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Preface

These notes are designed for a course on the mathematics associated to static op-
timization theory. More specifically, the book serves as an introduction to those
concepts in linear algebra, analysis and convexity that are most important in static
optimization. We then go on to optimization itself, focusing on examples from
economics.

Prerequisites

The prerequisites for reading these lectures are given below. Most of the concepts
from the prerequisite courses—especially those central to optimization theory—are
reviewed at the beginning of the book.

• A one-semester course in single-variable calculus. The book does not use
integrals, but differentiation, and infinite sequences are fundamental. Infinite
series only make an appearance via Taylor series. See Lectures 3 and 4,

• A one-semester course in linear algebra. Lectures 5 and 6, and lectures 7, 8,
and 9.

• A one-semester course in multivariable calculus. The book assumes the abil-
ity to differentiate a function f of several variables, to apply the chain rule
in several variables, and to compute the second-order Taylor polynomial.
Students should already understand both the graph and the level varieties of
the function. Some of the lectures on linear algebra also contains multivari-
able calculus, of course. The sections devoted to results usually covered in a
multivariable calculus course are Lectures 5, 10, 11 and 12.

For the material that is not reviewed, references are given to the elementary
texts that are most familiar to me: Stewart [63] for calculus, and Spence-Insel-
Friedberg [60] and Strang [68] for linear algebra. References are also given to
more specialized books that are roughly at the same level as this one, but with
more detail in the areas that they cover. My favorites are:
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• Rudin [55] and Strichartz[70] for analysis;

• Serre [57] and Strang [67] for linear algebra;

• Roberts-Varburg [52] and Barvinok [4] for convexity; and

• Franklin [23], Berkovitz [7] and Boyd-Vandenberghe [10] for optimization.

Proofs

Another important skill is the ability to read and master mathematical proofs. Some
courses are specifically designed to do that, using a text such as Dumas-McCarthy
[21] for this purpose, but most training is acquired through courses such as this
one. Although prior experience with proofs is helpful, these lectures are designed
to accommodate the readers with no background in reading and writing proofs, and
to help them cultivate these fundamental skills.

Here is how I suggest you read the proof of a theorem:

• You should make sure you understand what each individual statement in the
proof means, and how each one follows logically from the previous one.

• In some instances you will have to go back to the definitions and prior the-
orems used in the proof to complete the previous step. Read through them
carefully.

• Make sure you understand how each one of the hypotheses are used. For
most (but not all) theorems, the result is known to be false when a hypothesis
is dropped. Make sure you see why that is true. Construct your own simple
examples whenever possible

• See how the theorem is used in the rest of the notes.

There are several kinds of proofs that are used repeatedly in these lectures:

• Proof by induction.

• Proof by contradiction.

• Proving the contrapositive statement. If the theorem claims that statement
P implies statement Q, you may prove instead the equivalent statement that
notQ implies notP . Notice how closely related this is to proof by contra-
diction.
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• Proof by successive approximation. This is referred to as divide and con-
quer in [70] p. 53. This is especially important in these lectures. Instead
of attempting to prove the result in one step, one constructs a sequence of
better and better approximations to the result, and then shows that the limit
of the sequence gives the desired result. The prototypical result is Newton’s
method for computing the root x∗ of a real-valued differentiable function
that you may have seen in calculus. See for example Stewart [63], §4.8.

It is also essential to understand the difference between a necessary and a suffi-
cient condition for a result to be true. Here is an example of a necessary condition
that is not sufficient: in the era before calculators, all school children used to know
this algorithm.

Example: Proof by nine Suppose you are given two positive integers a and b
in their decimal representation, say a = 215738 and b = 61922. Multiply them,
and call the answer c. My calculator tells me that the answer is c = 13358928436.
How to check this answer if one has done the computation by hand? Add the digits
of a (in our example we get 26), add the digits again (get 8 in the example), and
when there is only one digit left, stop. Do the same for b (in our example, you
get 20 and then 2) and for c (get 52 and then 7). The proof by nine tells us that
the product of the numbers obtained for a and b must be equal (after reducing the
digits once more if necessary) to the number obtained for c. Indeed in our example
8 · 2 = 16, add the digits to get 7, the same result as for c. The equality of these
two numbers is a necessary condition for the multiplication to be correct, but it is
not a sufficient condition.

What does this have to do with the number 9? For each one of the three num-
bers we are computing the equivalence class modulo 9 of the number: this is a way
of saying we are computing the remainder of the number after division by 9. This
is an equivalence relation (see Definition 15.5.2) on integers, and an easy result
says that if we represent the remainder classes by 0, 1, 2, . . . , 8, then a · b = c. The
last ingredient of the algorithm is that to compute the remainder of a number under
division by 9, you just repeatedly add its digits until you get an integer no larger
that 8. You should verify this on your own. The point is simply that the remainder
class of a power of 10 modulo 9 is 1.

Note that getting the correct value for the product says that the probability of
the computation being correct is 8/9: in other words there is still nearly a 9%
chance that the computation is incorrect. This is just another way of quantifying
the fact that the condition is necessary but not sufficient.

Keep this example in mind when you think about necessary and sufficient con-
ditions.
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Introduction



Lecture 1

Some Examples

This lecture introduces the key definitions and concepts for optimization and then
covers three applied examples that illustrate what comes later: first, two key lin-
ear optimization problems: the Diet Problem §1.3 and the Transportation Problem
§1.4, and then a convex optimization problem §1.5.

1.1 The Problem

We begin by describing the central problem studied throughout this book. We
work with a continuous function f(x1, . . . , xn) whose domain contains a regionD
in Rn. f is a real-valued function, meaning that its range is contained in the real
numbers R. While the number n of real inputs can be very large—thousands in
some real-life applications—f outputs a single real number.

1.1.1 Definition. This function f , our central concern, is called the objective func-
tion.1

Our task is to optimize f over the region D: this means to either maximize or
minimize it (or both), depending on the problem at hand.

1.1.2 Definition. The region D plays a central role in our study, and it too has a
name: the feasible set, or the constraint set.

D must be contained in the domain of f (the set where f is defined), but it
can be smaller. In economics, for example, problems often make sense only for
non-negative values of the variables. Say that f represents the cost of a bundle
of goods, and you can’t—as is usually the case—buy negative quantities. It is
sensible, therefore, to restrict f to the positive quadrant in Rn.

1In some minimization problems, f is called the cost function.



1.1. THE PROBLEM 3

Most of our examples, like this one, come from economics. We study examples
from economics for each of the optimization problems treated in this book. Those
problems, defined by the choices for the objective function and the feasible set, can
be summarized as follows:

• In Lecture 3, we review the one dimensional case, familiar to you from the
max-min problems of single variable calculus.

• In Lecture 7, §7.5, we show that orthogonal projection minimizes the dis-
tance of a point to a linear space. We generalize this to the distance of a
point to a convex set in Corollary 18.6.4. We apply this technique to least
squares in §13.3.

• In Lecture 13, we study the case where the feasible set D is all of Rn. This
is unconstrained optimization. Most of this material will be familiar to you
from multi-variable calculus.

• Lecture 25 considers the case where f is a linear function and the feasible
set is constrained by linear equalities and inequalities. This case is known
as linear programming or linear optimization. Another reference for this
material is [23]. Applications are given in Lecture 26.

• In Lecture 28, we use Lagrange Multipliers (28.3.9) to generalize the results
of equality-constrained linear optimization to a nonlinear context. While the
constraints are all equalities, there is no linearity requirement for either the
constaints or the objective function. Most multivariable-calculus texts offer
preliminary introductions to this problem (see, e.g., [63], §14).

• Lecture 30 presents quadratic optimization, another special case in which the
objective function is quadratic and the constraint functions (either equality
or inequality) are affine. Other references are [23], II.1 and [20]

• As discussed in Lectures 22, 23, and 33, assuming that the objective func-
tion and the constraints are convex also has special consequences. This case
therefore also deserves its own name: convex optimization. The background
material for convex optimization is found in Lecture 18 on convex sets and
Lecture 21 on convex functions. Excellent references are [7] and [10], books
that are more advanced than these lectures. I recommend [52] as an even
more detailed alternative.

• Lectures 31 and 32, finally, discusses the most general nonlinear case, which
we call nonlinear optimization. This case imposes no limits on the character
or quality of either the objective function or the constraints. Many of the
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books already mentioned cover this case. Additional references include [5],
[18], [43], [44], [45] and [71].

You may be curious why some of the books cited here use the word program-
ming rather than optimization in their title. This terminology reflects the fact that,
in most situations, it is not possible to find a closed-form expression for the solution
of an optimization problem. Instead, one constructs an iterative algorithm that con-
verges to the solution—in other words, one writes a computer program to solve the
problem. You may have seen instances of this in calculus—the Newton-Raphson
method, for example (see [63], §4.9).

1.1.3 Definition.

• To minimize f(x) on D, we look for values a ∈ D where the value f(a) is
a minimum, formally:

f(a) ≤ f(x), for all x ∈ D. (1.1.4)

A value a ∈ D where (1.1.4) holds is called a minimizer. If a is a minimizer,
then we say that the value f(a) is a minimum for f .

• To maximize f(x) on D, we look for values b ∈ D where the value f(b) is
maximum, in other words:

f(b) ≥ f(x), for all x ∈ D. (1.1.5)

A value b ∈ D where (1.1.5) holds is called a maximizer. Correspondingly,
if b is a maximizer, then we say that the value f(b) is a maximum.

When we are agnostic between a maximum or a minimum, we use the term
extremum (pl. extrema).

1.1.6 Proposition (Minimizing and maximizing). Suppose we want to maximize
the objective function f on the feasible set D. This is equivalent to minimizing the
function −f on the feasible set D.

Proof. For a vector a ∈ D to be a maximizer for the function f on D means that
(1.1.5) holds (substituting a for b). Multiplying the inequality by −1 reverses the
direction of the inequality, giving (1.1.4). Thus, a is a minimizer for −f .

1.1.7 Remark. Proposition 1.1.6 shows that we really only need to consider either
minimization or maximization problems, and not both. These lectures focus on
minimization.
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1.1.8 Exercise. Keep the same objective function f , but change the feasible set D
to a larger feasible set D∗: D ⊂ D∗. If a is a minimizer for f on D, and a∗ is a
minimizer for f on D∗, show that f(a∗) ≤ f(a). Also show that if f(a∗) < f(a),
then a∗ /∈ D.

A minimization problem admits a solution only if a minimizer exists. However
it might not. Three things could go wrong:

1. The feasible set could be empty.

2. The values of f could get arbitrarily negative on D, meaning that they ap-
proach −∞.

3. Even if the values of f do not tend to −∞, a minimizer might still elude us
if, as explained in §16.2, D is not a compact set. This property—defined in
§15.1—play an important role in Weierstrass’s Theorem 16.2.2, which is a
sufficient condition on D for the existence of a minimizer a and a minimum.

We consider two types of minima: the one in Definition 1.1.3 is known as a a
global minimizer2, because the function’s value there is less than or equal to than its
value at any other point on the domain. We are also interested in local minimizers,
which can be defined as follows:

1.1.9 Definition. A point a ∈ D is a local minimizer for f if there exists a small
enough neighborhood U of a in D such that

f(a) ≤ f(x), for all x ∈ U .

Then f(a) is a local minimum.

The notion of neighborhood will be made mathematically precise in Definition
14.4.1; for now, just think of it as a small region around a point. In R, a neighbor-
hood of a point a is an interval of the form (a− ε, a+ ε), for any positive number
ε.

A global minimum is always a local minimum, but a local minimum need not
be a global minimum. Optimization often uses differential calculus to find minima,
but this tool set only helps us find local minima. We are more interested, mean-
while, in global minima—or reasonable approximations of global minima. In the
case of linear optimization (Lecture 25), we can always find the global minimum
via the simplex method (see Lecture 27). When the objective function is con-
vex, convex optimization usually produces the global minimum (Lecture 23). In
less-friendly optimization problems, we sometimes have to resort to approximation
methods using computer programs. This will not be discussed in this book.

2The term absolute minimizer is the term used instead, for example, in [63], §14.7.
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1.1.10 Exercise. Find an objective function of one variable f(x) and a feasible set
D such that f has a global minimum on D; then find an f and D where there is a
local minimum that is not a global minimum. Finally find an f and D where there
is no minimizer. You may want to refresh your memory by looking at Chapter 3.3.

1.2 Examples in Several Variables

The next few examples require some vector notation. We write x for the vector
[x1, x2, . . . , xn]. When we have only two variables, we sometimes write [x, y].

1.2.1 Example (f(x, y) linear). Consider the objective function f(x, y) = 2x+3y.
The feasible set D is the positive quadrant x ≥ 0, y ≥ 0. We want to minimize f
on this feasible set. Because the function is strictly increasing in both the x and the
y directions, the minimum value is attained at the lowest possible values for x and
y, that is, x = y = 0. The minimum value f(0, 0) = 0. This solution can also be
illustrated graphically:
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1.2.2 Definition. An extreme point of the set D is a point p that satisfies the fol-
lowing property: let L be any line in the plane passing through p. Then L ∩ D
does not contain an interval around p.

What are the extreme points of D? We will generalize the notion of extreme
point to any convex set in Definition 18.1.10.

1.2.3 Exercise. We minimize f(x, y) = ax + by + c on the positive quadrant D
as before, where a, b, c are real constants. Why does the value of c not matter?
For which choices of a and b does a minimizer exist? If a minimizer p does exist,
show that it always occurs at an extreme point of D. As discussed in Lecture 25,
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this result is a consequence of the fact that a linear function has no critical points,
meaning points where its gradient is the zero vector.

1.2.4 Exercise (f(x, y) quadratic). Suppose now that f is a quadratic polynomial
in two variables:

f(x, y) = x2 − 2xy + 3y2 − y

again constrained to the positive quadrant.
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Does f have a minimum on the non-negative quadrant D = {(x, y) | x ≥
0, y ≥ 0). Does it have a maximum there? (Hint: by completing the square on two
groups of terms, notice that you can write f(x, y) = (x−y)2 +2(y−1/4)2−1/8.
We will use this technique in §8.6 .)

1.2.5 Exercise. Consider the quadratic function f(x, y) = x2 + 2xy+ y2 +x− y,
with f still constrained to the non-negative quadrant.
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In terms of minimization, what is the key difference between this exercise and
the previous one?

Now suppose the feasible set is all of R2. Is there a minimum or a maximum?
Explain.

1.2.6 Exercise (f(x1, x2, . . . , xn) quadratic). In the quadratic case, we often deal
with a large, often unspecified, number of variables. We use n to denote the number
of variables and use summation notation to write

f(x1, x2, . . . , xn) =
n∑
i=1

n∑
j=i

aijxixj +
n∑
k=1

bkxk (1.2.7)

where aij , 1 ≤ i ≤ j ≤ n and bk , 1 ≤ k ≤ n are real constants. Note that the first
term, aijxixj , is quadratic, while the second term, bkxk, is linear.

Write out the summation when n = 3. How many aij are there?

The question of when the objective function in (1.2.7) has a maximum or a
minimum will occupy us for a large part of this course. The key is to notice that
the quadratic coefficients aij can be organized into a matrix. This will be studied
in Lecture 8.

For the rest of this lecture we will look at some applied problems that will
be solved later using the math techniques we develop. The first two are linear
optimization problems that have appeared in textbooks at least since Gale’s very
readable text [24].

1.3 The Diet Problem

The Diet Problem, originally formulated in a 1945 paper by economist George
Stigler [64], is an amusing example of linear optimization, which we will study in
detail in §26.1. Treatments of this problem can be found in all books convering
linear optimization. It is also dealt with in some linear algebra books: see for
example [39], p.175. The question posed by the Diet Problem is this: What is the
minimal cost of a nutritionally adequate diet? We assume that human nutritional
requirements, nutritive content of foods, and cost of foods are known quantities.

Assume we have n foods, labeled 1, 2, . . . , n. The cost per unit of food j we
call cj . We also havem nutrients, labeled 1, 2, . . . ,m. The minimum daily require-
ment for each nutrient we denote by bi, where i ranges over the set of nutrients, 1
through m. Finally, let aij be the amount of nutrient i in one unit of food j.

For variables, let xj denote the quantity of food j purchased. Then the objective
function is

f(x1, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn,
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the cost of purchasing xj units of food j, for 1 ≤ j ≤ n. It is subject to constraints,
meaning that the feasible set does not include all possible values of the xj . To
begin with, we have n positivity constraints given by xj ≥ 0 for 1 ≤ j ≤ n: we
can only purchase non-negative qualities of food. More subtly, we also need to
constrain the feasible set such that the daily minimum requirement of each nutrient
has been met. Thus each nutrient i, for 1 ≤ i ≤ m, must satisfy the inequality:

ai1x1 + ai2x2 + · · ·+ ainxn ≥ bi

Indeed aijxj is the amount of nutrient i in xj units of food j. Since we have m
nutrients, we have m nutrient constraints.

This is a typical linear optimization problem. The following example is simple
enough to be solved by hand.

1.3.1 Example. Suppose thatm = n = 2, so we have two foods and two nutrients,
and the constraints are provided by the quantity of nutrients needed:

x1+2x2 ≥ 4 (1.3.2)

2x1+ x2 ≥ 5.

so

a11 = 1, a12= 2 (1.3.3)

a21 = 2, a22= 1

b1 = 4, b2 = 5

We now draw the (shaded) feasible set F in the first quadrant. Note that it contains
all the rest of the first quadrant that is not shown.
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It is given by the two inequalities of (1.3.2). plus the two positivity constraints
x1 ≥ 0, x2 ≥ 0. Its boundary is polygonal with vertices a = (0, 5), b = (2, 1) and



1.3. THE DIET PROBLEM 10

c = (4, 0). The sides of the polygon are the vertical x2-axis, the segment [a,b],
the segment [b, c] and the horizontal x1-axis.

The cost function is c1x1+c2x2, and we assume that both c1 and c2 are positive,
so that neither food is free. Then the level curves of fixed cost are lines with
negative slope − c1

c2
. The slope depends on the relative cost of the two foods. The

line L of minimal cost γ has equation c1x1 + c2x2 − γ = 0 for some γ. As we
shall see later, L is a supporting line (see Equation 18.6.10) for the convex set F ,
such that F is entirely contained in the closed halfspace delimited by L where the
function c1x1 + c2x2 − γ is non negative. Depending on its slope, the line L will
intersect the feasible set at the vertex a, or along the segment [a,b], or at the vextex
b, or along the segment [b, c] or at the vextex c.
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If we take c1 = c2 = 1, then we add to the previous graph three level curves
for costs 2, 3, and 4. The minimum total cost is 3, and in this case the feasible set
meets the level line in just one point.

1.3.4 Exercise. In the spirit of the previous example, let the objective function be
c1x1 + c2x2, where c1 and c2 are positive, and the constraints be:

x1+2x2 ≥ 4,

2x1+5x2 ≥ 9.

and x1 ≥ 0, x2 ≥ 0. Draw the feasible set: first graph the lines that give the
boundary of the feasible set. For all choices of (c1, c2), find the solution to this
minimization problem. Show graphically that your solutions are correct.

Because we can see geometrically what the feasible set looks like, we can
solve the problem readily. As soon as n > 3, we can no longer be guided by the
geometric picture, and we will have to develop a general algorithm for solving the
problem. This is done in Lectures 25 and 27.
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1.4 The Transportation Problem

Here is a second linear optimization problem, introduced by Hitchcock [31] in
1941 and studied further by Koopmans [34] in 1949. It is one of the most studied
of all linear optimization problems.

A commodity (say oil) is produced by a company at m plants Pi, 1 ≤ i ≤ m
and is shipped to n markets Mj , 1 ≤ j ≤ n. We let cij be the known cost of
shipping a barrel of oil from Pi to Mj , and we let xij denote the unknown quantity
of oil (in barrels) shipped from Pi to Mj . With these definitions, the total cost C
of shipping the oil from all plants to all markets is

f(x11, . . . , xmn) =
m∑
i=1

n∑
j=1

cijxij (1.4.1)

This is our objective function. It is a linear function in the mn variables xij . We
wish to minimize it subject to some constraints. Before doing that we must in-
troduce some additional constants: the supply of oil at plant Pi is si barrels, and
the demand for oil at market Mj is dj barrels. The company wishes to satisfy the
demand at each market.

What is the feasible set, using these constants? First we can only ship non-
negative amounts of oil from each plant, so

xij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

This gives m×n positivity constraints. Next the total amount of oil shipped out of
each plant Pi cannot exceed the supply si of oil at that plant:

n∑
j=1

xij ≤ si, 1 ≤ i ≤ m. (1.4.2)

This gives an additional m inequality constraints. Note that we are summing over
the markets. Finally the company wants to satisfy the demand at each market Mj :

m∑
i=1

xij ≥ dj , 1 ≤ j ≤ n. (1.4.3)

This gives an additional n inequality constraints. Here we are summing over the
plants.

We have our objective function and our feasible set. Our minimization problem
is
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1.4.4 Problem (The Transportation Problem). Supply all the markets with a suffi-
cient amount of oil at minimal cost, in other words: Minimize f(xij) subject to the
three sets of constraints given above.

Here we will only answer the question: is the feasible set non-empty? For that
to be true, it is clear that to satisfy (1.4.3) we must assume that the total supply of
oil is at least as great as the total demand for oil. In other words,

m∑
i=1

si ≥
n∑
j=1

dj . (1.4.5)

Since one can change the order of summation in the double summation, the
constraints imply

m∑
i=1

si ≥
m∑
i=1

n∑
j=1

xij =

n∑
j=1

m∑
i=1

xij ≥
n∑
j=1

dj (1.4.6)

so that (1.4.5) is a consequence of the constraints. This says that (1.4.5) is a neces-
sary condition for the feasible set to be non-empty.

Assuming (1.4.5) is satisfied, we simplify the problem by introducing new
variables called slack variables to enable us to replace inequalities by equalities.
This standard trick will be used repeatedly in these notes. Define the quantity
d0 =

∑m
i=1 si−

∑n
j=1 dj to be the excess supply. By hypothesis it is non-negative.

If it is positive, we invent a new market M0 we call the dump, with all transporta-
tion costs to the dump ci0 = 0, and with demand d0. We have m new variables
associated to the dump: the number xi1 of barrels of oil transported from plant
Pi to the dump. With this additional market, we now have an exact match be-
tween supply and demand. This forces the inequalities in (1.4.6) to be equalities
and therefore the ones in (1.4.2) and (1.4.3) to be equalities too. This suggests
that we consider a new problem, called the canonical transportation problem.3 For
simplicity of notation, we simply increase m by 1, and let the dump be the last
market.

1.4.7 Problem (The Canonical Transportation Problem). Minimize f(xij) subject

3Some authors call this the standard transportation problem instead. See Definitions 25.1.5 and
25.1.6.
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to the constraints

xij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
n∑
j=1

xij = si, 1 ≤ i ≤ m. (1.4.8)

m∑
i=1

xij = dj , 1 ≤ j ≤ n. (1.4.9)

where
∑m

i=1 si =
∑n

j=1 dj .

The construction of the dump shows that a point in the feasible set D of the
ordinary transportation problem yields a point in the feasible set D′ of the canon-
ical transportation problem. Conversely, forgetting the dump moves you from a
point in the feasible set of the canonical transportation problem D′ to a point in D.
Furthermore, as we will see in Theorem 25.2.2 a minimum for one problem will
yield a minimum for the other.

Notice that we have nm variables that must satisfy n + m affine4 equations -
as well as positivity constraints that we ignore for the time being. To understand
the situation we use linear algebra to determine the rank of the system of affine
equations. It is at most n + m, since that is the number of equations, but in fact it
is never more than n+m− 1, since the sum of all the supply equations is equal to
the sum of all the demand equations, as you should check.

Let us now examine the simplest cases, continuing to assume that the supply
equals the demand.

1.4.10 Remark. If there is only one plant (m = 1) and there are n markets, there
is a unique solution x1j = dj , so the m + 1 affine equations impose m linear
conditions. If there are m plants and only one market (n = 1), then xi1 = si, so
again there is a unique solution.

We conclude this introduction to the transportation problem by proving the
following theorem:

1.4.11 Theorem. Condition (1.4.5) insures that the feasible set is non-empty.

Proof. It is enough to consider the canonical transportation problem. By Remark
1.4.10 there is a solution if either m or n is equal to 1, so we may assume that they
are both strictly greater than 1 and proceed by induction on n+m.

Consider the xij as the entries of a m× n matrix X . By hypothesis, we know
that the i-th row sum of X is si and the j-th column sum is dj . Consider any entry
of the matrix X , say x11. Then either

4Affine equations are linear equation with a constant term: we study them in §18.2.
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1. s1 ≤ d1, in which case we let x11 = si, which means that we use the full
supply of plant P1 for market M1, or

2. s1 > d1, in which case we let x11 = di, which means that we fulfill the
whole demand at market M1 using only oil from plant P1.

In case 1, all the other entries in the first row ofX must be 0. Let d′1 be the residual
demand at M1, namely d′1 = d1 − s1, which is non-negative by hypothesis. The
entire supply of P1 goes to M1, so we can remove P1, and replace the demand
at M1 by the residual demand. We now have a system with m − 1 plants and n
markets. So we can proceed by induction.

In case 2, all the other entries in the first column of X must be 0. Let s′1 =
s1−d1, the residual supply at P1. This is positive by hypothesis. The entire demand
at M1 comes from P1, so we can eliminate M1 from the system and replace the .
We now have a system of m plants and n − 1 markets. Again we can proceed by
induction.

1.4.12 Example. Let m = 2 and n = 3, so we have two plants P1 and P2, and
three markets M1, M2, and M3. Organize the transportation costs cij as the 2× 3
matrix [

2 3 4
1 4 6

]
so c11 = 2, c23 = 6, etc. The supply at the two plants is (4, 6) (in millions of
barrels), so s1 = 4, s2 = 6, and the demand at the three markets are (2, 3, 5)
millions of barrels, so d1 = 2, etc. Note that supply equals demand. The goal is to
follow the algorithm proposed in the proof of Theorem 1.4.7.

1. Fill the entire demand at M1 using the oil at P1. We can then remove M1,
and there are only 2 millions of barrels left at P1.

