FINE MODULI MEMES FOR 1-CATEGORICAL TEENS

PATRICK LEI

ABSTRACT. We will discuss the moduli space of stable curves of genus 0 with n marked points and its intersection theory, following [1]. We will give a nice presentation of its Chow ring in terms of boundary divisors.

1. The moduli space

The space $\overline{M}_{0,n}$ parameterizes curves that look like this:

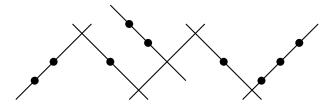


FIGURE 1. A stable curve

More precisely, these are reduced connected curves that are a tree of \mathbb{P}^1 s such that each \mathbb{P}^1 has at least three marked points or nodes. In addition, at most two components meet at each node and we want $H^1(C, \mathcal{O}_C) = 0$. If all of these conditions are satisfied, we call our curve *stable*. More precisely, we want to represent the functor

$$S \mapsto \left\{ \begin{array}{c} \mathscr{C} \xrightarrow{\pi} S & \text{flat, proper} \\ \overbrace{s_1, \dots, s_n}^{s_1, \dots, s_n} \end{array} \right\} \text{ flat, proper} \left| \begin{array}{c} s_1, \dots, s_n \text{ disjoint sections} \\ \text{geometric fibers are stable curves} \end{array} \right\}.$$

Theorem 1.1 (Knudsen). There exists a smooth complete variety $\overline{M}_{0,n}$ and universal curve $U_{0,n} \to \overline{M}_{0,n}$ with universal sections s_1, \ldots, s_n that is a fine moduli space for this functor. $\overline{M}_{0,n}$ also contains the space $M_{0,n} = (\mathbb{P}^1 \setminus \{0, 1, \infty\})^{n-3} \setminus \Delta$ as a dense open subset.

In fact, Knudsen also shows that $U_{0,n} = \overline{M}_{0,n+1}$ and $U_{0,n+1}$ is a blowup of $\overline{M}_{0,n+1} \times_{\overline{M}_{0,n}} \overline{M}_{0,n+1}$ along some subscheme of the diagonal. In order to prove this, Knudsen introduces two operations that we can perform, called contraction and stabilization. Contraction happens when we delete a marked point and stabilization happens when we add a marked point.

Date: April 2, 2021.

Theorem 1.2 (Knudsen). *Contraction and stabilization are functorial! Moreover, they commute with base change.*

Here are some pictorial depictions of our operations:

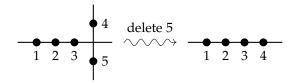


FIGURE 2. Contraction

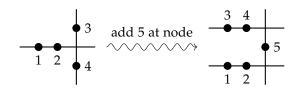


FIGURE 3. Stabilization (1)

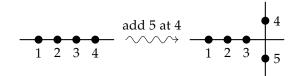
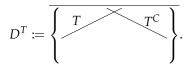


FIGURE 4. Stabilization (2)

2. Keel construction of $\overline{M}_{0,n}$

First, we will describe the boundary divisors of $\overline{M}_{0,n}$. Let $T \subseteq \{1, ..., n\} =: [n]$ satisfy $|T|, |T^{C}| \ge 2$. Then define



It is easy to see that $D^T = D^{(T^C)}$. Knudsen proves that D^T is a smooth divisor and that $D^T \cong \overline{M}_{|T|+1} \times \overline{M}_{|T^C|+1}$.

Now consider the map $\pi \colon \overline{M}_{0,n+1} \to \overline{M}_{0,n}$ coming from the identification $\overline{M}_{0,n+1} = U_{0,n}$. Now Keel proves that we can factor π as

$$\overline{M}_{0,n+1} \xrightarrow{\pi_1 = (\pi, \pi_{1,2,3,n+1})} \overline{M}_{0,n} \times \overline{M}_{0,4} \xrightarrow{p_1} \overline{M}_{0,n},$$

2

where $\pi_{1,2,3,n+1}$: $\overline{M}_{0,n+1} \to \overline{M}_{0,n}$ forgets all sections besides 1, 2, 3, n + 1. Next, Keel shows that π_1 is a composition of blowups along smooth codimension 2 subvarieties using an inductive construction.

Set $B_1 = \overline{M}_{0,n} \times \overline{M}_{0,4}$. Then the universal sections $s_1, \ldots, s_n \colon \overline{M}_{0,n} \to \overline{M}_{0,n+1}$ induce sections $p \circ s_1, \ldots, p \circ s_n$. In fact, $D^T \cong p \circ s_i(D^T)$ and this is independent of *i*. We also have

Lemma 2.1 (Keel). The divisors $D^T \subset \overline{M}_{0,n+1}$ with $T \subset [n]$ are the exceptional divisors of π_1 .

Now we set B_2 to be the blowup of B_1 at $\bigcup_{|T^C|=2} D^T$. Inductively, we set B_{k+1} to be the blowup of B_k at $\bigcup_{|T^C|=k+1} D^T$. Now we summarize the main results as follows:

Theorem 2.2 (Keel). The map π_1 factors through B_k and $\overline{M}_{0,n+1} = B_{n-2}$.

3. Intersection theory of $\overline{M}_{0,n}$

There are several major results about the intersection theory of $\overline{M}_{0,n}$. In fact, once we state these results, we will only be seven pages through Keel's paper, and the rest of the paper is dedicated to proving these results.

