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This talk is based on Chapter 0 and Sections 1.1-1.5 of Humphreys’ Representations of Semisimple
Lie Algebras in the BGG Category O.

Everything is over C.

1 Structure theory of semisimple Lie algebras
The first part of this talk is a review of the structure of semisimple Lie algebras and their represen-
tations.

A Lie algebra g is semisimple if any of the following equivalent conditions hold:

• g is a direct sum of simple Lie algebras (Lie algebras with no proper nonzero ideals).

• The Killing form κ(x, y) = tr(ad(x) ad(y)) is nondegenerate.

• The radical (maximal solvable ideal) of g is 0.

Examples include sln, son, sp2n.
We can decompose g as a vector space according to the adjoint action of a Cartan subalge-

bra h. The operators ad(h) ⊂ gl(g) commute and are all semisimple, so they are simultaneously
diagonalizable. Thus, we have a decomposition into finitely many root spaces

g = h⊕
⊕

α∈h∗−{0}

gα,

where
gα = {x ∈ g|[h, x] = α(h)x, ∀h ∈ h}.

Several important facts about the root spaces include the following:

• dim gα = 1 for all α that appear.

• [gα, gβ ] ⊂ gα+β (here, g0 = h, and gα+β = 0 if α + β is not a root). Moreover, [gα, gβ ] 6= 0 if
α+ β is a root or 0.

• The α come in pairs α,−α.
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For each positive root α, we can pick xα ∈ gα, yα ∈ g−α, and hα = [xα, yα] ∈ h such that
α(hα) = 2. This can be thought of as an inclusion of Lie algebras sl2 → g sending(

0 1
0 0

)
7→ xα(

0 0
1 0

)
7→ yα(

1 0
0 −1

)
7→ hα.

The xα, yα (for α ∈ Φ+) and hαi
(for αi ∈ ∆) form a standard basis of g.

It can be shown that the α form a reduced root system, denoted Φ. Here, the R-vector space
is the R-span of the roots, and the inner product is the restriction of the Killing form. We denote a
choice of positive roots by Φ+ and the simple roots by ∆ = {α1, . . . , α`}. We also have a dual root
system Φ∨ whose roots are α∨ = 2α

(α,α) .
The root system determines g, as the commutators between the elements of the standard basis

can be read off the data of the root system:

[hαi , hαj ] = 0

[xα, yβ ] =

{
hα if α = β

0 if α 6= β

[hα, xβ ] = 〈β, α∨〉xβ
[hα, yβ ] = −〈β, α∨〉yβ

ad(xαi
)1−〈αj ,α

∨
i 〉(xαj

) = 0 if i 6= j

ad(yαi
)1−〈αj ,α

∨
i 〉(yαj

) = 0 if i 6= j.

It is not obvious, but these relations uniquely determine g. Thus, any two semisimple Lie algebras
with isomorphic root systems are isomorphic. Moreover, it can be shown that any reduced root
system gives rise to a semisimple Lie algebra (take the Lie algebra generated by xαi

, yαi
, hαi

with
the above relations). Thus, there is a bijective correspondence between reduced root systems and
semisimple Lie algebras.

Under this correspondence, irreducible reduced root systems correspond to simple Lie algebras,
which semisimple Lie algebras are direct sums of. This is really nice because we have a full classifi-
cation of irreducible reduced root systems:

An sln+1

Bn so2n+1

Cn sp2n

Dn so2n

E6, E7, E8, F4, G2 exceptional Lie algebras

2 Finite-dimensional representation theory of semisimple Lie
algebras

Finite-dimensional representations are particularly nice because of Weyl’s complete reducibility
theorem, which asserts that finite-dimensional g-representations are direct sums of simple repre-
sentations. Hence, it suffices to describe the simple finite-dimensional g-representations. Just as
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with the structure theory of g, the Cartan subalgebra h is important. The finite-dimensional g-
representations all decompose into weight spaces according to the action of h (the λ are called
weights):

M =
⊕
λ∈h∗

Mλ.

BecauseM is finite-dimensional, the λ must be integral, which means that 〈λ, α∨〉 ∈ Z for all α ∈ Φ
(it suffices to check for αi ∈ ∆). h acts on M by scaling the weight spaces separately. The root
spaces gα act on M by raising and lowering weights: gαMλ ⊂Mλ+α. We partially order the weights
by λ ≥ µ ⇔ λ− µ ∈ Z≥0Φ+. When α ∈ Φ+, xα raises the weight, and yα lowers the weight.