2. Use all the remaining oil at P1 in M2, reducing the demand there to 1.

3. The only oil left is at plant P2: we use 1 to satisfy the residual demand at
M2, and then the remaining oil exactly satisfies the demand atM3, so we are
done.

What is the total cost of this solution? We read this off from the cost matrix:

f(2, 2, 0, 0, 1, 1) = 2c11 + 2c12 + 1c22 + 5c23 = 4 + 2 + 4 + 30 = 40.

If instead we first fill the entire demand atM1 using P2, and then use the remaining
oil at P2 in M3, we get instead

f(0, 3, 1, 2, 0, 4) = 2c21 + 4c23 + 3c12 + 1c13 = 2 + 24 + 9 + 4 = 39,
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so we have reduced the cost slightly. Can you do better?

Thus we have a method for finding an element in the feasible set. It will usually
not be a minimal for the objective function. We will show how to find the minimal
cost, and the minimizer later in the course: §26.2. It is a consequence of the duality
theorem of Lecture 25. When the number of plants and markets is small, we can
find the minimum by using the supply and demand equations, as described below.

Later we will determine the structure of the feasible set. It is the intersection
of an affine set (see §18.2) with the positive orthant. In fact it is a compact set, a
notion we will study in Lecture 14. Then one of the most important theorems of
this course, the Weierstrass Theorem 16.2.2 says that there always is a minimum.
However the theorem is a pure existence theorem and it does not say how to find
the minimizer or the minimum value. That is the hard work we postpone to §26.2.

We can organize the computation systematically using linear algebra.

1.4.13 Exercise. View the variables xij as the entries of an unknown mn vector x,
where we list the entries in the order

(x11, x12, . . . , x1n, . . . , xm1, . . . , xmn)

so xij comes before xkl if i < k or i = k and j < l.
We now form a (m+ n)×mn matrix A specifically designed so that

Ax = b

where b = (s1, . . . , sm, d1, . . . , dn). In other words the appropriate row of this
equation is one of the m supply equations 1.4.8 first, followed by the n demand
equations 1.4.9. The entries of A are either 0 or 1: using i (resp. m + j) as row
index for the m (resp. last n) rows of A, and ij as the column index, we see that
ai,ij = 1 and am+j,ij = 1

Note that the matrixA does not depend on the problem, but only on the number
of plants and the number of markets. Ifm = 2 and n = 2, the matrixA is the 4×4
matrix 

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 (1.4.14)

This matrix will reappear when we study doubly stochastic matrices in §18.8. If
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m = 2 and n = 3, the matrix A is the 5× 6 matrix
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


Show that the matrix A has rank m + n − 1 in the two examples above. This
means that we will be able to eliminate m + n − 1 of the mn variables. In the
case m = 2 and n = 3 that we have been considering, this means being able to
eliminate 5 of 6 variables. Notice also how simple the three demand equations are
are: x2j = dj − x1j .

Extra credit: prove that A has rank in m + n − 1 in the general case. See
Theorem

1.4.15 Exercise. Use the notation of Example 1.4.12, with m = 2 and n = 3, and
transportation costs: [

1 2 3
2 4 6

]
The supply at the two plants is (4, 6) (in millions of barrels), and the demand at the
three markets are (2, 3, 5) millions of barrels, so supply matches demand. Find a
feasible solution using the method described above. Explain how to improve your
solution, if possible. Consider using the technique of Exercise 1.4.13.

1.4.16 Exercise. Find a point in the feasible set for the following transportation
problem. There are two plants P1 and P2, and three markets M1, M2, and M3.
The transportation costs cij are given as the entries of the 2× 3 matrix[

2 3 4
1 2 5

]
The supply at the two plants is (4, 6) (in millions of barrels), so s1 = 4, s2 = 6,
and the demand at the three markets are (2, 3, 5) millions of barrels, so d1 = 2,
d2 = 3, d3 = 5. By thinking through what the transportation costs are, try to lower
the cost of the solution you have already found. Can you determine the minimum
cost?

1.4.17 Exercise. Continuing with Exercise 1.4.16, use the matrix of Exercise 1.4.13
to solve this transportation problem as follows. Use the four linear equations to
solve for x21, x22, x23 and finally x13. What do you get for the remaining two
variables? What does this mean? Find the minimizers for the xij , remembering
that they are non-negative, and find the minimum cost.
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1.5 Maximizing Utility Functions

We assume a universe where n different goods are available. We label them by the
index j, 1 ≤ j ≤ n, and use the variable x = (x1, . . . , xn) to denote the quantity
of the goods. We let pj be the price of the j-th good, so we have a price n-vector
p. Prices will always be nonnegative.

A consumer (or household) has a utility function concerning the acquisition of
these goods. This is a real-valued function u(x) from the non-negative quadrant in
Rn, and its main property is this: Given two different “bundles” of goods x1 and
x2, the consumer strictly prefers x1 if u(x1) > u(x2). In other words, we assume
the consumer wants to maximize the utility function. Generally the consumer will
have a budget constraint M , meaning that only bundles of total price p1x1 + · · ·+
pnxn ≤M can be considered. Therefore we have an optimization problem:

Maximize u(x) subject to p · x ≤M and x � 0.
We want to solve this problem for functions u satisfying very general assump-

tions that make sense in economics.
One candidate for a utility function is the Cobb-Douglas function: see Example

13.4.1 and its interpretation in Example 13.4.7. For example,

∂u

∂xj
> 0, for all j, (1.5.1)

so that u is strictly increasing as a functon of each of its variable. Economists say
that the marginal utility of each good is strictly positive. A second property is that

∂2u

∂x2j
< 0, for all j, (1.5.2)

so that the marginal utility decreases as consumption increases.
Another closely related assumption is that u is concave or at least quasiconcave.

See Lectures 21, 22, and 23.



Lecture 2

Mathematics Terminology

This short lecture starts with a section on the language of mathematics, for refer-
ence. Some readers will have already seen much of this. Then we discuss what
remains of the notion of order on R that we study in §14.1 when one passes to Rn,
n > 1: it is called a partial order. We then discuss binary relations in more detail
than usual. One concept that may be new to you is duality, defined in subsection
2.3. I recommend that you only study the material of this lecture when you need it
later in this course.

2.1 The Language of Mathematics

In this section we briefly list some notation and a collection of facts about the
underpinning of mathematics. Most of this is probably familiar to the experienced
reader. In any case it should only be skimmed until the material is needed.

2.1.1 Statements and Quantifiers

A mathematical statement is usually written P and Q. Most of the statements of
concern to us will depend on a variable, say, x. Then we write P (x) is the statement
is true.

Typically we will need to write
• that P (x) is true for all x. We can write this using the universal quantifier ∀.
• or that there is a x for which P (x) is true. We write this using the existential

quantifier ∃.
In the beginning of the text, the words ‘for all’ and ‘there exists’ are written

out. It is a good exercise to replace the written out statement with the qualifiers.
For example, the Definition 3.1.1 of the limit q of a function f(x) at a point p can
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be written: The function f(x) has limit q at the point p if

∀ε > 0,∃δ > 0 such that
(
|x− p| < δ, x 6= p

)
⇒ |f(x)− q| < ε.

As you know, the order in which the different quantifiers are listed in a mathe-
matical statement is critically important.

2.1.2 Logical Connectors and Truth Tables

The two logical connectors are
• and, written ∧. The symbol was deliberately chosen to suggest an intersec-

tion, since the locus of values x for which both P (x) and Q(x) are true is
the intersection of the loci where P (x) is true and where Q(x) is true.
• or, written ∨. This symbol was chosen because it suggests a union. It is

important to note that in mathematics or always means that either P (x) is
true or Q(x) is true or both are true. In common language or sometimes
means that either either P (x) is true or Q(x) is true , but not both. This is
called the exclusive or and in our notation is written P (x) ∨Q(x) \ P (x) ∧
Q(x): we remove the locus P (x) ∧ Q(x) from the locus P (x) ∨ Q(x) in
which it is contained.
We will use the ‘exclusive or’ on at least two occasions: in Corollary 7.2.4 in
the context of linear algebra, and in the important Farkas Alternative 19.5.1
dealing with linear inequalities.

2.1.3 Negation, If Then, and the Contrapositive

The statement that P (x) is false is written¬P (x). Note that¬∀xP (x) is equivalent
to ∃x¬P (x).

The statement that ‘if P is true, then Q is true’ is written P ⇒ Q, and can be
read P implies Q. If P ⇒ Q and Q ⇒ P , we write P ⇐⇒ Q, and we say that
P is true if and only if (abbreviated iff ) Q is true.

This is discussed in the language of necessary and sufficient conditions in Re-
mark 3.3.3, which is followed by the important Theorem 3.3.4 that illustrates its
use. To translate into the language used here.

A ‘necessary condition for P is that Q’ means that P ⇒ Q.
A ‘sufficient condition for P is that Q’ means that Q ⇒ P . An important

method of proof in these lectures is the contrapositive, namely, to prove that P ⇒
Q, we prove ¬Q⇒ ¬P . In other words, to prove that P implies Q, we prove that
Q false implies that P is false.
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2.1.4 De Morgan’s Law

Let S be a fixed set, and I an index set, finite or infinite. Consider a collection of
subsets Si of S indexed by i ∈ I . Then, as you know, we write the union of the
sets Si as ∪i∈ISi and the intersection ∩i∈ISi. In terms of our quantifiers, we see
that

∪i∈ISi = {s ∈ S | ∃i ∈ I, s ∈ Si},

and
∩i∈ISi = {s ∈ S | ∀i ∈ I, s ∈ Si}.

The complement of S in S is written Sc. So

Sc = {s ∈ S | s /∈ S}.

2.1.1 Theorem (De Morgan’s Law). The complement of an intersection is the
union of the complements: (

∩i∈I Si
)c

= ∪i∈ISci .

It is a good exercise to work this out when there are just two subsets A and B:(
A ∩B

)c
= Ac ∪Bc.

2.1.5 Index Notation

In these lectures we will often use index notation. It is important to understand
that the notation, say, xi, i ∈ N, is simply a way of writing a function from the
natural numbers N to whatever set the xi belong to: in this course, typically R. For
examples, see §10.1.

2.2 Binary Relations

2.2.1 Ordered Pairs, Correspondences and Functions

Given two sets S and T , the cartesian product S×T is simply the set of pairs (s, t),
where s ∈ S and t ∈ T .

2.2.1 Definition. A binary relationR, sometimes called a correspondence on S×T
is a subset R of S × T . For s ∈ S and t ∈ T , we write sRt to indicate that the
pair (s, t) is in R.
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One often takes the set T to be the same as S. When that is the case, we can
define some interesting kinds of binary relations: this is done in Definitions 2.2.5
and 2.2.8.

The word correspondence is used to designate binary relations that are like
functions. Then one speaks of the domain of the correspondence: it is the collec-
tion of s ∈ S such that there is at least one t ∈ T with sRt. The range of the
correspondence is the collection of t ∈ T such that there is at least one s ∈ S
such that sRt. In particular, a function is a correspondence such that for all s in the
domain of R, there is a unique t in the range.

2.2.2 Example. Let S be the non-negative real numbers, and T be R. Then the set
of pairs (r,±

√
r) gives a correspondence that is not a function.

2.2.3 Exercise. In this language, write down the statement that a function has an
inverse.

2.2.2 Special Kinds of Binary Relations

This section is devoted to studying the properties of different kinds of binary rela-
tions. First some examples.

In §14.1 we note that R is ordered. This means that there is a binary relation,
called an order, denoted > on R with the properties given by Definition 14.1.1.
There is no such order on the complex numbers C. But something does remain
when one considers C, Nn, or Rn: a binary relation called a partial order.

2.2.4 Definition (Partial Order). For two vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn), we write
• x � y, if xi ≥ yi for 1 ≤ i ≤ n.
• x < y, if xi ≥ yi for 1 ≤ i ≤ n, and ∃i such that xi > yi.
• x � y, if xi > yi for 1 ≤ i ≤ n.

This is called a partial order because it is not always possible to order two
elements. For example, in R2 it is not possible to say that (1,−1) is bigger or
smaller than (−1, 1). They cannot be compared.

Now some general definitions about binary relations.

2.2.5 Definition. Let R be a binary relation on a set S. Then
1. R is reflexive when xRx for all x ∈ S.
2. R is symmetric when xRy implies yRx.
3. R is antisymmetric when xRy and yRx implies y = x.
4. R is complete when for all x and y we have either xRy or yRx.
5. R is transitive when xRy and yRz implies xRz
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Note that the order≤ on R is reflexive, antisymmetric, complete and transitive.
The partial order on Rn is reflexive, antisymmetric and transitive, but not complete.

This partial order has an extra property inherited from the vector space structure
of R:

2.2.6 Definition. A binary relation R on Rn is linear if

xRy implies (cx + z)R(cy + z) for all c > 0 in R and all z ∈ Rn.

2.2.7 Example. We can draw the binary relation R on R given by x ≥ y: we plot
the first term of the binary relation on the x-axis of R2, and the second term on the
y-axis. Then the points in the binary relation are those on or below the 45 degree
line through the origin in R2. You should check that it is the case.

For the partial order � on R2 one would need four dimensions to draw the full
set R. Instead, for a fixed x∗ ∈ R2, one can draw in R2 the set of y such that
x∗ � y. What is it?

2.2.8 Definition. Here are the definitions in terms of the properties of Definition
2.2.5.

1. A binary relation that is reflexive, antisymmetric, complete and transitive is
an order.

2. A binary relation that is reflexive, antisymmetric and transitive is a partial
order.

3. A binary relation that is reflexive, symmetric and transitive is an equivalence
relation.

You have probably already come across equivalence relations. For example,
equality is an equivalence relation on any set. A key fact about an equivalence
relation on a set S is that it partitions S into non-overlapping equivalence classes.

A partition of a set S is a collection of non-overlapping subsets Si, called
equivalence classes, whose union is S. Thus for any two i and j in I , Si ∩ Sj is
empty, and ∪i∈ISi = S. A partition defines a binary relation R on S × S, whose
domain and range is all of S: sRt if s and t are in the same subset Si. You should
check that R is an equivalence relation. Conversely any equivalence relation R
defines a partition of S: start with any element s ∈ S

2.2.9 Example. Congruence modulo an integer k is an equivalence relation on the
set of integers. Each equivalence class contains all the integers whose remainder
modulo division by k is a fixed integer. Thus there are k equivalence classes.

We will meet three equivalence relations on matrices later in this course: see
definitions 7.7.1, 7.7.8 and 8.4.1.
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2.2.10 Example (Rays). We will also meet a geometric equivalence relation on
Rn with the origin removed. We say that two non-zero vectors x and y in Rn are
equivalent if there is a a > 0 in R such that x = ay. In geometric terms they
belong to the same ray through the origin. This equivalence relation is important
because the set of equivalence classes is the set of points on the unit sphere S in Rn.
Indeed, the ray given by an equivalence class intersects the unit sphere in exactly
one point. Indeed the map sending Rn r 0 to S is continuous and onto. This is
why one removes 0, which would otherwise form its own equivalence class: there
is nowhere to send it in S.

In Definition 15.5.2, we will put an equivalence relation on Cauchy sequences
of rational numbers. The equivalence classes for this relation are the real numbers,
as noted in §15.2.

Here is a more involved equivalence relation on functions.

2.2.11 Example (Preference Functions). Consider a real-valued function u(x) of
n variables, which we will call a utility function. Given two inputs a and b, we are
only interested in comparing the real numbers u(a) and u(b), which are supposed
to measure the preferences of a consumer. There are three possible outcomes:
• If u(a) > u(b), a is preferred to b.
• If u(a) < u(b), b is preferred to a.
• If u(a) = u(b), the consumer is indifferent between a and b.

For every constant c in the range of u, the level sets Lc = {x|u(x) = c} partition
the domain of u into set of points between which the consumer is indifferent. As
we learned above , this partition gives rise to an equivalence relation on the points
in the domain of u. We say that u orders the elements x in its domain.

Now take two real-valued functions u(x) and v(x) with the same domain D
in Rn. Then u and v are equivalent if there exists a strictly increasing function
f : R→ R whose domain includes the range of u, such that

f(u(x)) = v(x).

The point of this definition is that f(u(x)) gives the same ordering on elements a
and b as does u(x).

You should check that this defines an equivalence relation on functions with the
same domain. The key point is that since f is strictly increasing, it has an inverse
function f−1, so that if f(u(x)) = v(x), then u(x) = f−1(v(x)).

A property that is true for all functions in the same equivalence class of utility
functions, is called an ordinal property of the utility function. It is important to
determine the ordinal properties for certain classes of functions.
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For example, restrict to C1-functions u(x) defined on the positive quadrant, and
C1-functions f that have an inverse on their entire range. By the inverse function
theorem f−1 is also C1, so f ′(z) is never zero. The property

∂u

∂xi
(x) > 0,

is an ordinal property: if v(x) = f(u(x), with f strictly increasing, then by the
chain rule

∂v

∂xi
(x) = f ′(x)

∂u

∂xi
(x)

so the left-hand side is strictly positive as required. In other words, more is better
than less is an ordinal property.

Define the marginal rate of substitution between xi and xj at any point x to be

MRS(u, i, j) =
∂u

∂xi
(x)/

∂u

∂xj
(x),

assuming the denominator does not vanish. Then the property thatMRS(u, i, j) >
0 is an ordinal property. The same chain rule computation gives the result.

2.3 Duality

We will spend a lot of time discussing duality in this course, so it is perhaps useful
to give a general mathematical framework for duality immediately.

Suppose that k(x, y) : A × B → C is a function of two variables. Then for
each a ∈ A we get a function ga(y) : B → C, defined by ga(y) = k(a, y); for
each b ∈ B we get a function fb(x) : A → C, defined by fb(x) = k(x, b). To
know all the functions ga(y) is the same as knowing k(x, y), which in turn is the
same as knowing the all the functions fb(x).

2.3.1 Definition. The collection of functions ga(y) and fb(x) are dual.

Here is the key example. It requires the linear algebra developed in Lecture 6.

2.3.2 Example. Take a m× n matrix A. This yields a bilinear form

k(x,y) = yTAx.

The function ga(y) is then the linear function k(a,y) = yTAa and fb(x) in the
linear function k(x,b) = bTAx.
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In linear algebra, the dual of a vector space V is the vector space of functionals,
namely linear maps from V to the scalars, here R. The dual vector space is written
V ∗. If v ∈ V and ϕ ∈ V ∗, then we have a pairing

k(v, ϕ) : V × V ∗ → R given by k(v, ϕ) = ϕ(v).

So we are in the framework given above.



Part II

Optimization of Functions in One
Variable



Lecture 3

Calculus in One Variable

In this lecture we assume that f(x) is a function of a single real variable x, and
review the parts of single variable calculus that are useful in optimization, focus-
ing on the key definitions and conceptual understanding. Many of these concepts
are covered in the multivariable setting latter in the course, but it is useful to see
the single variable case, which is conceptually easier, first. A key ingredient is
the Mean Value Theorem 3.2.1, which we will use repeatedly. Its relies on the
Maximum Theorem 3.1.6, proved in full generality in Lecture 16. Then we review
optimization in one variable: §3.3, and we conclude with the Intermediate Value
Theorem 3.4.3.

3.1 Review of Single Variable Calculus

First, the most important definition of calculus:

3.1.1 Definition. The real-valued function f(x) is defined on an open interval
(a, b) in R. We let p be a point in the closed interval [a, b]. We say that f(x)
approaches q, as x approaches p, if, for all ε > 0, there exists a δ > 0 such
that when |x − p| < δ, x 6= p, and x ∈ (a, b), then |f(x) − q| < ε. We write
limx→p f(x) = q, and call q the limit of the function f(x) at p. If there is no value
q that works, we say the limit does not exist.

In other words, no matter how small an interval V (given by ε) you take around
q, by taking a suitably small interval U (given by δ) around p and contained in
(a, b), you can guarantee that if x ∈ U and x 6= p, then f(x) ∈ V . In a calculus
text such as [63], this definition is usually called the precise definition of a limit
(see [63] definition 2.4.6). Note that p need not be in the domain of f , so we may
not be able to evaluate f at p.
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3.1.2 Remark. This definition allows for the possibility that the point p at which
we are taking the limit be an endpoint of the interval, so that the limit can only be
taken from one side, so that we get what is called a one-sided limit. We do this to
prepare for the multivariable generalization in Definition 11.1.1.

3.1.3 Theorem. If f(x) has a limit at p, it is unique.

Proof. This is a good exercise in providing a proof by contradiction. Assume that
there are two distinct limits q1 and q2. Then pick an ε so small that the interval
|y − q1| < ε and the interval |y − q2| < ε do not overlap. Then for that value ε,
to say that q1 (resp. q2) is a limit is to say that for x close enough to p, |f(x) −
q1| < ε (resp. |f(x) − q2| < ε). But this is impossible since the intervals do not
overlap.

Next a result we will use repeatedly in this course: the inequalities ≥ and ≤
are preserved in the limit.

3.1.4 Theorem. Assume that f(x) has a limit at p, and that there is an ε > 0 such
that for all x 6= p in |x− p| < ε, f(x) ≥ r. Then limx→p f(x) ≥ r.

Proof. This is another good exercise, best attempted after reading §14.2. It is eas-
iest doing this by contradiction, like the previous theorem. Indeed, the proof is
almost identical.

It is not true that strict inequalities are preserved in the limit. Indeed just take
the absolute value function y = |x| for p = 0. For all x near 0, |x| > 0, and yet in
the limit as one approaches 0, one gets the value 0.

The subsequent definitions build on the definition of a limit.

3.1.5 Definition. The real-valued function f(x) defined on a closed interval [a, b]
in R is continuous at a point p ∈ [a, b] if limx→p f(x) = f(p). The function f is
continuous on [a, b] if it is continuous at all p ∈ (a, b).

The central result we will need concerning continuous functions is

3.1.6 Theorem. Let f(x) be a continuous function defined on the closed (and
bounded) interval [a, b]. Then there is a point x0 in the interval where f attains its
minimum, meaning that for all x ∈ [a, b], f(x) ≥ f(x0).

The analogous result holds for maxima, of course. This is a significantly deeper
result that the results proved up to now. The general case, for f is a function of
several variables, is called the Weierstrass Theorem 16.2.2. More details are given
there, but it still depends on a key property of the real numbers developed in §14.2.
You could read that section now if you wish, as well of the results of §14.1.
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3.1.7 Definition. The real-valued function f(x) is defined on the open interval
(a, b) in R. For a fixed point x ∈ (a, b), define the Newton quotient ϕ(t) by

ϕ(t) =
f(t)− f(x)

t− x
, for all t ∈ (a, b) , t 6= x.

Then if limt→x ϕ(t) exists, it is called the derivative of f at x, and written f ′(x).
The function f is then said to be differentiable at x. It is differentiable on (a, b) if
it is differentiable at each point of (a, b).

This allows us to define the tangent line to f(x) at a point x0 where f(x) is
differentiable.

3.1.8 Definition. The tangent line to the graph y = f(x) in the plane at the point
with coordinates (x0, f(x0)) is the graph y = `(x) by the affine function:

`(x) = f(x0) + f ′(x0)(x− x0).

Affine refers to the fact that we get the graph of a line that does not necessarily
go through the origin. We will look at affine functions in §18.2.

Here is how we use this definition. Rewrite the limit defining the derivative as

lim
x→x0

(f(x)− f(x0)

x− x0
− f ′(x0)

)
= 0. (3.1.9)

Consider the term inside the limit, and multiply it by x− x0 to get

f(x)− f(x0)− f ′(x0)(x− x0) = f(x)− `(x).

Applying Definition 3.1.1 to (3.1.9), for all ε > 0, there exists a δ > 0 such
that when |x− x0| < δ, x 6= x0, then∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣ < ε. (3.1.10)

3.1.11 Theorem. The tangent line `(x) = f(x0) + f ′(x0)(x − x0) approximates
y = f(x) near the point (x0, f(x0) better than any other line in the plane. In other
words,

lim
x→x0

f(x)− `(x)

x− x0
= 0 (3.1.12)

while for any other line, this limit is not 0.
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Proof. The limit (3.1.9) gives (3.1.12). Now let g(x) = a(x−x0)+ b be any other
line in the plane. If b 6= f(x0), the desired limit does not even exist, so we may
assume b = f(x0) and a 6= f ′(x0). Then

|f(x)− g(x)| = |f(x)− `(x) + `(x)− g(x)|
≥ |`(x)− g(x)| − |f(x)− `(x)|, by the triangle inequality

≥ |f ′(x0)− a||x− x0| − ε|x− x0|, if |x− x0| < δ.

In the last step, for the given ε > 0, use the δ > 0 given by (3.1.10). If we take
ε < |a− f ′(x0)|/2,

|f(x)− g(x)| ≥ |a− f
′(x0)|

2
|x− x0|

so dividing by |x − x0| and taking the limit as x → x0, we get in the limit an
expression bounded below by

|a− f ′(x0)|
2

> 0,

so we are done.

We will discuss higher dimensional analogs of the tangent line in §17.3, and
approximations of higher order in §4.3.

3.1.13 Definition. To clarify the next results, we make some local and some less
local definitions:

• We say that f(x) increases (resp. increases strictly) at x0 ∈ (a, b) if on a
small enough open interval (α, β) ⊂ (a, b) containing x0, for all y ∈ (α, β)
with x0 < y, f(x0) ≤ f(y) (resp. f(x0) < f(y)), and for all y ∈ (α, β)
with y < x0, f(y) ≤ f(x0) (resp. f(y) < f(x0)) .

• We say that f(x) increases (resp. increases strictly) on [a, b] if for all x < y
in [a, b], f(x) ≤ f(y) (resp. f(x) < f(y)).

We leave it to the reader to formulate the analogous definitions for decreasing and
strictly decreasing.

We now derive an easy local result from the definition of the derivative at a
point. Notice how weak the hypothesis is: we only need differentiability at the one
point x0. As we will see, since the result only compares the value of f(x0) with
that of a point nearby, it does not imply that the function f(x) is monotonically
increasing or decreasing in any neighborhood of x0, no matter how small.
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3.1.14 Theorem. Let f(x) be defined on the closed interval [a, b], and differen-
tiable at x0 ∈ (a, b).

