Duality and projectives in category \mathcal{O}

Kevin Chang

October 20, 2021

This talk is based on Chapter 3 of Humphreys' Representations of Semisimple Lie Algebras in the BGG Category \mathcal{O} .

1 Introduction

In Fan's talk, we saw that category \mathcal{O} is an abelian category with many nice properties. In this talk, we will discuss two important pieces of structure on \mathcal{O} . The first is duality: in \mathcal{O} , we can take duals of representations, even infinite-dimensional ones. The second is the existence of enough projectives, allowing us to do homological algebra in \mathcal{O} .

2 Duality in \mathcal{O}

A finite-dimensional representation M of a semisimple Lie algebra $\mathfrak g$ has a dual representation M^\vee with $\mathfrak g$ -action

$$(xf)(v) = -f(xv).$$

Since $M^{\vee\vee} \cong M$, this defines a contravariant self-equivalence on the category of finite-dimensional representations. Unfortunately, duals, as defined above, aren't as nice for infinite-dimensional representations, e.g. $M^{\vee\vee} \ncong M$. Moreover, we want duals of representations in \mathcal{O} to be in \mathcal{O} ; the naive duals may not satisfy the required finiteness conditions.

It turns out that we can still define duals in \mathcal{O} , if we use more structure of \mathfrak{g} . Recall that any \mathfrak{g} has an anti-involution τ (the **transpose**) defined as follows. If we present \mathfrak{g} as the Lie algebra generated by $x_{\alpha}, y_{\alpha}, h_{\alpha}$ with the Weyl and Serre relations, we get an anti-involution

$$\tau: \mathfrak{g} \to \mathfrak{g}$$

$$x_{\alpha} \mapsto y_{\alpha}$$

$$y_{\alpha} \mapsto x_{\alpha}$$

$$h_{\alpha} \mapsto h_{\alpha}$$

because the Weyl and Serre relations are symmetric in the x's and y's. We can then define the dual of $M = \bigoplus_{\lambda} M_{\lambda} \in \mathcal{O}$. The underlying vector space is $M^{\vee} := \bigoplus_{\lambda} M_{\lambda}^{\vee}$. The action is defined using τ :

$$(xf)(v) = f(\tau(x)v)$$

for a weight vector $f \in M_{\lambda}^{\vee}$. Since the weight spaces M_{λ} are finite-dimensional, $M^{\vee\vee} \cong M$. Thus, the duality functor on \mathcal{O} is a contravariant self-equivalence.

Since the sizes of the weight spaces are preserved by duality, duality preserves formal characters. Moreover, duality takes submodules to quotients and vice versa, so it preserves simple modules. Thus, $L(\lambda)^{\vee} \cong L(\lambda)$.

Finally, it can be shown that τ preserves $Z(\mathfrak{g})$. Thus, duality preserves central characters:

$$(M^{\vee})^{\chi} \cong (M^{\chi})^{\vee}$$

for any central character χ .

3 Dominant and antidominant weights

We now move on to the second part of this talk, which is about projectives. To prove that \mathcal{O} has enough projectives, we first need to introduce dominant and antidominant weights, which are important in their own right. Recall that when we restrict to integral weights and consider W-orbits (say, under the dotted action), we can always pick a weight λ_{\max} that has maximal inner products with the positive roots ($\lambda_{\max} + \rho$ is dominant) and weight that has minimal inner products with the positive roots ($\lambda_{\max} + \rho$ is antidominant). Unfortunately, when we consider general weights in \mathfrak{h}^* , it is not clear how to pick representatives of the W-orbits, so we need to do things a bit differently. Instead of considering W-orbits, for each $\lambda \in \mathfrak{h}^*$, we consider a subgroup $W_{[\lambda]} \subset W$ and the corresponding orbit $W_{[\lambda]} \cdot \lambda$, for which we can pick optimal representatives.

For each $\lambda \in \mathfrak{h}^*$, define

$$W_{[\lambda]} := \{ w \in W | w\lambda - \lambda \in \Lambda \}.$$

The $W_{[\lambda]}$ -orbits $W_{[\lambda]} \cdot \lambda$ are refinements of the linkage classes from Chapter 1. For instance, the composition factors $L(\mu)$ of $M(\lambda)$ must satisfy $\mu \in W_{[\lambda]} \cdot \lambda$. Eventually (in Chapter 4), we will see that the $W_{[\lambda]} \cdot \lambda$ are the blocks of \mathcal{O} . It can be shown that $W_{[\lambda]}$ is the Weyl group of the root system

$$\Phi_{\lceil \lambda \rceil} := \{ \alpha \in \Phi | \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \},\,$$

so it enjoys all the nice properties of Weyl groups, which we will use shortly.

