⊕
⊕

Z/piZ. Now up to homotopy, we have

K(G,n) = K(Z,n)r × · · · ×K(Z/piZ,n).

By Künneth, we may assume that G is cyclic, so consider the fibration K(G,n− 1) ↪→ ∗ → K(G,n).
Note that K(Z, 1) = S1 and K(Zm, 1) is an infinite lens space, so only the inductive step remains.

Consider E2
p,q = Hp(K(G,n),Hq(K(G,n− 1))) and assume HM(K(G,n)) is not finitely gener-

ated but Hi(K(G,n)) is finitely generated for i < M. But then E3
M,0 is not finitely generated (it is

the kernel of a map to something that is finitely generated), so E∞M,0 is not finitely generated, a
contradiction.

Remark 1.3.10. This holds more generally for classes for classes of groups called Serre classes, for
example finite abelian p-groups.
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1.4 Homotopy groups of spheres

We know that πm(Sn) is a finitely generated abelian group.

Theorem 1.4.1 (Serre). The rank of πq(Sn) is 1 is q = n or q = 2n− 1 for n even and 0 otherwise.

The key computation is the rational homology H∗(K(Z,n); Q). This is given by

H∗(K(Z,n), Z) =

{∧
Q[x], |x| = n n odd

Q[x], |x| = n n even.

This is true for K(Z, 1) = S1,K(Z, 2) = CP∞. We will do the case when n is even, and consider
K(Z,n− 1) ↪→ ∗ → K(Z,n). Then the Serre spectral sequence in cohomology is

0 1 2 3 4

0

1

2

3 y

1 x

and then dn(xy) = dn(x) · y+ xdn(y) = x2.

Lemma 1.4.2. Let X be 1-connected and suppose Hq(X, Z) is finitely generated for all q. Also, suppose
that H∗(X, Q) ∼= H∗(Sm, Q) for m odd. Then

rkπq(X) =

{
0 q 6= m
1 q = m.

Proof. Note that Hm(X, Q) = Q, so [X,K(Z,m)] = Hm(X, Z) = Z⊕ torsion. Then there exists
f : X → K(Z,m) such that f∗(ιm) = 1, where ιm generates Hm(K(Z,m), Z) = Z. This tells us
that f∗ : H∗(K(Z,m), Z) ' H∗(X, Q) is an isomorphism. Now if F is the homotopy fiber of f, then
Hq(F, Q) = 0 for q > 0, so Hq(F, Z) for all q > 0 (by finite generation), and therefore πq(F) is
finite for all q. Now f∗ : πq(X) → πq(K(Z,m)) fits in the long exact sequence with πi(F), so f∗
has finite kernel and cokernel, and thus rankπq(X) = rankπq(K(Z,m)).

Proof of Serre. We may assume that n is even. Consider K(Z,n− 1) ↪→ (Sn)n → Sn. This is the
nth stage of the Whitehead tower. Consider the Serre spectral sequence
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0 1 2 3 4

0

1

2

3 Q

Q Q

and note that dn is an isomorphism because Hn−1((S
n)n) = 0. But then we see that H∗((Sn)n) =

H∗(S2n−1, Q), so the desired result follows.

An “easy” generalization is

Theorem 1.4.3 (Cartan-Serre). Let X be 1-connected with finitely generated homology groups such that

H∗(X, Q) ∼=
∧
Q

[x1, . . . , xm]⊗Q[y1, . . . ,yn].

Then rankπq(X) is the number of generators xi,yj in degree q.

Example 1.4.4. Consider X = SU(n),SO(n).

Remark 1.4.5. In general, H∗(X, Q) ∼= H∗(X ′, Q) does not imply that rankπq(X) = rankπq(X ′).

Now the point of rational homotopy theory is to compute rankπq(X) using H∗(X, Q) and extra
information (for example Massey products).

We have computed the ranks of the homotopy groups of spheres, so now we will consider the
torsion. The tools we have developed are enough to show that

Theorem 1.4.6. Let n > 3. For any prime p, the group πi(Sn) has no p-torsion for i < n+ 2p− 3 and
the p-primary part of πn+2n−3(S

n) is Z/pZ.

Corollary 1.4.7. In the stable range, πn+2(S
n) is a 2-group and πn+3(S

n) is the direct sum of a 2-group
and Z/3Z.

The idea of the proof is induction on the Whitehead tower with the fibration K(πn−1(X),n) ↪→
Xn+1 → Xn and Hn+2(Xn+1) = πn+2(X). We can study this group one prime at a time because
H∗(K(Z/p, 1), Z/p ′) vanishes if p 6= p ′ and is very interesting if p = p ′. Then there is a large gap in
cohomology depending on p. If we study the Z-cohomology of K(Z/p, 2), then we may consider
the fibration K(Z/p, 1) ↪→ ∗ → K(Z/p, 2). Then we know that H∗(K(Z/p, 1), Z) = Z[x]/(px)
where |x| = 2, and so the Serre spectral sequence of the fibration is
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0 1 2 3

0

1

2

3

4

1

x

x2

y3

xy3

and then d(xm) = mxm−1y3 and thus d(xp) = 0 and d(xi) 6= 0 for i < p. For more detail, see
Fuchs-Fomenko.

Now we will compute the 2-primary part of these homotopy groups. Consider the fibra-
tion K(Z,n − 1) ↪→ (Sn)n → Sn and the next step k(Z/2,n) ↪→ (Sn)n+1 → (Sn)n. We
want to compute the 2-primary part of Hn+2((S

n)n+1). This means we need to understand
H∗(K(Z/2,n); Z/2). We can understand it as cohomology operations

Hn(−, Z/2)→ Hn(−, Z).

1.5 Cohomolgy Operations

Definition 1.5.1. A cohomology operation ϕ between Hn(−,G)→ Hn(−,K) is a natural transforma-
tion between the two functors viewed as CW→ Set.

Example 1.5.2. Let R be a ring. Then the cup product Hn(−,R)→ H2n(−,R) given by α 7→ α∪α
is a cohomology operation. Note that this is not a homomorphism in general.

Now Hn(−,G) = [−,K(G,n)] and so natural transformations are just homotopy classes of
maps K(G,n)→ K(K,m), which form the group Hm(K(G,n),K).

Example 1.5.3 (Bockstein homomorphism). Consider a short exact sequence 0→ A→ B→ C→ 0.
Then we get a short exact sequence

0→ C∗(X,A)→ C∗(X,B)→ C∗(X,C)→ 0

of chain complexes, and this induces a long exact sequence in cohomology. Then the map

βn : H
n(X,C)→ Hn+1(X,A)

is a cohomology operation, called the Bockstein homomorphism.
An interesting case of this is the exact sequence 0→ Z/p→ Z/p2 → Z/p→ 0. Therefore we

obtain an interesting map
βn : H

n(X, Z/p)→ Hn+1(X, Z/p),

so there is an interesting element in Hn+1(K(Z/p,n), Z/p). This is actually useful in the homotopy
classification of 3-dimensional lens spaces L(p,q). In fact, we can show that L(p,q) ' L(p,q ′) if
and only if q ′ ≡ ±k2q (mod p) for some k. For example, L(5, 1) 6' L(5, 2).
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To show this, consider the map

Q : H1(L(p,q), Z/p)→ Z/p x 7→ 〈x^ β1(x), [L(p,q)]〉 .

This is well-defined up to a choice of sign. There is a standard generator α ∈ H1(L(p,q)), which
is the image of the arc (1, 0)→ (e2πi/p, 0). Then Q(α∗) = q, where α∗ is the Poincaré dual of α.

Then if we have a homotopy equivalence L(p,q) f−→ L(p,q ′), we see that αp,q 7→ kαp,q ′ and then
Q(αp,q) = ±k2Q(αp,q ′) by naturality.

Example 1.5.4 (Steenrod square). For all n, we will construct a cohomology operation Sqi : Hn(−, Z/2)→
Hn+i(−, Z/2). Some properties are

• Steenrod squares are additive.

• We have

Sqi(x) =


x i = 0
x2 i = dimX

0 i > dim x.

• Sqi : Hn(−, Z/2)→ Hn+1(−, Z/2) is the Bockstein homomorphism for

0→ Z/2→ Z/4→ Z/2→ 0.

• Sqi(α∪β) =
∑
j+k=i Sqj(α)∪ Sqk(β) (the Cartan relation).

We will take these to be axioms for the Steenrod squares.

Theorem 1.5.5. There exist unique cohomology operations with these properties.

Remark 1.5.6. Define the total squaring operation by

Sq(x) :=
∑

Sqi(x) = x+
2|x|−1∑
i=|x|+1

Sqi(x) + x2 ∈ H∗(X, Z/2).

Here, the Cartan relation says that Sq is multiplicative.

Example 1.5.7. Let X = RP∞. Then H∗(X, Z/2) = Z/2[α]. Then

Sq(α) = Sq0(α) + Sq1(α) = α+α2.

This implies that Sq(αk) = Sq(α)2 = αk(1 +α)k. In particular, we see that Sqi(αk) =
(
k
i

)
αk+i.

Proposition 1.5.8. The Steenrod squares Sqi commute with the suspension isomorphisms Σ : Hn(X, Z/2)→
Hn+1(ΣX, Z/2).

This is interesting because ΣX has trivial cup products.

Example 1.5.9. Consider f : S15 → S8 with H(f) = 1. Then Σnf : S15+n → S8+n is nontrivial.
Consider the mappinc cone Cf = S8 ∪fD18 where α2 = β, where α is the 8-cell and β is the 16-cell.
Then we see that CΣf = ΣCf, so by dimension reasons, all cup products are trivial. However,
Sq8(Σα) = Σ Sq8(α) = Σβ. Otherwise, if Σf is trivial, then CΣf = S9 ∪ S17.
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Proof of Proposition 1.5.8. Note that Σ is obtained by

H1(S1)⊗Hn(X)→ Hn+1(S1 ∧X).

This implies that
Sqi(Σα) = Sqi(t⊗α) = t⊗ Sqi(α) = Σ Sqi(α).

Now we will consider the following question. How many pointwise linearly independent
vector fields v1, . . . , vk−1 can there be on Sn−1. When are there n− 1?

Some basic obervations are the following:

• If n− 1 is even, then χ(Sn−1) = 2, so any vector field has a zero.

• By Gram-Schmidt, we can assume that v1, . . . , vk−1 is orthonormal at each point.

Theorem 1.5.10 (Steenrod-Whitehead). If n = 2r(2s + 1), then Sn−1 has at most 2r − 1 linearly
independent vector fields.

Example 1.5.11. If n− 1 is even, then r = 0, so there are no linearly independent vector fields.

Corollary 1.5.12. If Sn−1 is parallelizable, then n is a power of 2.

Remark 1.5.13. Adams gave a complete solution. We will see using K-theory that if Sn−1 is
parallelizable, then n = 1, 2, 4, 8.

Sketch of Proof. Let Vn,k be the Stiefel manifold of orthonormal k-frames in Rn. Then we have the
natural map

p : Vn,k → Sn−1 (v1, . . . , vk) 7→ vk.

Now if v1(x), . . . , vk−1(x) are orthonormal vector fields on Sn−1, then we get a section f of p given
by

f(x) = (v1(x), . . . , vk−1(x), x).

Now the question is reduced to that of the existence of a section of p. We will discuss obstructions
using Sqi. Recall that Vn,k = SO(n)/SO(n− k). Now consider

RPn−1 ↪→ SO(n) ` 7→ refl〈e1〉⊥
◦ refl`⊥ .

This induces a map RPn−1/RPn−k−1 ↪→ SO(n)/SO(n− k) = Vn,k. Now if 2k− 1 6 n, there is
a cell decomposition of Vn,k for which RPn−1/RPn−k−1 is the (n− 1)-skeleton. Now suppose
there is a section f of p : Vn,k → Sn−1. Then f∗p∗ : Hn−1(Sn−1) ' Hn−1(Sn−1) is an isomorphism.
After homotopy, we can make f a cellular map, so f̃ : Sn−1 → (Vn,k)

n−1 = RPn−1/RPn−k−1.
Therefore f∗ factors through H∗(RPn−1/RPn−k−1) and induces an isomorphism in degree n− 1
(using Z/2Z-coefficients). In degree n− k, f∗ induces a map Z/2 → 0. But now we have a
commutative diagram

Hn−1(RPn−1/RPn−k−1) Hn−1(Sn−1)

Hn−k(RPn−1/RPn−k−1) Hn−k(Sn−1),

f∗

∼

f∗

Sqk−1 Sqk−1

and now we see that Sqk−1 cannot be an isomorphism. Computing Sqk−1 using naturality, we
see that k = 2r + 1 works.
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1.5.1 Construction of Steenrod Squares Here, we are following Chapter 4.L in Hatcher.
The idea is that the cup product is commutative on H∗(−, Z/2). However, this is not commutative
on the chain level, so Sqi will measure this failure. We work at the level of spaces.

Let X be a pointed space and consider X∧X with the swap map T : X∧X→ X∧X. Now we
consider the homotopy quotient of T . For example, we know that Z/2Z acts freely on S∞ with
quotient RP∞. Then we define Γ∞X = S∞ × (X∧X)/(Z/2Z). This has a projection to RP∞ with
fiber X∧X. Then the inclusion s : RP∞ → Γ∞X of RP∞ at the basepoint of X∧X is a section, so
set
∧∞ X = Γ∞X/s(RP∞) (doing this kills many unnecessary cells in low dimension).
Now given α ∈ Hn(X, Z2), we can associate λ(α) ∈ H2n(

∧∞ X; Z) such that

λ(α)

∣∣∣∣
X∧X

= α⊗α ∈ H2n(X∧X, Z2).

Then S∞ ×X ↪→ S∞ × (X∧X) induces a map

RP∞ ×X→ Γ∞X�∧∞
X.

But now given such λ(α), this maps to a sum of the form∑
i

ωn−i ⊗ Sqn+i(α).

Remark 1.5.14. The assignments
∧∞(−), Γ∞(−) are functorial.

Now because Hn(−, Z2) = [−,K(Z2,n)], we only need to construct λ(ι) for the nontrivial

ι ∈ Hn(K(Z/2,n); Z2) ∼= Z2.

Here, we will set Kn := K(Z2,n), and therefore we need to construct the map
∧∞ Kn → K2n step

by step. Consider the map
ι⊗ ι : Kn ∧Kn → K2n.

Then if we consider Kn ∧ Kn
T−→ Kn ∧ Kn

ι⊗ι−−→ K2n, this must be homotopic to ι⊗ ι by some
homotopy ht. Now we can use ht to define

I× (Kn ∧Kn)/(0, x) ∼ (1, T(x)) = Γ1Kn
ht−→ K2n.

Because this is basepoint preserving, it descends to
∧1 Kn → K2n. But now

∧∞ Kn is obtained
from

∧1 Kn by attaching cells of dimension stricly larger than 2n+ 1, so we can extend and obtain
a map λ(ι) :

∧∞ Kn → K2n.

Remark 1.5.15. Note that λ(ι) is uniquely determined because the map

H2n
(∧∞

Kn

)
↪→ H2n(Kn ∧Kn)

is injective.

There is an alternative easier way. Consider α ∈ Hn(X, Z2) and α× α ∈ H2n(X× X, Z2).

This gives us a classifying map X × X f−→ K2n, and again let T be the swap map on X × X.
Now we see that f ∼ f ◦ T with homotopy ft, so now we have a map S1 × X× X → K2n such
that (s, x1, x2), (−s, x2, x1) map to the same point. This map extends to D2 and therefore to S2.
This now gives us a map S∞ × X× X → K2n which is Z2-invariant, and precomposing with
S∞ ×X→ S∞ ×X×X gives us a map RP∞ ×X→ K2n.