• If f ′(x0) > 0, then f is strictly increasing at x0. If f ′(x0) < 0, then f is
strictly decreasing at x0.

• If f(x) is increasing at x0, then f ′(x0) ≥ 0. If f(x) is decreasing at x0, then
f ′(x0) ≤ 0

Proof. The key idea, to be reused many times in this course, is this: If f ′(x0) > 0,
then for a small enough δ and any x with |x− x0| < δ, the Newton quotient

f(x)− f(x0)

x− x0
> 0

and that in itself shows that f(x) is strictly increasing at x0. For the second state-
ment, if f(x) is increasing at x0, then the Newton quotient at x0 is ≥ 0 for x
sufficient close to x0. Then we just apply Theorem 3.1.4 that says that inequalities
are preserved in the limit to get f ′(x0) ≥ 0.1

The missing case f ′(x0) = 0 in Theorem 3.1.14 is handled in the next theorem,
the prototype of many theorems in this course. This result was proved by Fermat
in 1638, and is probably the first result connecting extrema to differentiability. See
[12], Theorem 3.9 and [28], chapter II for the history.

3.1.15 Theorem (Fermat’s Theorem). Let f(x) be defined on the closed interval
[a, b]. Assume f has a local minimum at a point x0 in (a, b). If f(x) is differentiable
at x0, then f ′(x0) = 0.

Proof. Since x0 is a local minimum, so that f(x)− f(x0) is non-positive for all x
close enough to x0, the Newton quotient (f(x0)−f(x))/(x0−x) considered only
for x such that x0 − x < 0, must be non-positive. On the other hand, for x greater
than x0, the Newton quotient is non-negative. Thus, since these must agree in the
limit, the derivative, which is the common limit of these quotients, must be 0. We
have used Theorem 3.1.4 again.

There is of course a similar theorem for local maxima. We need vocabulary to
account for all cases, and here it is:

3.1.16 Definition. A critical point of f(x) is a solution x to the equation

f ′(x) = 0 (3.1.17)

A critical point that is neither a local maximum nor a local minimum is an inflection
point.

1Additional details can be found in [70], Theorem 5.2.1, for example.
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3.1.18 Example. In Theorem 3.1.14, the hypothesis f ′(x0) > 0 does not imply
that f(x) is strictly increasing (or decreasing) in a neighborhood of x0, no matter
how small: it only says that it increases or decreases at x0. Indeed, consider the
function

f(x) =

{
x+ x2 sin 1/x2, if x 6= 0;
0, if x = 0.

It is differentiable everywhere, even at 0, and the derivative at 0 is 1, and yet, as we
now see, it is not monotonically increase on any neighborhood of 0. Since sin 1/x2

oscillates between −1 and 1, f(x) oscillates between the parabola y = x− x2 and
the parabola y = x+x2, which are both tangent at x = 0 to the line y = x. We can
show that f(x) is everywhere differentiable, as follows. A direct Newton quotient
computation shows that f ′(0) = 1. For x 6= 0, a standard derivative computation
using the product rule and the chain rule says

f ′(x) = 1 + 2x sin
1

x2
− 2

x
cos

1

x2
.

In particular f ′(x) fails to be continuous at x = 0. Note that f ′(x) takes on both
positive and negative values in arbitrarily small neighborhoods of 0. This shows
that f is neither increasing or decreasing in any neighborhood of 0, no matter how
small. We revisit the techniques of this example in Example 3.4.5. The Interme-
diate Value Theorem 3.4.3 explains why examples of this nature must be rather
complicated. For more details and graphs of both f and f ′, see [28], remark III.6.5
p. 237.

3.2 The Mean Value Theorem

We conclude this survey of single-variable calculus with one of its most important
and deepest theorems, which we will use below in Corollary 3.2.4 and in Lecture 12
on Taylor’s theorem. Its proof requires the Weierstrass Theorem 16.2.2, which we
stated above in the case of a single variable: Theorem 3.1.6.

3.2.1 Theorem (Mean Value Theorem). Let f(x) be a real-valued function that
is continuous on the closed interval [a, b] and differentiable on the open interval
(a, b). Then there exists a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a) (3.2.2)

This theorem is due to Lagrange, and is often called the “finite increment the-
orem”.2 We will prove this theorem shortly. But first, we introduce the following
special case, in which f takes the same value at a and b:

2In French, le théorème des accroissements finis. See [74] §5.3.2.
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3.2.3 Theorem (Rolle’s Theorem). Let f(x) be a real-valued function that is con-
tinuous on the closed interval [a, b] and differentiable on the open interval (a, b).
If f(a) = f(b), there is a point c ∈ (a, b) where the derivative of f vanishes:
f ′(c) = 0.

Proof. If f is the constant function f(x) = v, then the theorem is trivially true:
for all c ∈ (a, b), f(c) = v. Otherwise we can turn to the Weierstrass Theorem
16.2.2, applied to the continuous function f(x) on the closed interval [a, b]. Since
f is not constant, there is a point c ∈ (a, b) where f(c) is either greater than v or
less than v. If f(c) > v, the maximum of f on [a, b] must occur on the interior of
the interval, where f is differentiable. At this maximizer d, f ′(d) = 0, as we know
from Theorem 3.1.15. If f(c) < v, the minimizer must occur on the interior, and
we get the same conclusion.

As promised, we now prove the Mean Value Theorem.

Proof of the Mean Value Theorem. The slope of the line connecting the points (a, f(a))
and (b, f(b)) in R2 is

s =
f(b)− f(a)

b− a
If we replace f by the function g(x) = f(x) − sx, we see that g(a) = g(b). This
equality allows us to apply Rolle’s theorem to g(x), from which we know that there
is a point c ∈ (a, b) such that g′(c) = 0. Meanwhile, calculating the derivative of
g(x) = f(x)− sx produces g′(x) = f ′(x)− s. Since g′(c) = 0, f ′(c) = s.

The Mean Value Theorem gives us a global analog of theorems 3.1.14 and
3.1.15, which follows immediately from (3.2.2).

3.2.4 Corollary. Let f(x) be a real-valued function that is continuous on the
closed interval [a, b] and differentiable on the open interval (a, b).

• If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing on [a, b];

• If f ′(x) ≥ 0 for all x ∈ (a, b), then f is increasing on [a, b];

• If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b];

• If f ′(x) ≤ 0 for all x ∈ (a, b), then f is decreasing on [a, b]

• If f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b];

The following generalization of the Mean Value Theorem is due to Cauchy.
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3.2.5 Theorem (Cauchy’s Mean Value Theorem). Let f(x) and g(x) be real-
valued functions that are continuous on the closed interval [a, b] and differentiable
on the open interval (a, b). Then there exists a point c ∈ (a, b) such that

g′(c)(f(b)− f(a)) = f ′(c)(g(b)− g(a)) (3.2.6)

Proof. Just apply Rolle’s theorem to the function

g(x)(f(b)− f(a))− f(x)(g(b)− g(a)).

Cauchy ([16], p. 243) stated the result for a function g, such that g′(x) is non
-zero on the interval, so that we get:

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
(3.2.7)

from which the Mean Value Theorem follows by setting g(x) = x.
For further results in this direction, see §3.4.

3.3 Optimization in One Variable

Differential calculus provides tools needed to find local minima for f(x), as we
have seen from the theorems in the preceding two sections. It this section we state
two theorems (3.3.4 and 3.3.5) that follow readily from the results of the previous
sections. We will generalize these theorems to functions of several variables in later
lectures: see §13.1. Then we look at examples, and write the general algorithm for
finding the minima and maxima on the interval.

To distinguish local maxima from minima and inflection points, we introduce
the second derivative f ′′(x). Thus we assume not only that f(x) is differentiable,
but that its derivative f ′(x) is also differentiable. We say that f(x) is twice dif-
ferentiable. Furthermore if we require that the second derivative f ′′(x) itself be
continuous: we say f(x) is twice continuously differentiable, or C2. More gener-
ally

3.3.1 Definition. The function f : R → R is said to be Ck in a neighborhood of
a if the derivatives f (i)(x), 1 ≤ i ≤ k exist and are continuous functions in a
neighborhood of a. If k = 1, we say that f is continuously differentiable. To be C0
is just to be continuous.

3.3.2 Example. the function of Example 3.1.18 is differentiable, but not C1 at
x = 0.
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Note that if f has a k-th derivative on a neighborhood, it is automatically Ck−1,
but need not be Ck. Except when we come to Taylor’s Theorem in Chapter 4, we
will rarely have to worry about conditions beyond C1 and C2.

The following two theorems are our main tools (also see [63], p.301). They
illustrate another repeated theme in this book: the distinction between necessary
and sufficient conditions.

3.3.3 Remark. A set of conditions for a particular conclusion are necessary, if
the conclusion cannot be true unless all of the conditions are satisfied; however,
the conditions being satisfied does not guarantee the conclusion to be true. On the
other hand, a set of conditions for a particular conclusion are sufficient, if, when
all the conditions are satisfied, the conclusion is true; however, the conclusion may
still be true notwithstanding that some or all of the conditions are unsatisfied.

For a different approach to necessary and sufficient conditions see §2.1.3.

3.3.4 Theorem (Necessary conditions for a local extremum, single-variable case).
Let f(x) be a real-valued twice differentiable function defined on an open interval
(a, b) in R containing the point x0. Assume that f ′′(x) is continuous near x0. If
f has a local minimum at x0, then f ′(x0) = 0 and f ′′(x0) ≥ 0. If f has a local
maximum at x0, then f ′(x0) = 0 and f ′′(x0) ≤ 0.

3.3.5 Theorem (Sufficient conditions for a local extremum, single-variable case).
Let f(x) be a real-valued twice differentiable function defined on an open interval
(a, b) in R containing x0. Assume that f ′′(x) is continuous near x0. If f ′(x0) = 0
and f ′′(x0) > 0, then f has a strict local minimum at x0. If f ′(x0) = 0 and
f ′′(x0) < 0, then f has a strict local maximum at x0.

Proof. We start with Theorem 3.3.5. Assume that f ′(x0) = 0 and f ′′(x0) > 0.
We need to show that there is a small enough interval (a, b) around x0, such that
if x ∈ (a, x0), then f(x) > f(x0); and if x ∈ (x0, b), then f(x) > f(x0) also.
This is the meaning of strict minimum. We first work with the function f ′(x). The
hypothesis f ′′(x0) > 0 and Corollary 3.2.4 applied to f ′(x) show that f ′(x) is
strictly increasing on a small enough interval (α, β) containing x0. Indeed, since
f ′′(x0) > 0 and f ′′(x) is continuous in a neighborhood of x0, it remains positive
in a neighborhood of x0, so Corollary 3.2.4 can be applied to f ′(x).

Then, since f ′(x0) = 0, f ′(x) must be negative on the interval (α, x0) and
positive on the interval (x0, β). So by Corollary 3.2.4 applied to the intervals
(α, x0) and (x0, β), we see that x0 is a strict minimizer for f on the interval (α, β).
The second statement of Theorem 3.3.5 is proved in exactly the same way.

Now we turn to the proof of Theorem 3.3.4.
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Proof. We will prove the second statement, namely

f has a local maximum at x0 ⇒ f ′(x0) = 0 and f ′′(x0) ≤ 0

We prove this by establishing the contrapositive, which is logically the same.3

Since we know that f ′(x0) = 0, the contrapositive reads:

f ′(x0) = 0 and f ′′(x0) > 0⇒ f does not have a local maximum at x0.

This is true by Theorem 3.3.5, since the hypotheses imply that f has a strict local
minimum at x0, and a strict local minimum can never be a local maximum. No-
tice that this last argument fails if we only have a local minimum, since a local
minimum can be a local maximum when the function is locally constant.

The proof shows that Theorem 3.3.4 is a logical corollary of Theorem 3.3.5:
it is implied by it just using elementary logic. As the careful reader will have
noticed, the only circumstance in which the necessary conditions are satisfied but
the sufficient conditions are not satisfied is when f ′(x0) = 0 and f ′′(x0) = 0.
Here is a refinement of Theorem 3.3.5 that closes most of the ground between the
necessary and sufficient condition.

3.3.6 Theorem. Let f(x) be a real-valued function, at least n-times differentiable,
defined on an open interval (a, b) in R containing x0. Assume that f (n)(x) is
continuous in a neighborhood of x0, that the first n − 1 derivatives of f at x0 are
zero: f ′(x0) = 0, f ′′(x0) = 0, . . . , f (n−1)(x0) = 0, and that the n-th derivative of
f as x0 is not zero: f (n)(x0) 6= 0.

• Assume n is even. If f (n)(x0) is positive, then f has a strict local minimum
at x0. If f (n)(x0) is negative, then f has a strict local maximum at x0.

• If n is odd, then f has an inflection point at x0.

Proof. The proof follows that of 3.3.5: start with f (n−1)(x), draw the usual con-
clusion about f (n−2)(x), and notice that the final conclusion just depends on the
parity of n.

At this point you could jump ahead to §4.2 to see how the mean value theorem
is used to establish Taylor’s theorem.

Now some examples.
3See §2.1.3 is you are unclear about the meaning of this sentence.
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3.3.7 Example. Consider f(x) = xn near the point x0 = 0. Its first n− 1 deriva-
tives at x0 vanish, and its n-th derivative at 0 is f (n)(0) = n!. So Theorem 3.3.6
tells us that when n is even, f has a strict minimum at 0, and when n is odd, an
inflection point. Note that this also follows directly from consideration of the sign
of xn.

We now review and generalize the algorithm for finding the global minimum
of one-variable functions. Let’s assume that the feasible set is the closed interval
[α, β]. We assume that f is twice differentiable.

3.3.8 Algorithm.

Step 1. Compute the first derivative f ′ of f . This usually presents no difficulty.

Step 2. Solve the equation f ′(x) = 0 to find the critical points. If f ′(x) is suffi-
ciently complicated, this cannot be done in closed form and requires instead
a process of approximation (e.g., Newton-Raphson, [63], §4.9). For polyno-
mials in one variable of degree at least 5, for example, there is no closed-form
formula for the roots.

Step 3. Determine whether the critical points are local maxima or local minima
using the second-derivative test (Theorem 3.3.5) at each critical point. If
any of the second derivatives are equal to 0, the test fails. Alternatively, one
could just evaluate f at each critical point and pick the smallest value.

Step 4. Evaluate the function at each end point, getting f(α) and f(β).

The smallest of all the values found is the global minimizer.

3.3.9 Example. Let’s find the critical points of the function f(x) = 2x3 − 9x2 +
12x on the feasible set x ≥ 0. Looking to (3.1.17), we compute the derivative
f ′(x) and set it equal to zero:

f(x) = 2x3 − 9x2 + 12x

f ′(x) = 6x2 − 18x+ 12 so, setting it to 0,

0 = x2 − 3x+ 2 = (x− 2)(x− 1).

Thus, the function f(x) has critical points at x = 1 and x = 2. Note that both of
these values are feasible for the constraint x ≥ 0. Because f(1) = 5 and f(2) = 4,
we can write the corresponding points on the graph of y = 2x3− 9x2 + 12x using
their coordinates in the plane: (1, 5) and (2, 4).

We do not yet know whether these critical points are maxima, minima, or in-
flection points. This often requires a second derivative computation. For this sim-
ple example, though, just consider that f goes to +∞ as x → +∞ and f goes to
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−∞ as x → −∞. This indicates that (1, 5) is a local maximum and (2, 4) is a
local minimum. Why? Since there are no other critical points, the function cannot
change direction at any other point.

We have found the local extrema on f that are not at the end points of the
interval (in this example only one end point). At the end point x = 0 we have
f(0) = 0.

So there are only three local extrema. Because f goes to +∞ as x → +∞,
there is no global maximum. To find the local minimum we need only compare the
values (2, 4) and (0, 0). Thus the global minimizer on this feasible set is x = 0,
and the minimum value y = 0. These findings are reflected on the graph.

1 2 3 4
x

5

10

15

20

2 x3
- 9 x2

+ 12 x

Let’s apply the second derivative test in Example 3.3.9 .

3.3.10 Example. Since f is twice differentiable, we can take the second derivative

f ′′(x) = 12x− 18

Applying the second-derivative test, we evaluate f ′′(x) at the critical points:

f ′′(1) = −6

f ′′(2) = 6

Thus Theorem 3.3.5 tells us that f has a local maximum at x = 1 and a local
minimum at x = 2, confirming our previous argument.

Next consider the simplest example of an inflection point , as illustrated by the
function f(x) = x3. In this case, f ′(0) = f ′′(0) = 0, so at x = 0 the necessary
conditions are satisfied. The sufficiency conditions are not satisfied, however, and
in fact we do not have a minimum. This is illustrated by a graph of f(x) = x3:

3.3.11 Example. We start with the general affine function

f(x) = ax+ b
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on the interval [α, β]. Since the constant b just shifts the graph up or down, we can
take b = 0. We assume a 6= 0, since otherwise we have an uninteresting constant
function. f(x) has no critical points, so the minimum must occur on a boundary
of the interval [α, β]. If a > 0 (positive slope) the minimum occurs at α; if a < 0
(negative slope) the minimum occurs at β. Lectures 19 through 27 will be devoted
to generalizing the linear case to a larger number of variables. This is known as
linear programming.

3.3.12 Example. Now we consider the set of all possible quadratic polynomials:

f(x) = ax2 + bx+ c

where a, b, c are constants, and where the feasible set D is the set of x ≥ 0. As
with Example 3.3.11, the constant c just shifts the graph of f up or down, so we
might as well take c = 0. If a were equal to 0, we would end up with the linear
case presented in Example 3.3.11, while a < 0 would mean that f tends to −∞ as
x → ±∞ and not have a finite minimum. Since we are looking for a minimum,
we take a > 0. Dividing by a, we need only consider f(x) = x2 + dx (where
d = b/a). Setting the first derivative f ′(x) = 2x + d equal to zero produces the
equation −2x = d. The unique critical point, therefore, occurs at x = −d/2. It is
necessarily a minimum. However x = −d/2 is only in the feasible set if d ≤ 0.
What happens if d > 0? The minimum occurs at the end point x = 0 of the feasible
set.

The key feature of this example is that the coefficient of x2 is positive. The ap-
propriate generalization in several variables is the notion of positive definite sym-
metric quadratic form. We will study this topic in detail in Lecture 13, as it is a key
ingredient in nonlinear optimization, also known as nonlinear programming.

We conclude with some more difficult examples

3.3.13 Example. In this example we use the fact that

lim
x→0

xne−
1
x2 = 0 for all n ≥ 0.

The function

f(x) =

{
e−

1
x2 , if x 6= 0;

0, if x = 0;

is infinitely differentiable, even at x = 0, and f (n)(0) = 0 for all n, so we cannot
apply Theorem 3.3.6. Because f(x) is even, it has an extremum at 0, and because
the values away from 0 are positive, it is a minimum. For more details see [12],
§3.1.
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3.3.14 Exercise. Find the minima of f(x) = xx on the interval (0,∞). Be sure to
determine that your answer is the global minimum. Does the function have local
maxima or a global maximum?

Hint: recall from calculus that you can write xx = ex lnx, so that f ′(x) =
xx(1 + lnx). Note that the first term in this product is always positive.

3.4 The Intermediate Value Theorem

The following theorem, due to Gaston Darboux4, allows us to prove that certain
functions are continuously differentiable: also see Theorem 21.2.17. We give an
example 3.4.5 of a function that is not continuously differentiable.

3.4.1 Definition. A real-valued function f(x) satisfies the intermediate value prop-
erty on an open interval S if for all a < b in S, and every v in the open interval
bounded by f(a) and f(b), there is a x0 in the open interval (a, b) with f(x0) = v.
If f(a) = f(b), the property is vacuous.

3.4.2 Proposition. If f(x) increases on the open interval S, and satisfies the in-
termediate value property on [a, b], for any a < b in S, then f is continuous.

Proof. We prove continuity of f at any x0 ∈ S. We will first prove f is continuous
as x approaches x0 from below, and let f−(x0) be that limit. A similar argu-
ment shows it is continuous from above, and we let f+(x0) be that limit. Since
f is increasing, f−(x0) ≤ f+(x0), and the intermediate value property forces
f−(x0) = f+(x0), so we are done.

To prove f is continuous as x approaches x0 from below, we look for a c ∈ S
such that f(c) < f(x0). If there is no such c, f(x) is constant for x ≤ x0, so it is
continuous from below. If there is such a c, then for any positive ε < f(x0)−f(c),
the intermediate value property allows us to find a point c1 ∈ (c, x0) such that
f(x0) − f(c1) < ε. Then, since f is increasing, every point x ∈ [c1, x0] satisfies
f(x)− f(c1) < ε, so we have established continuity from below.

3.4.3 Theorem (The Intermediate Value Theorem). Let f(x) be a differentiable
function on the open interval S. Then the derivative f ′(x) has the intermediate
value property on S.

So the derivative of f , even though it is not assumed to be continuous, takes on
all intermediate values between any two values.

4See [12], p. 111 for historical details.
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Proof. Pick two distinct point a and b in S, and an arbitrary value v with f ′(a) <
v < f ′(b). We must show there is a x0 such that f ′(x0) = v. For concreteness
assume a < b. Let g(x) = f(x) − vx. Then g′(a) = f ′(a) − v is negative, and
g′(b) = f ′(b)− v is positive. By Theorem 3.1.14, g is strictly decreasing at a and
strictly increasing at b, so that the minimum of the continuous function g on the
interval [a, b], which exists by the Weierstrass Theorem 3.1.6, must occur on the
open interval (a, b). Thus the hypotheses of Theorem 3.1.15 are satisfied, so at the
minimizer x0 for g, we have g′(x0) = 0, so f ′(x0) = v.

3.4.4 Corollary. Assume f(x) is differentiable and f ′(x) is increasing on the open
interval S, so that if a < b in S, f ′(a) ≤ f ′(b). Then f ′(x) is continuous on S.

Proof. By Theorem 3.4.3, f ′(x) has the intermediate value property. Therefore,
since f ′(x) is increasing by hypothesis, Proposition 3.4.2 says that f ′ is continuous.

This result implies that a derivative cannot have simple ‘jump’ discontinuities.5

We will use this result in Theorem 21.2.17 to show that a convex functions (f(x)
that are differentiable is continuously differentiable.

This result makes it difficult to produce examples of functions that are differ-
entiable but not continuously differentiable. Here is such an example.

3.4.5 Example. Let α and β be positive real numbers. Consider the function

f(x) =

{
xα sin 1/xβ, if x 6= 0;
0, if x = 0.

We compute the derivative away from x = 0 using the product rule and the chain
rule to get

f ′(x) = αxα−1 sin 1/xβ − βxα−β−1 cos 1/xβ (3.4.6)

We compute the derivative at 0 directly by using the Newton quotient:

f ′(0) = lim
x→0

xα sin 1/xβ

x
= lim

x→0
xα−1 sin 1/xβ. (3.4.7)

This limit only exists (and is then equal to 0) if α > 1, so that the oscillations of
sin 1/xβ are damped out. To show that it is continuously differentiable at 0 we
need to show that

f ′(0) = lim
x→0

f ′(x) (3.4.8)

5These are defined and called discontinuities of the first kind in [55] 4.26.
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Comparing (3.4.6) and (3.4.7), this means

lim
x→0

xα−β−1 cos 1/xβ = 0 (3.4.9)

and this is true if and only if α− β > 1. We only required α > 1 to get continuity,
so this is a new condition.

So for any α > 1 and β ≥ α − 1 we get a continuous function that is not
continuously differentiable. 6

6See [55], exercise 13, p.115 for a more general exercise, and [70], p. 150 for a discussion. A
more elementary reference for the case α = β = 2 is [12], p. 65.



Lecture 4

Taylor’s Theorem in One
Variable

In this chapter we review Taylor’s Theorem on one variable. This will become
an essential tool when we get to the multivariable case, so we give a full account.
Our results are based on the Mean Value Theorem 3.2.1. From the mean value
theorem, we first get an extended mean value theorem, from which we deduce
Taylor’s theorem in one variable.1

4.1 The Taylor Polynomial in One Variable

First recall what it means for a function to be Ck in Definition 3.3.1.

4.1.1 Definition. Given a function f(x) of one variable, we usually write f ′(x) for
the first derivative and f ′′(x) for the second derivative. In general we use f (k) to
denote the k-th derivative of f(x), with the convention that the 0-th derivative f (0)

stands for f itself: this is only used in summations.

We start with a one-variable function f(x) defined in the neighborhood of a
point a in its domain. We assume that f is N -times-differentiable for some integer
N > 0.

4.1.2 Definition. For any n ≤ N , the polynomial

Pn(a, x) =
n∑
k=0

f (k)(a)

k!
(x− a)k (4.1.3)

1Other references for this material are [55], p. 110, [70], and [74], §5.3
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is called the Taylor polynomial of degree n of f centered at a. We sometimes
suppress the a and write just Pn(x).

The special case where a = 0 is called the Maclaurin polynomial of degree n
of f :

Pn(0, x) =
n∑
k=0

f (k)(0)

k!
xk (4.1.4)

Since Pn(a, x) is a polynomial in x of degree ≤ n, we can easily compute all
its derivatives.

4.1.5 Proposition. When k ≤ n, the k-th derivative of Pn(a, x) takes the following
values:

P (k)
n (a, x) =

n∑
j=k

f (j)(a)

(j − k)!
(x− a)j−k

P (k)
n (a, a) = f (k)(a)

Thus when k = n,
P (n)
n (a, x) = f (n)(a).

When k > n, P (k)
n (a, x) = 0.

Proof. The first equation is a little exercise in computing the derivative of (x−a)j

and manipulating factorials. Recall that 0! = 1, and a0 = 1 for any real number a.
The rest is clear since Pn(a, x) is a polynomial of degree at most n in x.

The whole point of defining the Taylor polynomial as above is to obtain the
value f (k)(a) for the k-th derivative of Pn(a, x) at a, for k ≤ n. So f and Pn(a, x)
have the same first n derivatives (and same value) at a.

4.1.6 Exercise. Compute the Maclaurin polynomial of any order for the polyno-
mial f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n.

