ARTIN L-FUNCTIONS

PATRICK LEI

Recall the Dirichlet L-function

$$L(\chi,s) = \sum \frac{\chi(n)}{n^s}$$

attached to a character $\chi\colon Gal(Q(\zeta_m)/Q)=(\mathbb{Z}/m)^\times\to \mathbb{C}$. These admit a generalization both to any finite Galois extension L/K of number fields and any representation χ of G=Gal(L/K). Here, a representation is a map $\rho\colon G\to GL(V)$, and it has an associated character $\chi(\sigma)=Tr(\rho(\sigma))$. These new L-functions are called *Artin L-functions* and they are central objects in the conjectural non-abelian class field theory.

Throughout this paper, L/K will be a finite Galois extension of number fields of degree n. We will assume that the reader has knowledge of class field theory and the representation theory of finite groups; see my notes¹ for the assumed number theory background.

1. Preliminary: Hecke L-functions

Let K be a number field, \mathcal{O}_K be the ring of integers, and \mathfrak{m} be a finite modulus (an ideal of \mathcal{O}_K). Write $I^\mathfrak{m}$ for the fractional ideals prime to \mathfrak{m} and consider a character $\chi\colon I^\mathfrak{m}\to S^1$. Then we may define an *L-function*

$$L(\chi, x) = \sum_{(\mathfrak{a}, \mathfrak{m}) = 1} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s} = \prod_{\mathfrak{p}} \frac{1}{1 - \chi(\mathfrak{p})N\mathfrak{p}^{-s}}.$$

Write $X = \text{Hom}(K, \mathbb{C})$ for the space of embeddings of K into \mathbb{C} with size n, and consider the \mathbb{C} -algebra $\mathbf{C} = \prod_{\tau \in X} \mathbb{C}$. Now define the determinant map

$$N: \mathbf{C}^{\times} \to \mathbf{C}^{\times}$$
 $D(z) = \prod_{\tau} z_{\tau}.$

Also consider the involution $z\mapsto \overline{z}$ given by $(\overline{z})_{\tau}=\overline{z_{\overline{\tau}}}$. Also we have the involution $z\mapsto z^*$ given by $z^*_{\tau}=z_{\overline{\tau}}$. Now let $\mathbf{R}\subset\mathbf{C}$ be the fixed locus of $z\mapsto \overline{z}$ and $\mathbf{R}_{\pm}=\{x\in\mathbf{R}\mid x=x^*\}$. Of course we have an embedding $\mathsf{K}\to\mathbf{C}$ given by taking the product of all of the embeddings $\tau\in\mathrm{Hom}(\mathsf{K},\mathsf{C})$ and the diagonal embedding of \mathbb{C} .

Proposition 1.1. The L-function $L(\chi, s)$ converges absolutely and uniformly on $Re(s) \ge 1 + \delta$ for all $\delta > 0$.

Suppose that for all principal ideals $\mathfrak{a} = (\mathfrak{a})$ prime to \mathfrak{m} , we have

$$\chi((a)) = \chi_f(a)\chi_\infty(a).$$

 $^{^{1} \\ \}text{https://math.columbia.edu/~plei/docs/NT.pdf}$

2 PATRICK LEI

This gives us two characters $\chi_f \colon (0/\mathfrak{m})^{\times} \to S^1, \chi_{\infty} \colon \mathbf{R}^{\times} \to S^1$. In this situation, we say that χ is a *Hecke character*. Now the L-function associated to a Hecke character is called a *Hecke L-function*.