Theorem 1.5.16 (Cartan). For any α,β, we have λ(α∪β) = λ(α)∪ λ(β).
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1.5.2 Stable Cohomology Operations

Definition 1.5.17. A stable cohomology operation (SCO) of degree r is a map

ϕ : Hn(−,G)→ Hn+r(−,H)

for all n that commutes with suspension maps, i.e. the diagram

Hn(X,G) Hn+r(X,H)

Hn+1(X,G) Hn+r+1(X,H)

ϕ

Σ Σ

ϕ

Example 1.5.18. The Steenrod squares and compositions of Steenrod squares are all stable coho-
mology operations.

Lemma 1.5.19. Let ϕ be a stable cohomology operation. Then the diagram

Hn(X,A,G) Hn(A,G) Hn+1(X,A,G) Hn+1(X,G)

Hn+r(X,A,G) Hn+r(A,G) Hn+r+1(X,A,G) Hn+r+1(X,G)

ϕ

δ∗

ϕ ϕ ϕ

δ∗

commutes.

Proof. The left and right squares are clear because they come from maps of spaces. At δ∗, we
consider

δ∗ : Hn(A)→ Hn+1(X,A) = Hn+1(X/A).

Because A ⊂ X is a cofibration, then X ∪CA ∼= X/A. Then we may collapse the X to obtain ΣA,

and then we see that δ∗ is given by Hn(A) Σ−→ Hn+1(ΣA)
p∗−→ Hn+1(X/A), and both arrows in the

composition commute with ϕ.

This gives us the following slogan:

Stable cohomology operations commute with transgression.

Proposition 1.5.20. Let ϕ be a stable cohomology operation of degree e. If α ∈ Hm(F) is transgressive,
then so is ϕ(α) ∈ Hm+r (which means that d2ϕ(α) = · · · = dm+rϕ(α) = 0). If τ(α) ∈ Em+1,0

m+1 =

Hm+1(B)/ ∼ is represented by β ∈ Hn+1(B), then τ(ϕ(α)) ∈ Hm+r+1(B)/ ∼.

Proof. The transgression map is given by

Hm(F)
δ∗−→ Hm+1(E, F)

(p∗)−1

99K Hm+1(B, pt) = Hm+1(B).

Then ϕ commutes with δ∗ and p∗.

Remark 1.5.21. If G = H, then we can compose stable cohomology operations. This is a noncom-
mutative algebra!
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Theorem 1.5.22. The Steenrod algebra

A2 = {stable cohomology operations on Z2-cohomology}

is generated as an algebra by
{

Sqi
}
i∈N

.

This is a very complicated algebra. For example, if a < 2b, we have the Adem relations

Sqa ◦ Sqb =
∑
j

(
b− j− 1
a− 2j

)
Sqa+b−j ◦ Sqj .

For a proof of this, see Hatcher.

Example 1.5.23. For any b, we have Sq1 Sqb = (b− 1) Sqb+1. For example, Sq1 Sq2 = Sq3. We say
that Sq3 is decomposable. This means it can be written in terms of elements of lower degree.

Example 1.5.24. The elements of the form Sq2k are indecomposable. Consider the action on
H∗(RP∞). Then we see that

Sq2k(α2k) = (α2k)
2
= α2k+1

6= 0

but Sqi(α2k) = 0 for 0 < i < 2k. The idea is that
(2k
i

)
≡ 0 mod 2 for all i.

We want to interpret stable cohomology operations using K(G,n). Then if ϕ = {ϕn}, we see
that

ϕn ∈ [K(Z2,n),K(Z2,n+ 1)] = Hn+r(K(Z2,n), Z2).

But then stability tells us that Hn(ΣK(Z2,n− 1), Z2) = Z2, and if we consider the nontrivial
ι : ΣK(Z2,n− 1)→ K(Z/2,n), then we obtain a map

Hn+r(K(Z2,n), Z2)
ι∗−→ Hn+r(ΣK(Z2,n− 1), Z2)→ Hn+r−1(K(Z2,n− 1), Z2).

Then stability is equivalent to the fact that ϕn 7→ ϕn−1. Alternatively, we may use the suspension-
loop adjunction to see that

[K(Z2,n),K(Z2,n+ r)]
Ω−→ [K(Z2,n− 1),K(Z2,n+ r− 1)] ϕn 7→ ϕn−1.

Proposition 1.5.25. For any r, we have

Ar2 = lim←−
r

Hn+r(K(Z2,n); Z2).

We will now compute H∗(K(Z2,n), Z2). We will use the fibration K(Z2,n+ 1) ↪→ ∗ → K(Z2,n)
and hope to proceed by induction.

Example 1.5.26. Let n = 2. Then we know K(Z2, 1) = RP∞. Then the spectral sequence is given
by
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0 1 2 3

0

1

2

3

4

1

α

α2

α3

α2

e Sq1 e

Then we see that d2(α
2) = 2αd2(α) = 0. But then d3(α

2) 6= 0, so we see that d3(Sq1 α) =

Sq1 d2(α) = Sq1 e. Inductively, we see that d5(α
4) = Sq2 Sq1 e and d2(αe) = d2(α) · e = e2. In the

end, we will see that

H∗(K(Z2, 2); Z2) = Z2[e, Sq1 e, Sq2 Sq1 e, Sq4 Sq2 Sq1 e, . . .].

Definition 1.5.27. A set I = (i1, . . . , ik) (possibly empty) is admissible if i1 > 2i2, i2 > 2i3, . . .. Then
we will write SqI = Sqi1 ◦ Sqi2 ◦ · · · ◦ Sqik .

Note that if I is not admissible, then SqI can be simplified using Adem relations.

Definition 1.5.28. Define the excess of an admissible I to be

exc(I) = (i1 − 2i2) + (i2 − 2i3) + · · ·+ (ik−1 − 2ik) + ik = i1 − (i2 + · · ·+ ik).

For example, if exc(I) = 1, then I = (2k, 2k−1, . . . , 4, 2, 1). If exc(I) = 0, then I = ∅.

Theorem 1.5.29 (Serre). We have

H∗(K(Z2,n)) = Z2[SqI(en) | I, admissible, exc(I) < n].

Example 1.5.30. We have H∗(K(Z2, 1)) = Z2[e1]. When n = 3, the generators are

e3, Sq1 e3, Sq2 e3, Sq3 Sq1 e3, . . . .

When n increases, the description becomes more and more complicated.

Theorem 1.5.31 (Borel). The set
{
τ((SqI en−1)

2k
) | exc(I) < n− 1

}
are generators of H∗(K(Z2,n)).

Now τ(en−1) = en.

Example 1.5.32. When n = 2, we have (Sq0 e2)
2
= e2

2 = Sq2 e2 and has excess 2. Similarly, we see

that (Sq0 e2)
4
= Sq4 Sq2 e2 and has excess 2. We can also see that (Sq2 Sq1 e2)

2
= Sq5 Sq2 Sq1(e2),

and this also has excess 2.

Theorem 1.5.33 (Borel). Let F ↪→ E→ B be a fibration with π1(B) = 1 and H̃∗(E) = 0. Assume that

1. H∗(F, Z2) is generated as an algebra by elements ai ∈ Hmi ,m1 6 m2 6 · · · which are transgressive.
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2. The set
{
ai1 · · ·aik | i1 < i2 < · · · < ik

}
is an additive basis for H∗(F, Z2).

Then H∗(B, Z2) is a polynomial algebra generated by {τ(ai)}.

Proof. Let Ep,q
r be the Serre spectral sequence. We will construct an algebraic model Ẽp,q

r for it.
Set

Ẽ∗,∗2 = H∗(F, Z2)⊗Z2 Z2[b1,b2, . . .],

where |bi| = |ai|+ 1. Then define d̃r to satisfy

d̃rai =

{
0 r 6 mi
bi r = mi + 1

d̃rbi = 0.

To do this, we set

d̃r(ai1ai2 · · ·aik ⊗ b
s1
j1
· · ·bs`j` ) =

{
ai2 · · ·aik ⊗ bi1b

s1
j1
· · ·bs`j` r = mi1 + 1, i1 6 j1

0 otherwise.

This tells us that d̃r ◦ d̃s = 0 for all r, s and thus all differentials are well-defined on Ẽr. Of course,
we observe that E∗,∗∞ = Z2. Now there is a natural map Φ : Ẽp,q

2 → E
p,q
2 given by

H∗(F, Z2)⊗Z2[b1, . . .]→ H∗(F, Z2)⊗H∗(B, Z2) bi 7→ bi.

This induces a map Φr of spectral sequences, so Φ∞ is an isomorphism. But now if Z2[b1, . . .]→
H∗(B, Z2) is not surjective, then E∗,∗r cannot kill anything not in the image. On the other hand,
if it is not injective, then Ẽ∗,∗r cannot kill anything in the kernel. Therefore the map is an
isomorphism.

Now we will compute H∗(K(Z,n), Z2). We know that K(Z, 2) ↪→ ∗ → K(Z, 3) is a fibration, so
consider the Serre spectral sequence

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1

x

x2

x3

e

xe

e2
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Then we know that x2 = Sq2 x, x4 = Sq4 x2, so we find generators Sq2(e), Sq4 Sq2 e, . . .. In addition,
we note that d3(xe) = e

2. Also note that Sq1(e) is not there!

Theorem 1.5.34 (Serre). We have the identity

H∗(K(Z,n); Z2) = Z2[SqI(en) | I admissible, exc(I) < n, ik > 2].

1.6 Computation of Homotopy Groups

We will compute πn+2(S
n) for n large (the stable homotopy group). If we consider the fi-

bration K(Z,n− 1) ↪→ (Sn)n → Sn and K(Z2,n) ↪→ (Sn)n+1 → (Sn)n, we want to compute
Hn+2((S

n)n+1; Z) = πn+2(S
n). First, we will consider cohomology with Z2 coefficients. The

Serre spectral sequence is given by

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

1 s

e

Sq2 e

Sq3 e

Sq4 e

Sq5 e

es

If we write Sq2 e =: u, Sq3 e =: v, we can compute Hq((Sn)n; Z2) to be

Table 1.1: Hq((Sn)n; Z2)

q n+ 1 n+ 2 n+ 3 n+ 4
generator u Sq1 u b Sq1 v

This now gives us the Serre spectral sequence for the next fibration
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0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

u Sq1 u v Sq1 v

e

Sq1 e

Sq2 e

Sq3 e

But this implies that Hn+2((Sn)n+1; Z2) = Z2 = 〈w〉 and Sq1w 6= 0. By the universal coefficients
theorem, this implies that Hn+2((Sn)n+1; Z) ∼= Z/2kZ. To obtain k = 1, we will consider the
Bockstein exact sequence

0→ Hn+2(−, Z2)→ Hn+2(−, Z4)→ Hn+2(−, Z2)
Sq1

−−→ Hn+3(−, Z2).

This implies that Hn+2(−, Z4) = Z2, so Hn+2(−, Z) = Z2 by the universal coefficients theorem.
In the next case, we want to compute πn+3(S

n). We can consider K(Z2,n+ 1) ↪→ (Sn)n+2 →
(Sn)n+1 and we want Hn+3((S

n)n+2; Z) = πn+3(S
n). In the Serre spectral sequence, we need to

compute Sq1w, Sq2w, where w has degree n+ 2. But this will tell us that Hn+3((Sn)n+2; Z2) =
Z2, so by the universal coefficients theorem, we have

Hn+3((S
n)n+2, Z) = Z/2k ⊕Z/3Z.

To compute the order, we will have to redo all computations with coefficients in Z modulo odd
torsion. We should be able to obtain

Theorem 1.6.1 (Rokhlin). We have the identity πn+3(S
n) ∼= Z/24Z.

For example, we can compute H∗(K(Z2, 2); Z2). We have

Table 1.2: H∗(K(Z2, 2); Z2)

0 1 2 3 4 5

1 · e Sq1 e e2
Sq2 Sq1 e
e · Sq1 e
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By Cartan, we can compute Sq1(e2) = e ∪ Sq1 e+ Sq1 e ∪ e = 0. By Bockstein, we see that
H4(K(Z2, 2); Z) = Z/4Z⊕ odd stuff.

Remark 1.6.2. We used Whitehead towers, but there is a dual approach using Postnikov towers.
The Postnikov tower looks like

X

Z1 Z2 Z3 Zr · · ·

and satisfies the properties

• πi(Zn) = 0 for i > n+ 1;

• X→ Zn is an isomorphism in πi for i > n;

• We have a fibration K(πn(X),n) ↪→ Zn → Zn−1.

Hatcher uses Postnikov towers to compute πn+3(S
n), and if you are particularly masochistic,

Mosher-Tanpora compute the stable homotopy groups up to πn+7(S
n). Unfortunately, this

approach will get stuck eventually, so we cannot compute all of the stable homotopy groups of
spheres.
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Characteristic Classes and K-theory

2.1 Obstruction Theory

Here is a very basic question: Can we extend maps?

Question 2.1.1 (Extension Problem). Consider f : A→ Y and A ⊆ X. Does there exist a map X→ Y
extending f?

Question 2.1.2 (Homotopy problem). Let f0, f1 : X→ Y such that f0, f1 are homotopic on A. Can we
extend this homotopy to a homotopy on Y?

Note that this is a special case of an extension problem

X× {0}∪X× {1}∪A× I Y

X× I

Remark 2.1.3. This is different from the homotopy extension property, which is given by X× {0}∪
A× I ⊂ X× I and is the definition of a cofibration.

Question 2.1.4 (Lifting problem). Let p : E→ B be a fiber bundle. If we have f : X→ B can we lift f to
X→ E?

For the extension problem, we will assume that the action of π1(Y) on πn(Y) is trivial. A
special case of this is if we have f : Xn → Y, can we extend it to Xn+1? If we attach a single cell
Xn ∪ϕ en+1, then we may consider the map f ◦ϕk : ∂en+1 → Y. This extends to en+1 = Dn+1 if
and only if [f ◦ϕe] = 0 in πn(Y). This gives us a map en+1 → cf(e

n+1) ∈ πn(Y), so we obtain the
obstruction cocycle cf ∈ Cn+1(X,πn(Y)).

Lemma 2.1.5. f : Xn → Y extends to Xn+1 if and only if cf = 0.

Lemma 2.1.6. We have cf ∈ Cn+1(X;πn(Y)) is a cocycle, which means δcf = 0.

28
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Proof. Assume n > 0. By taking the universal cover, assume π1(X) = 1. We need to show that
cf ◦ ∂ = 0, where ∂ : Cn+2 → Cn+1. But this is given by the commutative diagram

Cn+2(X) πn+2(X
n+2,Xn+1)

πn+1(X
n+1)

Cn+1(X) πn+1(X
n+1,Xn)

πn(X
n)

πn(Y).

h−1

∂

∂

h−1

cf

∂

f∗

Definition 2.1.7. Let f : Xn → Y. Then define the obstruction class Of := [cf] ∈ Hn+1(X,πn(Y)).

Theorem 2.1.8 (Fundamental theorem of obstruction theory). Let f : Xn → Y. Then Of = 0 if and
only if f

∣∣
Xn−1 can be extended to Xn+1.

Here, we allow ourselves to change f on Xn \Xn−1. Now suppose f,g : Xn → Y agree on Xn−1.
Then given an n-cell en ⊂ Xn, we can consider Sn = Dn ∪Dn, and performing f on the top and g
on the bottom gives an element in πn(Y). This gives us df,g ∈ Cn(X,πn(Y)), the difference cochain.

Remark 2.1.9. Observe that df,g = 0 if and only if f is homotopic to g with a homotopy fixing
Xn−1.

Lemma 2.1.10. Given f : Xn → Y and d ∈ Cn(C,πn(Y)), there exists g : Xn → Y such that g
∣∣
Xn−1 =

f
∣∣
Xn−1 and df,g = d.

Proof. In the center of the disk, simply attach a new disk with the desired d(e) ∈ πn(Y).