Within each $W_{[\lambda]} \cdot \lambda$, there are unique dominant and antidominant weights. We must, of course, define these terms for general weights $\lambda \in \mathfrak{h}^*$. λ is **dominant** if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}_{<0}$ for all $\alpha \in \Phi^+$, and λ is **antidominant** if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}_{>0}$ for all $\alpha \in \Phi^+$. For integral weights, this does not match the usual notion of dominance/antidominance but does when we shift the weights by ρ .

Proposition 1. For a weight $\lambda \in \mathfrak{h}^*$, let $W_{[\lambda]}$ and $\Phi_{[\lambda]}$ be as above, and let $\Delta_{[\lambda]} \subset \Phi_{[\lambda]}$ be the simple roots with respect to the choice of positive roots $\Phi_{[\lambda]}^+ = \Phi^+ \cap \Phi_{[\lambda]}$. Then the following are equivalent:

- (a) λ is dominant.
- (b) $\langle \lambda + \rho, \alpha^{\vee} \rangle \ge 0$ for $\alpha \in \Delta_{[\lambda]}$.
- (c) $\lambda \geqslant s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$.
- (d) $\lambda \geqslant w \cdot \lambda$ for all $w \in W_{[\lambda]}$.

Proof. (a) \Leftrightarrow (b): (a) \Longrightarrow (b) by definition. (b) \Longrightarrow (a) because the positive roots $\Phi_{[\lambda]}^+$ are positive integer combinations of the $\Delta_{[\lambda]}$.

(b) \Leftrightarrow (c): This follows from

$$s_{\alpha} \cdot \lambda = \lambda - \langle \lambda + \rho, \alpha^{\vee} \rangle \alpha.$$

(c) \Leftrightarrow (d): (d) \Longrightarrow (c) automatically, so it suffices to show that (c) \Longrightarrow (d). We show this by inducting on $\ell(w)$. If $\ell(w)=0$, then w=1, and there is nothing to prove. If $\ell(w)=1$, then $w=s_{\alpha}$ for some $\alpha\in\Delta_{[\lambda]}$, and the conclusion follows from (c). Now suppose $\ell(w)>1$. Then $w=w's_{\alpha}$ in $\Delta_{[\lambda]}$ with $\ell(w')=\ell(w)-1$. We have $w\alpha<0$ by standard facts about length. We write

$$\lambda - w \cdot \lambda = (\lambda - w' \cdot \lambda) + w' \cdot (\lambda - s_{\alpha} \cdot \lambda).$$

By induction, $\lambda - w' \cdot \lambda \ge 0$. By (c), $\lambda - s_{\alpha} \cdot \lambda$ is a positive integer multiple of α , and since $w'(\alpha) > 0$, we have $\lambda - s_{\alpha} \cdot \lambda > 0$. Thus, $\lambda - w \cdot \lambda > 0$, as desired.

Corollary 1. $W_{[\lambda]} \cdot \lambda$ contains a unique dominant weight and a unique antidominant weight.

Proof. The dominant weight thing follows from (a) \Leftrightarrow (d) above. The antidominant weight thing follows from an identical argument.

4 \mathcal{O} has enough projectives

Theorem 1. (a) If $\lambda \in \mathfrak{h}^*$ is dominant, then $M(\lambda)$ is projective.

- (b) If $P \in \mathcal{O}$ is projective and $L \in \mathcal{O}$ is finite-dimensional, then $P \otimes L$ is projective.
- (c) \mathcal{O} has enough projectives.
- *Proof.* (a) Let $M \to N$ be a surjection, and let $M(\lambda) \to N$ be a map hitting the maximal vector $v \in N$. We may assume that $M, N \in \mathcal{O}_{\chi}$, where χ is the central character of λ . It suffices to show that v lifts to a maximal vector in M. Suppose not. Then the \mathfrak{n} -submodule generated by any lift $u \in M$ of v (that is a weight vector) contains some maximal vector with weight linked with and greater than λ (since we are in \mathcal{O}_{χ}). No such weight exists because λ is dominant, so u must be maximal.
 - (b) For any $M \in \mathcal{O}$, $\operatorname{Hom}_{\mathcal{O}}(P \otimes L, M) \cong \operatorname{Hom}_{\mathcal{O}}(P, \operatorname{Hom}(L, M)) \cong \operatorname{Hom}_{\mathcal{O}}(P, L^* \otimes M)$ (note that this is the naive dual L^* , which exists because L is finite-dimensional). Since $\operatorname{Hom}_{\mathcal{O}}(P, L' \otimes -)$ is exact (by the projectivity of P), $P \otimes L$ is projective.
 - (c) We first find a projective mapping onto $L(\lambda)$ for every $\lambda \in \mathfrak{h}^*$. For each λ , $\lambda + n\rho$ is dominant for sufficiently large n. Then by (a), $M(\lambda + n\rho)$ is projective. By (b), $M(\lambda + n\rho) \otimes L(n\rho)$ is projective.