4.1.7 Example. Take the well-known Maclaurin expansion of f(x) = expx.
Since f (n)(0) = 1 for all n ≥ 0, the Maclaurin polynomial of degree n is

Pn(x) =

n∑
k=0

1

k!
xk.

You can easily verify all the assertions of Proposition 4.1.5 in this case. For exam-
ple,

P ′n(x) =

n∑
k=1

1

(k − 1)!
xk−1, and P ′n(0) = 1.
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Next we introduce the remainder

rn(a, x) = f(x)− Pn(a, x) (4.1.8)

We often write rn(x) instead of rn(a, x), to lighten the notation. Using the linearity
of differentiation we get the following corollary of Proposition 4.1.5

4.1.9 Corollary. For all k ≤ n, we have r(k)n (a) = 0. For k > n, r(k)n (x) =
f (k)(x). Since f(x) is assumed to be n times differentiable, so is rn(a, x).

These derivative computations will be useful in the next section.

4.1.10 Example. Let f(x) = sinx, and a = 0. Then

P1(x) = x

P3(x) = x− x3/3!

P5(x) = x− x3/3! + x5/5!

P7(x) = x− x3/3! + x5/5!− x7/7!

The graph shows the polynomials P1, P3, P5, and P7 approximating sinx more
and more accurately around 0.
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4.1.11 Exercise. Let f(x) = a0 + a1x + a2x
2 + a3x

3. Compute the Taylor
polynomial of f of degree 4 (meaning n = 4) centered at the point b.

We next ask: how good an approximation is Pn(a, x) for f(x) in a neighbor-
hood of a?

4.2 A Generalized Mean Value Theorem

We first prove a generalization of Rolle’s Theorem 3.2.3.
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4.2.1 Theorem. Let g(x) be a real-valued function that is Cn−1 on the closed
interval [a, b], and whose n-th derivative exists on the open interval (a, b). Further
assume that

g(k)(a) = 0, for 0 ≤ k < n, and g(b) = 0.

Then there is a sequence of points b > c1 > · · · > cn > a, such that g(k)(ck) = 0,
1 ≤ j ≤ n.

Proof. The case n = 1 is exactly Rolle’s theorem, so we get a point c1 ∈ (a, b)
with g′(c1) = 0. Since g′(a) = 0 also, we can apply Rolle’s lemma to the function
g′(x) on the interval [a, c1]. This yields a point c2 ∈ (a, c1) with g′′(c2) = 0.
Continuing inductively in this fashion until k = n − 1, we see that on the interval
[a, ck] the hypothesis of Rolle are satisfied for the function g(k), so that there is a
ck+1 ∈ [a, ck] where g(k+1)(ck+1) = 0, and the result is proved.

Note that there is an analogous lemma obtained by interchanging the role of a
and b. We trust the reader to formulate it.

We use the generalized Rolle’s theorem to prove a generalized mean value
theorem. Recall that Pk(a, x) is the k-th Taylor polynomial of f centered at a, and
rk(a, x) is the remainder.

4.2.2 Theorem (Generalized Mean Value Theorem). Let f(x) be a real-valued
function that is Cn−1 on the closed interval [a, b], and whose n-th derivative exists
on the open interval (a, b). Then there is a point cn ∈ (a, b) such that

f(b) = Pn−1(a, b) +
f (n)(cn)

n!
(b− a)n

Proof. In order to apply the generalized Rolle’s theorem, we replace f by

g(x) = f(x)− Pn−1(a, x)− rn−1(a, b)

(b− a)n
(x− a)n. (4.2.3)

A derivative computation shows that g(k)(a) = 0, 0 ≤ k < n, and g(b) = 0, so
that Rolle’s Theorem 4.2.1 applies, so we can find a point cn ∈ (a, b) with

g(n)(cn) = 0 (4.2.4)

We differentiate (4.2.3) n times:

g(n)(x) = f (n)(x)− rn−1(a, b)

(b− a)n
n!
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and evaluate at x = cn using (4.2.4) to get

f (n)(cn) =
rn−1(a, b)

(b− a)n
n! or

rn−1(a, b)

(b− a)n
=
f (n)(cn)

n!

Substitute the left-hand side of the last expression into (4.2.3) and evaluate at x = b
to get the result.

This result is sometimes called Taylor’s theorem (for example [55], 5.15) and
sometimes the Lagrange form of the remainder of Taylor’s theorem (for example
[70], §5.4.4). For a more elementary reference see [12], §3.7, where you can also
find the Cauchy form of the remainder.

4.2.5 Example. Let’s see how the theorem works with f(x) = ex, a = 0, b = 1
and n = 2. Then P1(0, x) = 1 + x, so r1(0, 1) = f(1) − P1(0, 1) = e − 2. So
g(x) = ex − 1− x− (e− 2)x2. Note that g(0) = g′(0) = g(1) = 0 as expected.
Here is the graph for the three functions ex, ex− 1−x, and g(x), with g(x) barely
distinguishable from the x-axis, but crossing it at x = 1:
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Now let’s plot g(x) and g′(x) magnifying the scale on the vertical axis.
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The point c1 is the intersection of g′(x) with the x-axis (at about 0.69) and the
point c2 is the minimum of g′(x) (at about 0.36).
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4.2.6 Remark. There is a nice linear algebra interpretation of the theorem. Con-
sider the set of all polynomials of degree≤ nwith real coefficients. This is a vector
space of dimension n+ 1. For any number a, the polynomials 1, x− a, (x− a)2,
. . . , (x − a)n form a basis of this vector space. Write a general polynomial Q in
this vector space with the variables z0, z1, . . . , zn as coefficients:

n∑
i=0

zi(x− a)i

The key idea is that differentiation with respect to x and evaluation at a point
imposes a linear condition on the coefficients zi. For example, saying that the
k-th derivative of Q at a is equal to the k-th derivative of f at a is saying that
k!zk = f (k)(a). Furthermore saying that the value of Q at b is equal to f(b) means
that

n∑
i=0

zi(b− a)i = f(b)

Again, this is a linear condition on the variables zk. In the generalized MVT we
modify f by elements in this vector space in order to satisfy n + 1 linear condi-
tions, which in fact are independent, meaning that the (n+ 1)× (n+ 1) matrix of
coefficents has rank n+1. Therefore elementary linear algebra says the conditions
can be satisfied uniquely.

Here is one of the main applications of Theorem 4.2.2.

4.2.7 Corollary. If the n-th derivative of f , f (n)(x), is bounded in absolute value
byM on the interval I given by |x− a| ≤ r, for some positive r, then the difference
|f(x)− Pn−1(x)| is bounded by M

n! r
n on I .

Proof. Pick an x in I; it will play the role of b in the theorem. Since cn is between
a and b, the bound for

∣∣f (n)(x)
∣∣ applies at cn. So

|f(x)− Pn−1(x)| =

∣∣∣∣∣f (n)(cn)

n!
(x− a)n

∣∣∣∣∣ ≤
∣∣∣∣∣f (n)(cn)

n!

∣∣∣∣∣ |(x− a)n| ≤ M

n!
rn

as required.

If n is large and r is small, this expression becomes very small. This shows
that the Taylor polynomial can be a good approximation of f . We will quantify
this is a neighborhood of a in the next section.

4.2.8 Example. Take f(x) = sinx and a = 0. Since all the derivatives of sine are
bounded by 1, the Taylor polynomials approximate f quickly.
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4.2.9 Exercise. The convergence is not quite so fast with ex at a = 0, but we still
get good convergence if the interval is small enough. Compute the first n terms of
the Taylor polynomial of f(x) = ex at a = 0 on the interval [−1, 1]. What kind of
approximation to f do you get?

4.2.10 Example. We compute the Taylor expansion for the natural logarithm func-
tion lnx around the point x = 1. Write x = 1 + y. We will mainly look at the
case y ≥ 0. Because the derivative of ln is 1/x, we get the following formula, for
y such that |y| < 1, for the Taylor polynomial of degree n− 1 of ln:

Pn−1(1 + y) = y − y2

2
+
y3

3
− y4

4
+ · · ·+ (−1)nyn−1

n− 1
(4.2.11)

How good is this approximation? The error on the interval 1 ≤ x ≤ 1 + r is by
Corollary 4.2.7 bounded by Mrn/n, where M is the maximum of the n-th deriva-
tive of ln on our interval. Because the absolute value 1/xn of the n-th derivative is
a decreasing function, this error is maximum at the left end point y = 0, so M = 1
and the remainder is bounded by r/n.

In the next example we look at the case n = 2.

4.2.12 Example (Rule of 70 for doubling time). Suppose you invest S dollars at
p percent a year, compounded once a year. Then your money doubles in approxi-
mately 70/p years.

To prove this, let y = p/100 and apply the previous exercise. At the end of t
years, you have S(1 + y)t dollars. For any y we want to solve for t in:

S(1 + y)t = 2S, or (1 + y)t = 2

Take the natural logarithm on both sides to get

t ln (1 + y) = ln 2 = 0.693147...

As the previous example shows, for y small enough and positive, a reasonable
approximation for ln (1 + y) is y. Because the Taylor series of ln alternates with
decreasing terms as per (4.2.11), this is an overestimate. All in all we see that
the doubling time is underestimated by 0.7/y = 70/p, hence the rule of 70. In
particular, at 7 percent your money doubles in roughly 10 years.

4.3 Taylor’s Theorem in One Variable

We prove a version of Taylor’s theorem that follows simply from the generalized
mean value theorem 4.2.2. Unlike that theorem, Taylor’s theorem is a purely local
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result. As usual Pn(a, x) is the n-th Taylor polynomial centered at a, and rn(a, x)
the remainder, so that

f(x) = Pn(a, x) + rn(a, x) (4.3.1)

We start by assuming that f(x) is Cn in a neighborhood of the point a, so our
hypothesis is the same as that in Theorem 4.2.2, given that we are now taking Pn
instead of Pn−1.

4.3.2 Theorem. With this hypothesis,

lim
x→a

rn(a, x)

(x− a)n
= 0

Proof. We only treat the case x > a. For any x 6= a, we proved in Theorem 4.2.2
that there is a cx, a < cx < x, such that

f(x) = Pn−1(a, x) +
f (n)(cx)

n!
(x− a)n (4.3.3)

Subtract (4.3.3) from (4.3.1) to get

0 =
f (n)(a)

n!
(x− a)n + rn(a, x)− f (n)(cx)

n!
(x− a)n

so

rn(a, x) =
f (n)(cx)− f (n)(a)

n!
(x− a)n

Divide by (x− a)n.

rn(a, x)

(x− a)n
=
f (n)(cx)− f (n)(a)

n!

As x approaches a, cx also approaches a, since it is between a and x. The hy-
pothesis that f is Cn near a tells us that f (n) is continuous, so limcx→a f

(n)(cx) =
f (n)(a), and this shows:

lim
x→a

rn(a, x)

(x− a)n
= lim

x→a

f (n)(cx)− f (n)(a)

n!
= 0

and the theorem is proved.

Not surprisingly we can get the same theorem with a slightly weaker hypothe-
sis, at the cost of a little more work. The key step is the following proposition.
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4.3.4 Proposition. Let h(x) be n-times differentiable at the point a. Furthermore
assume that h(a) = h′(a) = · · · = h(n)(a) = 0. Then

lim
x→a

h(x)

(x− a)n
= 0

Proof. First note that the case n = 1 is a special case of (3.1.9), which in turn is
just a rewording of the definition of the derivative . This allows us to start the proof
by induction on n at n = 1. So we may now assume n ≥ 2. Next note that since
h(n)(a) exists, each previous derivative h(k)(x), 1 ≤ k < n must be defined on
an open neighborhood Uk of a. So we work on the open intersection U of these
neighborhoods. We continue the induction by assuming the result is true for all
functions satisfying the hypotheses for a given n − 1, and showing it is true for
n. Consider the function h′(x): it is n − 1 times differentiable, and its first n − 1
derivatives at a are zero, since (h′(x))(k) = h(k+1)(x). So, by induction,

lim
x→a

h′(x)

(x− a)n−1
= 0

Now we apply the mean value theorem to h on the interval [a, x]. For concrete-
ness we assume a < x. Then there is a c, a < c < x such that

h(x) = h(x)− h(a) = h′(c)(x− a)

So ∣∣∣ h(x)

(x− a)n

∣∣∣ =
∣∣∣ h′(c)

(x− a)n−1

∣∣∣ < ∣∣∣ h′(c)

(c− a)n−1

∣∣∣
Now take the limit as x tends to a. Since c is always between a and x, c tends to a
too, so

lim
x→a

∣∣∣ h(x)

(x− a)n

∣∣∣ ≤ lim
c→a

∣∣∣ h′(c)

(c− a)n−1

∣∣∣ = 0

by the induction hypothesis, and we are done.

Note that in the proof of Theorem 4.3.2, we used the fact that f(x) is Cn.
Proposition 4.3.4 shows that we do not need this, so we formulate our final version
of Taylor’s theorem with the weaker hypothesis.

4.3.5 Theorem (Taylor’s Theorem). Assume that f(x) is n-times differentiable at
the point a. Then

lim
x→a

rn(a, x)

(x− a)n
= 0
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Furthermore Pn(a, x) is the unique polynomial Q of degree less than or equal to
n such that

lim
x→a

f(x)−Q(x)

(x− a)n
= 0

Proof. We can apply Proposition 4.3.5 to h(x) = rn(x) by using the derivative
computations of Corollary 4.1.9, so the result follows immediately. If you let ci be
the coefficient of (x− a)i in Q, then we can solve inductively for the ci by noting
that c0 = f(a) and

ck+1 = lim
x→a

f(x)−
∑k

i=0 ci(x− a)i

(x− a)k+1

This establishes the uniqueness.

This is the promised generalization of Theorem 3.1.11.
A similar argument, using Cauchy’s Mean Value Theorem 3.2.5 gives the fol-

lowing version of L’Hospital’s rule:

4.3.6 Theorem. Let f(x) and g(x) be real-valued functions that are n-times dif-
ferentiable at the point a. Assume that for some n > 0, f(a) = f ′(a) = · · · =
f (n−1)(a) = 0, g(a) = g′(a) = · · · = g(n−1)(a) = 0, and g(n)(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=
f (n)(a)

g(n)(a)

The proof is left as an exercise.
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Linear Algebra



Lecture 5

Real Vector Spaces

Now we review the basic results on the vector space structure Rn. Most of these
concepts are covered in multivariable calculus courses, and certainly in linear alge-
bra courses, but sometimes only for R2 and R3. The challenge is to generalize these
results to Rn for any positive integer n. This challenge is twofold. First, you must
master an expanded notation—namely, summations and double summations—that
allows you to represent objects in Rn. Second, you must learn to think geometri-
cally about spaces of dimension higher than 3, for which visuospatial intuition is
impossible. The central result is the Cauchy-Schwarz Inequality 5.4.6, sometimes
referred to as the most important inequality in mathematics.

5.1 Real Vector Spaces

We summarize the basic facts about the vector space structure of Rn. These gen-
eralize the situation in R2 and R3 familiar from multivariable calculus (see [63],
§12.1-3), as is done in any linear algebra course. We continue with this in Chapter
6. So we start with a definition:

5.1.1 Definition. For any positive integer n, Rn is the space of all ordered n-tuples
of real numbers. A point in Rn is one such n-tuple.

So (1.2, π,−3, 1) is a point in R4, and (π, 1.2, 1,−3) is a different point. We
often call points vectors, imagining them as directed line segments between the
origin (0, 0, . . . , 0) and the point.

The space Rn is a vector space, meaning that two operations are defined on it,
vector addition and scalar multiplication:

Addition. Adding vectors is accomplished by adding their coordinates. If x =
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(x1, . . . , xn) and y = (y1, . . . , yn), then

x + y = (x1 + y1, . . . , xn + yn)

and

(1.2, π,−3, 1) + (π, 1.2, 1,−3) = (1.2 + π, 1.2 + π,−2,−2)

Scalar Multiplication. Scalar multiplication of a vector x by a real number c is
given by cx = (cx1, cx2, . . . , cxn). The real number c is often called a
scalar, hence the name of the operation.

Scalar multiplication distributes over addition. So

−2(1.2, π,−3, 1) = (−2.4,−2π, 6,−2)

5.1.2 Definition. The coordinate vectors (or basis vectors) in Rn are the n vectors
ei, 1 ≤ i ≤ n, with 0 in all positions except the i-th position, where it has 1.

For example, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), and en = (0, . . . , 0, 1).
Note that Rn has n coordinate vectors (see [63], §12.2 or [68], §3.1). This gives us
a second way of writing a vector. For example

(1.2, π,−3, 1) = 1.2e1 + πe2 − 3e3 + e4

5.2 Basis and Dimension

Take an arbitrary vector space V , meaning a set admitting addition and scalar mul-
tiplication with the properties described in §5.1. Then

5.2.1 Definition. Vectors e1, e2, . . . , en in a vector space V are linearly dependent
if there exist real numbers λ1, λ2, . . . , λn, not all zero, such that

n∑
j=1

λjej = 0.

Otherwise they are linearly independent. A basis for V is a linearly independent
set {ei}, 1 ≤ i ≤ n, that spans V , meaning that every element v in V can be
expressed as a linear combination of the {ej}:

v =
n∑
j=1

xjej ,
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for uniquely determined real numbers xj called the coordinates of v relative to this
basis. An important theorem in linear algebra proves that any two bases of V have
the same number of elements, allowing us to define the dimension of V : it is is the
number of elements in the basis, n in this case1.

Then it follows that any real vector space V of dimension n is just Rn, by
mapping a point v to its n-tuple of coordinates (x1, . . . , xn).

5.3 Linear Subspaces

A linear subspace W of a vector space V is a subset that is a vector space in its
own right, using the operations of V . We also just call is a subspace. To check that
W is a subspace, we must show that it is closed under the operations of V . In other
words,

5.3.1 Definition. A subset W of the vector space V is a subspace of V if

1. For all v and w in W , v + w is in W ;

2. For all real numbers a and all w ∈W , then aw is in W .

This implies that 0 is in W , since 0 = 0w, for any w ∈W .
Note that the vector space consisting just of the origin is a subspace of any

vector space. The space V is a subspace of itself. We call both of the subspaces
the trivial subspaces of V .

5.3.2 Example. Check that the following subsets are actually subspaces.

• The subset of all triples in R3 where the last entry is 0: (v1, v2, 0).

• The subset of all n-tuples in Rn where the last entry is 0: (v1, . . . , vn−1, 0).

5.3.3 Example. In the vector space of polynomials in t over F , consider the subset
Pk of polynomials of degree at most k, for any integer k. Show Pk is a subspace
of the vector space of polynomials over F . Explain why the polynomials of degree
exactly n do not form a subspace.

Because a subspace W in a vector space V is a subspace in its own right, it has
a dimension. It is easy to prove that this dimension is no greater than the dimension
of V . Moreover if its dimension is equal to the dimension of V , it is V .

1We will make parallel definitions later in these lectures for affine independence, convex inde-
pendence and conical independence.
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5.3.4 Proposition. If U and W are both subspaces of the vector space V , then
U ∩W is a subspace of V .

Proof. This is elementary set theory. If u is in U ∩W , then u is both in U and
in W . Since U is a subspace, cu is in U for every real number c; since V is a
subspace, cu is in W for every real number c. So cu is in U ∩W .

If u and v are in U ∩W , then u is both in U and in W , and v is both in U and
in W . So u + v in in U , because U is a subspace, and it is also in W , because W
is a subspace. Thus u + v is in U ∩W .

5.4 The Distance between Points in Real Vector Spaces

After the vector space structure on Rn we can now define the inner product, the
norm, and the distance between two points. This last concept will be key.

5.4.1 Definition. These definitions are familiar from any multivariable calculus
course:

• The inner product on Rn, also called the dot product or the scalar product,
is given by:

〈x,y〉 =

n∑
i=1

xiyi (5.4.2)

We sometimes write x · y for 〈x,y〉, hence the name dot product. The inner
product satisfies the following three properties:

1. 〈x,y〉 = 〈y,x〉;
2. 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉;
3. 〈ax,y〉 = a〈x,y〉.

Indeed, these three properties can be used to define an inner product.

5.4.3 Exercise. Show that these properties imply

– 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉;
– 〈x, by〉 = b〈x,y〉.

• The norm, sometimes called the length, of the vector x is:

‖x‖ =
√
〈x,x〉 =

√
x21 + · · ·+ x2n. (5.4.4)

The norm is written with a symbol similar to that of the absolute value, which
makes sense because the norm is the absolute value when n = 1.
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• The distance d(x,y) between the two points x and y in Rn is the norm of
the difference vector:

d(x,y) = ‖x− y‖ (5.4.5)

5.4.6 Theorem (The Cauchy-Schwarz inequality). For any two vectors x and y in
Rn,

|x · y| ≤ ‖x‖‖y‖ (5.4.7)

with equality only if one vector is 0 or if the vectors are proportional—namely,
y = cx for a scalar c.

As J. Michael Steele says in [61], “there is no doubt that this is one of the most
widely used and most important inequalities in all of mathematics”. Chapter 1 of
that book is a good reference to its many proofs. We give a second proof using
convexity arguments in Corollary 22.6.13.

In coordinates, the Cauchy-Schwarz inequality says that

|x1y1 + · · ·+ xnyn| ≤
√
x21 + · · ·+ x2n

√
y21 + · · ·+ y2n. (5.4.8)

Proof. For any scalars a and b, we have:

0 ≤ (ax + by) · (ax + by) = a2x · x + 2abx · y + b2y · y (5.4.9)

The 0 on the left comes from the fact that the right-hand side is the square of a
norm. Now some magic: Let a = y · y and b = −x · y. Substituting these values
into (5.4.9), we get

0 ≤ (y · y)2x · x− 2(y · y)(x · y)2 + (x · y)2(y · y)

= (y · y)2x · x− (y · y)(x · y)2 (5.4.10)

The theorem is trivial if y is the 0 vector (0 ≤ 0), so we assume that (y · y) is
non-zero. Since (y ·y) is a sum of squares by Definition 5.4.1, it is positive, and we
can divide the inequality by (y · y) and the inequality will not reverse directions:

0 ≤ (y · y)(x · x)− (x · y)2 (5.4.11)

We move the last term on the right to the other side of the inequality:

(x · y)2 ≤ (y · y)(x · x) (5.4.12)

and take the square root of both sides—which is legal because they are non-negative.
The resulting inequality, |x · y| ≤ ‖x‖‖y‖, is the Cauchy-Schwarz inequality.
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In Definition 5.4.1 we provided Rn with a notion of distance. We now give a
very general definition of distance that works on any set D.

5.4.13 Definition. If D is a set, a distance function on D is a function d(x,y) that
assigns to any two elements x and y of D a real number satisfying the following
four properties:

1. d(x,y) ≥ 0.

2. d(x,y) = 0 implies that x = y. That is, the distance between two elements
is 0 if and only if the points are the same.

3. d(x,y) = d(y,x). The distance between x and y is the same as the distance
between y and x.

4. For any three elements x, y and z in D, the triangle inequality

d(x, z) ≤ d(x,y) + d(y, z) (5.4.14)

is satisfied.

This allows us to define a general mathematical structure.

5.4.15 Definition. A metric space is a set D equipped with a distance function
d(x,y).

5.4.16 Exercise. Show that any subset of a metric space is a metric space.

Because we are thinking geometrically, we often refer to the elements of D as
points rather than elements.

We now show that Rn has the distance function in the above sense, derived
from its vector space structure. Thus Rn is a metric space.

5.4.17 Theorem. The distance d(x,y) on Rn is a distance function. Thus Rn is a
metric space.

Proof. We need to verify the four conditions of Definition 5.4.13. For (1),

d(x,y) = ‖x− y‖ =
√
〈x− y,x− y〉 =

√
(x1 − y1)2 + · · ·+ (xn − yn)2.

so that we have the square root of a sum of squares, which is non-negative.
For (2), we use a simple fact about real numbers that will serve us many times

in this course: For a sum of squares to be zero, each one of the terms in the sum
must be zero.
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This forces the coordinates of the two points to be equal, which means the
points are the same.

For (3), just note that (xi − yi)2 = (yi − xi)2.
For (4), we need to show that

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖

This requires the Cauchy-Schwarz inequality 5.4.6 above. First we change vari-
ables in the triangle inequality, letting u = x − y and v = y − z, so that
u + v = x− z. The triangle inequality takes the simpler form:

‖u + v‖ ≤ ‖u‖+ ‖v‖.

Square the left-hand side:

‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2.

Now we use the Cauchy-Schwarz inequality to replace 2u · v by the larger term
2‖u‖‖v‖:

‖u‖2 + 2u · v + ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2.

We recognize the right-hand side as the square of ‖u‖+ ‖v‖, so we get

‖u + v‖2 ≤ (‖u‖+ ‖v‖)2.

Taking the square root of both sides, and reverting to the original variables, we get
the triangle inequality.

5.4.18 Definition. Rn equipped with this distance function is called Euclidean
space of dimension n, the distance function above is called the Euclidean distance,
and its norm is called the Euclidean norm.

We can put many other distance functions on Rn. We will not use any of them,
so we leave it to you to show they are distance functions.

5.4.19 Example. The following three functions in Rn are all distance functions.
In all cases, the proof is easier than for the Euclidean metric.

• The discrete metric:

d(x,y) =

{
0, if x = y;
1, otherwise
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• The max metric:
d(x,y) = max

i
|xi − yi| .

• The L1 metric

d(x,y) =
n∑
i=1

|xi − yi| .

5.4.20 Exercise. Show that the three functions in Example 5.4.19 are actually dis-
tance functions.

5.4.21 Definition. Two non-zero vectors p and q in Rn are orthogonal or perpen-
dicular if p · q = 0.

Note that the unit vectors ei are mutually perpendicular: ei · ej = 0 when
i 6= j.

5.4.22 Exercise. Let v1, . . . , vk be a collection of k non-zero mutually orthogonal
vectors, meaning that vi · vj = 0 for i 6= j. Then the vi are linearly independent.

5.4.23 Exercise. Prove the Pythagorean Theorem: If p and q are orthogonal, then

‖p + q‖2 = ‖p‖2 + ‖q‖2.