Lemma 2.1.11. Consider df,g ∈ Cn(X,πn(Y)) and the obstruction classes cf, cg ∈ Cn+1(X,πn(Y)).
Then

δdf,g = cg − cf.

Proof. For simplicity, suppose f,g only differ on σn. Given en+1, we want to show that

cg(e) − cf(e) = [e : σ]df,g(σ).

Up to homotopy, we may assume that in the picture
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Figure 2.1: Diagram of the morphism

that the shaded part is ϕ−1(σn) and ϕ is a homeomorphism on the shaded component. In
particular, f ◦ϕ,g ◦ϕ only differ on the shaded part, so the number of components of the shaded
part is [e : σ].

Proof of fundamental theorem of obstruction theory. Let Of = [cf] = 0. Then cf = δd for some d ∈
Cn(X,πn(Y)). But then there exists g : Xn → Y such that g

∣∣
Xn−1 = f

∣∣
Xn−1 with df,g = −d. But

then

cg = cf + δdf,g = δd− δd = 0,

so g extends to Xn+1.
In the other direction, assume g : Xn+1 → Y with g

∣∣
Xn−1 = f

∣∣
Xn−1 . Therefore cg = 0, and

cf = cf − cg = −δdf,g,

so [cf] = 0.

Now we will consider the relative case. Suppose (X,A) is a CW-pair and we have f : Xn∪A→ Y.
Can we extend this to Xn+1 ∪A? Here, we obtain an obstruction class Of ∈ Hn+1(X,A;πn(Y)).
We have a relative version of the fundamental theorem in this case.

Returning to the homotopy problem, consider f,g : X→ Y such that f
∣∣
Xn−1 ∼ g

∣∣
Xn−1 . Can we

extend this homotopy to Xn? We are considering the extension problem for

X× {0}∪Xn−1 × I∪X× {1} ⊂ X× {0}∪Xn × I∪X× {1}.

We are considering (n + 1)-cells of the form en × I, where en is an n-cell in X. Assume for
simplicity that f

∣∣
Xn−1 = g

∣∣
Xn−1 . Then the obstruction is exactly df,g ∈ Cn(X,πn(Y)). Also, if

cf = cg = 0, then δdf,g = cg − cf = 0.

Theorem 2.1.12. Let f,g : X→ Y agree on Xn−1. Then Hn(X,πn(Y)) 3 [df,g] = 0 if and only if f,g are
homotopic on Xn, with the homotopy fixing Xn−2.

Example 2.1.13 (Cohomology of K(G,n)). Consider [X,K(G,n)] → Hn(X,G) by f 7→ [df,const].
Here, we can homotope f such that f

∣∣
Xn−1 is constant because πi(K(G,n)) = 0 for i < n.

Surjectivity is obvious from the previous discussion, so we will prove injectivity.
If [df,const] = 0 ∈ Hn(X,G), then f

∣∣
Xn

is nullhomotopic. Because πi(K(G,n)) = 0 for i > n, f is
nullhomotopic.
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2.2 Primary obstruction class

We will change our notation. Denote the fiber bundle by F ↪→ E → B. In this new notation, we
want to extend a section s : Bn → E to Bn+1. If en+1 is a cell, then E

∣∣
en+1

∼= en+1 × F. We have
s : ∂en+1 → F and we want to extend this to en+1. Now we have the map en+1 7→ Cs(e

n+1) ∈
πn(F). We know that cs ∈ Cn+1(B,πn(F)). Now we know s extends to Bn+1 if and only if
cs = 0, δcs = 0, and the obstruction class Os ∈ Hn+1(B,πn(F)) is zero if and only if s

∣∣
Bn−1 can be

extended to Bn+1.
Now we assume that F is (n− 1)-connected. Therefore there exists a section s : Bn → E with

obstruction class Os ∈ Hn+1(B,πn(F)).

Theorem 2.2.1. Given s, s ′ : Bn → E, we have Os = Os ′ . In particular, this is an invariant of the bundle!

Definition 2.2.2. Consider a fiber bundle ξ : F ↪→ E→ B with F being (n− 1)-connected. Then the
primary obstruction class is defined by be O(ξ) ∈ Hn+1(B,πn(F)).

Theorem 2.2.3. The fiber bundle ξ always admits a section over Bn and it admits a section over Bn+1 if
and only if O(ξ) = 0.

Proof of Theorem 2.2.1. First we note that a homotopy of s does not change Cs ∈ Cn+1(B,πn(F)).
The homotopy extension property holds for sections where (X,A) is a CW pair with s : X→ E and
st : A× I→ E a homotopy of sections. Here, we can extend to s̃t : X× I→ E.

Now suppose s, s ′ : Bn → E. Of course, s ∼ s ′ on B0. We now show that if s ∼ s ′ on Bk, then
s ∼ s ′ on Bk+1 for 0 6 k < n− 1. To see this, the homotopy extension property tells us that we
may assume s = s ′ on Bk after extending the homotopy. Then, we have ds,s ′ ∈ Ck+1(B,πk+1(F)).
But we see that ds,s ′ = 0, so s ∼ s ′ on Bk+1. We now obtain s, s ′ : Bn → E such that s ∼ s ′ on Bn−1.
We may assume that s = s ′ on Bn−1. Then we note that dss ′ ∈ Cn(B,πn(F)), so cs ′ − cs = δds,s ′

and thus Os = Os ′ .

The key property is that if we have f : B ′ → B and consider the pullback bundle f∗ξ, then
O(f∗ξ) = f∗O(ξ). This tells us that O(ξ) is a characteristic class, or in other words, a natural
cohomological invariant. Consider the basic example: Suppose ξ : Sn−1 ↪→ E→ B is an oriented
bundle. Then Sn−1 is (n− 2)-connected, so we have an obstruction class O(ξ) ∈ Hn(B, Z).

Definition 2.2.4. This obstruction class is called the Euler class e(ξ) of ξ. Then e(ξ) = 0 if and only
if ξ has a section over Bn.

Here we have a special case. If η : Rn ↪→ E → B is an oriented vector bundle and ξ is the
associated sphere bundle Sn−1 → S(E)→ B. Then e(E) is the Euler class of the associated sphere
bundle. Therefore e(E) = 0 if and only if there exists a nonvanishing section of η over Bn.

Theorem 2.2.5. Let Mn be a smooth oriented compact manifold. Then e(TM) ∈ Hn(M, Z) ∼= Z is
χ(M).

Corollary 2.2.6 (Poincare-Hopf). M admits a nowhere vanishing vector field if and only if χ(M) = 0.

Proof. Note that Mn−1 ∼=M \ {finite number of points} (one for each top-cell). To compute O(ξ)
we can use a vector field v with only isolated zeroes. Now we may define the local degree at x to
be the degree of the map Sε → Sn−1 defined by y 7→ v(y). The local degree behaves like
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Figure 2.2: Example of local degrees

and therefore Z 3 O(ξ) =
∑

local degrees by definition. Now we simply need to construct
an explicit nice vector field. Because M is smooth, it admits a smooth triangulation.1 The vector
field is constructed by placing a zero at the center of every face and then for the center of a given
positive dimensional face, the vector field points outward towards the vertices of that face. But
then we have ∑

local degrees =
∑
i

#{i-cells} = χ(M).

Remark 2.2.7. Let Ek → Mn be a smooth vector bundle with M compact. Then e(E) can be
interpreted as follows. Choose a generic section s : M→ E. Then s−1(0) is a smooth manifold of
dimension n− k, and so we can write e(E) = PD(s−1(0)).

We will now relate the primary obstruction class and transgression. We will consider the Serre
spectral sequence with coefficients in πn(F) = Hn(F). We know we have the transgression map
τ : Hn(F,πn(F)) → Hn+1(B,πn(F)) and the fundamental class ι ∈ Hn(F,πn(F)). This is defined
by for all x ∈ πn(F), 〈ι,h(x)〉 = x.

Theorem 2.2.8. The primary obstruction class is given by τ(ι) = O(ξ) ∈ Hn+1(B,πn(F)).

Proof of this is given in a series of exercises in Fuchs-Fomenko 23.5.
Now we will consider the Thom isomorphism. If E→ B is a rank n vector bundle. Then we may

associate the disk bundle D(E) and the sphere bundle S(E). Now we define the Thom space to be
T(E) = D(E)/S(E) (equivalently, the one-point compactification of E).

Theorem 2.2.9 (Thom isomorphism). Suppose E is an oriented vector bundle. Then there exists a
unique U ∈ Hn(T(E); Z) = Hn(D(E),S(E)) such that U

∣∣
F

is the generator of Hn(F, Z) = Z (given by
orientation). We call U the Thom class. Furthermore, we have

Hk(B, Z) ∼= Hk(D(E); Z)
∼−→ Hk+n(D(E),S(E), Z) x 7→ x∪U

is an isomorphism for all k. Finally, the map

Hn(D(E),S(E))→ Hn(D(E)) ∼= Hn(B)

sends the Thom class U to the Euler class e(E).

Proof. Consider the Serre spectral sequence for (Dn,Sn−1) ↪→ (D(E),S(E))→ B. Then the Euler
class is the Thom class by the prior discussion about transgression. Alternatively, we may construct
the Thom class locally and patch, and this can be found in Chapter 10 of Milnor-Stasheff.

1Apparently there is also a proof using the Atiyah-Singer index theorem, but that is way more advanced than using
this result. Francesco says this is a result everyone uses without knowing the proof.
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2.3 Vector Bundles

We may consider the functor

VectkC : CWop → Set X 7→ {rank k complex vector bundles}.

We may also consider the functors VectkR, Vect+,k
R of real vector bundles and oriented real vector

bundles. This functor is representable!

Theorem 2.3.1 (Brown representability). Let h : hCW
op
∗ → Set be a functor. If

1. For X =
∨
Xα with iα : Xα ↪→ X, then

∏
i∗α : h(X) '

∏
h(Xα) is an isomorphism;

2. If X = A ∪ B is a union of subcomplexes and a ∈ h(A),b ∈ h(B) retrict to the same element in
h(A∩B), then there exists x ∈ h(X) restricting to a,b,

then there exists a CW complex K and u ∈ h(k) such that

[X,k]→ h(X) f 7→ f∗(U)

is a bijection.

Note that for VectkC, the condition of being homotopy invariant is nontrivial to decide. We
want ft : X × I → Y such that f∗0η ' f∗1η. The idea is that for ξ := f∗tη → X × I, we need
ξ
∣∣
X×0 = f∗0η, ξ

∣∣
X×1 = f∗1η.

Proposition 2.3.2. Let X be a CW complex (or in general X is paracompact). Then if ξ is a vector bundle
over X× I, we have ξ

∣∣
X×0 ' ξ

∣∣
X×1.

Recall that X is paracompact if X is Hausdorff and any open cover {Uα} admits a locally finite
refinement

{
Vβ
}

. This is equivalent to every open cover admitting a partition of unity subordinate
to it.

Remark 2.3.3. We may also assume the indices β are countable.

Example 2.3.4. Any η→ X paracompact admits a Hermitian metric. To see this, simply trivialize
over the charts Uα and then glue using our partition of unity.

Now we note that if E→ X× [a,b] is trivial over [a, c] and [c,b], then E is trivial. This implies
that any η → Dk is trivial. Fix trivializations h1 : X× [a, c]×Ck → E1, h2 : X× [c,b]×Ck → E2.
These do not necessarily agree on X× {c}×Ck, but we simply consider ϕ = h1h

−1
2 and change h2

by ϕ to get the desired trivialization.
The second observation is that if η → X × I then there exists an open cover {Uα} such

that η
∣∣
Uα×I is trivial. To see this, we simply trivialize over UX,i × [ti−1, ti] and then glue the

trivializations.
Now we return to the proof that VectkC is homotopy invariant. Given a partition of unity ϕi

subordinate to Uα (with eta
∣∣
Uα×I trivial), we write ψm : ϕ1 + · · ·+ϕm : X→ [0, 1]. Then define

Xm to be the graph of ψm. We know suppϕm+1 ⊆ Uα for some α, so p : Xm+1 → Xm lifts to
hm : η

∣∣
Xm+1

→ η
∣∣
Xm

. We know η is trivial on Uα × I, so we have

hm(x,ψm+1(x), v) = (x,ψm(x),V).

Then we know X0 is X× {0}, so using local finiteness of the partition of unity, we obtain the desired
result.
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We now want to find a concrete space that represents this functor. Define the Grassmannian

GC
n,k = {k-planes in Cn}

of k-planes in Cn. This has a tautological bundle Ck ↪→ γC
n,k → GC

n,k given by γ = {(V , v) | v ∈ V}.
Of course, if m < n, we know GC

m,k ↪→ GC
n,k, so we define GC

k := GC∞,k =
⋃
nG

C
n,k. Because the

tautological bundles are well behaved under this, we obtain a tautological bundle γk → GC
k .

Theorem 2.3.5. The bundle γk → GC
k is a universal bundle. This means that [X,GC

k ] ' VectkC(X), where
f 7→ f∗γk.

Remark 2.3.6. We can also write GC
k = BU(k) as the classifying space of U(k).

Proof of Theorem. Let η→ X. Then η ∼= f∗γk if and only if there exists g : η→ C∞ which is linear
injective on each fiber ηx. Given p : η→ X, choose a countable cover with p−1(Ui) trivial and ϕi
a partition of unity subordinate to Ui. Then define

gi : p
−1(Ui) = Ui ×Cn → Cn

and consider the map (ϕi ◦ p) · gi : η→ Cn. This defines g : η→ (Cn)∞ = C∞.
Now we need to show that if g0,g1 : η → C∞ that are injective on fibers, then there exist

gt : η× I→ C∞ linear injective on fibers at each time. We define

Lt : C∞ → C∞ (x1, x2, . . .) 7→ (1 − t)(x1, x2 . . .) + t(x1, 0, x2, . . .).

This is injective at each t and moves g0 to the odd entries. Similarly, we can move g1 to the even
entries, so we can write gt = (1 − t)g0 + tg1.

A characteristic class is a natural transformation VectkC(X)
c−→ H∗(X, Z). By the Yoneda lemma,

characteristic classes are in bijection with the cohomology of GC
k . We now study basic facts of the

Grassmannians:

• There is a transitive action of U(n) on GC
n,k. The stabilizer of Ck ⊂ Cn is U(k)×U(n− k).

• Clearly we have Gn,1 = CPn−1.

• The Grassmannian GC
n,k has a nice cell decomposition generalizing CPn = pt∪D2 ∪D4 ∪

D6 ∪ · · · .

Example 2.3.7. Consider the Grassmannian G4,2 of 2-planes in C4. Then the interior of cells is
described by dimensions of intersections with C1 ⊂ C2 ⊂ C4 ⊂ C4. The cells are given by:

0-cell: This is just
{

C2} corresponding to (1, 2, 2).

2-cell: This is the set
{

C1 ⊂ V ⊂ C3} corresponding to (1, 1, 2).

4-cells: These are
{

C1 ⊂ V
}

corresponding to (1, 1, 1) and
{
V ⊂ C3} corresponding to (0, 1, 2).

6-cell: This is given by
{

dimV ∩C2 > 0
}

corresponding to (0, 1, 1).

8-cell: This is everything else, which corresponds to (0, 0, 1).

For an alternative description, a 2 plane corresponds to the row reduced echelon form of a
2× 4 matrix. Then we have the following correspondence:
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0-cell: This is the matrix
[

0 0 1 0
0 0 0 1

]
.

2-cell: This is the matrix
[

0 1 ∗ 0
0 0 0 1

]
.

4-cells: These are the matrices
[

1 ∗ ∗ 0
0 0 0 1

]
,
[

0 1 0 ∗
0 0 1 ∗

]
.

6-cell: This is the matrix
[

1 ∗ 0 ∗
0 0 1 ∗

]
.