Using the above notation, by [Neu99, Proposition VII.6.7], we have

$$\chi_{\infty}(x) = D(x^{p}|x|^{-p+iq}).$$

Here, $p \in \prod_{\tau} \mathbb{Z}$ is such that $p_{\tau} \in \{0,1\}$ if $\tau = \overline{\tau}$; $p_{\tau}p_{\overline{\tau}} = 0$ otherwise; and all $p_{\tau} \geqslant 0$, and $q \in \mathbf{R}_{\pm}$. So now write $\mathbf{s} = s(1,1,\ldots,1) + p - iq$ for some $s \in \mathbb{C}$, and now write

$$L_{\infty}(\chi,s) = D(\pi^{-s/2}) \int_{\textbf{R}_{\perp}^{\times}} D(e^{-y}y^{s/2}) \frac{dy}{y}.$$

Here, the integral is a higher-dimensional generalization of the gamma function. Note that the L-function only has information about the finite places, so consider the *completed Hecke L-function*

$$\Lambda(\chi, s) = (|d_{K}|N\mathfrak{m})^{s/2} L_{\infty}(\chi, s) L(\chi, s).$$

Theorem 1.2. The completed Hecke L-function satisfies the functional equation

$$\Lambda(\chi, s) = W(\chi)\Lambda(\overline{\chi}, 1 - s)$$

and is entire if $\mathfrak{m} \neq 1$ or $\mathfrak{p} \neq 0$ and otherwise has at most two poles.

2. Artin L-functions

Let $\mathfrak p$ be a prime in K, and $\mathfrak P \mid \mathfrak p$ be a prime of L above $\mathfrak p$. Write $G_{\mathfrak p}$ for the decomposition group and $I_{\mathfrak p}$ for the inertia group. We know $G_{\mathfrak p}/I_{\mathfrak p} = Gal(k(\mathfrak P)/k(\mathfrak p))$ is generated by $Frob_{\mathfrak p}$, and that the determinant $det(1-Frob_{\mathfrak p}\,t)$ on $V^{I_{\mathfrak p}}$ is independent of $\mathfrak P \mid \mathfrak p$ because all decomposition groups for $\mathfrak P \mid \mathfrak p$ are conjugate.

Definition 2.1. Let χ be any character associated to a representation $\rho\colon G\to GL(V)$ of V. Define the *Artin L-function* for χ as

$$\mathcal{L}(L/K,\chi,s) = \prod_{\mathfrak{p}} \frac{1}{\det(1 - \operatorname{Frob}_{\mathfrak{p}} N\mathfrak{p}^{-s})}.$$

This converges absolutely and uniformly in $Re(s) \geqslant 1 + \delta$ for all s and is therefore analytic on Re(s) > 1. To prove this, note that the eigenvalues of $Frob_{\mathfrak{p}}$ are roots of unity.

Example 2.2. If χ corresponds to the trivial representation, then we recover the Dedekind zeta function $\zeta_K(s)$.

Remark 2.3. No additive expression for Artin L-functions exists in general.

Proposition 2.4.

- (1) For two characters χ, χ' , we have $\mathcal{L}(L/K, \chi + \chi', s) = \mathcal{L}(L/K, \chi, s)\mathcal{L}(L/K, \chi', s)$.
- (2) Let $L' \supset L \supset K$ be a tower of fields and χ be a character of Gal(L/K). This induces a character of Gal(L'/K) (where we take the representation $Gal(L'/K) \twoheadrightarrow Gal(L/K) \rightarrow GL(V)$). Then $\mathcal{L}(L'/K, \chi, s) = \mathcal{L}(L/K, \chi, s)$.
- (3) Let $L \supset M \supset K$ be a tower of fields and χ be a character of Gal(L/M). Denote by χ_* the induced character of Gal(L/K). Then $\mathcal{L}(L/M,\chi,s) = \mathcal{L}(L/K,\chi_*,s)$.

Note that the induced representation $\operatorname{Ind}_1^G \mathbb{C} = \operatorname{Hom}_{\operatorname{Set}}(G,\mathbb{C})$ is the regular representation of G. Because $\operatorname{Ind}_1^G \mathbb{C} = \bigoplus_{V \text{ irrep}} V \otimes V^*$, we obtain

Corollary 2.5. For a finite Galois extension L/K, we have

$$\zeta_L(s) = \zeta_K(s) \prod_{\chi \neq 1} \mathcal{L}(L/K,\chi,s)^{\chi(1)},$$

where χ ranges over the characters of irreducible representations of Gal(L/K).