We claim that $M(\lambda + n\rho) \otimes L(n\rho)$ has a quotient isomorphic to $M(\lambda)$. To prove this, we use the following **tensor identity**: for M a $U(\mathfrak{g})$ -module and L a $U(\mathfrak{b})$ -module,

$$(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} L) \otimes M \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (L \otimes M).$$

Recall that $M(\lambda + n\rho) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda + n\rho}$. Thus, the tensor identity implies that $M(\lambda + n\rho) \otimes L(n\rho) \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\mathbb{C}_{\lambda + n\rho} \otimes L(n\rho))$. Since $L(n\rho)$ has $-n\rho$ as a weight, we see that

 $M(\lambda + n\rho) \otimes L(n\rho)$ has $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\mathbb{C}_{\lambda + n\rho} \otimes \mathbb{C}_{-n\rho}) \cong M(\lambda)$ as a quotient, as claimed. Thus, there exists a projective mapping onto $L(\lambda)$.

Let $M \in \mathcal{O}$ be aribtrary. We induct on the length of M. It remains only to consider M with length > 1. In this case, there exists a short exact sequence

$$0 \to L(\lambda) \to M \to N \to 0.$$

By induction, there exists a surjection $P \to N$ from a projective P. We can lift this to a map $P \to M$ by projectivity. If the image of $P \to M$ intersects $L(\lambda)$, then it contains $L(\lambda)$ by simplicity; thus, $P \to M$ is surjective, and we are done. Otherwise, the lift $P \to M$ induces a splitting $N \to M$, so we can cover $M \cong N \oplus L(\lambda)$ by some $P \oplus Q$.

5 Projective covers

It remains to characterize the projectives in \mathcal{O} . Because \mathcal{O} is Artinian, standard homological algebra shows that each $M \in \mathcal{O}$ admits a **projective cover** $P_M \to M$, which is a surjection from a projective such that no proper submodule of P_M surjects onto M. Such a projective cover is unique up to isomorphism. Let $P(\lambda)$ denote the projective cover of $L(\lambda)$. Since the $L(\lambda)$ are the simple objects, the $P(\lambda)$ are precisely the indecomposable projectives in \mathcal{O} , i.e. every projective is a direct sum of $P(\lambda)$. Moreover, the $P(\lambda)$ have unique maximal submodules given by $\ker(P(\lambda) \to L(\lambda))$.

Theorem 2. Every projective module in \mathcal{O} has a **standard filtration**, i.e. a filtration with subquotients isomorphic to Verma modules. In such a standard filtration, the multiplicity $(P(\lambda) : M(\mu))$ is nonzero only if $\mu \ge \lambda$, and $(P(\lambda) : M(\lambda)) = 1$.

Proof. By the proof of the earlier proposition, $P(\lambda)$ is a direct summand of a projective of the form $M(\lambda + n\rho) \otimes L(n\rho)$ with $\lambda + n\rho$ dominant and n large. This $M(\lambda + n\rho) \otimes L(n\rho)$ has a standard filtration induced by a filtration of $L(n\rho)$ as a $U(\mathfrak{b})$ -module with 1-dimensional subquotients. Since $P(\lambda)$ is a direct summand of $M(\lambda + n\rho) \otimes L(n\rho)$, $P(\lambda)$ has a standard filtration (by a standard fact about standard filtrations).

The facts about the multiplicities follow from the multiplicities of $L(n\rho)$.

Corollary 2. A projective is determined by its formal character.

Theorem 3 (BGG Reciprocity). $(P(\lambda): M(\mu)) = [M(\mu): L(\lambda)]$

Proof. Since $M(\mu)$ and $M(\mu)^{\vee}$ have the same composition factors, we can rewrite this as $(P(\lambda): M(\mu)) = [M(\mu)^{\vee}: L(\lambda)]$. The proof has two steps.

- (a) dim $\operatorname{Hom}_{\mathcal{O}}(P(\lambda), M(\mu)^{\vee}) = [M(\mu)^{\vee} : L(\lambda)]$: We claim that dim $\operatorname{Hom}_{\mathcal{O}}(P(\lambda), M) = [M : L(\lambda)]$ more generally for $M \in \mathcal{O}$. This follows from the additivity of both sides for M lying in short exact sequences and the equality of both sides for M a simple module.
- (b) $(P(\lambda): M(\mu)) = \dim \operatorname{Hom}_{\mathcal{O}}(P(\lambda), M(\mu)^{\vee})$: We claim that $(M: M(\mu)) = \dim \operatorname{Hom}_{\mathcal{O}}(P(\lambda), M(\mu)^{\vee})$ for M with a standard filtration. This is proven with the same argument as above, except that we have to use the fact that $\operatorname{Ext}^1_{\mathcal{O}}(M(\mu'), M(\mu)^{\vee}) \cong 0$ for all μ, μ' , which we will not prove.