8-cell: This is the matrix
[

1 0 ∗ ∗
0 1 ∗ ∗

]
.

These cells are called Schubert cells. These behave nicely with the inclusions and Gn,k has
(
n
k

)
cells.

The number of 2i-cells is given by the number of partitions of i into at most k integers that are
each at most n− k. The cells are of even dimension, so we can compute the group structure on
the cohomology, but not the ring structure.

Theorem 2.3.8. The ring struction on cohomology of the Grassmannian is given by H∗(GC
k , Z) ∼=

Z[c1, . . . , ck], where deg ci = 2i.

Definition 2.3.9. The characteristic classes of E→ B associated to the ci are the Chern classes ci(E).
By convention, cj(E) = 0 for j > dimE.

Proof. We need many fibrations. Consider the spaces Gn,k of k-planes in Cn and Fn,k of k-flags
in Cn. It is clear that Fn,k also parameterizes ordered k-tuples of orthogonal complex lines. Of
course there is a fibration Fk,k ↪→ Fn,k → Gn,k. We can also understand H∗(GC

k) inductively as
well.

Now we will show that H∗(F∞,k) ∼= Z[x1, . . . , xk], where deg xi = 2. Each xi is the pullback of
the generator of H2(CP∞) under the maps (`1, . . . , `k) 7→ `i. We will use the fibration CPn−k ↪→
Fn,k → Fn,k−1. By induction, we have a fibration

CP∞ ↪→ F∞,k → F∞,k−1

and H∗(F∞,k− 1) ∼= Z[x1, . . . , xk−1]. Now we use the Leray-Hirsch theorem, but first we need to
show that H∗(E)� H∗(F). This is because we have the map F∞,k → CP∞ given by (`1, . . . , `k)→
`k and this restricts to the generator of CP∞ udner CP∞ ↪→ F∞,k. Therefore, H∗(F∞,k) is a free
Z[x1, . . . , xk−1]-module with additive basis 1, xk, x2

k, . . .. Now we observe that

F∞,k ↪→ (CP∞)k
is a homotopy equivalence by Hurewicz.

Now we need to consider the fibration Fk,k ↪→ F∞,k
ρ−→ G∞,k. This induces a surjective map in

cohomology, so by Leray-Hirsch, H∗(F∞,k) is a free H∗(G∞,k)-module with basis 1, . . . and thus
ρ∗ : H∗(G∞,k) → H∗(F∞,k) is injective. The map F∞,k → G∞,k sends a k-tuple of lines to their
sum. We also know that ρ is Sk-invariant, so on cohomology, we have an injection

H∗(G∞,k) ↪→ H∗(F∞,k)
Sk = Z[x1, . . . , xk]

Sk = Z[σ1, . . . ,σk],

where σi is the ith elementary symmetric polynomial. But then by a dimension count, this
injection is surjective.
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Theorem 2.3.10 (Splitting principle). Let En → X be a line bundle. Then there exists X̃ f−→ X such that
f∗E is a direct sum of line bundles and f∗ : H∗(X, Z)→ H∗(X̃, Z) is injective.

This gives us the following slogan:

When working with Chern classes, we can assume E is a direct sum of line bundles
E ∼= L1 ⊕ · · · ⊕ Lk.

Proof. Set X̃ = Fk(E) → X. Then the fiber over x ∈ X is the space of k-flags in Ex. Therefore
we have a fibration Fk,k ↪→ X̃ → X. Now X̃ has a tautological splitting, where over the point
(`1, . . . , `k) we have the vector space `1 ⊕ · · · ⊕ `k = Ex. This pulls back E as a direct sum of line
bundles.

Now here are some properties of Chern classes:

1. For any E, we have c0(E) = 1.

2. If γ is the tautological bundle over CP1, then c1(CP1) = −x and thus γ = O(−1).

3. For vector bundles E, F, we have Ck(E⊕ F) =
∑
ck(E)∪Ck−i(F). Equivalently, if we define

the Chern class c(E) = 1 + c1(E) + c2(E) + · · · , then c(E⊕ F) = c(E)c(F).

Proof. We prove this for the universal bundles. We have the bundle γk × γ` over Gk ×G`, and
this is given by a classifying map Gk ×G` → Gk+`. Now under the map (CP∞)k × (CP∞)` →
Gk ×G`, we know γk × γ` pulls back to a direct sum of tautological bundles, and the same is
true for γk+` pulled back to (CP∞)k+`. Therefore, we have

c(γk+`) = (1 + x1) · · · (1 + xk)(1 + y1) · · · (1 + y`) = c(γk)c(γ`).

In fact, the three properties determine the {ci} uniquely.

Remark 2.3.11. • If C is the trivial bundle, then ci(E⊕C) = ci(E).

• If E is the complex conjugate bundle of E, then ci(E) = (−1)ici(E). Note that this is also the
dual bundle.

Example 2.3.12. We have c(TCPn) = (1 + x)n+1 = 1 +nx+
(
n
2
)
x2 + · · · ∈ Z[x]/xn+1. To describe

this, we consider the tautological bundle γ→ CPn+1. Clearly TLCPn = HomC(L,L⊥), where the
perp is taken in Cn+1. Therefore, TCPn ≡ HomC(γ,γ⊥) and γ⊕ γ⊥ = Cn+1. This gives us

TCPn ⊕C ∼= Hom(γ,γ⊥)⊕Hom(γ,γ)

= Hom(γ, Cn+1)

= Hom(γ, C)n+1 = O(1)n+1

and therefore
c(TCPn) = c(TCPn ⊕C) = c(O(1))n+1 = (1 + x)n+1.

We will now consider Chern classes as obstructions. Let Cn ↪→ E → B be a rank n bundle.
Then we can take orthonormal frames to obtain VC

n,k ↪→ Vk(E)→ B. Then sections of Vk(E)→ B
are k-tuples of sections of E which are orthonomal at each point.

Lemma 2.3.13. We have

πi(V
C
n,k) =

{
0 i 6 2(n− k)

Z i = 2(n− k) + 1.
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Therefore, the first obstruction to finding a section of Vk(E) over the 2(n− k) + 2 skeleton
lives in H2(n−k)+2(B, Z). In fact, this is the Chern class. The Chern class cj(E) ∈ H2j(B, Z) is the
obstruction to finding k = (n+ 1 − j) linearly independent sections over the 2(n+ 1 − j)-skeleton.
Now observe that Vn,1 = S2n−1. Therefore, if dimC E = n, we have cn(E) = e(E).

2.4 Real Vector Bundles

Now consider a vector bundle Rn ↪→ E→ B.

Lemma 2.4.1. For i < n− k, we have πn(VR
n,k) = 0. In addition,

πn−k(V
R
n,k) =

{
Z k = 1 or n− k even.
Z2 otherwise.

Therefore we obtain obstruction classes Oi ∈ Hi(B, Z̃) or Oi ∈ Hi(B, Z2). This is an obstruction
to finding n+ 1 − i linearly independent sections on the i-skeleton. Reducing everything modulo
2, we have

Definition 2.4.2. The Stiefel-Whitney classes of E are defined by wi := Oi mod 2.

Here are some facts about the Stiefel-Whitney classes:

• If γ→ RP1 is the tautological class, then w1(γ) = 1 ∈ H1(RP1, Z2).

• These correspond to H∗(GR
k ; Z2) = Z2[w1, . . . ,wk], where |wi| = i. Note that it is harder to

compute the cohomology in this case than in the complex case.

• We have w1(E) = 0 if and only if E is orientable.

• If dimE = n and E is orientable, then wn(E) = e(E) mod 2.

• They are related to Sq• on T(E) (and in fact this is the definition given in Milnor-Stasheff).

Now we will assume that our real vector bundles are oriented. Recall that GR
k = BO(k) is the

space of k-planes in R∞. Then we set G+
k = BSO(k) to be the space of oriented k-planes in R∞.

There is a double cover G+
k → GR

k . Recall that every oriented bundle has an Euler class!

Remark 2.4.3. Suppose E → B is an oriented odd-dimensional vector undle. Then the map
(b, v) 7→ (b,−v) reverses orientation on the sphere bundle, so e(E) = −e(E) and thus 2e(E) = 0.

Recall that H∗(SO(n), Q) varies greatly depending on the parity of n. We should obtain the
same thing for the classifying spaces.

Theorem 2.4.4. Over Q, we have H∗(G+
2m+1)Q[p1, . . . ,pm], where |pi| = 4i. In the even case, we have

H∗(G+
2m) = Q[p1, . . . ,pm, e]/(e2 = pm).

We are mostly interested in even-dimensional manifolds, so we will mostly work in the second
case.

Definition 2.4.5. The characteristic classes corresponding to p1, . . . ,pm are called the Pontryagin
classes of E.

Concretely, we can define the Pontryagin classes in terms of the Chern classes. If E→ B is a
real vector bundle, we may take E⊗C→ B the corresponding complex vector bundle. Then we
have

pi(E) := (−1)ic2i(E⊗C) ∈ H4i(B, Z).
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Remark 2.4.6. Recall that E⊗C is always isomorphic to its dual. Complex conjugation gives an
antilinear involution, so c2i+1 is 2-torsion.

Example 2.4.7. We will compute the Pontryagin classes of TCPn.

Lemma 2.4.8. If E is already a complex vector bundle, then E⊗C ∼= E⊕ E∗ as complex vector bundles.

Proof. Define by i the complex structure on E. Then the map (v, 0) 7→ (v,−iv), (0,w) 7→ (w, iw) is
a C-linear isomorphism.

In particular, if E is complex, then the total Pontryagin class p(E) = 1 + p1(E) + p2(E) + · · · can
be computed using

1 − p1(E) + p2(E) − p3(E) + · · · = 1 + c2(E⊗C) + c4(E⊗C) + c6(E⊗C)

= c(E⊗C)

= c(E⊕ E∗)
= c(E) · c(E∗)
= (1 + c1(E) + c2(E) + · · · )(1 − c1(E) + c2(E) − c3(E) + · · · ).

For TCPn, we have

1 − p1 + p2 − p3 + · · · = (1 + x)n+1(1 − x)n+1

= (1 − x2)
n+1

,

so we obtain

pk(CPn) =

(
n+ 1
k

)
a2k.

Now we will consider Pontryagin roots. The splitting principle for E2m → B says that E can
always be thought of as a direct sum of oriented 2-plane bundles analogously to Chern classes.
Note that an oriented 2-plane bundle is the same as a complex line bundle (because i rotates by π

2
counterclockwise). In the case where we actually have E = L1 ⊕ L2 ⊕ · · · ⊕ Ln, we obtain

E⊗C = L1 ⊕ L∗1 ⊕ L2 ⊕ L∗2 ⊕ · · · ⊕ Lm ⊕ L∗m.

These have Chern roots ±x1,±x2, . . . ,±xm, so we have

p1(E) = −c2(E⊗C) = x2
1 + x

2
2 + · · ·+ x

2
m

p2(E) = σ2(x
2
1, . . . , x2

m)

...

pm(E) = x2
1x

2
2 · · · x

2
m = σm(x2

1, . . . , x2
m).

This tells us that the x2
i are the Pontryagin roots. Also, e(E) = x1 · · · xm, so e2 = pm.

Remark 2.4.9. This is related to the fact that det : so(2m) → R has an SO(2m)-invariant square
root, called the Pfaffian.
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2.4.1 Relation to Steenrod problem and oriented bordism Let Xn be a closed smooth
manifold and α ∈ Hk(X, Z).

Question 2.4.10. Is there an oriented smooth manifold Mk and continuous f : M→ X such that f∗[M] =
α?

Definition 2.4.11. A pair (M, f) is singular manifold representing α.

Now define

Ωk(X) :=

{
(Mk, f) singular manifold in X

}
{(M, f) | there exists ∂W =M, f extends to W}

with addition given by disjoint union. In addition, we set −[M, f] = [M, f]. This is well-defined,
and in fact there is a map

Ωn(X)→ Hn(X, Z) [(M, f)] 7→ f∗[M].

The group Ωk(X) is called the k-th bordism group. Clearly Ωk is functorial by postcomposition.

Remark 2.4.12. The functors Ω∗ give a generalized homology theory. Note that Ωk(pt) is very
complicated. These are given by

Ωk(pt) =

{
Mk oriented k-manifolds

}{
M = ∂Wk+1

} .

Theorem 2.4.13. If M4k = ∂W4k+1, then the signature of M is 0.

Example 2.4.14. In Ω4k(pt), [CP2k] 6= 0.

Lemma 2.4.15. If B : V ⊗V → R is symmetric and nondegenerate and W ⊂ V is isotropic and dimW =
1
2 dimV , then the signature of B is 0.

Remark 2.4.16. Actually, it is easy to see that B =
(

0 W
1 0

)⊕dimW .

Lemma 2.4.17. Let ι : M ↪→ W be the inclusion onto the boundary. Then 〈ι∗(c), [M]〉 = 0 for all
c ∈ H4k(W).

Proof. This is given by 〈i∗(c), [M]〉 = 〈c, i∗[M]〉 = 0 because in the exact sequence

H4k+1(W,M)
δ−→ H4k(M)

ι∗−→ H4k(W),

we have [W.M] 7→ [M], so [M] = 0.

Proof of Theorem. Consider the commutative diagram

H2k(W) H2k(M) H2k+1(W,M)

H2k+1(W,M) H2k(M) H2k(W).

ι∗

ι∗

We know that W = Im(ι∗ : H2k(W)→ H2k(M)) is isotropic in V = H2k(M), so we need to show
that it is half-dimensional. But then Im(ι∗) = ker(ι∗) under identification. But then ι∗ is dual to
ι∗, so dim Im(ι∗) = dim Im(ι∗) = dimV − dim ker(ι∗) and thus W is half-dimensional.
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Recall that a spectrum E is a sequence (En, jn : ΣEn → En+1). Then we have the associated
homology theory

Hn(X, E) = lim−→πn+`(X+ ∧ E`),

where the colimit is over the sequence of maps given by suspension followed by j`.

Example 2.4.18. Consider En = K(Z,n) and let jn be adjoint to ΩK(Z,n+ 1) = K(Z,n). Then
the associated homology theory is Hn(−, Z).

Thom described the spectrum representing Ωn. Nowadays we call this the Thom spectrum
MSO. Here, we write MSO(k) = T(γk → BSO(k)), where BSO(k) is the oriented Grassmannian.
Then there is a natural map

ιk : BSO(k)→ BSO(k+ 1) R∞ ⊃ V 7→ R⊕ V ∈ R⊕R∞ = R∞.

In particular, we have ι∗kγk+1 = R⊕ γk. Then we have a map T(R⊕ γk)→ T(γk+1), but in the
homework we prove that T(R⊕ E) = ΣT(E).

Theorem 2.4.19 (Thom 1954). The spectrum MSO represents the homology theory Ω∗.

As a consequence, we have Ωn(pt) = lim−→πn+`(MSO(`)). In particular, this is finitely gener-
ated. Tensoring with Q, we may use techniques of Serre to prove that

Ωn(pt)⊗Q = lim−→Hn+`(MSO(`), Q) = lim−→
`→∞Hn(BSO(`), Q).

Therefore Ωn(pt) is finitely generated with rank 0 when 4 - n and the number of partitions of i
when n = 4i.

Remark 2.4.20. The generators of Ω4i(pt)⊗Q are CP2i1 × · · · ×CP2ik , where I = (i1, . . . , ik) is a
partition of i. Alternatively, we may define

pI : Ω4i(pt)→ Z M 7→
〈
pi1(M)∪ · · · · · ·pij(M), [M]

〉
.