5.4.24 Exercise. Prove the parallelogram law: For any p and q, then

‖p + q‖2 + ‖p− q‖2 = 2‖p‖2 + 2‖q‖2.

5.4.25 Definition. Assume q 6= 0. Then for any p, there is a unique c ∈ R with
p− cq is orthogonal to q. This c is called the component of p along q. Note that

c =
p · q
q · q

.



Lecture 6

Matrices

We continue our review of linear algebra started in Lecture 5. We only do linear
algebra over the real numbers R.

We first review matrices and matrix multiplication, the key operation. The
lecture then reviews standard material on square matrices: we build up to define and
study the determinant. Permutations and permutation matrices are introduced in
§6.4, as a tool for handling determinants and as an example of orthogonal matrices.
We also study orthogonal matrices, which are important in the Spectral Theorem:
§9.2. They will reappear when we discuss the convex set of doubly stochastic
matrices in §18.8 and steady states for probability matrices in §26.3.

The main material covered in this lecture is standard1.
The last section does not belong to the main thread of the lecture: Block de-

composition of matrices: §6.10, which is a convenient computational tool used in
Lectures 19 through 30. It can be postponed until it is needed.

Our notation for vectors and matrices is described in Appendix A.

6.1 Matrix Definitions

A matrix of size m× n is a collection of mn numbers with double indices i and j
written in the following particular way:

aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

These numbers are called the entries of the matrix.
We will write our matrices using capital roman letters, and their entries by the

same lower case roman letter, with a double index. So for example, if A is a m×n
1References to two introductory linear algebra texts ([60] and [68]), are included.
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matrix, we write A = [aij ], where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We also write
matrices out as rectangular arrays:

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 (6.1.1)

which allows us to talk about the rows and the columns of a matrix. We write the
i-th row of the matrix A as ai and the j-th column as aj .

So the 2× 3 matrix

A =

[
1 2 4
−1 3 5

]
has two rows and three columns, and

a2 =
[
−1 3 5

]
and a3 =

[
4
5

]
A matrix of size n × 1 is called a column vector of length n, or a n-column

vector. A matrix of size 1 × m is called a row vector of length m, or a m-row
vector.

We can define two simple operations on m× n matrices A and B.

1. First addition: A + B = C where C = [cij ] is the m × n matrix with
cij = aij + bij for all i, j. Thus the corresponding entries are added.

2. Then multiplication by a number c: cA = [caij ], so each entry of the matrix
A is multiplied by the scalar c.

6.1.2 Definition. Here are some special and important matrices to which we give
names. First note that the diagonal of a square matrix A is the set of entries with
equal indices: aii. The remaining elements are the off-diagonal terms.

• The m× n whose entries are all zero is written 0, or 0m×n if it is important
to keep track of its size. The remaining definitions concern square matrices.

• The identity matrix I is the diagonal matrix with all diagonal terms equal to
1. If its size n needs to be recalled we write In. We usually write the entries
of I as eij . So eii = 1 for all i, and eij = 0 if i 6= j.

• The square matrix A is diagonal if all its off diagonal terms are 0.

• A is upper-triangular if all the terms below the diagonal are zero. In other
words aij = 0 when i > j. Correspondingly A is lower triangular if aij = 0
when i < j.
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6.2 Matrix Multiplication

The fundamental matrix operation is multiplication of a m × n matrix A with a
column vector x of length n to yield a column vector of length m.. Here is the
all-important formula:


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



x1
x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


Note the important special case where A is a row vector:

6.2.1 Definition.

[
a1 a2 . . . an

]

x1
x2
...
xn

 = a1x1 + a2x2 + · · ·+ anxn.

Calling the row vector a and the column vector x, we get a · x, the inner product
〈a,x〉, or sot product of the two vectors a and x.

6.2.2 Definition. The product C = AB of a m × n matrix A multiplied on the
right by a n× r matrix B is the m× r matrix C = [cik], where

cik = ai1b1k + ai2b2k + · · ·+ ainbnk.

Using summation notation, we have

cik =
n∑
j=1

aijbjk.

Note that as often in such cases we are summing over the repeated index j.

We can only form the product AB of a m× n matrix A by a r× s matrix B if
n = r. In that case the product is a m× s matrix. This of course still works when
B is a column vector, the special case where s = 1, in which C = AB is a column
vector of length m.

Matrix multiplication is associative: let A be a m × n matrix, B a n × r
matrix, and C a r × s matrix. Then A(BC) = (AB)C, so the order in which the
multiplications are performed does not matter.
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Furthermore matrix multiplication distributes over matrix addition, whenever
the two operations are possible. Let A and B be m× n matrices, and let C and D
be n× r matrices, and let c ∈ F be a number. Then

A(C +D) = AC +AD and (A+B)C = AC +BC.

Also (cA)(D) = c(AD) and A(cD) = c(AD) for any real number c.
Next we review the transpose of a matrix A.

6.2.3 Definition. The transpose of the m×n matrix A = [aij ] is the n×m matrix
AT with entries aTji = aij . So the transpose of a column vector x is a row vector.

6.2.4 Example. The transpose of the 2× 3 matrix

A =

[
1 2 3
4 5 6

]
is the 3× 2 matrix AT =

1 4
2 5
3 6


The transpose AT takes y ∈ Rm to x = ATy. The transpose is used in the

following important definition:

6.2.5 Definition. A square matrix A is symmetric if it is equal to its transpose:

AT = A

.

We will study symmetric matrices in detail in Lecture 8.

6.2.6 Exercise. Show that for any square matrix A, the matrix A+AT is symmet-
ric.

6.2.7 Exercise. For any two matrices A and B of the same size, show that

(A+B)T = AT +BT

Here is a property of transposes that we will use often.

6.2.8 Proposition. If C is an m× n matrix, and D an n× p matrix, then

(CD)T = DTCT

Proof. The proof is left as an exercise to the reader.

6.2.9 Example. Let C and D be the 2× 2 matrices[
c11 c12
c21 c22

]
and

[
d11 d12
d21 d22

]
Then compute CD, (CD)T , andDTCT , checking that these last two are the same.

6.2.10 Exercise. Find a simple numerical example where the matrices C and D
from the previous example do not commute, meaning that CD 6= DC.
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6.3 Square Matrices

Not surprisingly, a square matrix is a matrix with the same number of rows as
columns. Instead of saying a ‘n × n matrix’, we will sometimes say a ‘square
matrix of size n’. The extra feature that arises when dealing with a square matrix
A, is that we can form the product of that matrix with itself: AA, which we write
A2.

When A and B are both square matrices of the same size, we can form both
products AB and BA.

6.3.1 Remark. Matrix multiplication is not commutative. If A and B are two
square matrices of the same size n, so that AB and BA are both square matrices
of size n, it is not necessarily the case that AB = BA. Give examples of square
matrices of size 2 that do not commute.

6.3.2 Exercise. Let A and B be square matrices that commute: AB = BA. Show
that

(A+B)2 = A2 + 2AB +B2 and (A+B)(A−B) = A2 −B2.

This shows that we can do algebra with squares matrices as with numbers,
taking account, of course, that matrix multiplication is not generally commutative.

One key feature of multiplication of numbers is that there is a neutral element
for multiplication, usually denoted 1. There also is a neutral element for matrix
multiplication, the identity matrix I discussed earlier. As we noted, for any square
matrix A of size n, AI = IA = A.

Continuing the analogy with multiplication of numbers, we may ask if a square
matrix A has an inverse, meaning a square matrix B, called the inverse of A, of the
same size as A so that

AB = I = BA. (6.3.3)

It is easy to probe that If A has an inverse, then its inverse B is unique. The
unique inverse is written A−1.

A product of invertible matricesA andB is invertible, and (AB)−1 = B−1A−1,
as follows from the associativity of matrix multiplication. Similarly, if a matrix A
is invertible, its transpose AT is too.

6.3.4 Exercise. Show that the inverse of the transpose is the transpose of the in-
verse: (At)−1 = (A−1)t. Hint: take the transpose of the identity AA−1 = I and
use the uniqueness of the inverse.
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6.4 Permutations

Our next goal is to review the determinant of a square matrix. Permutations are
needed when defining the determinant, and permutation matrices form a beautiful
subgroup of the orthogonal matrices, which is why we study them here. By sub-
group, we mean that the product of any two permutation matrices is a permutation
matrix, that permutation matrices are invertible, and that that the inverse of a per-
mutation matrix is a permutation matrix. Finally the identity matrix I corresponds
to the identity permutation. These assertions will be established here.

6.4.1 Definition. A permutation σ of a finite set S is a one-to-one map from S to
itself.

If S has n elements, we will always use for S the integers {1, 2, . . . , n}.

6.4.2 Example. The trivial permutation (1) takes any i to itself.
The next simplest permutations are the transpositions, which interchange two

integers but do not move the others. For example, the permutation σ with values
σ(1) = 2, σ(2) = 1, and σ(i) = i for i 6= 1, 2 is a transposition.

There are exactly two permutations on {1, 2}, the trivial permutation and the
transposition exchanging 1 and 2.

A cumbersome way of writing a permutation σ on n elements consists in writ-
ing the integers 1 through n on a top row; then beneath each integer i write the
value σ(i). So, for example ∣∣∣∣1 2 3 4

2 4 3 1

∣∣∣∣
denotes the permutation σ sending 1 to 2, 2 to 4, 3 to 3 and 4 to 1. In this notation,
the fact that a permutation is one-to-one is expressed by the fact that each integer
from 1 to n appears exactly once in the second row.

6.4.3 Exercise. Enumerate all the permutations on {1, 2, 3}, listing the trivial per-
mutation, then all the transpositions, and then the remaining ones.

6.4.4 Exercise. Prove by induction that there are n! different permutations on
{1, 2, . . . , n}.

We can follow a permutation σ by another permutation τ , yielding a third per-
mutation τσ called the product permutation, or the composition of the two per-
mutations. It sends the element k to τ(σ(k)). Furthermore any permutation has
an inverse, namely the permutation σ−1 that undoes the effect of σ: for all k,
σ−1(σ(k)) = k. These rules, plus the associativity of composition, makes the
set of permutations on n elements a group. This is a structure defined in Abstract
Algebra courses that only comes up peripherally here.
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6.4.5 Exercise. Write the inverse of the permutation σ on 3 elements sending 1→
2, 2→ 3, 3→ 1. Write σσ.

6.4.6 Exercise. Find two permutations on three letters such that στ 6= τσ. We say
that permutations are not commutative.

We now exhibit two other ways of writing permutations. The first is by matri-
ces. This will is useful to us later. The second, most compact, notation is the cycle
notation. We will not have much use for it, but a quick exposition is given since it
is the notation everyone uses.

A compact notation for determinants is the cycle notation, which we first ex-
hibit by example. The permutation above is written (124) in cycle notation. The
cycle notation for ∣∣∣∣1 2 3 4

2 1 4 3

∣∣∣∣
is (12)(34).

Here is how to decipher cycle notation. First, note that the integers enclosed
in a set of parentheses is called a cycle. The representation of a permutation in
cycle notation consists in a collection of cycles where each integer appears at most
once. To find where σ written in cycle notation sends the integer i, scan the repre-
sentation. If i does not appear, that means that i is not moved by the permutation:
σ(i) = i. Otherwise look at the element j immediately to the right of i, in the same
cycle. If there is such an element, then σ(i) = j. If i is at the right of the cycle,
then go all the way to the left inside the same cycle. This gives an algorithm for
reconstructing the permutation from the cycle notation.

6.4.7 Example. The cycle notation for the permutation σ in 6.4.5 is (123). The
notation for its composition with itself is (132). Note this is also σ−1. We say σ has
order 3, since the composition σσσ, which we write σ3, is the trivial permutation.

6.4.8 Example. Consider the permutation σ on {1, 2, . . . , 6} given in cycle nota-
tion by (154)(26). Then σ(3) = 3, because 3 does not appear in the representation.
σ(1) = 5, σ(5) = 4, and σ(2) = 6, (just move right by 1 spot), Where does σ send
4 and 6? They are on the right edge of their respective cycle, so go back to the left:
σ(4) = 1 and σ(6) = 2. The long representation of this permutation is∣∣∣∣1 2 3 4 5 6

5 6 3 1 4 2

∣∣∣∣
Take for example two permutations on {1, 2, 3, 4}: first perform the permu-

tation given by (1342) in cycle notation, and then the permutation (14)(23). To
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find the composition, write the cycle presentation of the first permutation to be
performed to the right of the second:

(14)(23)(1432) (6.4.9)

This is not the cycle notation for a permutation, because there are numbers that
appear more than once. To find the cycle decomposition of the composition, start,
say with the element 1. Scan the product of cycle (6.4.9) from the right looking for
1. We see that it appears in (1432), and our algorithm says it goes to 4. Then move
to the next cycle to the left, scanning for 4. We find it in (14), which says that 4
goes to 1. So under the composition, we see that 1 is permuted to 1, so it is fixed.
We could write a cycle (1), or not write anything at all. Next repeat with 2. We see
2 → 1 → 4. Next repeat with 4: 4 → 3 → 2. So the cycle closes, and we have
(24). At this point we know that 3 be fixed, but we check it: 3 → 2 → 3. So the
cycle representation of the product is (1)(24)(3), or simply (24), a transposition.

6.4.10 Example. Find the cycle decomposition of these same two permutations
but in the other order, namely simplify

(1432)(14)(23)

You get (13), so reversing the order changes the result.

6.5 Permutation Matrices

Represent the n objects to be permuted by the n unit vectors ej in Rn. Given a
permutation σ on {1, 2, . . . , n}, we can then ask for a n × n matrix P σ such that
matrix multiplication P σej yields eσ(j). Because P σI = P σ, where I is the n×n
identity matrix, the j-th column of P σ must be the unit vector eσ(j). In particular
P σ must have exactly one 1 in each row and column with all other entries being 0.
We can make the formal definition:

6.5.1 Definition. Given a permutation σ on {1, 2, . . . , n}, we define the permuta-
tion matrix P σ =

[
pσij

]
of σ as follows: pσij = 0 unless i = σ(j). Another way of

saying this is that the j-th column of P σ is eσ(j).

6.5.2 Example. In Example 6.4.5 we considered the permutation∣∣∣∣1 2 3
2 3 1

∣∣∣∣
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Its permutation matrix is

P =

0 0 1
1 0 0
0 1 0


since 0 0 1

1 0 0
0 1 0

1
0
0

 =

0
1
0

 , etc.

Conversely, to each matrix with exactly one 1 in each row and column, and 0
everywhere else, there corresponds a permutation. Indeed if the matrix has a 1 in
position (i, j), then the associated permutation σ satisfies σ(j) = i.

Furthermore

6.5.3 Proposition. The product of two permutation matrices is a permutation ma-
trix.

The elementary proof is left to you: just use the definition. We can compare
the composition τσ of two permutations σ and τ with the permutation associated
to the product of the permutation matrices P τP σ. Recall that we act with the
permutation σ first. Not surprisingly, matrix multiplication of permutation matrices
reflects composition of permutations, just as it reflects composition of linear maps,
yielding the easy theorem:

6.5.4 Theorem. If σ and τ are two permutations on {1, 2, . . . , n}, and P σ and P τ

the associated n× n permutation matrices, then:

P σP τ = P στ .

Every permutation σ has an inverse permutation σ−1: the permutation that
undoes σ. Its permutation matrix is the transpose of the matrix of σ. Check this for
Example 6.5.2, and work out a general proof.

6.5.5 Example. The permutation matrix of the transposition τ exchanging 1 and 2
has matrix [

0 1
1 0

]
6.5.6 Definition. The sign of a permutation σ is either 1 or−1. We write it sgn(σ).
It is 1 if the permutation can be written as the product of an even number of trans-
positions; −1 if it can be written as a product of an odd number of transpositions.
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Since the representation of a permutation as a product of transpositions is not
unique, it is not obvious that this definition makes sense.

For any permutations σ and τ , sgn(στ) = sgn(σ)sgn(τ).

6.5.7 Example. The permutation matrix associated to the permutation on {1, 2, 3}
written in cycle notation (1, 2, 3) is given in Example 6.5.2, and has sign 1, while
the sign of the permutation in Example 6.5.5 is -1.

6.6 Determinants

Throughout this section, A denotes the n× n matrix [aij ]. The goal of this section
is to define the determinant of A and give its properties. The reader is assumed to
be familiar with the rudiments of this material, covered for example in [60], chapter
3, [69], chapter 5, or [13], chapter 5.

Using permutations and their sign, we can give the definition of the determi-
nant:

6.6.1 Definition. If A is an n× n matrix, then

detA =
∑
σ

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

where the sum is over the n! permutations on {1, 2, . . . , n}.

Thus by definition the permutation matrix P σ has determinant sgn(σ). It is
not hard to see that detAT = detA.

Indeed, each term in Definition 6.6.1 is the determinant of a matrix we call Aσ

which has aiσ(i) in entry (i, σ(i) for all i, 1 ≤ i ≤ n, and zeroes everywhere else.
So

A =
∑
σ

Aσ, and detA =
∑
σ

detAσ,

where the sums are over all permutations. In the same way AT =
∑

σ(Aσ)T .
Furthermore det((Aσ)T ) = detAσ, because sgn(σ) = sgn(σ−1), and everything
else is the same.

6.6.2 Example. For the matrix A in Example 6.6.4 and the permutation σ of Ex-
ample 6.5.2 we have

Aσ =

0 0 3
4 0 0
0 8 0


so that the 1s of P σ have been replaced by the appropriate entries of A.
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We will need the following important property.
Here is a second definition of the determinant that is sometimes used. It pro-

ceeds by induction on n. So we first need to define the determinant of the 1 × 1
matrix [a]: It is, of course, a. Next we define the determinant of an n × n matrix
in terms of certain (n− 1)× (n− 1) submatrices.

6.6.3 Definition. The (n − 1) × (n − 1) matrix Aij obtained by deleting the i-th
row and the j-th column ofA is called the ij-th submatrix ofA, and its determinant
mij is called the ij-th minor of A. 2

6.6.4 Example. If A is the matrix 1 2 3
4 5 6
7 8 9


then

A11 =

[
5 6
8 9

]
and m11 = −3;

A12 =

[
4 6
7 9

]
and m12 = −6;

and

A13 =

[
4 5
7 8

]
and m13 = −3.

6.6.5 Definition. For a n× n matrix A, n ≥ 2,

detA = a11 detA11 − a12 detA12 + . . . (−1)1+na1n detA1n

or, in summation notation,

detA =
n∑
j=1

(−1)1+ja1j detA1j =
n∑
j=1

(−1)1+ja1jm1j .

This is called expanding the determinant along the first row. By induction this
gives us a definition of the determinant for any n. We could have done something
similar along any row and any column, although it is not then clear that the defini-
tions agree. Any such expansion is called a Laplace expansion of the determinant.

You should check that this agrees with Definition 6.6.1 when n = 2: just two
terms. Then when n = 3: 6 terms. In the second case, you need to compute the

2Some books use the term minor to describe what we call the submatrix, and some dispense with
the term minor completely, preferring to use the cofactor cij = (−1)i+jmij
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sign of the 6 elements of the permutation group. Three have sign= 1: they are
the identity element, and the two elements written in cyclic notation as (123) and
(132). The three permutations with sign −1 are the three transpositions (12), (13)
and (23).

The general case is more difficult: one needs to establish that the determinant
is a linear function of its columns. For more details see [38], Chapter VI or [39],
Chapter 5, for example.

6.6.6 Example. The determinant of the matrix A from Example 6.6.4, following
our formula, is given by:

1(5 · 9− 6 · 8)− 2(4 · 9− 6 · 7) + 3(4 · 8− 5 · 7) = −3 + 12− 9 = 0.

6.6.7 Exercise. The analogous formula for the determinant obtained by expanding
along the i-th row is

n∑
j=1

(−1)i+jaij detAij =
n∑
j=1

(−1)i+jaijmij ,

and for expanding along the j-column is

n∑
i=1

(−1)i+jaij detAij =

n∑
i=1

(−1)i+jaijmij .

Notice that only the index of summation has changed. In Example 6.6.4, check
that you get the same answer for at least one new row expansion and one column
expansion.

We can encode all the row and column expansions into two matrix multiplica-
tions. Let M be the square matrix of size n whose (i, j)-th entry is = (−1)i+jmij ,
where mij is the ij-th minor of A as before. Its transpose MT is the adjoint of A
or the matrix of cofactors of A.

6.6.8 Theorem. If A is any square matrix, and MT is the adjoint of A, then

MTA = AMT = (detA)I

We will not prove this. Note that the fact that all the diagonal terms of the
matrix on the right are equal to the determinant says that the expansions by minors
along all rows and columns give the determinant. The fact that the off-diagonal
terms are zero is equivalent to the fact that all matrices with a repeated row or
column have determinant 0. For more details see [68], §4.4, [60], §3.1, or [13],
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§5.2. Note that the formula shows that when detA 6= 0, A is invertible: see
Theorem 6.6.10 below for a stronger result. It also computes the inverse matrix,
albeit very inefficiently, in that case:

A−1 =
1

detA
MT .

A little thought should also convince you that this theorem encodes all the infor-
mation in Cramer’s rule, as the references given above show.

6.6.9 Exercise. Compute the determinant of

M =


1 −2 0 0
−3 2 0 0
0 0 −1 3
0 7 2 1

 and N =


1 −2 0 0
−3 2 0 0
0 0 −1 0
1 1 2 1

 .
The following theorems and corollary are the additional key facts we need

concerning the determinant. We will not prove them.

6.6.10 Theorem.

1. If A and B are both n × n matrices, then det (AB) = detAdetB. The
determinant of the identity matrix is 1.

2. A square matrix A is invertible if and only if its determinant is non-zero, in
which case the determinant of the inverse A−1 is

detA−1 =
1

detA

6.6.11 Corollary. Let A(ij) be the matrix obtained by interchanging the i-th and
the j-th columns (or rows) of the matrix A. Then detA(ij) = −detA.

Proof. A(ij) can be obtained from A by multiplication by a transposition, and the
determinant of a transposition is −1.

6.7 Orthogonal Matrices

6.7.1 Definition. A n × n matrix Q is orthogonal if its columns qi have length 1
and are mutually perpendicular, so qi · qi = 1 and qi · qj = 0, i 6= j.

6.7.2 Proposition. Orthogonal matrices are invertible, and their inverse is equal
to their transpose. In other words, Q−1 = QT for any orthogonal Q. Conversely
any invertible matrix Q such that Q−1 = QT is orthogonal.
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Proof. For any orthogonal matrix Q, QTQ = I , the identity matrix. Indeed, the
ij-th entry of QTQ is the dot product of the i-th row of QT with the j-th column
of Q, so by definition it is equal to 1 if i = j and equal to 0 if i 6= j. This equation
says that Q is invertible and that the inverse is QT . For the converse just reverse
this argument.

6.7.3 Exercise. Prove that the determinant of an orthogonal matrix is ±1.
Hint: Use induction on n and the Laplace expansion of the determinant.

6.7.4 Exercise. Prove that the product of two orthogonal matrices is orthogonal.
Hint: Take two orthogonal matrices Q and R, so that QT = Q−1 and RT =

R−1. Compute (QR)T using Proposition 6.2.8. Can you compute (QR)−1? Recall
that this is the unique matrix S such that QRS = I .

6.7.5 Proposition. Orthogonal matrices Q preserve distance and angle, by which
we mean the following: for any two vectors a and b in V ,

〈Qa, Qb〉 = 〈a,b〉 and therefore ‖Qa‖ = ‖a‖

This explains the name “orthogonal”: angle and length are preserved.

Proof. It is enough to prove the first equality. Writing the left-hand side in terms
of matrix multiplication, we get

〈Qa, Qb〉 = aTQTQb = aTb = 〈a,b〉

where we used orthogonality of Q to get QTQ = Q−1Q = I ,

6.7.6 Example (Permutation Matrices). We discussed permutations and permuta-
tion matrices in §6.4 . As we noticed there, the transpose of a permutation matrix
is its inverse, so permutation matrices are orthogonal matrices.

6.7.7 Example (Rotation Matrices). The matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal, as an easy computation shows. It rotates the plane by angle θ. For
our purposes, R is a good source of counterexamples. Indeed, it cannot have real
eigenvalues since all directions are moved, so the Spectral Theorem 9.2.1 fails for
this matrix, at least when sin θ 6= 0. This is because R is not symmetric.
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6.7.8 Example. Consider any 3 × 3 orthogonal matrix Q with determinant 1. We
show it is a rotation. The characteristic polynomial p(t) (7.3.2) of Q has degree
3. Because the highest degree term of p(t) is t3, it goes to ∞ as t gets large.
Because detQ = 1, p(0) = −1. Thus the graph of p(t) crosses the t-axis for a
positive value of t. This meansQ has a real eigenvector e1 with associated positive
eigenvalue λ, so Qe1 = λe1. Because Q is orthogonal and preserves distance,
λ = 1. Let H be the orthogonal complement of the line L spanned by e1. Next we
show that for all v ∈ H , then Qv is perpendicular to e1, so Qv ∈ H . Indeed,

〈Qv, e1〉 = 〈Qv, Qe1〉 using the eigenvector equation for e1,

= 〈v, e1〉 by Proposition 6.7.5,

= 0 since v ⊥ e1.

It is then an easy exercise to show that the restriction of A to H is an ordinary rota-
tion in the plane. The line L is called the axis of rotation. It is uniquely determined
unless the rotation is trivial.

6.8 Principal Submatrices and Principal Minors

The definitions3 in this short section will be used when we discuss Gaussian elim-
ination in §6.9: see Theorem 6.9.6): and positive definite and positive semidefinite
forms: see Theorems 9.4.1 and 9.5.1.

6.8.1 Definition. A principal submatrix of size k of an n × n matrix A = [aij ] is
a matrix obtained by removing n − k columns and the corresponding n − k rows
from A. Thus if you remove the first column, you must remove the first row, etc.

6.8.2 Remark. An n×nmatrixA has
(
n
k

)
principal submatrices of size k. Indeed,

to form the principal submatrices of size k, we are picking k objects from n objects,
and the number of ways of doing this is precisely the binomial coefficient

(
n
k

)
.