The original question that Artin studied was whether or not the meromorphic function $\zeta_L(s)/\zeta_K(s)$ was entire. This follows from the the following conjecture:

Conjecture 2.6 (Artin). For all finite Galois L/K and irreducible nontrivial characters χ of Gal(L/K), the Artin L-function $\mathcal{L}(L/K, \chi, s)$ is entire.

The Artin conjecture is true for abelian extensions by the theory of Hecke L-functions. If L/K is abelian and $\mathfrak f$ is the conductor of L/K, we have a surjection $I^{\mathfrak f}/P^{\mathfrak f} \twoheadrightarrow Gal(L/K)$ from the ray class field of $\mathfrak f$. Note that all irreducible representations of abelian groups have dimension 1, so we obtain a Hecke character $\widetilde{\chi}\colon I^{\mathfrak f}\to\mathbb C^\times$ from a character $\chi\colon Gal(L/K)\to\mathbb C^\times$.

Theorem 2.7. Define $S = \{\mathfrak{p} \mid f : \chi(I_{\mathfrak{p}}) = 1\}$. Then the Artin L-function for χ and the Hecke L-function for $\widetilde{\chi}$ satisfy

$$\mathcal{L}(\mathsf{L}/\mathsf{K},\chi,s) = \prod_{\mathfrak{p} \in \mathsf{S}} \frac{1}{1 - \chi(\mathsf{Frob}_{\mathfrak{p}}) \mathsf{N} \mathfrak{p}^{-s}} \mathsf{L}(\widetilde{\chi},s).$$

Remark 2.8. If χ is injective, then $S = \emptyset$, so we have $\mathcal{L}(L/K, \chi, s) = L(\widetilde{\chi}, s)$. On the other hand, if χ is the trivial character, then

$$\zeta_{\mathsf{K}}(s) = \prod_{\mathfrak{p} \mid \mathfrak{f}} \frac{1}{1 - \mathsf{N}\mathfrak{p}^{-s}} \mathsf{L}(\widetilde{\chi}, s).$$

Now we show that the Artin conjecture holds for all irreducible characters χ of abelian Galois groups. To see this, if $L_\chi = L^{\ker \chi}$ and we consider $\chi \colon \text{Gal}(L_\chi/K) \hookrightarrow \mathbb{C}^\times$, then we obtain

$$\mathcal{L}(L/K, \chi, s) = \mathcal{L}(L_{\chi}/K, \chi, s) = L(\widetilde{\chi}, s),$$

and now by Theorem 1.2, $L(\tilde{\chi}, s)$ is entire. The Artin conjecture also holds for any representation induced from a 1-dimensional representation by Theorem 2.7.²

3. ARTIN CONDUCTOR

Our goal is to prove a functional equation for the Artin L-functions. First, however, we need to construct certain ideals called *Artin conductors* which are related to the discriminant of L/K. For each character χ , the Artin conductor will be denoted $f(\chi)$, and we will see that

$$\mathfrak{d} \coloneqq \mathfrak{d}_{L/K} = \prod \mathfrak{f}(\chi)^{\chi(1)},$$

where χ ranges over the irreducible characters of Gal(L/K). We will construct the Artin conductors locally.

Let L/K be a Galois extension of local fields and G = Gal(L/K). Choose $x \in L$ such that $\mathcal{O}_L = \mathcal{O}_K[x]$ and $\mathfrak{i}_G(\sigma) = \nu_L(\sigma x - x)$, where ν_L is the normalized valuation of L. Write $G_\mathfrak{i}$ for the i-th ramification group of L/K. Now clearly \mathfrak{i}_G is

²Neukirch claims that the result is true for all solvable extensions, but according to this Math.SE post, the Artin conjecture for solvable extensions is still open.

PATRICK LEI

a class function, and if $H \subseteq G$ is a subgroup, we have $i_H(\sigma) = i_G(\sigma)$. Now i_G is a class function on G, and if L/K is unramified, then $i_G \equiv 0$. Now write

$$\alpha_G(\sigma) = \begin{cases} -f \mathfrak{i}_G(\sigma) & \sigma \neq 1 \\ f \sum_{\tau \neq 1} \mathfrak{i}_G(\tau) & \sigma = 1. \end{cases}$$

Again a_G is a class function on G so we may write

$$a_{G} = \sum_{\chi} f(\chi) \chi$$

where χ ranges over the irreducible characters of G. Here, $f(\chi) \in \mathbb{C}$, but we need to show that $f(\chi) \in \mathbb{Z}_{\geqslant 0}$, so we can form the ideal $\mathfrak{p}^{f(\chi)}$, which will be the local Artin conductor.