This is called the I-Pontryagin number. Then the map

Ω4i(pt)→ Z#partitions M 7→ {pI(M)}

is an isomorphism after tensoring with Q.
Recall that the signature gives a homomorphism Ω4i(pt) → Z. Therefore it is a linear

combination of Pontryagin numbers. We may compute exactly which combination using the
Hirzebruch signature theorem. Later, we will prove this as a consequence of the Atiyah-Singer
index theorem. We have

1. sign(M4) = 1
3p1.

2. sign(M8) = 1
45 (7p2 − p

2
1).

3. sign(M12) = 1
945 (62p3 − 13p1p2 + 2p3

1).

4. sign(M16) = 1
14175 (. . .).

An application of this formula is in Milnor’s 1956 paper On manifolds homeomorphic to the
7-sphere.

Theorem 2.4.21 (Milnor 1956). There exist M7 which are homeomorphic but not diffeomorphic to S7.
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The idea to distinguish smooth structures is this. We know H∗(M7, Z) ∼= H∗(S7, Z). Then
because Ω7 = 0 there exists W8 such that M7 = ∂W8. Then we have an intersection form on
H4(W,M, Z)/torsion ∼= H4(W)/torsion. In particular, the signature of W is an integer and have a
number q(W) =

〈
p2

1(W), [W,M]
〉
.

Lemma 2.4.22. The number λ = 2q(W)− sign(W) mod 7 is is independent of the choice ofW. Therefore
λ is an invariant of M.

Proof. Consider two bounding manifolds W1,W2. Then we can glue W1,W2 to obtain a closed
manifold X. Then sign(X) = sign(W1) − sign(W2) and

〈
p2

1(X), [X]
〉
= q(W1) − q(W2). Then the

Hirzebruch formla gives us
45 sign+p2

1 = 7p2

and now basic arithmetic gives us the desired result.

Remark 2.4.23. This is a diffeomorphism invariant of M. Then λ(S7) = 0 because S7 bounds S8

and gluing them together gives S8.

Examples 2.4.24. We will give examples of M7 homeomorphic to S7 but not diffeomorphic to
it. We will construct these as sphere bundles of oriented rank 4 bundles over S4. Consider
R4 ↪→ E→ S4. These can be described using clutching functions. If we take S4 = D4

+ ∪D4
−, and we

know E
∣∣
D±

= DI ×R4. Therefore it suffices to describe the gluing along the equator, which gives

us a map S3 → SO(4). Now oriented vector bundles are described by π3(SO(4)) = Z⊕Z.
Very explicitly, we can identify S4 with the unit quaternions and R4 = H. Then fgj : S3 →

SO(4) is defined by
fhj(u) · x = uhxuj.

For example, the trivial map f0,0 is given by S4 ×R4. The unit sphere is S4 × S3. Similarly, f1,0
gives γ → HP1 and gives us the unit sphere S7. Now for k odd, we will choose h, j such that
h+ j = 1,h− j = k. Then define Mk to be the unit sphere bundle for fhj.

We will see that Mk is homeomorphic to S7 but λ(Mk) = k2 − 1. Thus M3 is homeomorphic
but not diffeomorphic to S7. First, we will write an explicit f : Mk → R with exactly one maximum
and minimum. Then using gradient flow, we have Mk = D7 ∪ϕ D7 via some ϕ : ∂D7 → ∂D7.
Because ϕ extends radially to D7, we have a homeomorphism Mk ∼= S7. To compute λ(Mk), note
that M7 bounds the unit disk bundle of E→ S4.

2.5 Topological K-theory

Let X be a finite CW complex (more generally a compact Hausdorff space). Then let Vect(X)
denote the set of isomorphism classes of (complex) vector bundles on X.

Remark 2.5.1. The rank may vary on each component of X.

Then Vect(X) is a unital semiring with operations ⊕,⊗ and unit the trivial line bundle C.

Remark 2.5.2. Unlike N, Vect(X) is not cancellative. This means that if a+ b = c+ b, then a 6= c in
general.

Example 2.5.3. Consider TS2 ⊕R = R3. However, TS2 6= R2.

We may define Z =
{
(a,b) ∈N2}/(a+b ′ = a ′+b). This only works because N is cancellative,

but if we modify the condition to be (a,b) ∼ (a ′,b ′) if a+ b ′ + e = a ′ + b+ e for some e, then
this defines the Grothendieck ring.
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Definition 2.5.4. Define the K-theory ring K(X) to be the Grothendieck ring of Vect(X).

This defines a functor from finCWop → Ring.

Example 2.5.5. We know that Vect(pt) = N, so K(pt) = Z. This is because vector bundles on a
point are the same as vector spaces.

Thus if we consider the inclusion pt ↪→ X, we obtain the (virtual) rank map K(X)→ K(pt) = Z.
This is locally constant. Note that if X is finite, then given E → X, there is E ′ → X such that
E⊕ E ′ ∼= Cn for some n. Here are some consequences:

1. If α ∈ K(X), then we can write α = a−CN for some a,N. Here, if α = E− F, then we choose
F⊕ F ′ ∼= CN, and thus we get α = E+ F ′ − CN.

2. If α = a + CN and β = b − CM, then α = β if and only if they have the same rank
everywhere and a,b are stably equivalent (which means that a⊕CA = b+ CB for some
A,B).

To see this, we have a+CM + E = b+CN + E for some E. Then we simply add E ′ such that
E+ E ′ = CL. Now we have a+ CM+L = b+ CN+L, so we are done.

Now we would like to throw away the information about stably equivalent bundles. If (X, x0) is
a pointed space, we define the reduced K-theory K̃(X, x0) := ker(K(X)→ K(x0)) = Z. This depends
only on the component of x0 and is a non-unital ring.

Proposition 2.5.6. We can identify K̃(X, x0) with vector bundles on X up to stable equivalence.

Now stabilization corresponds to the inclusion BU(k) ↪→ BU(k + 1), so a bundle up to
stabilization has classifying space BU := BU(∞) =

⋃
BU(k). Therefore, we have

Corollary 2.5.7. K̃(X) = [X,BU].

Remark 2.5.8. This is false for noncompact spaces in general.

We may also take the maps

U(k) ↪→ U(k+ 1) A 7→
(

1 0
0 A

)
.

Now we define U := U(∞) =
⋃
kU(k). Then we have a fibration U ↪→ EU → BU, where

EU = VC(∞,∞). We also have fibrations

U(K) ↪→ VC(∞,k)→ BU(k).

Because πr(VC(n,k)) = 0 for r 6 2(n− k), we see that VC(∞,∞) is contractible.

Example 2.5.9. It is easy to see that

K̂(S1) = [S1,BU] = π1(BU) = π0(U) = 0.

Similarly, we have

K̃(S2) = [S2,BU] = π2(BU) = π1(U) = π1(U(1)) = Z.

If γ is the tautological class (here, take S2 = CP1), then this is generated by γ− 1. This is because
c1(γ) = −1. Therefore K(S2) = K̃(S2)⊕Z = Z⊕Z is generated by γ, 1. The map is given by
a 7→ (c1(a), dim(a)). Now that (γ⊗ γ)⊕ 1 ∼= γ⊕ γ. In particular, (γ− 1)2 = 0. Thus we have
K(S2) ∼= Z[γ]/(γ− 1)2.
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Now we would like to extend this to a generalized cohomology theory.

Lemma 2.5.10. Let (X,A) be a finite CW pair. Then K̃(X/A)→ K̃(X)→ K̃(A) is exact (because A ⊂ X
is a cofibration).

Because A ⊂ X is a cofibration, we know that X/A ' X∪CA. Now the exact sequence extends
to

A ↪→ X→ X/A→ ΣA→ ΣX→ ΣX/A→ · · ·

by our discussion of cofiber sequences from last semester. This gives us a long exact sequence

· · · → K̃(ΣX/A)→ K̃(ΣX)→ K̃(ΣA)→ K̃(X/A)→ K̃(X)→ K̃(A).

Now we can manually define a cohomology theory as follows:

Definition 2.5.11. For q > 0, define K̃−q(X) := K̃(ΣqX). Analogously there is an unreduced theory
K−q(X,A) = K̃(Σq(X/A)). This gives K−q(X) := K−q(X, ∅) = K̃(Σq(Xt pt)).

Example 2.5.12. We have K−q(pt) = K̃(Σq(S0)) = K̃(Sq) = πq(BU).

The K-groups satisfy a miraculous identity:

Theorem 2.5.13 (Bott periodicity, version B). For all spaces X, K̃(Σ2X) ∼= K̃(X).

Therefore K−q is 2-periodic and we will consider K0,K1 as the interesting cases. The original
statement of Bott periodicity is

Theorem 2.5.14 (Bott periodicity, version C). The homotopy groups K̃(Sq) = πq(BU) = πq−1(U) are
2-periodic. Therefore πk(U) = Z is k is odd and 0 if k is even.

The most useful form of this result is

Theorem 2.5.15 (Bott periodicity, version A). For all spaces X, we have K(X× S2) = K(X)[γ]/(γ− 1)2.
Here, γ is the pullback of the tautological bundle γ→ CP1 = S2.

Concretely, we have a map

K(X)⊕K(X) ∼−→ K(X× S2) (α1,α2) 7→ (α1 ⊗C)⊕ (α2 ⊗ γ).

Francesco says that proving this result is difficult online, so we only give a sketch.

Sketch of proof. We will use generalized clutching functions. Choose a bundle E→ X. This gives a
bundle E→ X×D2

±. But of course D2 is contractible, so we can glue them together using some
f : X× S1 → Aut(E). Thus f(x, z) ∈ GL(E(x,z)), so we obtain a class [E, f].

The key point is that stably, any bundle on X× S2 has the form [E, 1]⊕ [E ′, z].

Example 2.5.16. We can represent γ→ S2 as [pt, f(x, z) = z].

Proof of version B. Consider the long exact sequence

· · · → K−1(X× S2)
ϕ−1−−−→ K−1(X∨ S2)→ K(X× S2,X∨ S2)→ K(X× S2)

ϕ−→ K(X∨ S2)→ · · ·

Therefore ϕ is surjective because K(X∨ S2) = K̃(X∨ S2)⊕Z = K̃(X)⊕ K̃(S2)⊕Z. This argument
also works for ϕ−1, and thus

K̃(Σ2X) = ker(K(X× S2)
ϕ−→ K(X∨ S2)).
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By version A, we see that x = α1 ⊗C + α2 ⊗ γ = α⊗ (γ− 1) + β⊗ γ. If if x ∈ kerϕ, , then its
restrictions to both X,S2 are trivial. Restricting to X, we require that 0 = αdim(γ− 1) +βdimγ =

β. Restricting to S2, we see that 0 = dimα · (γ−1), so α ∈ K̃(X). Therefore the map K̃(X)→ K̃(Σ2X)
given by α 7→ α⊗ (γ− 1) is an isomorphism.

Corollary 2.5.17. The group K̃(S2n) = Z is generated by (γ− 1)⊗n and K̃(S2n+1) = 0.

Now we want to consider K̃(X) in the noncompact case. The options are

1. The Grothendieck ring of Vect(X);

2. The set of maps [X,BU];

3. The limit lim←−K(Y) for compact Y.

Unfortunately these are not the same. We are interested in the case where X is Hausdorff
and locally compact. For example, if X is a CW complex such that every point is contained in
only finitely many cells or if E → X is a vector bundle to a compact Hausdorff space, then E is
Hausdorff and locally compact. In our case, the one-point-compactification X+ is Hausdorff.

Definition 2.5.18. If X is locally compact and Hausdorff, define K(X) := K̃(X+,∞).

This is a (unital) ring and is functorial under proper maps. Also, if U ⊂ X is open and relatively
compact with U+ = X/X \U = X+/X+ \U, we obtain a map X+ → U+. In particular, we obtain a
map K(U)→ K(X). Then we have

K(X) = lim−→K(U),

where U ranges over the relatively compact subsets of X. Of course, if X is compact, we recover
the original K-theory.

There is an alternative point of view in terms of complexes. Let

0→ E0 → E1 → · · · → En → 0

be a complex of bundles over X. We define the support supp E to be the locus where the sequence
is not exact.

Example 2.5.19. If we consider the bundle 0→ C
z−→ C→ 0, then the support of this complex is

{0}.

Define C(X) to be the homotopy classes of complexes with compact support, where E0 ∼ E1 if
there exists G→ X× I with compact support and G

∣∣
X×{i} = Ei. Now this contains the set C∅(X)

of complexes with empty support.

Proposition 2.5.20 (Segal). If X is Hausdorff and locally compact, then K(X) ∼= C(X)/Cφ(X) as rings.

The basic idea is that if E− F ∈ K(X) = K̃(X,∞), then the dimensions of E, F are equal at ∞,
so we can consider the complex 0→ E

α−→ F→ 0 where α is a chosen isomorphism near∞ and
extended arbitrarily with compact support to the entire X.

Remark 2.5.21. We have the inclusion supp(E⊗E ′) ⊆ supp(E)∩ supp(E ′). Therefore, the multi-
plication is well-defined.

Remark 2.5.22. The sequence 0→ C
z−→ C→ 0 in K(R2) = K̃(S2) corresponds to γ− 1.
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Example 2.5.23. We have K(R2n) = K̃(S2n) = Z and this is generated by (γ− 1)⊗n. The idea is
to tensor multiple copies of 0→ C

zi−→ C→ 0, and the generator is the Koszul complex

0→
∧0

Cn
∧ζ−−→

∧1
Cn

∧ζ−−→
∧2

Cn → · · · →
∧n

Cn → 0.

Now recall the Thom isomorphism in cohomology. If Rn ↪→ E → B is oriented, then

Hk(B, Z)
UE−−→ Hk+n(TE, Z) = Hk+nc (E, Z) is an isomorphism. The Thom class uE restricts to the

generator of Hnc (F, Z) for each fiber. In K-theory, if we have Cn → E
f−→ B, then we can use define

the Koszul complex of f∗E. Restricting to a fiber F, we obtain the Koszul complex of F = Cn. In
particular, the support is the zero section of E→ B, which is B. Thus if F is a compactly supported
complex on B, f∗F⊗

∧
(E) is a compactly supported complex on E. Therefore we obtain a map

K(B) ' K(E).

Theorem 2.5.24. This is the K-theoretic Thom isomorphism.

Proof. We can prove this locally using Bott periodicity and then patch to obtain the global
result.

Remark 2.5.25. The Thom isomorphism holds under weaker assumptions. This is when E admits a
spinc structure by Atiyah-Bott-Shapiro.

Now suppose X is a finite CW complex with only even-dimensional cells. Now we have an
exact sequence

K0(X2n,X2n−2) K0(X2n) K0(X2n−2)

K1(X2n−2) K1(X2n) K1(X2n,X2n−2).

By induction, we can obtain K(X) = Z#(cells). Here, we note that K1(X2n) = K1(X2n−2) = 0 and
K1(X2n,X2n−2) is just Z#(2n-cells), so this is very easy. In particular, we have K(CPn) = Zn+1.
This can also be done using the Leray-Hirsch theorem, and in fact the splitting principle holds.

For all E→ X, there exists Y f−→ X such that f∗ : K(X)→ K(Y) is injective and f∗E is a direct sum of
line bundles.

2.6 K-theory and cohomology

Now we will discuss the relationship between K-theory and cohomology. For a space X, we
have the two rings K(X),H∗(X). Can we find a morphism between them? The natural idea is
to consider characteristic classes. We can attempt to use the total Chern class, but this is not a
homomorphism!

Definition 2.6.1. Given a vector bundle E→ B, where B is a finite CW complex, define the Chern
character by

ch(E) =
∑

exi =
∑
i

(
1 + xi +

x2
i

2
+
x3
i

3!
+ · · ·

)
∈ H∗(X, Q).
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Here xi are the Chern roots of E. We can actually rewrite this as

ch(E) = dimE+ (x1 + · · ·+ xn) +
x2

1 + · · ·+ x
2
n

2
+ · · ·

= dimE+ c1(E) +
c1(E)

2 − 2c2(E)

2
+ · · ·

If we write xk1 + · · ·+ xkn = sk(σ1, . . . ,σn), where sk is the Newton polynomial and σi are the
elementary symmetric polynomials, we obtain

ch(E) = dimE+ c1(E) +
s2(c1, c2)

2
+
s3(c1, c2, c3)

3!
+ · · · ∈ H2∗(X, Q).