Thus a 3 × 3 matrix A has 3 principal submatrices of size 1: the three 1 × 1
matrices [aii]. A has 3 principal submatrices of size 2: the three 2× 2 matrices[

a11 a12
a21 a22

]
,
[
a11 a13
a31 a33

]
, and

[
a22 a23
a32 a33

]
A has only one principal submatrix of size 3—itself.

3Principal minors and leading principal minors are also defined in [59], 16.2 p. 381.
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6.8.3 Definition. The k-th leading principal submatrix of an n × n matrix A =
(aij) is the k× k matrix Ak, 1 ≤ k ≤ n with entries aij , 1 ≤ i ≤ k, 1 ≤ j ≤ k. In
other words, Ak is the uppermost and leftmost submatrix of A of size k × k. For
this reason, it is sometimes simply called the upper left submatrix (see [67], pg.
331). Dk = det(Ak) is the kth leading principal minor.

So the 3× 3 matrix A above has, as first leading principal submatrix [a11], and
as second leading principal submatrix[

a11 a12
a21 a22

]
,

so that the second leading principal minor is D2 = a11a22 − a12a21.

6.9 Gaussian Elimination via Matrices

One of the first things one studies in any linear algebra course is Gaussian elimina-
tion, the standard method for solving a system of linear equations. When studying
the LU decomposition, it is explained that the Gaussian elimination is equivalent
to left-multiplying the matrix representing the system by a collection of elemen-
tary matrices. References are, for example [60], §2.5 or [68], §2.6. Here we will
show how this works for a square system, and later specialize to a system where the
matrix coefficients are symmetric, the case we will use later. For a more general
situation, see the references above, or even more generally, see [38], chapter II, §5.
We follow the presentation and largely the notation of Gantmacher [25], chapter II,
§1.

So assume we have a system of n equations in n variables, of rank r:

Ax = b.

By a suitable reordering of the variables and the equations we can arrange that
the leading principal minors Dk of A, 1 ≤ k ≤ r, are all non-zero, while Dk = 0
when k > r. The last inequalities are implied by the rank ofA being r. In particular
D1 = a11 6= 0. Then:

6.9.1 Definition. a11 is the first pivot d1 of A.

Let E1 be the elementary n× n matrix:

E1 =


1 0 . . . 0
−a21
a11

1 . . . 0
...

...
. . .

...
−an1
a11

0 . . . 1


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So E1 is invertible with determinant equal to one, since it is lower triangular
with ones on the diagonal. Let us write A(1) for the product matrix E1A. By
construction:

A(1) =


a11 a12 a13 . . . a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n

0 a
(1)
32 a

(1)
33 . . . a

(1)
3n

...
...

...
. . .

...
0 a

(1)
n2 a

(1)
n3 . . . a

(1)
nn


where the matrix entries without suffix are the entries of A, while those with an
upper (1) are just by definition the entries of A(1).

6.9.2 Proposition. We compute the second diagonal element of the matrix A(1),
and show it is non-zero, under the assumption that the rank of A is at least 2, so it
will serve as our second pivot d2:

a
(1)
22 = a22 −

a12a21
a11

=
D2

D1
. (6.9.3)

Proof. Because A(1) was obtained from A by adding the first row of A multi-
plied by a constant, the minors that contain that row (in particular the leading
principal minors) do not change when one passes from A to A(1), by the well-
known property of the determinant. On the other hand, the second leading princi-
pal minor of A(1) is simply a11a

(1)
22 , because that principal matrix is triangular. So

a11a
(1)
22 = D2, and since D1 = a11, this is what we found by direct computation.

This computation establishes the result, since by hypothesis, the leading principal
minor D2 is non-zero.

This simple but important argument will generalize as we create more zeroes
by Gaussian elimination.

6.9.4 Exercise. Write down the definition of E2 using that of E1 as a model.

We write A(2) for the matrix E2A
(1). By construction:

A(2) =


a11 a12 a13 . . . a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n

0 0 a
(2)
33 . . . a

(2)
3n

...
...

...
. . .

...
0 0 a

(2)
n3 . . . a

(2)
nn


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We claim, as before, that if 3 ≤ r, where r is the rank of A, then a(2)33 6= 0,
because

a
(2)
33 =

D3

D2
.

by the same argument as in (6.9.3). So this gives us the third pivot d3.
So if 2 < r we can continue the elimination process until we reach the rank r

of the matrix.
For simplicity, let’s first consider the case of maximum rank r = n. At each

step we get a new non-zero pivot

dk = a
(k−1)
kk =

Dk

Dk−1
.

so in the end we get the upper triangular matrix:

A(n−1) =



a11 a12 a13 . . . a1,n−1 a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2,n−1 a

(1)
2n

0 0 a
(2)
33 . . . a

(2)
3,n−1 a

(2)
3n

...
...

...
. . .

...
...

0 0 0 . . . a
(n−2)
n−1,n−1 a

(n−2)
n−1,n

0 0 0 . . . 0 a
(n−1)
nn


with an accompanying lower triangular matrix E = En−1En−2 · · ·E2E1. By
construction A(n−1) = EA.

Now assume that A is symmetric. Since E is lower triangular, ET is upper
triangular. So (EA)ET , the product of two upper triangular matrices, is upper
triangular. But EAET is symmetric: just compute its transpose as in Proposition
6.2.8. The only symmetric upper triangular matrices are diagonal, so EAET is di-
agonal and we have achieved the goal of Gaussian elimination without any further
computation. We record this special case as a theorem.

6.9.5 Theorem. Assume A is a symmetric matrix of size n such that all its leading
principal minors are non zero. Then Gaussian elimination can be accomplished
by left multiplication by an invertible lower triangular matrix E of determinant 1.
The k-th diagonal element of the diagonal matrix EAET is dk = Dk

Dk−1
, where the

Dk, 1 ≤ k ≤ n are the leading principal minors of A, and D0 = 1 by convention.

We now generalize the construction to matrices of smaller rank. It will give
us one of the characterizations of positive (semi)definite matrices: see Theorem
9.4.1.and 9.5.1. It can also be used to compute the signature of a quadratic form in
many cases, as explained in [25], volume 1, p.302.
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6.9.6 Theorem. A is an n × n symmetric matrix of rank r with non-zero leading
principal minors Dk, 1 ≤ k ≤ r. Then Gaussian elimination can be performed
to produce zeroes below the first r diagonal elements of the matrix. Denoting the
pivots of A by dk, 1 ≤ k ≤ n, we have

dk =
Dk

Dk−1
for 1 ≤ k ≤ n

where D0 = 1 by definition.

Proof. After the first k − 1 columns of A have been cleared by forward elimina-
tion, the k-th leading submatrix Ak is upper triangular with the first k pivots on
the diagonal. So Dk = det(Ak) =

∏k
i=1 di. Further Gaussian elimination does

not modify Ak. Thus, if all leading principal minors of A are non-zero, then so
are all the pivots, which means that Gaussian elimination can occur without row
exchanges.

Then by left multiplication by invertible matrices we get, after r − 1 steps:

A(r−1) =



a11 a12 a13 . . . a1r . . . a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2r . . . a

(1)
2n

0 0 a
(2)
33 . . . a

(2)
3r . . . a

(2)
3n

...
...

...
. . .

...
. . .

...
0 0 0 . . . a

(r−1)
r,r . . . a

(r−1)
r,n

0 0 0 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

0 0 0 . . . 0 . . . 0


together with an invertible matrix E so that EA = A(r−1). The non-zero pivots
are Dk

Dk−1
, 1 ≤ k ≤ k.

Once you have studied congruent matrices in §8.4, you will see:

6.9.7 Theorem. The method of Gaussian elimination applied to a symmetric ma-
trix of rank r with non-zero leading principal minors Dk, 1 ≤ k ≤ r, yields a
diagonal matrix in the same congruence class as A.

Proof. This is just the content of Theorem 6.9.6 interpreted in the language of
congruence classes of matrices.
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6.10 Block Decomposition of Matrices

A facility with computations using block matrix notation is crucial for matrix com-
putation, which is why we study it here. The simple point is that it is often conve-
nient to think of a matrix as being made up of a grid of smaller submatrices. Here
is the general procedure. There is nothing difficult here except the notation. This
section can be skipped until it is needed later.

6.10.1 Definition. Let A be a m × n matrix. Write m as the sum of positive
numbers m1, . . . , ms and n as the sum of positive integers n1, . . . , nt.

Then we can write

A =


A11 A12 . . . A1t

A21 A22 . . . A2t

...
...

. . .
...

As1 As2 . . . Ast


where Aij is the mi × nj submatrix of A in the appropriate position. So there are
st submatrices.

This is known as partitioning, or decomposing, the matrix into blocks.

By definition all blocks in a given column share the same columns elements of
A, while all blocks in a given row share the same row elements.

6.10.2 Example. The 3× 4 matrix

M =

a11 a12 b13 b14
a21 a22 b23 b24
c31 c32 d33 d34


can be partitioned into the blocks

M =

[
A B
C D

]
where A and B are 2 × 2 matrices, and C and D are 1 × 2 matrices. So in this
example s = t = 2, and m1 = n1 = n2 = 2 while m2 = 1. In these lectures we
will never exceed the case s = 3 and t = 3, by the way.

The point of decomposing matrices into blocks is that matrix multiplication
behaves nicely with respect to block decomposition, as we will now see. So if
some of the blocks are repeated or are simple (for example the identity matrix or
the zero matrix) block multiplication can speed up the computation of the matrix
product.
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6.10.3 Example. Let A be an m × n matrix and let B be an n × p matrix. Let C
be the product matrix AB of size m× p. We block decompose A with

m = m1 +m2;

n = n,

so there is no decomposition into columns. We block decompose B with

n = n,

p = p1 + p2,

so there is no decomposition into rows. So

A =

(
A11

A21

)
, B =

(
B11 B12

)
(6.10.4)

Then C can be partitioned according to the partition of the rows of A and the
columns of B so that

C =

[
C11 C12

C21 C22

]
(6.10.5)

with Cij = Ai1B1j .

We have decomposed the two matrices to be multiplied into blocks in such a
way that the blocks are of size suitable for multiplication. All we needed in this
example is that the decomposition of the columns of the left hand matrix A is the
same as the decomposition of the rows of the right hand matrix B.

6.10.6 Example. If A and B are decomposed in the other direction, with the com-
mon index n written as n1 + n2 for both matrices, and no decomposition of the
other indices m and p, then we case write the matrix product as

[
A11 A12

] [B11

B21

]
= A11B11 +A12B21

You should check that the matrix multiplications and the matrix addition on the
right hand side are well defined.

6.10.7 Exercise. Let

A =

 1 −2
−3 2
−1 3

 and B =

[
1 −2 1
−3 2 0

]
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Break A into two blocks

A11 =

[
1 −2
−3 2

]
, A21 =

[
−1 3

]
Now break B into two blocks so that the decomposition of the column size (3 =
2 + 1) of A agrees with that of the row size (3 = 2 + 1) of B.

B11 =

[
1 −2
−3 2

]
, B12 =

[
1
0

]
.

This allows block multiplication. Check that the formula of Example 6.10.3 applies
by computing the matrix product two ways.

Here is the main theorem of this section.

6.10.8 Theorem. Let A be a m × n matrix block decomposed according to Defi-
nition 6.10.1. Let B be a n× p matrix block decomposed along its rows exactly as
A is along its columns, and where p = p1 + · · ·+ pu is the block decomposition of
its columns, so

B =


B11 B12 . . . B1u

B21 B22 . . . B2u

...
...

. . .
...

Bt1 Bs2 . . . Btu

 .
Thus Bjk is a nj × pk submatrix of B. Then AB = C, where the m× p matrix C
can be blocked decomposed as

C =


C11 C12 . . . C1u

C21 C22 . . . C2t

...
...

. . .
...

Cs1 Cs2 . . . Csu


where Cik is a mi × pj matrix such that

Cik = Ai1B1k +Ai2B2k + · · ·+AitBtk =
t∑

j=1

AijBjk (6.10.9)

Note that (6.10.9) is Definition 6.2.2 with blocks instead of numbers.

Proof. The details of the proof are left to the reader. First notice that the matrices
on the right hand side of (6.10.9) are of the appropriate size to be multiplied and
added.. Finally just check that for each entry of the matrix Cik you have all the
terms of the appropriate entry of C.
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An important special case occurs when the matricesA andB are square, mean-
ing that m = n = p, and when the diagonal blocks are also square, implying that
s = t, and mi = ni, 1 ≤ i ≤ n. In this case, Aii is an ni × ni matrix.

6.10.10 Definition. Assume that the matrix A is square of size n and that its diag-
onal blocks Aii are square of sizes n1, n2, . . . , ns with n = n1 + n2 + · · ·+ ns.

• Then A is block diagonal if Aij , i 6= j, is the zero matrix:

A =


A11 0 . . . 0
0 A22 . . . 0
...

...
. . .

...
0 0 . . . Ass

 (6.10.11)

• A is block upper triangular if Aij , i > j, is the zero matrix:

A =


A11 A12 . . . A1s

0 A22 . . . A2s

...
...

. . .
...

0 0 . . . Ass

 (6.10.12)

In the same way we can define block lower triangular.

6.10.13 Proposition. Assume A and B are square matrices of size n, and and that
blocks are of size n1, n2, . . . , ns with n = n1 + n2 + · · ·+ ns.

• If they are both block diagonal, their product C = AB is also block diago-
nal, with Cii = AiiBii. Furthermore the k-th power of A can be written

Ak =


(A11)k 0 . . . 0

0 (A22)k . . . 0
...

...
. . .

...
0 0 . . . (Ass)k

 (6.10.14)

• If A and B are both block upper triangular, then so it their product.

Proof. We prove Proposition 6.10.13 using the main theorem. The diagonal case
is trivial, so let’s just consider the upper triangular case. If C = AB we must show
that Cik = 0 when i > k. By hypothesis Ait = 0 when i > t and Btk = 0 when
t > k. By (6.10.9) this means that the only non-zero terms in the sum are those
with i ≤ t ≤ k. Since i > k, there are no such terms.
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6.10.15 Example. A special case that will be of importance to us in the one where
A and B are both square of size n = r + s and decomposed as[

A11 A12

A21 A22

]
and

[
B11 B12

B21 B22

]
.

where A11 and B11 are r × r matrices,
A12 and B12 are r × s matrices,
A21 and B21 are s× r matrices,
A22 and B22 are s× s matrices. Then

AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
It is easier to check in this special case that the formula is correct.

6.10.16 Example. In this example, if A and B are both block upper triangular,
meaning that A21 and B21 are both the zero matrix, then their product AB is also
block upper triangular.

6.10.17 Exercise. Let A be a 4 × 2 matrix and B be a 2 × 4 matrix, written in
block form as in (6.10.4), where all the blocks are 2× 2. Further assume that

A11 = A21 =

[
1 1
−1 −2

]
, and B11 = B12 =

[
2 1
−1 −1

]
;

Write out the matrices A and B, compute the product AB directly, and then com-
pute it by block multiplication.

6.10.18 Exercise. If you have the block decomposition of a matrix A, write a
decomposition for its transpose AT .



Lecture 7

Linear Transformations

We start by considering a m × n matrix A, which by matrix multiplication gives
us a linear map from Rn → Rm, sending a point x ∈ Rn to Ax ∈ Rm. We also
consider its transpose AT , which gives a map in the other direction: Rm → Rn.
We study the four subspaces associated to this pair.

Linear transformations may be familiar from a linear algebra course, but are
worth reviewing. While this course is mainly concerned with matrices, not linear
transformations, it is important to see how linear transformations motivate some
of the operations we perform on matrices. We start by analyzing the relationship
between composition of linear maps and matrix multiplication in Proposition 7.1.6.

The central result of the lecture is Theorem 7.8.10, which says that if you take
a linear transformation T from a vector space V to itself, and if you look at the
matrix A of T in one basis for V , then at the matrix B of T in another basis, these
matrices are similar

That explains the importance of similarity studied in §7.7, an equivalence re-
lation on matrices. The important Theorem 7.7.4 shows that similar matrices have
the same characteristic polynomial: thus all their other invariants are the same. We
analyze the relationship between linear transformations and matrices, showing how
the matrix of a linear transformation from a vector space to itself changes when the
basis of the vector space changes. As shown in Theorem 7.8.10, the matrix is
transformed to a similar matrix, which explains the importance of similarity.

Our notation for vectors and matrices is described in Appendix A.

7.1 Linear Maps

We build on the definition of a vector space reviewed in §5.1.
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7.1.1 Definition. A linear transformation T from a vector space V to a vector
space W is a function such that

T (a1v1 + a2v2) = a1T (v1) + a2T (v2)

for all real numbers a1 and a2 and all vectors v1 and v2 in V . On the right-hand
side, T (v1) and T (v2) are elements ofW , so the addition sign there denotes vector
addition in W .

Here is the key consequence of this definition.

7.1.2 Proposition. To understand the effect of a linear transformation T on any
vector in V , all we need to know is the effect of T on a basis of V .

Proof. Let n be the dimension of V and m the dimension of W . Pick a basis e1,
. . . , en of V and a basis f1, . . . , fm of W . Writing

T (ej) =
m∑
i=1

aijfi, (7.1.3)

the linear transformation T is determined by the aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.1

Indeed, an arbitrary vector
∑n

j=1 xjej transforms to

T
( n∑
j=1

xjej
)

=
n∑
j=1

xjT (ej) =
n∑
j=1

xj

m∑
i=1

aijfi

=

m∑
i=1

n∑
j=1

aijxjfi =

m∑
i=1

yifi,

where yi is defined by

yi =

n∑
j=1

aijxj . (7.1.4)

In the summation of (7.1.3), the index i of fi is the first index of aij . This
may surprise you, but the computation shows that this is the right way to set up the
notation in order to end up with the standard index order for matrix multiplication
in (7.1.4) and therefore when we multiply out

y = Ax. (7.1.5)
1For more details, see [68], chapter 7, or [60] chapter 2.
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This means that we can either talk about the linear transformation T or its
matrix A when bases for both V and W have been given. We will determine later
how the matrix A varies when the bases of V and W change.

7.1.6 Proposition. Let U , V , and W be vector spaces of dimensions p, n, and m.
Let T is a linear transformation from U to V , and S is a linear transformation
from V to W .

1. The composite map S ◦ T from U to W is also a linear transformation.

2. Assume bases for U , V , and W have been selected and that the matrices of
S and T in these bases are A and B, so A is an m × n matrix and B is an
n× p matrix. Then the matrix for the composite transformation S(T (u)) is
the matrix product AB.

Proof. The first point is easy. Let u1 and u2 be elements of U . Then, for instance

S ◦ T (u1 + u2) = S(T (u1 + u2) = S(T (u1) + T (u2))

= S(T (u1) + S(T (u2)) = S ◦ T (u1) + S ◦ T (u2)).

The second part follows easily from the first part and from Proposition 7.1.2:

S ◦ T (u) = S(T (u)) = A(Bu) = (AB)u

which proves the result.

Often we refer to the linear transformation by its matrix. Then the nullspace
N (A) of A is the set of x ∈ Rn such that Ax = 0. The crucial fact is that it
is a vector subspace of V of it has a dimension, called the nullity of the linear
transformation.

The range ofA, denotedR(A), is the linear subspace of Rm of elements y that
can be written Ax, for all x ∈ Rn. The dimension of R(A) is called the rank r of
A. The rank r is the maximal number of linearly independent columns of A.

We now get to one of the most important theorems in linear algebra.

7.1.7 Theorem (The Rank-Nullity Theorem). Let T : V → W is a linear map
between finite dimensional vector spaces, with matrix A. If n is the nullity of A,
and r its rank, and d is the dimension of V , then

n+ r = d.

For a proof see see [60],§4.3, p.225.



7.2. THE FOUR SUBSPACES 89

7.2 The Four Subspaces Associated to a Matrix

This section describes the four key spaces associated to a m × n matrix A.2 We
write B for the transpose AT of A, for simplicity of notation. The four subspaces
are the range and nullspace of A, and the nullspace and the range of B. Their
properties and interconnections are now summarized.

The transpose B of A is an n × m matrix. An important theorem in linear
algebra says that the rank of B is equal to the rank of A; put differently, the row
rank of A is equal to the column rank of A. We will establish this important below
in the proof of Theorem 7.2.3.

Then the last two subspaces are R(B) and N (B). Note that N (A) and R(B)
are subspaces of Rn; while N (B) andR(A) are subspaces of Rm.

We can summarize what we have obtained so far as:

7.2.1 Theorem.

dimN (A) + dimR(A) = n;

dimN (B) + dimR(B) = m;

dimR(A) = dimR(B).

In particular, the rank of A (and B) is at most the smaller of m and n,

Proof. The first two equalities are just the Rank-Nullity Theorem for A and B.
The last equality says that the row rank and the column rank of a matrix are the
same. We prove it by using the standard dot product on Rn and Rm. First we make
a definition:

7.2.2 Definition. Two subspaces V1 and V2 of Rn are mutually orthogonal if for
any v1 ∈ V1 and any v2 ∈ V2, the standard inner product 〈v1,v2〉 = 0. We
write V1 ⊥ V2 to indicate that the spaces are mutually orthogonal. V1 and V2 have
complementary dimensions in Rn if dimV1 + dimV2 = n.

Take an element x0 in the nullspace of A, so Ax0 = 0, and an element x1 in
the range of B, so there exists y such that x1 = By. We compute the dot product

〈x1,x0〉 = xT1 x0 = (yTA)x0 = yT (Ax0) = 0

so that they are orthogonal and therefore linear independent. Repeating the same
argument in Rm for B we get the following two inequalities:

dimN (A) + dimR(B) ≤ n;

dimN (B) + dimR(A) ≤ m;

2An excellent reference for this material is Strang [67], whose entire presentation in §2.4 and §3.1
is organized around this approach (especially 3C on p. 136). Strang [68], §3.6, is also helpful.
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Now use the first two equalities of Theorem 7.2.1 to eliminate the dimN (A and
dimN (B). We are left with the inequalities dimR(B) ≤ dimR(A) ≤ dimR(B),
so row rank equals column rank.

Theorem 7.2.1 shows that N (A) and R(B) have complementary dimensions
in Rn, and N (B) andR(A) have complementary dimensions in Rm.

7.2.3 Theorem (The Four Subspaces Theorem). As before, B denotes the trans-
pose of the m× n matrix A.

• N (A) ⊥ R(B) in the domain Rn of A. Thus any element of Rn can be
written uniquely as the sum of a vector of N (A) and a vector ofR(B).

• N (B) ⊥ R(A) in the domain Rm of B. Thus any vector of Rm can be
written uniquely as the sum of a vector of N (B) and a vector ofR(A).

Proof. It is now almost trivial to prove the theorem. It is enough to prove the first
statement, since BT = A. The first and the third equations of Theorem 7.2.1 show
that a basis for Rn can be formed by adjoining a basis ofR(B) to a basis ofN (A),
if we can show that the basis elements of the two spaces are linearly independent.
This is what we just established, so we are done.

In the next result, note the use of the ‘exclusive’ or (see §2.1.2): either one or
the other of the assertions is true, but not both. An inequality version of this result,
with added positivity conditions, is known as the Farkas Alternative, and will be
studied in §19.5.

7.2.4 Corollary. Either

1. there is a vector x in Rn such that Ax = b has a solution

or (exclusive)

2. there is a vector y in Rm with

yTA = 0 and yTb 6= 0.

Proof. If Ax = b has a solution, as in case 1, then b ∈ R(A). If yTA = 0,
as in case 2, then y ∈ N (B). According to the Four Subspaces Theorem 7.2.3,
N (B) ⊥ R(A). This is contradicted by the condition yTb 6= 0 in case 2, so the
two cases are mutually exclusive. On the other hand, one of the two cases is always
verified. If b ∈ R(A), then we are in case 1. If not, then b can be written uniquely
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as b′ + y, with b′ ∈ R(A) and y a non-zero element in N (B). Furthermore
b′ ⊥ y by the Four Subspaces Theorem. Then

yTb = yT (b′ + y) = yTy 6= 0,

so we are in case 2.

7.2.5 Remark. By replacing y by a scalar multiple, we can assume that yTb = 1
in the alternative of Corollary 7.2.4.

7.2.6 Proposition. In terms of the dot product 〈∗, ∗〉1 on Rn, and the dot product
〈∗, ∗〉2 on Rm), we have

〈y, Ax〉2 = 〈ATy,x〉1 (7.2.7)

Proof.

〈y, Ax〉2 = yTAx (switching to matrix multiplication in W ),

= (ATy)Tx (by Proposition 6.2.8),

= 〈ATy,x〉1 (switching back to dot product in V ),

so we are done.

We will use an important special case of this result in Theorem 7.4.5.

7.2.8 Example. Assume m < n, and let A be a m×n matrix of rank m, the max-
imum possible. Then the nullspace of A has dimension n −m, and the nullspace
of B has dimension 0. This is the case we consider in linear optimization. There,
as we will see in Lecture 25, if A is the matrix of the primal problem with variable
x, B is the matrix of the dual problem with variable y.

In least squares optimization (§13.3) we consider the case m > n and A of
maximal rank.

7.3 The Characteristic Polynomial

Next we consider the characteristic polynomial of a square matrix.3

3Note that some authors (in particular [60] and [67]) define the characteristic polynomial as
det (A− tIn), while others (in particular [25], [39], [57], and [13]) use the one given here. It is
a simple exercise using properties of the determinant to show that the two possible definitions differ
by a factor of (−1)n.
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7.3.1 Definition. The characteristic polynomial p(t) of the n× n matrix A is

det (tIn −A)

where, as usual, In is the n× n identity matrix, and t is a variable.

p(t) is easily seen to be a polynomial of degree n in t, which is written

p(t) = tn − p1tn−1 + p2t
n−2 + · · ·+ (−1)npn (7.3.2)

where p1 is the trace of A, namely the sum of the diagonal elements of A:

p1 = TrA =

n∑
i=1

aii

and
pn = (−1)n detA,

as we see by setting t = 0.