The simple finite-dimensional representations are parametrized by dominant integral weights,
which are integral weights λ such that 〈λ, α∨i 〉 ≥ 0 for all αi ∈ ∆. The simple finite-dimensional
representations are all highest weight representations, meaning that they are generated as U(g)-
modules by a single vector in the highest weight space. More precisely, we say that M is a highest
weight representation if there is a maximal vector v ∈ Mλ generating M as a U(g)-module, i.e.
nv = 0 (here, n =

⊕
α∈Φ+ gα). For a highest weight representation M , λ ≥ µ for any weight µ of M ,

and dimMλ = 1, as the g-action can only lower the weight. Moreover, λ must be dominant, as we
will see in a second. We will obtain a clearer picture of the simple modules when we discuss Verma
modules later.

The finite-dimensional representation theory of a semisimple Lie algebra g is really controlled
by its Weyl group W , which is the group generated by reflections in the root system. W acts on
the weight space h∗ and the integral weight lattice Λ. The significance of the Weyl group to the
representation theory of g is that the set of weights appearing in M must be invariant under W , as
W permutes the weights through its action on h∗. Thus, any highest weight λ must be dominant,
since otherwise, there would exist some simple reflection si for which siλ > λ. In the other direction,
each W -orbit of Λ contains exactly one dominant weight λ. This dominant weight satisfies λ ≥ wλ
for all w ∈ W , and the weights that can appear in Mλ are those in the convex hull of Wλ. Thus,
the simple finite-dimensional modules are parametrized by the dominant integral weights, which are
in bijection with the W -orbits of Λ.

3 Introduction to category O
Unlike the finite-dimensional situation, infinite-dimensional g-representations are not necessarily
completely reducible. The BGG category O enlarges the category of finite-dimensional represen-
tations to include infinite-dimensional representations that retain several desirable finiteness prop-
erties seen in the finite-dimensional setting. Category O is defined to be the full subcategory of
U(g)-modules satisfying the following conditions:

(1) M is a finitely generated U(g)-module.

(2) M is h-semisimple: M =
⊕

λ∈h∗Mλ.

(3) M is n-finite: The U(n)-submodule generated by any v ∈M is finite-dimensional.

The following additional properties follow from the definition:

• All Mλ are finite-dimensional.

• The set of weights of M is contained in the union of finitely many sets of the form λ−Z≥0Φ+.

Theorem 1. O is a Noetherian abelian category.
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Proof. Noetherianness follows from the fact that U(g) is a Noetherian ring (with the natural filtra-
tion, it has Noetherian associated graded Sym∗(g)).

To prove abelianness, it suffices to show that O is closed under taking submodules, quotients,
and direct sums. The only property here that I’ll explain is that submodules are finitely generated.
However, this follows from the Noetherianness of O.

Since O consists of weight modules, it makes sense to talk about highest weight modules,
just like in the finite-dimensional case. A U(g)-module M is a highest weight module if there is a
maximal vector v ∈Mλ generating M as a U(g)-module. Just as in the finite-dimensional case, the
set of weights of M is contained in λ− Z≥0Φ+, and dimMλ = 1.

Theorem 2. A highest weight moduleM has a unique maximal U(g)-submodule and thus a unique
simple quotient.

Proof. Every proper submodule N ⊂ M is a weight module because submodules of M are in O.
Since M is generated by Mλ, N cannot contain Mλ, and neither can any sum of proper submodules
N . Thus, M has a unique maximal submodule given by the sum of the proper submodules.

Theorem 3. There is a unique simple highest weight module of weight λ. Moreover, we have
Schur’s lemma: EndU(g) λ = C.

Proof. SupposeM1 andM2 are highest weight modules of weight λ with maximal vectors v1 and v2,
respectively. Then (v1, v2) is a maximal vector in M1⊕M2, so the submodule N that it generates is
a highest weight module. We have surjections N � M1 and N � M2. The previous theorem says
that N has a unique simple quotient, so we get an isomorphism M1

∼= M2.
We prove the second part. If M is a simple highest weight module with maximal vector v, then

any mapM →M sends v to a multiple of itself. This determines the entire map because v generates
M . Thus, EndU(g) λ = C.

Theorem 4. Every M ∈ O has a filtration whose subquotients are highest weight modules.

Proof. By n-finiteness, we can find a maximal vector v ∈M . Take the U(g)-submodule it generates
and quotient by it. Repeat until we stop (by Noetherianness).

We finish by introducing Verma modules, which are the universal highest weight modules. For
every λ, we define the Verma moduleM(λ) := U(g)⊗U(b)Cλ, where n acts on Cλ by 0 and h acts on
Cλ by λ. M(λ) is universal because it maps uniquely (up to scalar) to any highest weight module
of weight λ.

The Verma modules for g = sl2 are in bijection with C (once we fix the standard basis x, y, h). If
the highest weight is λ ∈ C, the weights of M(λ) are λ, λ− 2, λ− 4, . . .. M(λ) is simple iff λ 6∈ Z≥0.
If λ ∈ Z≥0, then we get the usual simple finite-dimensional representations as quotients.
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