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This talk is based on Chapter 3 of Humphreys’ Representations of Semisimple Lie Algebras in
the BGG Category O.

1 Introduction
In Fan’s talk, we saw that category O is an abelian category with many nice properties. In this talk,
we will discuss two important pieces of structure on O. The first is duality: in O, we can take duals
of representations, even infinite-dimensional ones. The second is the existence of enough projectives,
allowing us to do homological algebra in O.

2 Duality in O
A finite-dimensional representation M of a semisimple Lie algebra g has a dual representation M_

with g-action
pxfqpvq “ ´fpxvq.

Since M__ – M , this defines a contravariant self-equivalence on the category of finite-dimensional
representations. Unfortunately, duals, as defined above, aren’t as nice for infinite-dimensional repre-
sentations, e.g. M__ flM . Moreover, we want duals of representations in O to be in O; the naive
duals may not satisfy the required finiteness conditions.

It turns out that we can still define duals in O, if we use more structure of g. Recall that any
g has an anti-involution τ (the transpose) defined as follows. If we present g as the Lie algebra
generated by xα, yα, hα with the Weyl and Serre relations, we get an anti-involution

τ : gÑ g

xα ÞÑ yα

yα ÞÑ xα

hα ÞÑ hα

because the Weyl and Serre relations are symmetric in the x’s and y’s. We can then define the dual
of M “

À

λMλ P O. The underlying vector space is M_ :“
À

λM
_
λ . The action is defined using τ :

pxfqpvq “ fpτpxqvq

for a weight vector f P M_
λ . Since the weight spaces Mλ are finite-dimensional, M__ – M . Thus,

the duality functor on O is a contravariant self-equivalence.
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Since the sizes of the weight spaces are preserved by duality, duality preserves formal characters.
Moreover, duality takes submodules to quotients and vice versa, so it preserves simple modules.
Thus, Lpλq_ – Lpλq.

Finally, it can be shown that τ preserves Zpgq. Thus, duality preserves central characters:

pM_qχ – pMχq_

for any central character χ.

3 Dominant and antidominant weights
We now move on to the second part of this talk, which is about projectives. To prove that O
has enough projectives, we first need to introduce dominant and antidominant weights, which are
important in their own right. Recall that when we restrict to integral weights and consider W -orbits
(say, under the dotted action), we can always pick a weight λmax that has maximal inner products
with the positive roots (λmax ` ρ is dominant) and weight that has minimal inner products with
the positive roots (λmax ` ρ is antidominant). Unfortunately, when we consider general weights
in h˚, it is not clear how to pick representatives of the W -orbits, so we need to do things a bit
differently. Instead of considering W -orbits, for each λ P h˚, we consider a subgroup Wrλs ĂW and
the corresponding orbit Wrλs ¨ λ, for which we can pick optimal representatives.

For each λ P h˚, define
Wrλs :“ tw PW |wλ´ λ P Λu.

The Wrλs-orbits Wrλs ¨ λ are refinements of the linkage classes from Chapter 1. For instance, the
composition factors Lpµq of Mpλq must satisfy µ P Wrλs ¨ λ. Eventually (in Chapter 4), we will see
that the Wrλs ¨λ are the blocks of O. It can be shown that Wrλs is the Weyl group of the root system

Φrλs :“ tα P Φ|xλ, α_y P Zu,

so it enjoys all the nice properties of Weyl groups, which we will use shortly.
Within each Wrλs ¨ λ, there are unique dominant and antidominant weights. We must, of course,

define these terms for general weights λ P h˚. λ is dominant if xλ ` ρ, α_y R Ză0 for all α P Φ`,
and λ is antidominant if xλ ` ρ, α_y R Zą0 for all α P Φ`. For integral weights, this does not
match the usual notion of dominance/antidominance but does when we shift the weights by ρ.

Proposition 1. For a weight λ P h˚, let Wrλs and Φrλs be as above, and let ∆rλs Ă Φrλs be the
simple roots with respect to the choice of positive roots Φ`

rλs “ Φ` X Φrλs. Then the following are
equivalent:

(a) λ is dominant.

(b) xλ` ρ, α_y ě 0 for α P ∆rλs.

(c) λ ě sα ¨ λ for all α P ∆rλs.

(d) λ ě w ¨ λ for all w PWrλs.

Proof. (a) ô (b): (a) ùñ (b) by definition. (b) ùñ (a) because the positive roots Φ`
rλs are

positive integer combinations of the ∆rλs.
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(b) ô (c): This follows from
sα ¨ λ “ λ´ xλ` ρ, α_yα.

(c) ô (d): (d) ùñ (c) automatically, so it suffices to show that (c) ùñ (d). We show this by
inducting on `pwq. If `pwq “ 0, then w “ 1, and there is nothing to prove. If `pwq “ 1, then w “ sα
for some α P ∆rλs, and the conclusion follows from (c). Now suppose `pwq ą 1. Then w “ w1sα in
∆rλs with `pw1q “ `pwq ´ 1. We have wα ă 0 by standard facts about length. We write

λ´ w ¨ λ “ pλ´ w1 ¨ λq ` w1 ¨ pλ´ sα ¨ λq.

By induction, λ´w1 ¨λ ě 0. By (c), λ´sα ¨λ is a positive integer multiple of α, and since w1pαq ą 0,
we have λ´ sα ¨ λ ą 0. Thus, λ´ w ¨ λ ą 0, as desired.