7.3.3 Exercise. Compute the characteristic polynomials of the matrices A and B
from Example 7.8.11.

Finally, we consider the trace of a product of n× n matrices AB. The (i, i)-th
entry of TrAB is

∑
k aikbki, so the trace, which is the sum of all the diagonal

elements, is
n∑
i=1

n∑
k=1

aikbki

7.3.4 Theorem.
TrAB = TrBA (7.3.5)

Proof.

TrAB =
n∑
i=1

n∑
k=1

aikbki =
n∑
k=1

n∑
i=1

bkiaik = TrBA

7.3.6 Remark. A word of warning: When you have three matrices A, B, C, The-
orem 7.3.4 shows that TrABC = TrBCA = TrCAB. It does not show that
TrABC = TrACB. Indeed, that is not true in general.

On the other hand, it is obvious that Tr (A+B) = TrA + TrB, and that
extends to a sum with any number of terms.
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7.4 Eigenvalues and Eigenvectors

7.4.1 Definition. A complex number λ is called an eigenvalue of A if there is a
non-zero complex vector x such that Ax = λx. The vector x is an eigenvector
associated to λ.

7.4.2 Proposition. An eigenvalue of A is a root of the characteristic polynomial of
A.

Proof. The definition says that x is a nonzero element in the nullspace of the com-
plex matrix λIn −A, which means that λIn −A is not invertible, so that its deter-
minant is zero. But the determinant of λIn −A is the characteristic polynomial of
A (up to sign) evaluated at λ. Thus λ is a root of the characteristic polynomial.

7.4.3 Example. We compute the eigenvalues of the matrix A:[
1 2
1 3

]
We first compute the characteristic polynomial, namely the determinant of[

t− 1 −2
−1 t− 3

]
getting t2−4t+1. The discriminant of this quadratic is positive, so you get two real
eigenvalues (the roots), and then two real eigenvectors. The end of the computation
is left to you.

7.4.4 Example. Consider any 3 × 3 orthogonal matrix Q with determinant 1. We
show it is a rotation. The characteristic polynomial p(t) (7.3.2) of Q has degree
3. Because the highest degree term of p(t) is t3, it goes to ∞ as t gets large.
Because detQ = 1, p(0) = −1. Thus the graph of p(t) crosses the t-axis for a
positive value of t. This meansQ has a real eigenvector e1 with associated positive
eigenvalue λ, so Qe1 = λe1. Because Q is orthogonal and preserves distance,
λ = 1. Let H be the orthogonal complement of the line L spanned by e1. Next we
show that for all v ∈ H , then Qv is perpendicular to e1, so Qv ∈ H . Indeed,

〈Qv, e1〉 = 〈Qv, Qe1〉 using the eigenvector equation for e1,

= 〈v, e1〉 by Proposition 6.7.5,

= 0 since v ⊥ e1.

It is then an easy exercise to show that the restriction of A to H is an ordinary rota-
tion in the plane. The line L is called the axis of rotation. It is uniquely determined
unless the rotation is trivial.
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We conclude this short section with a result concerning the eigenvectors of
symmetric matrices.

7.4.5 Theorem. Let A be a square matrix of size n. A is symmetric if and only if

〈x, Ay〉 = 〈Ax,y〉,∀x,y ∈ Rn. (7.4.6)

so that the matrix A can migrate from one side of the dot product to the other.

Proof. By Proposition 7.2.6, this is obviously true if A is symmetric. Now pick
for x the unit vector ei, and for y the unit vector ej . Then eTi Aej = aij and
eTi A

Tej = aji, so that being symmetric is a necessary condition.

This allows us to give a simple proof of the following proposition, which we
reprove later using the Spectral Theorem 9.2.1.

7.4.7 Proposition. Assume the matrix A is symmetric. Let e1 and e2 be eigen-
vectors of A with eigenvalue λ1 and λ2. Assume λ1 6= λ2. Then e1 and e2 are
orthogonal, namely: 〈e1, e2〉 = 0.

Proof.
〈e1, Ae2〉 = 〈e1, λ2e2〉 = λ2〈e1, e2〉

By Theorem 7.4.5 this is equal to

〈Ae1, e2〉 = 〈λ1e1, e2〉 = λ1〈e1, e2〉

so λ1〈e1, e2〉 = λ2〈e1, e2〉. Since λ1 6= λ2, this can only be true if 〈e1, e2〉 =
0.

At this point, we do not know if the λ are real: the Spectral Theorem 9.2.1 will
establish that.

7.5 Distance Minimization via Projection

Let us take for V the space Rn with its dot product. Let K be a subspace of V of
dimension k. Let v1, . . . , vk be an orthogonal basis of K, meaning that vi ·vj = 0
whenever i 6= j. Such a basis can be found by the Gram-Schmidt orthogonalization
process.

Now let b be any vector in V . Let ci ∈ R be the component of b along vi, so
that b− civi is orthogonal to vi: see Definition 5.4.25.

Let c = c1v1 + c2v2 + · · ·+ ckvk. Then

7.5.1 Lemma. b− c is orthogonal to all vectors in K.
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Proof. By linearity it is sufficient to show that it is orthogonal to each basis element
of K. Since the basis is orthogonal, we get

〈b−
k∑
i=1

civi,vj〉 = 〈b− cjvj ,vj〉 = 0

by definition of cj , the component of b along vj .

From this we derive

7.5.2 Theorem. The point c is the unique point of K closest to b.

Proof. Any point z ∈ K can be written

z = x1v1 + x2v2 + · · ·+ xkvk

for real numbers xi. Then

‖b− z‖2 = ‖b− c + c− z‖2

= ‖b− c‖2 + ‖c− z‖2

> ‖b− c‖2

unless z = c. In the second line we used the Pythagorean Theorem 5.4.23, which
applies because c − z is in K. Since ‖v − z‖ is the distance of v from z, we are
done.

Thus we have solved this optimization problem in completely elementary fash-
ion. For more in this direction, see §13.3 on Least Squares.

7.6 Example: Orthogonal Projection

We examine what we just did using matrices.
Given an n-dimensional vector space V with an inner product, assume that you

have two mutually orthogonal subspaces K and R of complementary dimensions,
meaning that if k is the dimension of K and r the dimension of R, then k+ r = n.
See Definition 7.2.2. Then any element v ∈ V can be written uniquely as v =
k + r, where k ∈ K and r ∈ R. Since K and R are orthogonal, 〈k, r〉 = 0.

7.6.1 Definition. The orthogonal projection of V to R is the linear transformation
P from V to V that sends v to r.
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You should check that this is a linear transformation, and this this is what we
did in the previous section.

We want to understand the n× n matrix of P for any choice of basis of V that
preserves length and distance.

We start with the basis e where the first r basis elements are an orthonormal
basis for R, and the remaining basis elements form an orthonormal basis for K.
Then the matrix for P in this basis can be written in block form (see §6.10) as

Ar =

[
Ir 0rk
0kr 0k

]
where Ir is the r × r identity matrix, and the other matrices are all zero matrices
of size given by the subscripts.

Note, using block multiplication, that A2
r = A.

Now suppose you take any other matrix representation of the orthogonal pro-
jection P . Since we want length and angle to be preserved, we should only allow
orthogonally similar matrices, so we should look at matrices Q−1AQ, where Q is
orthogonal.

7.6.2 Theorem. The matrix A for an orthogonal projection is symmetric and sat-
isfies A2 = A.

Conversely, any matrix A that satisfies these two properties is the matrix of the
orthogonal projection to the range of A.

Proof. If A is the matrix of an orthogonal projection, it can be written Q−1ArQ,
for some r and for an orthogonal matrix Q, so Q−1 = QT . First we show A is
symmetric. Note that Ar is symmetric, so ATr = Ar. So

AT = (Q−1ArQ)T = QTATr (Q−1)T = Q−1ArQ = A

so that is established.
Next,

A2 = Q−1ArQQ
−1ArQ = Q−1A2

rQ = Q−1ArQ = A

as required.
Now the converse. When A is a projection, for any v ∈ V the difference

v − Av is perpendicular to Aw, for all w, and this characterizes projections. We
can establish this just using our two properties, proving what we want.

(v −Av)TAw = vTAw − vTATAw = vTA2w − vTAw = 0.
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Orthogonal projections will be used when we study the method of least squares
in §13.3.

7.7 Similar Matrices

You may want to review equivalence relations in Definition 2.2.8 at this point.

7.7.1 Definition. The n × n matrix A is similar to the n × n matrix B if there is
an n× n invertible matrix C such that

B = C−1AC (7.7.2)

We will see in Theorem 7.8.10 that two matrices are similar if and only if they
are the matrices of the same linear transformation, but viewed in different bases.

We indicate that A is similar to B by A ∼ B.

7.7.3 Theorem. Similarity is an equivalence relation on n× n matrices.

Proof. To prove that ∼ is an equivalence relation, we need to establish the follow-
ing three points:

• A ∼ A:

Use the identity matrix for C.

• if A ∼ B, then B ∼ A:

IfA ∼ B, there is an invertibleC such thatB = C−1AC. Then, multiplying
both sides of the equation on the right by C−1 and on the left by C, and
letting D = C−1, we see that A = D−1BD, so B is similar to A.

• if A ∼ B and B ∼ D, then A ∼ D:

The hypotheses mean that there are invertible matrices C1 and C2 such that
B = C−11 AC1 and D = C−12 BC2, so, substituting from the first equation
into the second, we get

D = C−12 C−11 AC1C2 = (C1C2)
−1AC1C2

so A is similar to D using the matrix C1C2.

Since similarity is an equivalence relation on n×n matrices, it partitions sym-
metric matrices into equivalence classes.

Our next goal is to determine the common properties of similar matrices. Here
is the key theorem.
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7.7.4 Theorem. Two similar matrices have the same characteristic polynomial and
therefore the same trace and determinant. They also have the same eigenvalues
(see §7.4), since these are the roots of the characteristic polynomial.

Proof. If A and B are similar, there is an invertible matrix C such that B =
C−1AC. Then

C−1(tIn −A)C = C−1(tIn)C − C−1AC = tIn −B (7.7.5)

Take determinants on both sides, using the theorem that the determinant of a prod-
uct is the product of the determinants:

det (C−1(tIn −A)C) = detC−1 det (tIn −A) detC (7.7.6)

Because detC−1 = 1
detC we are left with det (tIn −A) and therefore taking the

determinant on both sides of (7.7.5) we get

det (tIn −A) = det (tIn −B) (7.7.7)

which shows that the two characteristic polynomials are the same.

7.7.8 Definition. If A and B are n× n matrices, then A is orthogonally similar to
B if there exists an n× n orthogonal matrix Q such that B = Q−1AQ.

7.7.9 Theorem. Orthogonal similarity is an equivalence relation on n× n matri-
ces. Furthermore the equivalence classes of orthogonal similarity are finer than
those of similarity, meaning that any two matrices that are orthogonally similar
are similar, but not conversely.

7.7.10 Exercise. Prove Theorem 7.7.9 by imitating the proof of Theorem 7.7.3.
You will need Exercise 6.7.4.

Given any n × n matrix A and a permutation σ on {1, 2, . . . , n}, we define a
new matrix Aσ by

Aσ = (P σ)−1AP σ, (7.7.11)

where P σ is the permutation matrix association to σ: see Definition 6.5.1. Because
permutation matrices are orthogonal, we see thatA andAσ are orthogonally similar
and therefore similar. So the next result follows from Theorem 7.7.4.

7.7.12 Proposition. A and Aσ have the same characteristic polynomial and the
same eigenvalues.

Let aσij be the ij-th entry of Aσ.
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7.7.13 Exercise. Show that aσij = aσ(i)σ(j)

7.7.14 Example. Using the permutation given in cycle notation by (123), and its
permutation matrix computed in Example 6.5.2, we multiply out0 1 0

0 0 1
1 0 0

a11 a12 a13
a21 a22 a23
a31 a32 a33

0 0 1
1 0 0
0 1 0

 =

a22 a23 a21
a32 a33 a31
a12 a13 a11


so we get the formula claimed in Exercise 7.7.13.

7.7.15 Exercise. Once you have read the definitions in §6.8, show that every prin-
cipal submatrix of A is the leading principal submatrix of Aσ for a suitable permu-
tation σ.

7.8 Change of Basis

We now take a linear transformation T from an n-dimensional vector space V to
itself, and ask how the matrix of T varies as we vary the basis of V .

So pick a basis e1, . . . , en of V . In this basis, we have as per (7.1.3),

T (ej) =
n∑
i=1

aijei,

so we get a square n × n matrix A. We now write in shorthand (we only use this
notation in sections involving change of basis):

[T ]e = A. (7.8.1)

So [T ]e denotes the matrix of the linear transformation T in the e-basis.
Next, if v =

∑n
j=1 xjej , we write, in shorthand, [v]e for the column vector x

with entries x1, . . . , xn. In this notation, (7.1.5) becomes

[T (v)]e = [T ]e[v]e = Ax. (7.8.2)

Now suppose that we have a second basis f1, . . . , fn of V . Let B be the matrix
of T in this basis, so, using the same notation as in (7.8.1)

[T ]f = B. (7.8.3)

We can write the same vector v in terms of this basis, and get v =
∑n

j=1 zjfj , so
in our shorthand: [v]f = z , and exactly as in (7.8.2) we get

[T (v)]f = [T ]f [v]f = Bz. (7.8.4)
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To determine the relationship of the two n × n matrices A and B, we need to
understand the relationship between [v]f and [v]e. Because f1, . . . , fn is a basis of
V , we can write each one of the ej uniquely in terms of it, in other words:

ej =
n∑
i=1

dijfi. (7.8.5)

This gives us a n×n matrix D = [dij ]. D is invertible because the e1, . . . , en also
form a basis. That is all we can say about D: any invertible matrix can be used to
change basis.

To see how the coordinates transform, write as before

v =
n∑
j=1

xjej =
n∑
j=1

zjfj

so substituting the values of ej from (7.8.5), we get

n∑
j=1

xjej =
n∑
j=1

xj

n∑
i=1

dijfi =
n∑
i=1

( n∑
j=1

dijxj

)
fi

so that zi =
∑n

j=1 dijxj . In matrix notation,

z = Dx. (7.8.6)

Because of this equation, we call D the change of basis matrix from e-coordinates
to f -coordinates. Indeed, the i-th column of D gives the expression of ei in the
f -basis. In our shorthand, we have

[v]f = D[v]e. (7.8.7)

Applying this to T (v) instead of v, we get

[T (v)]f = D[T (v)]e. (7.8.8)

So, combining these equations,

D[T ]e[v]e = D[T (v)]e by (7.8.2)

= [T (v)]f by (7.8.8)

= [T ]f [v]f by (7.8.4)

= [T ]fD[v]e by (7.8.7)
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Now multiply on the left by the inverse of D, to get

[T ]e[v]e = D−1[T ]fD[v]e.

Using (7.8.1) and (7.8.3), this says

Ax = D−1BDx.

Since this is true for all x, we have

A = D−1BD, so B = DAD−1, (7.8.9)

the desired result. Notice what this says: to get the matrix B of T in the f -
basis, starting with a vector expressed in the f -basis, first convert the vector into
e-coordinates usingD−1, then apply the matrixA of T in the e-basis, and then con-
vert the resulting expression back to the f -basis using D: reading the right-hand
side of (7.8.9) from right to left. We have proved the following theorem.

7.8.10 Theorem. Two n × n matrices A and B are similar if and only if they are
the matrix of the same linear transformation T from an n-dimensional vector space
to itself in different bases.

Therefore when studying linear transformation, what is important is not the
matrix of A, but the similarity class of that matrix. By Theorem 7.7.4, the charac-
teristic polynomial and all the expressions that can be deduced from the character-
istic polynomials are invariants of the similarity class.

7.8.11 Example. Suppose that V is two dimensional, with basis e1,e2, and that
T (e1) = e1 + e2, and T (e2) = 2e1 + 3e2. Then the matrix A = [T ]e is[

1 2
1 3

]
Now suppose we have a second basis f1, f2, with

e1 = (f1 + f2)/2

e2 = (f1 − f2)/2

so the matrix D is [
1
2

1
2

1
2 −1

2

]
We can solve explicitly for the f in terms of e:

f1 = e1 + e2

f2 = e1 − e2
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so we see directly that D−1 is [
1 1
1 −1

]
Now

T (f1) = T (e1 + e2) = 3e1 + 4e2 = (7f1 − f2)/2
T (f2) = T (e1 − e2) = −e1 − 2e2 = (−3f1 + f2)/2

so the matrix B = [T ]f of T is this basis is

1

2

[
7 −3
−1 1

]
and you should check directly that (7.8.9) is verified.

And now for some exercises on a generalization on these concepts.

7.8.12 Exercise. Show that the set of all n×m real matrices forms a vector space
of dimension nm. Write down a basis for this vector space.

Call this vector space M(n,m).
As we saw above, each element A ∈ M(n,m) represents a linear transforma-

tion from Rn to Rm. Imagine you make a change of basis in Rn, and a change of
basis in Rm. How does the matrix of the associated linear transformation change?

A change of basis in Rn is given by an invertible n× n matrix B. Similarly, a
change of basis in Rm is given by an invertible m×m matrix C.

7.8.13 Definition. Two n×mmatricesA1 andA2 are equivalent, writtenA1 ≡ A2,
if there is a invertible n× n matrix B and an invertible m×m matrix C such that

A1 = BA2C (7.8.14)

7.8.15 Exercise. Show that this is an equivalence relation.

7.8.16 Exercise. In which ways does this generalize the equivalence relation on
n× n matrices given in Definition 7.7.1. In which ways is it different?

7.8.17 Exercise. Show that Gaussian elimination and backsubstitution reduces any
n×m matrix A to an equivalent matrix A′.



Lecture 8

Symmetric Matrices

The main object of study in this course is the objective function f(x) of an opti-
mization problem. We want to determine when the point x = a is a minimizer for
the problem, in other words, when f(a) is the minimum value of f on the feasible
set. As always we assume that we are in Rn. We will usually assume that f is suf-
ficiently differentiable, usually meaning at least twice continuously differentiable
( C2).

If we consider only points a in the interior of the feasible set, then (as we will
see in Theorem 13.1.1) f(a) is a local minimum only if the gradient at a is zero:
∇f(a) = 0.

Next Taylor’s Theorem 12.4.8 tells us that in a neighborhood of any point a
in the interior of its domain, the C2-function f can be approximated by its second
order Taylor polynomial

f(a) +∇f(a) · (x− a) +
1

2
(x− a)TF (a)(x− a)

where F (a) is the Hessian of f evaluated at a, thus a symmetric n× n matrix.
At a point a where the gradient∇f(a) vanishes we are left with

f(a) +
1

2
(x− a)TF (a)(x− a)

By making the change of variable y = x − a that brings the point a to the
origin, and ignoring the constant f(a), we get

1

2
yTF (a)y.

This is called a quadratic form, and it gives rise to a symmetric matrix. In
fact it gives rise to many symmetric matrices, depending on the basis used for
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the vector space. All these matrices, which are said to represent the quadratic
form, are members of one congruence class (see Definition 8.4.1 and Proposition
8.3.1). Congruence is an important equivalence relation on symmetric matrices for
precisely this reason. For optimization it is crucial to understand where a given
quadratic form fits in the classification of quadratic forms.

Our first result, Theorem 8.3.2, says that there is a diagonal matrix D in every
congruence class, with diagonal elements either 1, 0 or −1. Then Sylvester’s Law
of Inertia 8.5.5 shows that for a given quadratic form, the number of 1, 0 and −1
in its diagonal representative does not depend on the diagonal matrix found: this
yields important invariants for each quadratic form. It is the main result of the
lecture.

Section 8.6 are devoted to Gauss-Jordan diagonalization techniques for quadratic
forms. These techniques give an efficient computational approach for finding a di-
agonal matrix representing the quadratic form, as opposed to Theorem 8.3.2, which
just gives an existence result; and the Spectral Theorem, where the computation is
much less efficient. This is the approach one should use when computing by hand
or by machine.

8.1 Quadratic Forms

8.1.1 Definition. A quadratic form is a function from Rn to R given by

q(x) = xTAx =

n∑
i=1

( n∑
j=1

aijxixj

)
, (8.1.2)

where A = (aij) is a n × n symmetric matrix, so aij = aji for all i 6= j, and
x ∈ Rn.

It is called quadratic because q(tx) = t2q(x) for all real number t. In other
words q is a homogeneous function of degree 2.

8.1.3 Example. Let D(d1, . . . , dn) be a n× n diagonal matrix. Then

q(x) = d1x
2
1 + d2x

2
2 + · · ·+ dnx

2
n,

as you should check.

8.1.4 Example. Let q(x1, x2, x3) = x21 + 2x1x2 − x1x3 − x22 + x2x3 + 4x23. The
associated matrix A is  1 1 −1/2

1 −1 1/2
−1/2 1/2 4


as you should check by carrying out the matrix multiplication xTAx.



8.1. QUADRATIC FORMS 105

8.1.5 Remark. In this example, note that the off-diagonal terms in the matrix are
half the coefficients in the quadratic polynomial. This is because we have not
written separate coefficients for xixj and xjxi, as we have in the sum in (8.1.2) If
we wrote the summation differently (check the indexing) we would have:

q(x) =
n∑
i=1

( n∑
j=i

bijxixj

)
.

For i 6= j, bij = 2aij , while bii = aii.

Here are the main definitions concerning quadratic forms.

8.1.6 Definition. The quadratic form q(x) with matrixA is definite if q(x) 6= 0 for
all x 6= 0.

We can refine this classification as follows.

8.1.7 Definition. The quadratic form q(x) with matrix A is

• Positive definite if ∀x 6= 0, q(x) > 0, or, equivalently, xTAx > 0;

• Positive semidefinite if ∀x, q(x) ≥ 0, or, equivalently, xTAx ≥ 0;

• Negative definite if ∀x 6= 0, q(x) < 0, or, equivalently, xTAx < 0;

• Negative semidefinite if ∀x, q(x) ≤ 0, or, equivalently, xTAx ≤ 0;

• Indefinite if it does not fall into one of the four previous cases.

8.1.8 Example. The matrix [
1 0
0 −1

]
associated to the quadratic form q = x21 − x22 is indefinite, because

[
1 0

] [1 0
0 −1

] [
1
0

]
= 1, while

[
0 1

] [1 0
0 −1

] [
0
1

]
= −1

We pursue this in Example 8.5.1.

We can summarize the definitions above in the language of optimization theory.
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8.1.9 Proposition. We seek to optimize the quadratic form q(x) on Rn. Its critical
points are the points x for which Ax = 0, in other words the nullspace of A. The
origin is always a critical point. Note that q(0) = 0.

Then q(x) has a strict minimum at x = 0 if it is positive definite; a minimum if
it is positive semidefinite.

It has a strict maximum at x = 0 if it is negative definite; a maximum if it is
negative semidefinite.

Finally it has a saddle point, if it is indefinite, meaning that in a neighborhood
of 0 there are both negative and positive values of q(x).

Determining where a given quadratic form fits in this list is therefore important
for optimization.

Where does the quadratic form 8.1.4 fit in the classification? Because q(ε, 0, 0) =
ε2, and q(0, ε, 0) = −ε2, we see that there are points arbitrarily close to the origin
that take positive values, and points close to the origin where the function takes
negative values. So we are at a saddle point.

Going back to the function f(x), we see that if q(x) is the quadratic term of
the Taylor expansion of f , the matrix A is half the Hessian F (a) of f at a.

If the matrix A has maximum rank n (which means it is invertible) we will
learn in §9.4 that the local behavior of the original function f at a critical point is
determined by its quadratic approximation q, and therefore by the matrix A.

For the rest of this lecture we do linear algebra, forgetting about the function
f , considering only the quadratic form

q(x) = xTAx (8.1.10)

where A is a symmetric matrix.

8.2 Symmetric Bilinear Forms

Quadratic forms are naturally paired with symmetric bilinear forms, which we now
define.

8.2.1 Definition. A symmetric bilinear form is a real valued map from two copies
of Rn, the first with variables x, the second with variables y. It is given by

b(x,y) = xTAy,

where A is a symmetric n× n matrix.
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8.2.2 Example. As we noted in Definition 5.4.1, the standard inner product on Rn
is an example of symmetric bilinear map. Its matrix A is the identity matrix, and
its associated quadratic form is the square of the norm.

8.2.3 Remark. We generalize what we did for inner products in Definition 5.4.1.
The form b is symmetric in that b(x,y) = b(y,x), since yTAx = xTAy, as you
see by taking the transpose. Bilinear means that it is linear in each set of variables
separately. Thus, for a real numbers s,

b(sx,y) = sb(x,y)

and

b(x1 + x2,y) = b(x1,y) + b(x2,y);

8.2.4 Exercise. Show that the definition implies

b(x, sy) = sb(x,y)

b(x,y1 + y2) = b(x,y1) + b(x,y2).

by using the symmetry of the form

To each symmetric bilinear form b(x,y) one can associate the quadratic form
q(x) = b(x,x) with the same matrix A. In the other direction, we can construct a
symmetric bilinear form b for every quadratic form q by:

b(x,y) =
q(x + y)− q(x− y)

4
. (8.2.5)

This expression is useful, because it shows that one can reconstruct all the entries
of the matrix of the quadratic form from the values of q. Indeed,

aij = b(ei, ej) =
q(ei + ej)− q(ei − ej)

4
.

We will use bilinear forms in the proof of Theorem 8.3.2 and in the Law of
Inertia.

8.2.6 Exercise. Let ai, 1 ≤ i ≤ n be n fixed vectors in an n-dimensional vector
space V . For any collection of n real numbers xi, form the linear function

l(x) =
n∑
i=1

xiai.

which maps Rn to V . Show that the vectors ai are linearly independent if and only
if the null space of l is zero-dimensional. In that case, show that the vectors ai
form a basis of V .
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8.2.7 Example (Hankel Forms). We can produce an n× n matrix A from 2n− 1
numbers s0, . . . , s2n−2, by letting aij = si+j−2. Written out, this gives a symmet-
ric matrix

A =


s0 s1 s2 . . . sn−1
s1 s2 s3 . . . sn
. . . . . . . . . . . . . . .
sn−1 sn sn+1 . . . s2n−2

 (8.2.8)

called a Hankel form.
Notice that each square submatrix of a Hankel form is again a Hankel form.