Proposition 2.6.2. The Chern character defines a homomorphism ch : K(X)→ H2∗(X, Z).

Proof. This is obvious for line bundles because exey = ex+y, and now we are done by splitting.

Theorem 2.6.3. The Chern character chQ : K(X)⊗Q→ H2∗(X, Q) is an isomorphism for any finite CW
complex X.

Note that this result is false over the integers. In addition, the map

K1(X)⊗Q = K̃(ΣX)⊗Q
chQ−−→ H̃2∗(ΣX, Q) ∼= Ĥ2∗+1(X, Q)

is an isomorphism.

Proof. We induct on the skeleta. This is obvious for the case of a point. So now consider the long
exact sequences

Kq−1(Xn−1) Kq(Xn,Xn−1) Kq(Xn) Kq(Xn−1) Kq+1(Xn,Xn−1)

Hq−1(Xn−1) Hq(Xn,Xn−1) Hq(Xn) Hq(Xn−1) Hq+1(Xn,Xn−1)

∼ ∼

Now we need to show that the maps on the relative groups are isomorphisms by the five lemma.
Because Xn/Xn−1 =

∨
Sn, we need to show this for spheres. In general, this is because

K̃(X) K̃(Σ2X)

H̃2∗(X, Q) H̃2∗(Σ2X; Q)

⊗(γ−1)

ch ch

Σ2

commutes. Returning to the case of a sphere, we have

ch(x⊗ (γ− 1)) = ch(x)∪ ch(γ− 1),

and also
ch(γ− 1) = ch(γ) − ch(1) = 1 + c1(γ) − 1 = c1(γ) ∈ H2(S2, Z)

is the generator. Now we simply need to show that chQ are isomorphisms for S1,S2.
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Remark 2.6.4. The torsion of K(X) and H2∗(X, Z) can be very different. For example, we have
K(RPm−1) = Z⊕Z/2m−1Z, while H2∗(RPm−1) = Z⊕ (Z/2Z)m−1.

In general, K-theory is very hard to compute. One can compute it using equivariant K-theory,
or we may use the Atiyah-Hirzebruch spectral sequence. Here, if X is a finite CW complex, then we
have a spectral sequence with

E
p,q
2 = Hp(X,Kq(pt))⇒ Kp+q(X).

In fact, this is true for any generalized cohomology theory.

Corollary 2.6.5. The Chern character ch : K(S2n) → H2∗(S2n, Q) actually restricts to ch : K̃(S2n) →
H2n(S2n; Q) which is an isomorphism onto H2n(S2n, Z).

An application of this2 is the following: If x ∈ H2n(S2n, Z) is given by x = cn(E), then
(n− 1)! | x. This is because c1(E) = · · · = cn−1(E) = 0, so ch(E) = dimE+

cn(E)
(n−1)! ∈ H

∗(S2n, Z).

Theorem 2.6.6 (Borel-Serre). If TS2n admits a complex structure J, then n = 1, 3.

Proof. Suppose we have a complex structure. Then cn(TS2n, J) = e(TS2n) = χ(S2n) = 2, so
(n− 1)! | 2 and thus n = 1, 2, 3. We know TS4 has no complex structure by Wu’s theorem.

Remark 2.6.7. When n = 1, then S2 = CP1 is a complex manifold, so we have holomorphic
charts. When n = 3, we can construct J using the octonions (viewing S6 in the purely imaginary
octonions), and the problem of whether S6 admits a complex structure is open.

Here is an important point. For E → X a vector bundle on a finite CW complex, we have a
diagram which does not commute:

K(X) K(E)

H2∗(X, Q) H2∗
c (E, Q).

·λE

ch ch

·uE

On one hand, we have ch(x · λE) = ch(x) ch(λE) and on the other hand we have uE · ch(x). In
general, ch(λE) 6= uE! Assume there exists t ∈ H2∗(X, Q) such that t · ch(λE) = uE. Formally, we

obtain t =
uE|X

ch(λE)|X
. If E has Chern roots x1, . . . , xn, then we have uE

∣∣
X
= e(E) = x1 · · · xn. On the

other hand, λE
∣∣
X
= 1 − E+

∧2 E−
∧3 E+ · · · = (1 − x1)(1 − x2) · · · (1 − xn). Applying the Chern

character, we have ch(λE
∣∣
X
) = (1 − ex1)(1 − ex2) · · · (1 − exn), and thus

t =
∏ xi

1 − exi
.

Definition 2.6.8. The Todd class td(E) is defined by

td(E) =
∏ xi

1 − e−xi
= 1 +

c1

2
+
c2

1 + c2

12
+
c1c2

24
+ · · ·

Later, when we do index theory, this will be very important.

2Allegedly this is cool.
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Remark 2.6.9. We have the identity x
ex−1 =

∑
Bk
xk

k! , so this is the exponential generating function
for the Bernoulli numbers.

Theorem 2.6.10 (Adams). If there exists f : S4n−1 → S2n with H(f) = 1, then n = 1, 2, 4.

We will interpret H(f) using K-theory. Consider the mapping cone Cf = S2n ∪fD4n. then we
have an exact sequence

0→ K̃(S4n)→ K̃(Cf)→ K̃(S2n)→ 0,

and here we have (γ− 1)2n 7→ α,β 7→ (γ− 1)n. Then because β2 7→ 0, we can write β2 = H(f)α.
The tool we will use to study this are Adams operations. These are natural transformations

ψk : K(X)→ K(X) satisfying the following properties:

1. For L a line bundle, ψk(L) = L⊗k.

2. For any k, `, ψk ◦ψ` = ψk`.

3. If p is prime, then ψp(α) ≡ αp (mod p). This means that ψp(α) −αp = pβ for some β.

The way we will define these is by guessing a formula using splitting and then write it in an
invariant way. We know that if E = L1 ⊕ · · · ⊕ Ln, we want

ψ(E) = ψ(L1)⊕ · · · ⊕ψ(Ln) = Lk1 ⊕ · · · ⊕ L
k
n.

Introducing a formal variable ti, this becomes tk1 + · · ·+ tkn. Then we obtain

∧j(⊕
Li

)
= σj(t1, . . . , tn),

so we have

tk1 + · · ·+ tkn = sk(σ1, . . . ,σk) = sk

(∧1(⊕
Li

)
, . . . ,

∧k(⊕
Li

))
,

and thus we may define

ψk(E) := sk

(∧1
E, . . . ,

∧k
E

)
.

The properties are easily checked using the splitting principle! For example, the third property is
Fermat’s little theorem. Now this induces ψk : K̃(X)→ K̃(X).

Proposition 2.6.11. The map ψk : K̃(S2n)→ K̃(S2n) is multiplication by kn.

Proof. Observe that ∗ : K̃(X)⊗ K̃(Y) → K̃(X∧ Y) is given by α⊗ β 7→ p∗X(α) · p
∗
Y(β). Now ψk

commutes with multiplication, so we simply need to compute this for K̃(S2). But now we have

ψk(γ− 1) = ψk(γ) −ψk(1) = γk − 1 = (1 +α)k − 1 = 1 + kα− 1 = kα,

where α = γ− 1. Now assume the result is true for S2n−2. Then K̃(S2)⊗ K̃(S2n−2)→ K̃(S2n) is
the Bott periodicity map, so because ψk commutes with multiplication, we obtain the desired
result.
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Proof of Adams’ theorem. Let f : S4n−1 → S2n satisfy H(f) = 1. Write Cf = S2n ∪f D4n. Now we
have an exact sequence

0→ K̃(S4n)→ K̃(Cf)→ K̃(S2n)→ 0,

and this is given by (γ− 1)2n 7→ α,β 7→ (γ− 1)n. Then we know β2 = H(f)α. For every k ∈ N,
we have ψk(α) = k2nα and ψk(β) = knβ+ ukα for uk ∈ Z. Because multiplication of Adams
operations is commutative, we have ψkψ` = ψ`ψk. Therefore, for all k, `, we have

(k2n − kn)u` = (`2n − `n)uk.

Because H(f) = 1, we know

2nβ+ u2αψ
2(β) ≡ β2 = H(f)α = α (mod 2),

and thus u2 is odd. Setting k = 3, ` = 2, we have

(32n − 3n)u2 = (22n − 2n)u3,

and thus 2n | 3n − 1, which implies n = 1, 2, 4.

Corollary 2.6.12. If Sn−1 is parallelizable, then n− 1 = 0, 1, 3, 7. This is equivalent to Rn being a
division algebra. This means that there exists µ : Rn → Rn that is continuous and linear in each variable
such that µ(x,y) = 0 implies that one of x,y = 0. Thus n = 1, 2, 4, 8.

Sketch of proof. If Rn is a division algebra, then it is a division algebra with unit. Next, it is clear
that Sn−1 is a unital H-space. But now this implies n = 2m and then there exists S4m−1 → S2m

with Hopf invariant 1.

To go from Rn being a divison algebra to Sn−1 being an H-space, let µ be the multiplication
on Rn. Then the multiplication on Sn−1 is simply (x,y) 7→ µ(x,y)

‖µ(x,y)‖ . To go from Sn−1 being

parallelizable to being an H-space, choose an orthonormal frame v1, . . . , vn−1 of TSn−1. Then
for all x, (x, v1(x), . . . , vn−1(x)) is an orthonormal basis of Rn. We may assume that at e1, this
is (e1, . . . , en), so we obtain a matrix αx ∈ SO(n) with αe1 = id. Now the H-space structure is
x ∗ y = αx(y) and this is clearly unital with unit e1.

Remark 2.6.13. Adams used similar techniques to provide sharp upper bounds on the number
of linearly independent vector fields on Sn−1. To construct the vector fields, we need to use the
theory of modules over Clifford algebras. The Clifford algebras are all associative, and the first
few examples are R, C, H. The category of modules over these are periodic, and this is some sort
of algebraic Bott periodicity.
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The Atiyah-Singer Index Theorem

This is a result that relates analysis and topology. First, we will discuss the relation between
analysis and K-theory.

3.1 Fredholm Operators

Let L : Rn → Rm be a linear map. Then define the index ind(L) := dim ker(L) − dim coker(L). In
finite dimensions, this is just

ind(L) = dim kerL− (m− dim ImL) = n−m

by rank-nullity. In infinite dimensions, things are more interesting.

Definition 3.1.1. Let X, Y be Hilbert spaces and L : X → Y be a bounded operator. Then L is
Fredholm if dim kerL < ∞, ImL is closed, and dim cokerL < ∞. Now we may define the index
ind(L) := dim kerL− dim cokerL ∈ Z.

Remark 3.1.2. For X, Y Hilbert spaces, the condition that ImL is closed is automatic. This is a
consequence of the open mapping theorem.

Example 3.1.3. Consider L : `2(N) → `2(N) be the left shift (x1, x2, . . .) 7→ (x2, x3, . . .). Then
ind(L) = dim kerL − dim cokerL = 1 − 0 = 1. Similarly, we may consider the right shift
R : `2(N)→ `2(N) given by (x1, x2, . . .) 7→ (0, x1, x2, . . .), and ind(R) = 0 − 1 = −1.

Theorem 3.1.4. The space Fred(X, Y) ⊆ B(X, Y) is open and the index ind : Fred(X, Y) → Z is locally
constant.

Remark 3.1.5. If {Lt}t∈[0,1] is a family of operators, then the index is constant, but of course the
dimensions of the kernel and cokernel can vary wildly. Thus, index should be a topological
quantity in some sense.

Lemma 3.1.6. Let T : X→ Y be invertible. Then if p : X→ Y has small enough norm, T + p is invertible.

Thus being invertible is an open condition!

Proof. Write (T + p) = T(1 + T−1p). Then T−1p has small norm, so we can write

(1 + T−1p)
−1

=
∑

(−1)n(T−1p)
n

,

50
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and this sum converges. Therefore we have

(T + p)−1 =
(∑

(−1)n(T−1p)
n
)
· T−1.

Proof of Theorem 3.1.4. Let T : X→ Y be Fredholm. Then we know X = C⊕ ker T and Y = Im T +D,
where dim ker T <∞ and dimD <∞. Now we can write T in the block matrix form

T =

(
T ′ 0
0 0

)
T ′ : C

∼−→ Im T .

Now suppose p =
(
a b
c d

)
has small norm. Then we have

T + p =

(
T ′ + a b
c d

)
,

and T ′ + a is invertible. Then by Gaussian elimination using

G :=

(
I (−T ′ + a)−1

b
0 I

)
H :=

(
I 0

−c(T ′ + a)−1
I

)
,

we see that

H(T + a)G =

(
T ′ + a 0

0 −c(T ′ + a)−1
b+ d

)
,

so we have

ind(T + a) = ind(H(T + a)G) = ind(−c(T + a)−1b+ d) = dim ker T − dimD = ind(T).

Theorem 3.1.7 (Atiyah-Jänich). Let H be a separable complex Hilbert space. Then there is a natural
bijection

[X, Fred(H)]→ K(X)

for all finite CW complexes X.

Remark 3.1.8. Let S, T : H→ H be Fredholm. Then S ◦ T is also Fredholm. In particular, [X, Fred(H)]
is naturally a semigroup and the map [X, Fred(H)]→ K(X) is a map of semigroups.

Corollary 3.1.9. There is a weak homotopy equivalence Fred(H) ∼ BU×Z.

Remark 3.1.10. The map dim : K(X)→ Z corresponds to the index.

To construct the map [X, Fred(H)] → K(X), note that an element of [X, Fred(H)] is a family
{Tx}x∈X, where Tx : H→ H. Then because X is compact, there exists a finite dimensional V ⊂ H
such that Im(Tx) + V = H for all x. Therefore T−1

x (V) ⊂ H, so
⋃
T−1
x (V) → X is a vector bundle.

Now we set
{Tx}→

{
T−1
x (V)

}
− CdimV ∈ K(X).

Note that the vector bundle has dimension ind Tx
The key point in the proof of Atiyah-Jänich is the fact that the space GL(H) of bounded

invertible operators on H is weakly contractible. This is called Kuiper’s theorem. Note that this is in
contrast to GL(∞) ' U(∞), which is not contractible.

Definition 3.1.11. A bounded operator K : X→ Y between Hilbert spaaces is compact if it sends
bounded sets to precompact sets.
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Example 3.1.12. Any finite rank K is compact. Also, the operator

`2(N)→ `2(N) (x1, x2, x3, . . .) 7→
(
x1,
x2

2
,
x3

3
, . . .
)

is compact.

Theorem 3.1.13. Let T ,K : X→ Y. Then if T is Fredholm and K is compact, then T +K is Fredholm and
ind(T) = ind(T +K).

Sketch of proof. We want to show that dim ker(I+K) <∞, and this is the same as the unit sphere
being compact. Here, if ‖xn‖ = 1 and (I+ K)(xn) = 0, then the sequence yn = {−Kxn} has a
convergent subsequence, and thus the unit sphere is compact.

To show that the cokernel is finite dimensional, we use Schauder’s theorem. Here, if K : X→ Y is
compact, then K∗ : Y∗ → X∗ is also compact.

3.2 Index and topological invariants

The goal of this section is to prove that if M is a closed oriented smooth manifold, then
χ(M), sign(M) are naturally interpreted as indices of differential operators. Recall the de Rham
complex of C∞-forms

0→ Ω0(M)
d0−→ Ω1(M)

d1−→ · · · d−→ Ωn(M)→ 0.