Corollary 1. Wrλs ¨ λ contains a unique dominant weight and a unique antidominant weight.

Proof. The dominant weight thing follows from (a) ô (d) above. The antidominant weight thing
follows from an identical argument.

4 O has enough projectives
Theorem 1. (a) If λ P h˚ is dominant, then Mpλq is projective.

(b) If P P O is projective and L P O is finite-dimensional, then P b L is projective.

(c) O has enough projectives.

Proof. (a) Let M Ñ N be a surjection, and let Mpλq Ñ N be a map hitting the maximal vector
v P N . We may assume that M,N P Oχ, where χ is the central character of λ. It suffices to
show that v lifts to a maximal vector in M . Suppose not. Then the n-submodule generated by
any lift u PM of v (that is a weight vector) contains some maximal vector with weight linked
with and greater than λ (since we are in Oχ). No such weight exists because λ is dominant,
so u must be maximal.

(b) For any M P O, HomOpP b L,Mq – HomOpP,HompL,Mqq – HomOpP,L
˚ bMq (note that

this is the naive dual L˚, which exists because L is finite-dimensional). Since HomOpP,L
1b´q

is exact (by the projectivity of P ), P b L is projective.

(c) We first find a projective mapping onto Lpλq for every λ P h˚. For each λ, λ` nρ is dominant
for sufficiently large n. Then by (a), Mpλ ` nρq is projective. By (b), Mpλ ` nρq b Lpnρq is
projective.

We claim that Mpλ` nρq b Lpnρq has a quotient isomorphic to Mpλq. To prove this, we use
the following tensor identity: for M a Upgq-module and L a Upbq-module,

pUpgq bUpbq Lq bM – Upgq bUpbq pLbMq.

Recall that Mpλ ` nρq “ Upgq bUpbq Cλ`nρ. Thus, the tensor identity implies that Mpλ `
nρq b Lpnρq – Upgq bUpbq pCλ`nρ b Lpnρqq. Since Lpnρq has ´nρ as a weight, we see that
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Mpλ` nρq b Lpnρq has Upgq bUpbq pCλ`nρ b C´nρq –Mpλq as a quotient, as claimed. Thus,
there exists a projective mapping onto Lpλq.

Let M P O be aribtrary. We induct on the length of M . It remains only to consider M with
length ą 1. In this case, there exists a short exact sequence

0 Ñ Lpλq ÑM Ñ N Ñ 0.

By induction, there exists a surjection P Ñ N from a projective P . We can lift this to a map
P Ñ M by projectivity. If the image of P Ñ M intersects Lpλq, then it contains Lpλq by
simplicity; thus, P ÑM is surjective, and we are done. Otherwise, the lift P ÑM induces a
splitting N ÑM , so we can cover M – N ‘ Lpλq by some P ‘Q.

5 Projective covers
It remains to characterize the projectives in O. Because O is Artinian, standard homological algebra
shows that eachM P O admits a projective cover PM ÑM , which is a surjection from a projective
such that no proper submodule of PM surjects onto M . Such a projective cover is unique up to
isomorphism. Let P pλq denote the projective cover of Lpλq. Since the Lpλq are the simple objects,
the P pλq are precisely the indecomposable projectives in O, i.e. every projective is a direct sum of
P pλq. Moreover, the P pλq have unique maximal submodules given by kerpP pλq Ñ Lpλqq.

Theorem 2. Every projective module in O has a standard filtration, i.e. a filtration with
subquotients isomorphic to Verma modules. In such a standard filtration, the multiplicity pP pλq :
Mpµqq is nonzero only if µ ě λ, and pP pλq : Mpλqq “ 1.

Proof. By the proof of the earlier proposition, P pλq is a direct summand of a projective of the form
Mpλ ` nρq b Lpnρq with λ ` nρ dominant and n large. This Mpλ ` nρq b Lpnρq has a standard
filtration induced by a filtration of Lpnρq as a Upbq-module with 1-dimensional subquotients. Since
P pλq is a direct summand of Mpλ`nρq bLpnρq, P pλq has a standard filtration (by a standard fact
about standard filtrations).

The facts about the multiplicities follow from the multiplicities of Lpnρq.

Corollary 2. A projective is determined by its formal character.

Theorem 3 (BGG Reciprocity). pP pλq : Mpµqq “ rMpµq : Lpλqs

Proof. Since Mpµq and Mpµq_ have the same composition factors, we can rewrite this as pP pλq :
Mpµqq “ rMpµq_ : Lpλqs. The proof has two steps.

(a) dim HomOpP pλq,Mpµq
_q “ rMpµq_ : Lpλqs: We claim that dim HomOpP pλq,Mq “ rM :

Lpλqs more generally for M P O. This follows from the additivity of both sides for M lying in
short exact sequences and the equality of both sides for M a simple module.

(b) pP pλq : Mpµqq “ dim HomOpP pλq,Mpµq
_q: We claim that pM : Mpµqq “ dim HomOpP pλq,Mpµq

_q

forM with a standard filtration. This is proven with the same argument as above, except that
we have to use the fact that Ext1OpMpµ

1q,Mpµq_q – 0 for all µ, µ1, which we will not prove.
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