Proposition 3.1.

4

- (1) Let H be a normal subgroup of G. Then $a_{G/H} = (a_G)_*$ is the induced character of a_G along the quotient map $G \twoheadrightarrow G/H$.
- (2) If $H \subseteq G$ is any subgroup and $K' = L^H$ has discriminant $\mathfrak{d}_{K'/K} = \mathfrak{p}^{\nu}$, then $\mathfrak{a}_G|_H = \nu r_H + f_{K'/K} \mathfrak{a}_H$, where r_H is the regular representation of H.
- (3) Let u_i be a character of G_i and $(u_i)_*$ be the induced character of G. Then

$$\alpha_G = \sum_i \frac{1}{[G_0:G_i]} (u_i)_*.$$

Note that $f(\chi) = (a_G, \chi)$ by Schur orthogonality, so now we can write $f(\phi)$ for all class functions ϕ on G. As a corollary of the previous proposition, we have

Proposition 3.2.

- (1) Let φ be a class function on G/H and φ' be the corresponding class function on G. Then $f(\varphi) = f(\varphi')$.
- (2) If ϕ is a class function on a subgroup $H\subseteq G$ and ϕ_* is the induced class function on G, then

$$f(\phi_*) = \nu_K(\mathfrak{d}_{K'/K})\phi(1) + f_{K'/K}f(\phi).$$

(3) For all class functions ϕ on G, we have

$$f(\phi) = \sum_{\mathfrak{i} > 0} \frac{g_{\mathfrak{i}}}{g_0} (\phi(1) - \phi(G_{\mathfrak{i}}))$$

where
$$g_i := |G_i|$$
 and $\varphi(G_i) := \frac{1}{g_i} \sum_{\sigma \in G_i} \varphi(\sigma)$.

Now recall that if χ is the character of some representation V of G, then $\chi(1)=\dim V$ and $\chi(G_{\mathfrak{i}})=\dim V^{G_{\mathfrak{i}}}$, so we obtain

$$f(\chi) = \sum_{i \geqslant 0} \frac{g_i}{g_0} \operatorname{codim} V^{G_i}.$$

Now consider the function 3 $\eta_{L/K}$ defined by $\eta(0)=0,\eta(-1)=-1$, and for $m\geqslant 1$,

$$\eta_{L/K}(m) = \sum_{i=1}^{m} \frac{g_i}{g_0}.$$

³The original definition in [Neu99, Ch. II.10] is an integral and works for all $x \in \mathbb{R}$, but this definition suffices for our purposes.

Proposition 3.3. Let χ be the character of a 1-dimensional irreducible representation. Then let j be the largest integer such that $\chi|_{G_j} \neq \mathbb{1}_{G_j}$. When χ is the trivial character, set j = -1. Then $f(\chi) = \eta_{I/K}(j) + 1$.

In particular, this means that $f(\chi)$ is a nonnegative integer for any 1-dimensional irreducible representation. By Brauer's theorem, we know $\chi = \sum n_i(\chi_i)_*$, where χ_i is the character of a 1-dimensional representation of some subgroup $H_i \subseteq G$ and $n_i \in \mathbb{Z}$, so by Proposition 3.2, we obtain

$$f(\chi) = \sum n_{\mathfrak{i}}(\nu_K(\mathfrak{d}_{K_{\mathfrak{i}}/K})\chi_{\mathfrak{i}}(1) + f_{K_{\mathfrak{i}}/K}f(\chi_{\mathfrak{i}}))\text{,}$$

where $K_i=L^{H_i}$. This establishes integrality of $f(\chi)$ for arbitrary characters. Next, we note that $g_0\alpha_G$ is the character of some representation of G, so $f(\chi)\geqslant 0$, and therefore we have

Theorem 3.4. Let χ be a character of Gal(L/K). Then $f(\chi) \in \mathbb{Z}_{\geq 0}$.