Theorem 3.1. We have an isomorphism $A_*(\overline{M}_{0,n}) \to H_*(\overline{M}_{0,n})$. In particular, $\overline{M}_{0,n}$ has no odd homology and $A_*(\overline{M}_{0,n+1})$ is a finitely generated free abelian group. In fact, if a scheme Y satisfies $A^*(Y) = H^*(Y)$, then so does $Y \times \overline{M}_{0,n}$.

Theorem 3.2. For any scheme S, there is an isomorphism $A^*(\overline{M}_{0,n} \times S) = A^*(\overline{M}_{0,n}) \otimes A^*(S)$.

Theorem 3.3. For all k, we have an isomorphism

$$A^{k}(\overline{M}_{0,n+1}) \cong A^{k}(\overline{M}_{0,n}) \oplus A^{k-1}(\overline{M}_{0,n}) \oplus \bigoplus_{\substack{T \subset [n] \\ |T \cap [3]| \le 1}} A^{k-1}(D^{T})$$

which is induced by the maps

$$A^{k}(\overline{M}_{0,n}) \xrightarrow{\pi} A^{k}(\overline{M}_{0,n+1})$$

$$A^{k-1}(\overline{M}_{0,n}) \xrightarrow{\pi^{*}} A^{k-1}(\overline{M}_{0,n+1}) \xrightarrow{\cup \pi^{*}_{1,2,3,n+1}(c_{1}(\mathscr{O}(1)))} A^{k}(\overline{M}_{0,n+1})$$

$$A^{k-1}(D^{T}) \xrightarrow{g^{*}} A^{k-1}(D^{T\subset[n+1]}) \xrightarrow{j_{*}} A^{k}(\overline{M}_{0,n+1}),$$

where g, j are as in the diagram

Theorem 3.4. The Chow groups $A^k(\overline{M}_{0,n})$ are free abelian and the ranks $a^k(n) = \operatorname{rk}(A^k(\overline{M}_{0,n}))$ are given by the recursive formula

$$a^{k}(n+1) = a^{k}(n) + a^{k-1}(n) + \frac{1}{2}\sum_{j=2}^{n-2} \binom{n}{j} \sum_{\ell=0}^{k-1} a^{\ell}(j+1)a^{k-1-\ell}(n-j-1).$$

In particular, we have the Picard rank $a^1(n) = 2^{n-1} - {n \choose 2} - 1$.

Theorem 3.5. The Chow ring $A^*(\overline{M}_{0,n})$ is the quotient of $\mathbb{Z}[D^T | T \subset [n], |T|, |T^C| \ge 2]$ by the relations

- (1) $D^T = D^{(T^C)};$
- (2) For any distinct $i, j, k, \ell \in [n]$, we have the equality

$$\sum_{\substack{i,j\in T\\k,\ell\notin T}} D^T = \sum_{\substack{i,k\in T\\j,\ell\notin T}} D^T = \sum_{\substack{i,\ell\in T\\j,k\notin T}} D^T$$

(3) For $T_1, T_2 \subset [n]$, $D^{T_1}D^{T_2} = 0$ unless one of $T_1 \subset T_2, T_2 \subset T_1, T_1 \subset T_2^C, T_2 \subset T_1^C$ holds.

Remark 3.6. All of the relations encode geometric content:

- (1) As divisors, we already know that $D^T = D^{(T^C)}$.
- (2) If we consider the map $\pi_{i,j,k,\ell} \colon \overline{M}_{0,n} \to \overline{M}_{0,4}$, then the three sums are the pullbacks of the three boundary divisors $D^{i,j}, D^{i,k}, D^{i,\ell} \subset \overline{M}_{0,4} = \mathbb{P}^1$.
- (3) The final relation encodes the fact that $D^{T_1} \cap D^{T_2} = \emptyset$ unless one of the four inclusions holds. Pictorially, this is encoded in the diagram below:

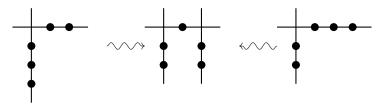


FIGURE 5. Degeneration to a common stable curve

4. INTERSECTION THEORY OF REGULAR BLOWUPS

Let $i: X \subset Y$ be a regularly embedded subvariety, $\pi: \widetilde{Y} \to Y$ be the blowup along X, and \widetilde{X} be the exceptional divisor. Let $g: \widetilde{X} \to X$ and $j: \widetilde{X} \to \widetilde{Y}$.

Theorem 4.1. Suppose *i*^{*} is surjective. Then

$$A^*(\widetilde{Y}) = \frac{A^*(Y)[T]}{(P(T), T \cdot \ker(i^*))},$$

where P(T) has constant term [X] and $i^*P(T) = T^d + T^{d-1}c_1(N_XY) + \cdots + c_d(N_XY)$, where *d* is the codimension of *X* in *Y*. This is induced by $-T = [\tilde{X}]$.

4

Theorem 4.2. A scheme X is HI if $A_*(X) = H_*(X)$. If X, Y are both HI, then so is \widetilde{Y} .

Theorem 4.3. *The map*

$$A_k(Y) \oplus A_{k-1}(X) \xrightarrow{(\pi^*, j_*g^*)} A_k(\widetilde{Y})$$

is an isomorphism.

References

 Sean Keel, Intersection theory of moduli space of stable N-pointed curves of genus zero, Transactions of the American Mathematical Society, Vol. 300, No. 2 (April 1992), pp. 545-574.