This has cohomology Hp(M, R). Note from this point of view that a cohomology class does not
have a preferred representative.

A goal of Hodge theory is to find a preferred representative when M is equipped with a
Riemannian metric g. Intuitively, each Ωi has an L2 inner product

〈α,β〉L2 =

∫
M
〈α(p),β(p)〉dvol ,

so we obtain an L2 norm. Now a good candidate for the preferred representative of a cohomology
class is the shortest element! It is not obvious that this even exists.

Now let (V , 〈−,−〉) be an oriented real Euclidean vector space of dimension n. Then we define
the Hodge star

∗ :
∧i

V →
∧n−i

V

to satisfy the property that for any oriented orthonormal basis e1, . . . , en, we have

e1 ∧ · · ·∧ ei 7→ ei+1 ∧ · · ·∧ en.

In a more invariant manner, we have vol(W) 7→ vol(W⊥). Now if α,β ∈
∧i V , then α∧ ∗β is the

inner product 〈α,β〉dvol. On a manifold, if α,β ∈ Ωi, we obtain

〈α,β〉L2 =

∫
M
〈α(p),β(p)〉dvol =

∫
M
α∧ ∗β.

Returning to the de Rham complex, we would like to write an adjoint d∗ : Ωp → Ωp−1. We set

d∗ = (−1)n(p+1)+1 ∗ d∗ : Ωp → Ωn−p → Ωn−p+1 → Ωp−1.
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Proposition 3.2.1. The morphism d∗ is the L2 adjoint of d, so if γ ∈ Ωp−1,α ∈ Ωp, then

〈dγ ,α〉L2 = 〈γ, d∗α〉 .

Proof. Consider γ∧ ∗α ∈ Ωn−1. Then we have

d(γ∧ ∗α) = dγ∧ ∗α+ (−1)p−1γ∧ d(∗α)
= 〈dγ,α〉− 〈γ, d∗α〉 .

Then the resired result follows from Stokes, which gives us
∫

d(γ∧ ∗α) = 0.

Now suppose that α minimizes ‖−‖L2 in [α] ∈ Hp. Then any other element differs by an exact
form η ∈ Ωp−1, so we have

0 =
d
dt

∣∣∣∣
t=0
‖α+ tη‖2

L2

=
d
dt

∣∣∣∣
t=0

(‖α‖2 + 2t 〈α, dη〉+ t2‖dη‖2)

= 2 〈α, dη〉
= 2 〈d∗α,η〉 ,

so we must impose d∗α = 0. In particular, we must have (d + d∗)α = 0.

Definition 3.2.2. The Hodge Laplacian is the operator Ω := (d + d∗)2 : Ωi → Ωi. Note that
(d + d∗)2 = dd∗ + d∗d.

This satisfies the following properties:

1. ∆ : Ω0 → Ω0 is the negative of the usual Laplacian −∇ ·∇f = −
∑ d2

dx2
i

.

2. The operator ∆ is self-adjoint. Here, note that d + d∗ is self-adjoint.

3. ∆ is nonnegative. Here, note that 〈α,∆α〉 = ‖(d + d∗)α‖2 > 0.

4. We have ker∆ = ker(d + d∗) on Ωi.

Theorem 3.2.3 (Hodge). There is an orthogonal decomposition

Ωp(M) = dΩp−1 ⊕Hp ⊕ d∗Ωp+1.

Here, H = ker(∆) = ker(d + d∗) is the space of Harmonic forms. In addition, we have Hp ∼= Hp(M, R),
and in particular, each cohomology class admits a unique harmonic representative.

Remark 3.2.4. Note that d + d∗ preserves the natural Z/2Z grading on Ω∗. Therefore, we may
consdier d + d∗ : Ωeven → Ωodd, so we may consider its index. Therefore we have

ker d + d∗ =
⊕
i

H2i, coker d + d∗ = ker(d + d∗) =
⊕
i

H2i+1.

Assuming the Hodge theorem, we therefore obtain ind(d + d∗) = χ(M). In general, the Atiyah-
Singer index theorem tells us that this is e(TM).
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Now let M4k be oriented. We have an intersection form QM : H2k(M, R)⊗H2k(M, R)
^−→

H4k = R. For de Rham cohomology, we may write

Qm(α,β) =
∫
M
α∧β.

Now we will realize the signature as the index of d + d∗ with respect to a different splitting of
Ω∗(M). Set ε2 = i2k+p(p−1)∗ : Ωp → Ω4k−p. Then it is easy to see that ε2 = 1, so we write
Ω∗ = Ω+ ⊕Ω−. Also ε = ∗ on Ω2k and ε anticommutes with d + d∗. Therefore, we can consider

d + d∗ : Ω+ → Ω−.

This has kernel containing β+ ε(β) for β ∈ H`, where ` < 2k as well as β ∈ H2k such that β = ∗β.
On the other hand, the cokernel consists of forms of the form β− ε(β) for β ∈ H` with ` < 2k
and β ∈ H2k such that β = − ∗β. Therefore, we may consider only the forms in H2k, and we see
that ind(d + d∗) = dimH+ − dimH−, where H+ is the space of self-dual forms and H− is the
space of anti-self-dual forms. But now we see that

Qm(β,β) =
∫
M
β∧β =

∫
M
β∧ ∗β = ‖β‖2

when β ∈ H+, and similarly we see thatQm is negative definite on H−. Because H2k = H+⊕H−,
we see that ind(d + d∗) = sign(M). The Atiyah-Singer index theorem will express this index in
terms of Pontryagin classes, and this will give us the Hirzebruch signature formula.

3.3 Elliptic Operators

Let Mn be a smooth manifold and Em, F` be vector bundles over M.

Definition 3.3.1. A differential operator (with C∞ coefficients) of order r is an operator

L : C∞(E)→ C∞(F)
that looks in charts U ⊆M, where E = U×Rm, F = U× R`, like an operator of the form

L =
∑
|α|6r

aα(x)D
α,

where α is a multi-index and aα(x) : Rm → R` is a matrix smooth in x. Here, we write

Dα =

(
∂

∂x1

)α1

· · ·
(
∂

∂xn

)αn
and |α| is the L1-norm.

Definition 3.3.2. A differential operator L of order r is elliptic if for all x ∈ U and ξ ∈ Rn \ {0} and
we substitute Dα  ξα = ξ

α1
1 · · · ξ

αn
n , the polynomial

PL,x(ξ) :=
∑
|α|=r

aα(x)ξ
α : Rm → R`

is an isomorphism.
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Example 3.3.3. The Laplacian ∆ = − ∂2

∂x2
1
− · · ·− ∂2

∂x2
n

of order 2 is elliptic. Here, we have

PL,x = −ξ2
1 − · · ·− ξ

2
n : R→ R

and thus ∆ is elliptic.

Example 3.3.4. The wave operator ∂2

∂x2
1
− ∂2

∂x2
2

is not elliptic. Here, note that

PL,x(ξ) = ξ
2
1 − ξ

2
2,

and this vanishes for ξ = (1, 1).

Example 3.3.5. Consider ∂ = ∂
∂x + i ∂∂y acting on C-valued functions. Then we have

PL,x(ξ) = ξ1 + iξ2 : C→ C,

and this is an isomorphism for ξ 6= 0.

More intrisically, consider L : Γ(E)→ Γ(F). Then L is elliptic at x if and only if for all u ∈ Γ(E)
with u(x) 6= 0, and ϕ ∈ C∞(M) with ϕ(x) = 0 such that dϕ(x) = ξ ∈ T∗xM \ {0}, we have
L(ϕru) 6= 0. Here, we can compute L(ϕru) = PL.x(ξ)u.

The key point is that if L is elliptic, then solutions to Lu = 0 are very nice. For example, if
u ∈ C1 and ∂u = 0, then u ∈ C∞. Similarly, if u ∈ C2 and ∆u = 0, then u ∈ C∞. On the other
hand, this is false for the wave equation. The correct functional analysis setup for this is Sobolev
spaces. Now consider E→M a Euclidean vector bundle on a Riemannian manifold. Then fix a
compatible connection ∇ on E and k ∈N. For u ∈ Γ(E), we will define

Definition 3.3.6. The L2
k-norm of u is defined by

‖u‖2
L2
k
=

∫
M

(
|u|2 + |∇u|2 + · · ·+

∣∣∣∇ku∣∣∣2)dvol .

The completion of Γ(E) with respect to this norm is the Hilbert space L2
k(E).

Example 3.3.7. The space L2
1(R) contains functions that are continuous and are well-behaved.

On the other hand, L2(R) contains discontinuous functions. Also, functions in L2
1(R

2) are not
necessarily continuous.

Remark 3.3.8. If M is compact, then the space L2
k(E) is independent of the choices made as a

topological vector space.

Lemma 3.3.9. Let M be commpact and L : Γ(E)→ Γ(F) be a linear differential operator of order r. Then
for all k there exists Ck > 0 such that

‖Lu‖L2
k
6 Ck‖u‖L2

k+r
.

In particular, this means we can take L : L2
k+r → L2

k(F), and this is bounded. There is another
estimate, which is only true for elliptic operators.

Theorem 3.3.10 (Elliptic estimate). If L is elliptic, then there exists Dk such that

‖u‖L2
k+r
6 Dk(‖Lu‖L2

k
+ ‖u‖L2).
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Remark 3.3.11. The ‖u‖L2 is there to take care of kerL. Also, this estimate is false for Ck norms.

We will simply give the idea of the proof in the simplest case ∆ : C∞(Tn, C) → C∞(Tn, C).
Recall the Fourier transform

F : L2(Tn)→ `2(Zn) f 7→
{
an =

∫
f(x)e−inx dvol

}
.

This is an isometry up to factors of 2π. Under this correspondence, the differential operator
f 7→ d

dxj
corresponds to

{
an
}
7→
{
−injan

}
. Now the Sobolev norm ‖f‖2

L2
k

corresponds to the
norm ∥∥{an}∥∥2

L2
k
=
∑ ∣∣an∣∣2(1 + |n|2)

k
.

Finally, f 7→ ∆f corresponds to
{
an
}
7→
{
|n|2an

}
. Therefore, we see that

‖∆f‖2
L2
k
=
∑

|n|2
∣∣an∣∣2(1 + |n|2)

k
,

and thus if n 6= 0, we see that |n|2(1 + |n|2)
k
> Dk(1 + |n|2)

k+2
. This gives us the result

‖∆f‖2
L2
k
+ ‖f‖2

L2 > D ′k‖f‖
2
L2
k+2

.

In general, PL,x(ξ) is a degree r polynomial in ξ that only vanishes at 0. This gives us an
estimate of the form

PL,x(ξ) > cx|ξ|
r.

Here are some nice results about Sobolev spaces:

Sobolev embedding theorem: If p > n/2, we have L2
k+p ↪→ Ck.

Rellich compactness: If k1 < k2, then L2
k2

↪→ L2
k1

is a compact operator if M is compact. This is
an analog of Arzela-Ascoli for Sobolev spaces.

Theorem 3.3.12. If L is an elliptic operator of order r for a compact manifold M, then for all k ∈ C,

L : L2
k+r(E)→ L2

j(F)

is Fredholm. In addition, kerL and cokerL = kerL∗ consist of smooth configurations. Therefore indL is
independent of k.

Corollary 3.3.13. Let {Lt}t∈[0,1] : Γ(E)→ Γ(F) be a family of elliptic operators of order r. Then ind(Lt) ∈
Z is constant.

Therefore if an operator depends on some choice from a connected space (for example metrics),
then its index is independent of the choice. Therefore, one hopes that the index depends only on
topology.

Lemma 3.3.14. Consider L : X → Y and K : X → Z such that X is compact and ‖x‖X 6 C(‖Lx‖Y +
‖Kx‖Z). Then dim kerL <∞ and ImL is closed.

Now Fredholmness of elliptic operators follows from taking K to be the embedding of L2
k+r

inside L2. The second part of Theorem 3.3.12 follows from elliptic regularity. Here, we know that if
u ∈ L2

k+r, then Lu ∈ L2
k. Now if Lu ∈ L2

k+1, then u ∈ L2
k+r+1. In particular, Lu = 0 implies that

u ∈ L2
k for all k, and therefore u ∈ C∞ by Sobolev embedding.
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We observe that indL depends only on the family of principal symbols PL,x(ξ). Thus all lower
order terms do not matter. Here, the lower order terms give an operator L2

k+r → L2
k+1 ↪→ L2

k, and
this is compact. Now we see that the index only depends on M,E, F, {PL,x}. This leads us to the
following problem.

Question 3.3.15 (Gelfand). Write a formula for indL in terms of topological data (for example character-
istic classes).

Example 3.3.16. The operators d + d∗ : Ωeven → Ωodd, d + d∗ : Ω+ → Ω− are elliptic. We simply
need to show that the symbols are injective, so let x ∈ X,ϕ(x) = 0, and dϕ(x) = ξ ∈ T∗xM \ {0}.
Then if α ∈ Ωp, we have

d(ϕα)
∣∣∣∣
x

= dϕ∧α

∣∣∣∣
x

+ ϕ∧ dα
∣∣∣∣
x

= ξ∧α.

Similarly, we obtain d∗(ϕα) = iξ(α)(x), the contraction. Therefore we have

Pd+d∗,x(ξ)α = ξ∧α+ iξ(α),

and this is nonzero whenever ξ,α are nonzero. Therefore d + d∗ is elliptic.

Remark 3.3.17. The Hodge theorem requires some extra work.

1. First one needs to show that a generalized solution in L2 exists (this is by general nonsense
such as Hahn-Banach and Riesz representation).

2. Now use elliptic regularity to get that the solution is smooth.

3.4 The index theorem

First, we will discuss symbols and K-theory. We will always denote our elliptic differential
operator by D. Now for all x ∈ X and ξ 6= 0 ∈ T∗xX, we know PD,x(ξ) : Ex → Fx is an isomorphism.
Now we can put everything together to obtain a bundle map σ(D) : π∗E→ π∗F, where π : TX→ X
is the projection. Now we know σ(D) is an isomorphism outside of the zero section of TX→ X,
which is compact. This gives us a well-defined element σ(D) ∈ K(TX).
Remark 3.4.1. The inclusion of X as the zero section of TX gives us a map K(TX)→ K(X), and we
have σ(D) 7→ E− F.

Remark 3.4.2. An orientation of X gives an orientation of TX. Here, locally we have TU = U×Rn,
and if b1, . . . ,bn is an oriented basis of Rn, then we obtain an oriented basis {(b1, 0), (0,b1), . . .}.

We are finally ready to state

Theorem 3.4.3 (Atiyah-Singer index theorem). Let X,D be as above. Then we have

ind(D) = (−1)nch(σ(D))td(TX⊗C)[TX].

Here, ch(σ(D)) ∈ H×c (TX, Q) and td(TX⊗ C) ∈ H∗(X, Q). Then we can multiply them together to
obtain an element of H∗c(TX, Q), and then evaluate it on [TX].

Note that this form of the theorem is somewhat inconvenient because σ(D) may be very
complicated. In some special cases, we may be able to simplify. First, let ψ : Hp(X)→ H

p+n
c (TX)

be the Thom isomorphism. Then for b ∈ H2n
c (TX), we have

b[TX] = (−1)n(n−1)/2ψ−1(b)[X].
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Here, the sign comes from our weird orientation convention. Note that if ψ−1(b) = a, then
b = a ^ U, where U is the Thom class. Thus b

∣∣
X

= a ^ e(TX). Formally, we may write

a =
b|x
e(TX) . Assuming that this is actually possible, we obtain ch(σ(D))

∣∣
X

= ch(E− F), so we
obtain

ind(D) = (−1)n(n−1)/2 ch(E− F)td(TX⊗C)

e(TX)
[X].

Remark 3.4.4. This does not depend on σ(D). In fact, it depends only on E, F,X.