Definition 3.5. If χ is a character of Gal(L/K), then the *local Artin conductor* of χ is $\mathfrak{f}_{\mathfrak{p}}(\chi) = \mathfrak{p}^{f(\chi)}$.

The following result links the local Artin conductor to abelian extensions of local fields.

Proposition 3.6. Let L/K be a Galois extension of local fields and χ be a character of a 1-dimensional representation of Gal(L/K). Let $L_{\chi} = L^{\ker \chi}$ and \mathfrak{f} be the conductor of L_{χ}/K . Then $\mathfrak{f} = \mathfrak{f}_{\mathfrak{p}}(\chi)$.

We are now ready to consider the global situation. Let L/K be a Galois extension of number fields and $\mathfrak p$ be a prime in K. Then note that $\mathfrak f_{\mathfrak p}(\chi)=1$ if $\mathfrak p$ is unramified in L, so we can define the *global Artin conductor* of χ to be

$$\mathfrak{f}(\chi) = \prod_{\mathfrak{p} \nmid \infty} \mathfrak{f}_{\mathfrak{p}}(\chi).$$

There are analogous results for global Artin conductors to the ones that we stated for Artin L-functions.

Proposition 3.7.

- (1) If χ, χ' are characters of G = Gal(L/K), then $f(\chi + \chi') = f(\chi)$, $f(\chi')$.
- (2) If L'/K is a Galois subextension of L/K and χ is a character of Gal(L'/K), then $\mathfrak{f}(L/K,\chi)=\mathfrak{f}(L'/K,\chi)$.
- (3) If $H \subseteq G$, $K' = L^H$, and χ is a character of H, then

$$\mathfrak{f}(L/K,\chi_*) = \mathfrak{d}_{K'/K}^{\chi(1)} \operatorname{Nm}_{K'/K}(\mathfrak{f}(L/K',\chi)).$$

Corollary 3.8. Let $\chi=\mathbb{1}_H$ and $s_{G/H}\coloneqq \chi_*$. Then $\mathfrak{d}_{K'/K}=\mathfrak{f}(L/K,s_{G/H})$.

Theorem 3.9. Let L/K be finite Galois. Then $\mathfrak{d}_{L/K} = \prod_{\chi} \mathfrak{f}(\chi)^{\chi(1)}$, where χ ranges over all characters of irreducible representations of Gal(L/K).

Proposition 3.10. Let L/K be finite Galois and χ be a 1-dimensional character of Gal(L/K). Let $L_{\chi} = L^{\ker \chi}$ and $\mathfrak f$ be the conductor of L_{χ}/K . Then $\mathfrak f = \mathfrak f(\chi)$.

PATRICK LEI

6

Now we will form some integer invariants. First consider the ideal

$$c(L/K,\chi) = \mathfrak{d}_{K/O}^{\chi(1)} \operatorname{Nm}_{K/Q}(\mathfrak{f}(L/K,\chi)).$$

This is generated by the positive integer

$$c(L/K,\chi) = |d_K|^{\chi(1)} N(\mathfrak{f}(L/K,\chi)).$$

As a simple application of Proposition 3.7, we have

Proposition 3.11. *Use the same notation as in Proposition 3.7*

- (1) $c(L/K, \chi + \chi') = c(L/K, \chi) \cdot c(L/K, \chi')$.
- (2) $c(L/K, \chi) = c(L'/K, \chi)$.
- (3) $c(L/K, \chi_*) = c(L/K', \chi)$.

4. Functional Equation

Before we prove a functional equation for Artin L-functions, we need to complete the L-function with factors coming from infinite places. For an infinite place $\nu \mid \infty$, write

$$\mathcal{L}_{\nu}(L/K,\chi,s) = \begin{cases} L_{\mathbb{C}}(s)^{\chi(1)} & K_{\nu} = \mathbb{C} \\ L_{\mathbb{R}}(s)^{n^{+}} L_{\mathbb{R}}(s+1)^{n^{-}} & K_{\nu} = \mathbb{R}, \end{cases}$$

where $n^{\pm}=\frac{\chi(1)\pm\chi(\phi_{\nu})}{2}$ and

$$L_{\mathbb{R}}(s) = \pi^{-s/2}\Gamma(s/2)$$
 $L_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$.

Note that n^\pm are the dimensions of the (± 1) -eigenspaces of the generator ϕ_{ν} of $Gal(L^{\nu}/K_{\nu})$. These infinite factors $\mathcal{L}_{\nu}(L/K,\chi,s)$ have the same behavior under change of field and change of character as the Artin L-functions and Artin conductor.

Proposition 4.1.

- (1) For two characters $\chi, \chi', \mathcal{L}_{\nu}(L/K, \chi + \chi', s) = \mathcal{L}_{\nu}(L/K, \chi, s)\mathcal{L}_{\nu}(L/K, \chi', s)$.
- (2) If L'/K is a Galois subextension of L/K and χ is a character of Gal(L'/K), then $\mathcal{L}_{\nu}(L/K,\chi,s)=\mathcal{L}_{\nu}(L'/K,\chi,s)$.
- (3) If $K \subset K' \subset L$ is a tower of extensions and χ is a character of Gal(L/K'), then $\mathcal{L}_{\nu}(L/K,\chi_*,s) = \prod_{w|\nu} \mathcal{L}_w(L/K',\chi,s)$.

Now we may combine all of the infinite places and write

$$\mathcal{L}_{\infty}(L/K,\chi,s) = \prod_{\nu \mid \infty} \mathcal{L}_{\nu}(L/K,\chi,s).$$

The same results from the previous proposition hold for \mathcal{L}_{∞} .

Definition 4.2. Define the *completed Artin L-function* for a finite Galois L/K and character χ of Gal(L/K) by

$$\Lambda(L/K,\chi,s) = (|d_K|^{\chi(1)} N(f(L/K,\chi)))^{s/2} \mathcal{L}_{\infty}(L/K,\chi,s) \mathcal{L}(L/K,\chi,s).$$

From the properties of change of character and change of field that we have seen before, we obtain

Proposition 4.3.

(1) For two characters $\chi, \chi', \Lambda_{\nu}(L/K, \chi + \chi', s) = \Lambda_{\nu}(L/K, \chi, s)\Lambda_{\nu}(L/K, \chi', s)$.

REFERENCES 7

- (2) If L'/K is a Galois subextension of L/K and χ is a character of Gal(L'/K), then $\Lambda_{\nu}(L/K,\chi,s) = \Lambda_{\nu}(L'/K,\chi,s)$.
- (3) If $K \subset K' \subset L$ is a tower of extensions and χ is a character of Gal(L/K'), then $\Lambda_{\nu}(L/K,\chi_*,s) = \prod_{w|\nu} \Lambda_w(L/K',\chi,s)$.

If $\chi(1)=1$, then we claim that $\Lambda(L/K,\chi,s)$ is a completed Hecke L-function. Let $L_\chi=L^{\ker\chi}$ and $\mathfrak f$ be the conductor of L_χ . Recall that $\mathfrak f=\mathfrak f(\chi)$. Via the isomorphism $I^\mathfrak f/P^\mathfrak f\to Gal(L_\chi/K)$ from the ray class group of $\mathfrak f$, we obtain a Hecke character $\widetilde\chi$.

Proposition 4.4. $\Lambda(L/K, \chi, s) = \Lambda(\widetilde{\chi}, s)$.

Now using this, Brauer's theorem on induced characters, and the functional equation for Hecke L-functions, we obtain

Theorem 4.5. The completed Artin L-function $\Lambda(L/K,\chi,s)$ admits a meromorphic continuation to $\mathbb C$ and

$$\Lambda(\mathsf{L}/\mathsf{K},\chi,s) = W(\chi)\Lambda(\mathsf{L}/\mathsf{K},\overline{\chi},1-s)$$

for some constant $W(\chi)$ of absolute value 1.

REFERENCES

[Neu99] Jürgen Neukirch. Algebraic Number Theory. Berlin: Springer-Verlag, 1999.