For example, this makes sense when e(TX) is not a zero-divisor. This also makes sense if
we can interpret everything in terms of classifying spaces (for example if e(TX) comes from
Hn(BSO(n)) where n is even). Thus if b is the pullback of a class on BSO(n), then we are still
fine, and here we call D a universal operator.

Example 3.4.5. Consider d + d∗ on the complexified tangent bundles. Also assume n = 2` is
even. We need to compute ch(Ωeven −Ωodd) and td(TX⊗ C). Now TX⊗ C has Chern roots
x1,−x1, . . . , x`,−x`. Therefore, we have

ch(Ωeven −Ωodd) = ch
(∑

(−1)i
∧i

(TX⊗C)

)
= ch

(∏̀
i=1

(1 − xi)(1 + xi)

)

=
∏̀
i=1

(1 − exi)(1 − e−xi).

On the other hand, we have

td(TX⊗C) =
∏̀
i=1

xi
(1 − e−xi)

· −xi
(1 − exi)

.

Finishing the computation, we obtain

ind(d + d∗) = (−1)`(2`+1)(−1)`x1 · · · x` = x1 · · · x` = e(TX).

Corollary 3.4.6. This proves that χ(X) = e(TX) in even dimension. In fact, this is the most complicated
proof of this fact that Francesco knows.

Remark 3.4.7. Our machinery is also good to work directly with complexes of differential operators

0→ Γ(E0)
D0−−→→ Γ(E1)

D1−−→ · · · → Γ(Ek)→ 0.

For example, we want to consider the de Rham complex. Here, we need that the associated symbol
complex is exact for all ξ 6= 0. Here, we need to replace the index of D with the alternating sum
of dimensions of cohomologies and the Chern character of the alternating sum of the bundles.

Example 3.4.8. Consider d + d∗ : Ω+ → Ω−. If V = Ṽ ⊗C, where Ṽ is oriented of dimension 2m,
then

∧∗ V =
∧+ V ⊕

∧− V . Here, we have
∧+(V ⊕W) =

(∧+ V ⊗
∧+W

)
⊕
(∧− V ⊗

∧−W
)

and∧−(V ⊕W) =
(∧+ V ⊗

∧−W
)
⊕
(∧− V ⊗

∧+W
)
. This implies that

∧+−
∧− behaves nicely

under direct sums. Now we use the splitting principle, so we may assume TX = P1 ⊕ · · · ⊕ P` is a
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sum of oriented plane bundles. If P = L with Chern root x, then
∧+ PC

∼= 1+L and
∧− PC

∼= 1+L.
Therefore

ch
(∧+

PC −
∧−

PC

)
= (1 + e−x) − (1 + ex) = e−x − ex.

Now we see that

ch
((∧+

−
∧−)

TXC

)
=
∏̀
i=1

(e−xi − exi).

Finally, we see that

ind(d + d∗) = (−1)`
ch
((∧+−

∧−)TXC

)
td(TXC)

e(TX)
[X]

= (−1)`
∏̀
i=1

e−xi − exi

xi

(xi)(−xi)

(1 − exi)(1 − e−xi)
[X]

=
∏̀
i=1

xi
tanh(xi)

[X].

Now note that xi
tanh(xi)

is a power series in the even powers of xi, so we obtain

∏̀
i=1

xi
tanh(xi)

=

b `2 c∑
j=0

Lj(p1 · · ·pj).

If we actually compute the Lj, then we obtain the Hirzebruch signature formula.

Corollary 3.4.9 (Hirzebruch signature formula). Let X4k be an oriented manifold. Then sign(X) =
Lk(p1(TX), . . . ,pk(TX))[X].

Now let X be a complex compact manifold. Now we know TXC = TX⊗C = TX⊕ TX, so we

have TX∗C =
∧1,0⊕

∧0,1. Therefore, we have
∧0,q =

∧q (∧0,1
)

. Now if we set Ω0,q = C∞(∧0,q
)

,
we obtain the Dolbeaut complex

0→ Ω0 ∂−→ Ω0,1 → Ω0,2 → · · ·

where ∂2
= 0 because we have a complex manifold. Now it is easy to see that ∂ is elliptic. This

will imply that the complex has finite-dimensional cohomology, but in fact we have

Theorem 3.4.10 (Dolbeaut). We have ker∂p/ Im∂p−1 = H0(X,OX) and has dimension h0,i.

Therefore the index is ind(∂) =
∑

(−1)ih0,i = χ(X,OX). Using the index theorem, we can
compute the index as

(−1)n(2n+1)
ch
(∑

(−1)i
∧0,i

)
· td(TXC)

e(TX)
[X].

If TX has roots x1, . . . , xn, we obtain that
∧0,1 = T∗X, so it has the same Chern roots. Therefore,

ch
(∑

(−1)i
∧0,i

)
=
∏

(1 − exi). Next, it is easy to see that

td(TXC) = td(TX) · TX =
∏ xi

(1 − e−xi)

−xi
(1 − exi)

.
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Finally, we have e(TX) = cn(TX) = x1 · · · xn. In particular, we obtain

ind(∂) = td(TX)[X].

As a corollary, we obtain

Theorem 3.4.11 (Hirzebruch-Riemann-Roch). Let X be a compact complex manifold. Then

χ(X,OX) = td(X)[X].

More generally, if V → X is a vector bundle, then χ(X,OV ) = (ch(V)td(X))[X].

Remark 3.4.12. The original proof of Hirzebruch is for projective varieties.

Example 3.4.13. If S6 has a complex structure with structure sheaf OS6 , then we obtain

h0,0 − h0,1 + h0,2 − h0.3 =
c1c2

24
[S6] = 0,

so some of h0,1,h0,2,h0.3 > 1.

Remark 3.4.14. The remaining interesting case of a “universal operator” is the Dirac operator. If
you would like to know more, contact Alex Xu at axu@math.columbia.edu.

3.5 Sketch of proof of the index theorem

First, we will give a short history of the proof. The original proof announcement and sketch
was in 1963 using cobordism theory. This was inspired by Hirzebruch’s proof of the Hirzebruch-
Riemann-Roch theorem in 1956. The drawback is that this does not generalize to the equivariant
setting. The published proof in 1968 was heavily inspired by Grothendieck’s 1957 proof of the
Grothendieck-Riemann-Roch theorem.

First, if X is a point, then ellipticity is a vacuous assumption, so the index theorem is always
true. Now the difficult part is to build the machinery to deal with functoriality. The first thing is
to define the topological index t-ind(D) of D (in contrast with the analytic index ind(D)). Here, we
have a commutative diagram

{elliptic operators on X} K(TX)

Z = K(Tpt).

σ

ind

First, suppose that S ⊆M is an embedded compact submanifold with normal bundle N→ S. We
can identify this with an open neighborhood of S in M. If N is a complex vector bundle, then
K(S) = K(N) by the Thom isomorphism. Now we will call the map

i! : K(S)
∼−→
φ
K(N)→ K(M),

where the second arrow is induced by the open inclusion. Now we have functoriality for
embeddings with complex normal bundle.

Now suppose that π : E→ X is a real vector bundle. Then TE ∼= π∗TX⊕ π∗E. If E = TX, then
T(TX) = π∗TX⊕ π∗TX, and this is naturally a complex vector bundle TX = π∗TX⊗C. Therefore
any inclusion i : X ↪→ Y induces an inclusion di : TX ↪→ TY. Now the normal bundleN to TX ↪→ TY
is complex. As before, we obtain a map i! : K(TX)→ K(TY).

One needs to check that
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• This construction is well-defined.

• X = X induces the identity.

• If we have X
i
↪→ Y

j
↪→ Z, then (j ◦ i)! = j! ◦ i! (functoriality).

Example 3.5.1. Consider j : pt → Rn. In this case, T(pt) = pt, so N = Rn. Then j! : K(pt) →
K(TRn) = K(R2n) is the Thom isomorphism.

Definition 3.5.2. The map B : K(TX)→ Z is the composition

K(TX)
i!−→ K(TRn)

(j!)
−1

−−−−→
∼

K(pt) = Z

for any inclusion i : X ⊂ Rn.

Remark 3.5.3. This does not depend on i : X ⊂ Rn.

Here are some obvious properties.

1. If X is a point, then B(a) = dima.

2. If i : X ⊂ Y is an inclusion of compact smooth manifolds, then B(i!a) = B(a) for all a ∈ K(TX).

Proposition 3.5.4.

• There exists a unique homomorphism B : K(TX)→ Z satisfying the above properties.

• Furthermore, for all a ∈ K(TX), B(a) = (−1)nch(a)td(TX⊗C)[TX].

Given this, all that is left is to prove that the diagram

{elliptic operators} K(TX)

Z

σ

ind B

commutes. This is the hard part of the proof. The basic strategy is to find τ : K(TX) →
{elliptic operators} which is the inverse of σ to index, where ind(τσD) = ind(D). Then we

need to check that K(TX) ind◦τ−−−−→ Z satisfies the two axioms for B. The problem with this strategy
is that such a τ does not exist because σ is not surjective.

Proof of proposition. Suppose B ′ is another map satisfying the properties. Consider X ⊂ Rk ⊂ Sk
Then the diagram

K(TRk)

K(TX) K(TSk) K(pt)

Z

i+!

B ′

i!

B ′
B ′

j!

j+!

commutes. Then the desired result follows from staring at the diagram.
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For the second part, consider Xn ⊆ N ⊂ Rk. Here, N→ X is a rank r := k−n-bundle. Thus
TN→ TX is a rank r complex bundle. Now we have a chain of morphisms

K(TX)
φ−→ K(TN)

h−→ K(TRk)
·λk←−−
φ ′

K(pt) = Z.

Now we have b := B(a) = (φ ′)−1(h(φ(a))), and thus h(φ(a)) = φ ′(b) = b · λk. If we take the
Chern character of everything, we obtain the commutative diagram

K(TX) K(TN) K(TRk) K(pt)

H∗(TX) H∗(TN) H∗(TRk) H∗(pt)

φ

ch

i!

B

h

ch ch ch

φ ′

Now on the right, we have ch(bλk) = (−1)kbσk, and therefore

b = b · σk[TRk]

= (−1)kch(bλk)[TRk]

= (−1)kch(hφ(a))[TRk]

= (−1)kch(φ(a))[TN]

by the commutativity of the middle square. Now

(−1)rtd(TN)ch(φ(a)) = ψ(ch(a))

where ψ is the Thom isomorphism in cohomology. Notice that TX⊕N = Rk, so T(TX)⊕ TN→ TX
is trivial. Therefore td(TN) · td(π∗(TX⊗C)) = 1, and thus we have

ch(φ(a)) = (−1)rtd(π∗(TX)⊗C) ·ψ(ch(a)).

Substituting this in b = (−1)kch(φ(a))[TN], we obtain the desired result.

Now we will see why σ is not surjective and how to fix this. There are topological obstructions.
For example, consider X = S1 = R/2πZ. Then TX = S1 ×R is a cylinder. We will choose

coordinates x on S1 and ξ on R. Now choose a ∈ K(TS1). We obtain E0
α(x,ξ)−−−−→ E1 with suppα

compact. Now if we fixe trivializations E0 = E1 = Cn, then for ξ � 0, the map α(−, ξ) : S1 →
GLn(C). Then detα(−, ξ) : S1 → C×. This only depends (up to homotopy) on the sign of ξ. Now
S1 → C× has a well-defined degree, so we have

deg(a) = deg(α(−, ξ), ξ� 0) − deg(α(−, ξ), ξ� 0) ∈ Z.

Now if a = σ(D), then α(x, ξ) =
∑

|β|=r aβ(x)ξ
β, and thus α(x,−ξ) = ±α(x, ξ), so dega = 0. On

the other hand, we note that if

a = C
β(x,ξ)−−−−→ C β(x, ξ) =

{
ξ · eix ξ > 0
ξ ξ 6 0,
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then deg(a) = 1, so it cannot come from a differential operator. This tells us that elliptic differential
operators are not the right framework to implement our strategy because they are too rigid. Recall
that a differential operator on Rn of order r is a linear map

L : C∞c (Rn)→ C∞c (Rn) u 7→
∑
|α|6r

aα(x)D
αu.

Here we will set

Dα =

(
−i

∂

∂x1

)α1

· · ·
(
−i

∂

∂xn

)αn
=: D

α1
1 · · ·D

αn
n .

To define a pseudodifferential operator, we will create a much more complicated definition. Recall
the Fourier transform

û(ξ) =
1

(2π)n

∫
Rn
u(x)e−ix·ξ dx .

Then recall that D̂iu(ξ) = ξiû(ξ), so if we set p(x, ξ) =
∑
aα(x)ξ

α, then we have

L̂u(ξ) = p(x, ξ) · û(ξ).

Using Fourier inversion, we obtain

Lu(x) =

∫
Rn
eix·ξp(x, ξ)û(ξ)dξ .

Definition 3.5.5. An operator P : C∞c (Rn)→ C∞(Rn) is called a pseudodifferential operator of order

r if there exists some p(x, ξ) such that
∣∣∣DβxDαξp(x, ξ)

∣∣∣ 6 Cα,β(1 + |ξ|)r−|α| uniformly in compact
subsets in Rn such that

Pu(x) =

∫
Rn
eix·ξp(x, ξ)û(ξ)dξ .

Also, for all x and all ξ 6= 0, the principal symbol

σP(x, ξ) := lim
λ→∞ p(x, λξ)

λr

exists.

Definition 3.5.6. A pseudodifferential operator P is elliptic if σP(x, ξ) is an isomorphism for all
ξ 6= 0.

Warning 3.5.7. Pseudodifferential operators are not local. This means that (Pu)(x) is not deter-
mined by u in a neighborhood of x. Thus it takes some work to define pseudodifferential operators
on manifolds.

However, once we have such a definition, we have the following properties:

• If P is an elliptic pseudodifferential operator of order r, then P : L2
k+r → L2

k is Fredholm.

• The index of P only depends on σP(x, ξ) restricted to the unit tangent bundle. This means
the index does not depend on the order.
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Example 3.5.8. Consider L2(S1) = `2(Z). Now consider the operator P given by

P

( ∞∑
n=−∞ane

inx

)
=

∞∑
n=0

ane
inx

is a pseudodifferential operator of order 0. Here, σP(x, ξ) = 1 if ξ > 0 and σP(x, ξ) = 0 if ξ < 0.
For the order 1 version of this, choose

p(x, ξ) =

{
ξ ξ > 0
0 ξ 6 0.

Example 3.5.9. Set

p(x, ξ) =

{
ξ · eix ξ > 0
ξ ξ 6 0.

This defines an order 1 elliptic pseudodifferential operator. The order 0 version of this is given by

P(einx) =

{
ei(n+1)x n > 0
einx n < 0.

Here, indP = −1.

Now if we consider the diagram

{pseudodifferential operators} K(TX)

Z,

σ

ind B

we have now defined τ : K(TX) → {pseudodifferential operators}. Now we want to show that
ind(t(a)) = B(a). We need to show that ind ◦τ satisfies the two axioms. For X = pt, clearly ind ◦τ
gives the dimension, but the hard part is functoriality. The complication is that we need to work in
an equivariant setting. Historically, what Atiyah and Singer did was prove an equivariant version
of the index theorem directly.

Some interesting consequences of the equivariant version of the index theorem are fixed point
formulas. For example, we obtain the following statement:

Proposition 3.5.10. Suppose X is a compact complex manifold and G acts on X holomorphically. Then
g ∈ G gives an operator on Hi(X,OX), and consider the quantity

L∂(g)
∑

(−1)r tr
(
gy Hi(X,OX)

)
,

called the holomorphic Lefschetz number. Then if all fixed points of g are isolated,

L∂(g) =
∑
p

1

det
(

1 − dg (p)−1
) ,

where p ranges over the fixed points of g.
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