Hankel forms were investigated by the German mathematician Frobenius in the
late nineteenth century: a good reference for his work is Gantmacher [25], V. 1,
X.10. Frobenius showed how to compute the rank and the signature of a Hankel
form from the signs of its leading principal minors Dk, a preoccupation similar to
our preoccupation in this course.

Below we give the first step in Frobenius’s approach.
The sequence {si}, 0 ≤ i ≤ 2n− 2, remains fixed throughout this discussion.

Let us use the notation [sk]mp for the m × p matrix M with ij-th entry mij =
sk+i+j−2. So the matrix A above is [s0]nn. Since our sequence only goes up to
s2n−2, the matrix [sk]mp is only defined if k+m+ p ≤ 2n− 2. Every such matrix
is a submatrix of A, as long as m ≤ n and p ≤ n.

8.2.9 Lemma. Let aj be the j-th column of A. Assume that the first h columns of
A are linearly independent, but the first h + 1 columns are dependent. Then the
leading principal minor Dh of A is non-zero.

Note that the matrix formed by the first h columns of A, which in our notation
is [s0]nh has independent columns if and only if one of the h×hminors is different
from 0. The lemma says that with the other hypothesis, the minor formed from the
first h rows is always non-zero. This would be false for a more general matrix.

Proof. Since a1, . . . , ah are linearly independent, the equation of linear depen-
dence between a1, . . . , ah+1 can be written:

ah+1 =

h∑
j=1

αjaj (8.2.10)

Considering the set of equations (8.2.10) one row at a time, we see that we have:

sh+k =

h∑
j=1

αjsj+k−1 , 0 ≤ k ≤ n− 1. (8.2.11)
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Now consider the h × n-matrix A′ consisting of the first h rows of A. In our
notation it is [s0]hn. Equation (8.2.11) says that the (h+ k)-th column a′h+k of A′

can be written as a linear combination of the previous h columns:

a′h+1+k =
h∑
j=1

αja
′
j+k , 0 ≤ k ≤ n− 1.

Thus all the columns of A′ can be written as a linear combination of its first h
columns. Then the first h columns of A′ must be linearly independent: if not, the
column rank of A′ would be less than h, but by hypothesis its row rank is h, so
we have a contradiction. Finally notice that the first h columns of A′ form a h× h
matrix that is the upper left-hand corner of A, so its determinant is Dh, which is
therefore non-zero.

8.3 The Diagonalization of Quadratic Forms

In this section, we take the point of view of §7.8. We do not want to use Rn
to denote our vector space, since that implies we are working with a given basis
and coordinate system. Instead we will use V to denote our n-dimensional vector
space. We first give it a basis e1, . . . , en, and then another basis f1, . . . , fn. In
§8.1 we assumed a basis was chosen, and we wrote out the quadratic form in that
basis using the coefficients x. Now we can also write q(v), for a vector v ∈ V .
Since we allow arbitrary changes of basis, we will not use the inner product in our
arguments.

Using the notation of §7.8, for any v ∈ V , we write [v]e = x, and [v]f = z.
Recall that this just expresses the fact that the coordinates of v in the e-basis are x,
and the coordinates of v in the f -basis are z. Then, by the change of basis formula
7.8.7, [v]f = D[v]e for the invertible change of basis matrix D. In other words, as
per (7.8.6), z = Dx, so x = D−1z. For convenience write E for D−1.

In the e-basis of V , q(v) has value xTAx. We want to write a similar expres-
sion for q(v) in the f -basis. In the f -basis of V , since x = Ez, q(v) has value

(Ez)TAEz = zTETAEz

so that the matrix of the quadratic form in the f -basis is B = ETAE.
We say that B represents the quadratic form in the f -basis. Note that B is

symmetric since A is. Indeed:

BT = (ETAE)T = ETAT (ET )T = ETAE = B.

We have established:
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8.3.1 Proposition. Given a symmetric n × n matrix A representing q, any other
matrix representing q is of the form ETAE, where E is an invertible n×n matrix.

Our goal is to find a basis f on V that leads to the “simplest” possible matrix
B representing the quadratic form, and study zTBz instead of xTAx. Indeed, we
can find a coordinate system such that B is a diagonal matrix, so we can write

q(z) = b11z
2
1 + b22z

2
2 · · ·+ bnnz

2
n

8.3.2 Theorem. Let A be an n × n real symmetric matrix. Then there exists an
invertible n×nmatrixD such thatB = DTAD is a diagonal matrix with diagonal
entries bi, where each bi is either 1, 0 or −1. If q is the quadratic form represented
by A in the x-coordinate system, then in the coordinate system z where x = Dz, q
is represented by B, so that

q(z1, z2, . . . , zn) =
n∑
i=1

biz
2
i (8.3.3)

Proof. We prove this by induction of the dimension n of the vector space V . We
start the induction at n = 1. Pick any non-zero element a of V as its basis. Then
if q(a) = r, for any b ∈ R, q(ba) = brb = rb2. If q(a) = 0, we are done. If
q(a) = r > 0, then replace the basis a by a′ = a/

√
r, to get the result. Indeed,

q(a′) = 1. If q(a) = −r < 0, then replace a with a′ = a/
√
r and get q(a′) = −1.

Next assume that the result is proved for all vector spaces of dimension up to
dimension n−1. We now prove it for dimension n. The key is to find an element an

such that q(an) 6= 0. If this cannot be done, (8.2.5) tells us that the bilinear form b
associated to q is identically 0, so that the matrixA is 0, and any basis diagonalizes.
So we may assume that we can find a an such that q(an) 6= 0. Normalizing its
length as in the one-dimensional case, we may assume that q(an) = ±1. Put
y = an in b(x,y). Then the linear map L(x) = b(x,an) : Rn → R is non-zero, so
that its nullspace N is (n− 1)-dimensional by the rank-nullity theorem: see §7.2.
Restricting q to N , by our induction hypothesis we can find a basis a1, a2, . . . ,
an−1 of N satisfying the conclusion of the theorem. Furthermore b(ai,an) = 0
for 1 ≤ i ≤ n− 1 by the construction of N . Finally, we need to show that the ai,
1 ≤ i ≤ n, form a basis for V . Since the first n − 1 of them are independent, the
only way adding an would fail to give a basis is if an is in N . This would mean
L(an) = b(an,an) = 0, or q(an) = 0, which was ruled out.

So we have a basis, and the matrix B representing q in this basis is diagonal
with all diagonal elements equal to 0 or ±1, as required.

Example 8.5.1 shows how this proof works.
We will also find a diagonal B in two other ways: by a Gaussian elimination

argument called completing the square: §8.6 and then using Theorem 9.2.5.
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8.4 Congruent Matrices

Before continuing with diagonization techniques, we show that there is a new
equivalence relation here, this times on symmetric matrices, known as congru-
ence. It is related to the equivalence relation of similar matrices, which applies to
all square matrices, not just symmetric ones, studied in §7.7.1.

8.4.1 Definition. The n × n symmetric matrix A is congruent to the symmetric
matrix B if there is an invertible matrix C such that B = CTAC.

8.4.2 Example. Let A be the symmetric matrix[
2 0
0 3

]
and C the invertible matrix [

1 1
0 2

]
Then the matrix

B = CTAC =

[
1 0
1 2

] [
2 0
0 3

] [
1 1
0 2

]
=

[
2 2
2 14

]
is congruent to A.

8.4.3 Proposition. Congruence is an equivalence relation on symmetric matrices.

Proof. We will use the identity (CT )−1 = (C−1)T : the inverse of the transpose
is the transpose of the inverse. This is established by taking the transpose of the
equation CC−1 = I , and using the uniqueness of the inverse. The rest of the proof
is nearly identical to that of Theorem 7.7.3, and is left to the reader.

This equivalence relation partitions symmetric matrices into congruence classes
of congruent matrices. How many different congruence classes are there? This
question is answered in Corollary ??.

Do not confuse congruence with similarity ( Definition 7.7.1) , or orthogonal
similarity (Definition 7.7.8). Once we have established the Spectral Theorem 9.2.1,
we will see the connection between these three equivalence relations.

The following proposition will be useful in the Law of Inertia 8.5.5.

8.4.4 Proposition. The rank of a symmetric matrix is an invariant of its congruence
class: in other words, if two matrices are congruent, they have the same rank.
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Proof. Let B = CTAC be a matrix congruent to A, so C is invertible. Let N be
the nullspace ofA, andM be the nullspace ofB. The subspaceC−1N is contained
in M, as one sees by carrying out the multiplication: let p ∈ N , so BC−1p =
CTACC−1p = CTAp = 0. By the same argument applied to an element in the
nullspace of B, we see that CM is contained in N . Because C is invertible, the
dimension of C−1N is the same as that N , and the dimension of CM is the same
as that of M. Our two inclusions then say that dimN ≤ dimM ≤ dimN , so
their dimensions are equal. Since A and B have nullspaces of the same dimension,
they have the same rank.

8.5 The Law of Inertia

Now we classify quadratic forms q by looking at the diagonal matrices representing
it, namely the diagonal matrices B found in the Diagonalization Theorem 8.3.2.
This is done by Sylvester’s Law of Inertia 8.5.5. For a given quadratic form, we
have not shown that the diagonal matrix B obtained in this way is unique, and in
fact it is not. First we examine a simple example, and determine the source of
non-uniqueness, using the proof strategy of Theorem 8.3.2.

8.5.1 Example. This is a continuation of Example 8.1.8. Let V be a two-dimensional
vector space with basis e1, e2, and write an element v of V as x1e1 + x2e

2. As-
sume that the quadratic form q is represented in the e-basis as q(x1, x2) = x1x2,
so its matrix is

A =

[
0 1/2

1/2 0

]
.

The bilinear form associated to q is

b(x,y) =
(x1 + y1)(x2 + y2)− (x1 + y1)(x2 + y2)

4
=
x1y2 + y1x2

2
,

by (8.2.5). We construct a diagonalizing basis as in the proof of Theorem 8.3.2:
we choose f1 = a1e

1 + a2e
2 with q(f1) = a1a2 6= 0. So both a1 and a2 must be

non-zero. We could normalize f1 so that q(f1) = ±1, by dividing by
√
a21 + a22,

but we will not bother, to avoid burdening the computation. Then, following the
proof of Theorem 8.3.2, we consider the linear form b(x, f1) and find an element
f2 in its nullspace. This means solving for x in the equation x1a2 + x2a1 = 0.
Up to multiplication by a non-zero scalar, we can take x = (a1,−a2), so that the
second basis vector f2 = a1e

1 − a2e
2. If z1 and z2 are the coordinates in the

f -basis, the i-th column of the change of basis matrix E (7.8.6) satisfying x = Ez
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is the vector of coefficients of f i in the e-basis, so

E =

[
a1 a1
a2 −a2

]
.

E is invertible because its determinant −2a1a2 6= 0 by our choice of f1.
Then the matrix representing our quadratic form in the f -basis is

B = ETAE =

[
a1 a2
a1 −a2

] [
0 1/2

1/2 0

] [
a1 a1
a2 −a2

]
=

[
a1a2 0

0 −a1a2

]
,

so, as predicted, it is diagonal, but with entries along the diagonal depending on a1
and a2. This shows there are infinitely many bases for V in which the quadratic
form is diagonal. Even if one normalizes f1 and f2 to have length one, there is more
than one choice. Our computation shows that in all of them, one of the diagonal
entries is positive and the other is negative. The Law of Inertia 8.5.5 generalizes
this computation.

Sylvester’s Law of Inertia 8.5.51 shows that the following three numbers asso-
ciated to a diagonal matrix D are congruence invariants of D, even if the diagonal
entries di themselves are not.

8.5.2 Definition. Let B be an n × n diagonal matrix with diagonal entries b1, b2,
. . . , bn. Then

• p is the number of positive bi, 1 ≤ i ≤ n.

• k is the number of zero bi, 1 ≤ i ≤ n.

• m is the number of negative bi, 1 ≤ i ≤ n.

The triple of integers (p, k,m) is called the inertia of B.

Note that p+ k +m = n. The dimension of the nullspace of B is k, so n− k
is the rank of B. Proposition 8.4.4 says n − k is an congruence invariant of B, so
k is too.

8.5.3 Example. If D is the diagonal matrix D(7, -1, 0, 3, 3, -2), then p = 3, k = 1,
and m = 2.

8.5.4 Definition. The signature of a diagonal matrix B is the number p − m. If
p+m = n, B is called non-degenerate or non-singular; if p+m < n is less than
n, B is called degenerate or singular.

1Published by J. J. Sylvester in 1852 - [72].
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8.5.5 Theorem (Sylvester’s Law of Inertia). Let A be a symmetric n × n matrix.
By Theorem 8.3.2 it is congruent to a diagonal matrix B, which has an inertia.
The inertia is a congruence invariant of A: it is the same for any diagonal matrix
congruent to A. Conversely any diagonal matrix with the same inertia as B is
congruent to B.

Proof. Assume we have two coordinate systems e and f in which the quadratic
form q is diagonal. Let Vp, Vk and Vm be the subspaces of V spanned by the
basis elements of e on which the quadratic from is positive, zero and negative,
respectively, and let Wp, Wk and Wm be the analogous subspaces for the f -basis.
Let pV , kV , mV be the dimensions of Vp, Vk and Vm, and pW , kW , mW the
dimensions of Wp, Wk and Wm. Clearly pV + kV +mV = pW + kW +mW = n.
By Proposition 8.4.4, kV = kW . We will show that pV = pW , from which it will
follow that mV = mW .

We claim that the linear subspaces Vp and Wk + Wm of V do not intersect
except at the origin. Suppose they did at a point p 6= 0. Because p ∈ Vp, we have
q(p) > 0, but because p ∈ Wk + Wm, q(p) ≤ 0, a contradiction, so the claim is
established.

This shows that pV ≤ n − kW − mW = pW . Indeed, the e-basis vectors
spanning Vp, and the f -basis vectors spanning Wk + Wm can be extended, by the
claim, to a basis for V . Indeed, suppose not: then we would have an equation
of linear dependence, which would express an element of Vp as an element of
Wk +Wm, and this is precisely what we ruled out.

Exchanging the role of the V ’s and W ’s, we get pW ≤ pV , so they are equal.
This concludes the proof that (p, k,m) are congruence class invariants.

The converse follows easily: using the notation above, construct linear maps
between Vp and Wp, between Vk and Wk, and between Vm and Wm sending basis
elements to basis elements. This is possible since there are the same number of
basis elements in all three cases. This gives the desired change of basis. The
theorem is proved.

The Law of Inertia allows us to talk about the signature of q: it is the signature
of any diagonal matrix representing q.

8.5.6 Corollary. A quadratic form q in Rn is:
Positive definite, if its signature is n, which forces the rank to be n;
Positive semidefinite, if its signature is m, m ≤ n, and its rank m;
Negative definite, if its signature is −n, which forces the rank to be n;
Negative semidefinite, if its signature is −m, m ≤ n, and its rank m;
Indefinite, if its signature is less than the rank, so both p and m are positive.
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Proof. Call the signature s and the rank r. Then s = p−m, r = p+m. Referring
back to Definition 8.1.7, the proof is immediate.

Here is a second example showing what happens when the quadratic form does
not have maximum rank.

8.5.7 Example. Using the same notation as in the previous example, assume that
q can be written in the e-basis as q(x1, x2) = x21, so its matrix is

A =

[
1 0
0 0

]
,

The bilinear form associated to q is b(x,y) = x1y1, as per (8.2.5). Pick any vector
f1 = a1e

1 + a2e
2 ∈ V , so that q(f1) 6= 0. This just says that a1 6= 0. In this case

we divide by a1, and write f1 = e1 + ae2. Then, following the proof of Theorem
8.3.2, we consider the linear form b(x,a) = x1 and find a non-zero element f2 in
its nullspace. We must take f2 = ce2, for c 6= 0 Let

D =

[
1 a
0 c

]
be the change of basis matrix from the e-basis to the f -basis. D is invertible be-
cause its determinant c 6= 0 by choice of f1 and f2. Then we have[

f1

f2

]
= D

[
e1

e2

]
and

[
x1
x2

]
= DT

[
z1
z2

]
.

Then the matrix of our quadratic form in the f -basis is

B = DADT =

[
1 a
0 c

] [
1 0
0 0

] [
1 0
a c

]
=

[
1 0
0 0

]
,

so, as predicted, it is diagonal. In this example, because we normalized the length
of the first new basis vector f1, then entries of the new diagonal matrix are the same
as the ones we started with.

The form in Example 8.5.3 has signature 1. It is degenerate and indefinite.

8.5.8 Example. The matrix of the quadratic form

q(x1, x2, x3) = x21 + x1x2 + x1x3 + x22 + x2x3 + x23 (8.5.9)

is

A =

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

 (8.5.10)
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since xTAx = q(x). In order to diagonalize q, we compute the eigenvalues and
eigenvectors of A. This computation can be done easily, because the matrix A has
an unusual amount of symmetry.

We get an eigenvalue λ when the rank of the characteristic matrix

λI3 −A =

λ− 1 −1
2 −1

2
−1

2 λ− 1 −1
2

−1
2 −1

2 λ− 1

 (8.5.11)

is less than 3. When λ = 1/2, all three columns of λI3 −A are the same, showing
that this matrix has rank 1, so 1/2 is an eigenvalue. Furthermore any vector x with
x1 + x2 + x3 = 0 is an eigenvector. The eigenvectors associated to this eigenvalue
form a vector space V2 of dimension 2. We say that 1/2 is an eigenvalue of multi-
plicity 2, or that two eigenvectors have eigenvalue 1/2. Two possible independent
eigenvectors are (1,−1, 0) and (0, 1,−1), as you should check.

When λ = 2 the columns of λI3 − A add to the zero vector, and thus are
linearly dependent, so 2 is an eigenvalue. The associated eigenvector is (up to
multiplication by a scalar) the vector (1, 1, 1). It is orthogonal to V2.

So we have found a basis for V consisting of the three eigenvectors. In this
basis, the matrix for q is diagonal with the eigenvalues down the diagonal. This is
the key point, that we will develop in Theorem 9.2.5. Since all three eigenvalues
are positive, the matrix is positive definite. Thus the signature of the form is 3.

The eigenvalue/eigenvector computation is unusually simple in this example.
Usually one has to factor the characteristic polynomial, which can be painful. For
n ≥ 5 one generally needs to use an iterative technique such as Newton’s method
to diagonalize under eigenvectors. So we use a different approach on the next
example.

8.5.12 Example. We compute the signature of the n × n symmetric matrix Mn

with all diagonal terms equal to n− 1 and all off diagonal terms equal to −1:

Mn =


n− 1 −1 . . . −1
−1 n− 1 . . . −1
. . . . . . . . . . . .
−1 −1 . . . n− 1


We will show that the signature and the rank are n− 1, so that the form is positive
semidefinite. We do this by first computing the signature for n = 2 and then setting
up a proof by induction. Letting n = 2, we get

M2 =

[
1 −1
−1 1

]
.
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By using symmetric Gaussian elimination (see §8.6) we can transform this to the
diagonal matrix (1, 0), so p = 1, k = 1 and m = 0. We are done. Next

M3 =

 2 −1 −1
−1 2 −1
−1 −1 2


By symmetric Gaussian elimination again, this transforms our matrix into the con-
gruent matrix: We get 1 0 0

0 3
2 −3

2
0 −3

2
3
2


and the 2× 2 matrix in the bottom right is just M2 multiplied by 3

2 . The 1 in upper
left-hand corner just adds 1 to the signature we found in the case n = 2, so the
signature is (2, 0). This suggests the general strategy: we prove by induction that
the signature of Mn is n − 1 and the rank n − 1. By row reduction, first dividing
the top row by n− 1, and then clearing the first column, you get

1 0 . . . 0

0 n(n−2)
n−1 . . . − n

n−1
. . . . . . . . . . . .

0 − n
n−1 . . . n(n−2)

n−1


The bottom right matrix of size (n− 1)× (n− 1) is n

n−1 times the matrix Mn−1.
By induction we know that the signature and the rank of Mn−1 are both n− 2 and
we are done. Note that we are using Sylvester’s law of inertia 8.5.5 to say that this
matrix is congruent to Mn. Compare to Example 9.4.9.

We will develop more tests for positive definiteness, negative definiteness and
the like in §9.4 , but first we must prove the most important theorem connected to
real symmetric matrices: the Spectral Theorem. We do this in the next lecture.

8.6 Completing the square

The technique described below is known as Lagrange’s reduction method2, pub-
lished in 1759 in [37], long before matrices were invented. We illustrate it with
examples after the proof of the theorem. Some are taken from Lagrange’s original
paper.

2See Steen [62], p.360, and Gantmacher [25] §X.3.
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We start with the quadratic form, written as in (8.1.2):

q(x) =

n∑
i=1

( n∑
j=1

aijxixj

)
,

with aij = aji both appearing in the sum, i 6= j.

8.6.1 Theorem (Lagrange’s Reduction Method for Quadratic Forms). Given the
quadratic form q(x) written as above, it can be diagonalized inductively by one of
the two following changes of basis.

1. If the diagonal term akk 6= 0, then make the change of variables:

yk =

n∑
j=1

akjxj , with yj = xj for j 6= k. (8.6.2)

In the new system of coordinates the variable yk only appears as a square in
the quadratic form.

2. If the two diagonal elements agg and ahh are both zero, but agh is not zero,
then make the change of variables

yg =

n∑
j=1

(agj + ahj)xj

yh =
n∑
j=1

(agj − ahj)xj

yj = xj otherwise.

In the new system of coordinates the variables yg and yh only appear as
squares in the quadratic form.

Proof. We divide the proof in two parts corresponding to the two cases of the
theorem.

8.6.1 A diagonal term is non-zero

First assume one of the diagonal terms, say akk, is non-zero. This case is easy.
Define

sk(x) =
1

akk

( n∑
j=1

akjxj

)2
(8.6.3)
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Notice that the coefficients of all the terms xkxj , 1 ≤ j ≤ n, in s(x) are the same
as the corresponding ones in q(x). Indeed, the coefficient of x2k is akk, while that
of xkxj , j 6= k, is 2akj = akj + ajk. Thus the difference q(x)− sk(x), which we
call q1(x) does not contain the variable xk. If we let yk be as in the statement we
can replace xk by yk to get a new basis, and by construction yk only appears as a
square in the quadratic form. Thus the variable xk does not appear in q1 (nor does
yk, of course), and

q = q1 +
1

akk
y2k.

This allows us to proceed by induction on n, as claimed in the theorem

8.6.2 Two diagonal terms vanish

Assume that the two diagonal terms agg and ahh vanish, and that agh does not
vanish. In fact, since this method is harder than the previous one, it is better to use
it only when necessary, namely when there are no non-zero diagonal terms left.
Unless the quadratic form is identically zero, we can find an off-diagonal term, say
agh 6= 0. In this case the Lagrange method says to complete two squares at the
same time:

sg(x) =
1

2agh

( n∑
j=1

(agj + ahj)xj

)2
(8.6.4)

sh(x) =
1

2agh

( n∑
j=1

(agj − ahj)xj
)2
. (8.6.5)

We replace the two variables xg and xh by variables yg and yh as indicated in the
statement of the theorem. We can write the change of basis matrix as a partitioned
matrix (see §6.10), listing the g and h coordinates first in both coordinate systems.
Thus we get [

C X
0 I

]
where I is the n− 2 identity matrix, 0 the zero matrix, X a matrix we do not need
to compute, and C the 2× 2 matrix[

0 agh
agh 0

]
Thus the determinant of our big matrix is −a2gh, and thus is non-zero by assump-
tion. So it can be used as a change of basis matrix.
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Next we consider the quadratic form:

q1(x) = q(x)−
(
sg(x)− sh(x)

)
= q(x)− 1

2agh

(
y2g − y2h

)
.

Claim: q1 does not contain the variables xg or xh. If so, we have diagonalized two
variables in q. We prove this in several steps. Notice the minus sign between sg
and sh in this expression.

First we consider the x2g term, so we examine the term j = g in the sums
(8.6.4) and (8.6.5). Its coefficient in q is agg = 0, which vanishes by hypothesis.
In sg we get

1

2agh
(agg + ahg)

2 = agh/2

because agg = 0. In sh we get

1

2agh
(agh − agg)2 = agh/2

so in sg − sh get 0, as required. The term x2h in treated the same way.
Next the term xgxh. Its coefficient in sg is, setting j = h:

1

2agh
2(agg + ahg)(agh + ahh) = ahg

and in sh is −ahg, so the total contribution is 2ahg, as required.
Finally we take a term xgxj , where j is neither g nor h. The coefficient in sg

is
1

2agh
2ahg(agj + ahj) = agj + ahj

while that in sh is

− 1

2agh
2ahg(agj − ahj) = −agj + ahj

so the difference is 2agj , so we get agreement again. The terms xhxj , follow from
symmetry so we are done.

Each step in the Lagrange reduction changes the basis on the vector space in
order to simplify the quadratic form. By Proposition 8.3.1, at each step the matrix
A of the quadratic form gets replaced by a new matrix of the form ETAT . In case
1, E is a triangular matrix of the type consider in §?? and in ordinary Gaussian
elimination. In case 2, the matrix E derives from the change of coordinates written
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down in the statement of the theorem,and is easily seen not to be triangular. It is
therefore less familiar.

And now for some examples. A simple example will show why this method
is called completing the square. Take a form in two variables, say q(x) = x21 +
2x1x2 + 3x22. Note that by our convention, this means that a12 = 1. Then we
consider all the terms involving x1, namely x21 + 2x1x2, and ask: can we complete
this expression so that it is a square? Yes, it is the beginning of the square of x1+x2.
So s1(x) = (x1 + x2)

2 and so q(x)− s1(x) = 2x22, so we have eliminated all the
terms involving x1 as claimed.

8.6.6 Example. In his 1759 paper on finding maxima and minima, Lagrange writes
the quadratic form in 2 variables as

At2 + 2Btu+ Cu2

using capital letters for the constants and u, v for the variables, and notes that if
A 6= 0 it can be written as the sum of the squares

A
(
t+

Bu

A

)2
+
(
C − B2

A

)
u2.

8.6.7 Example. Then Lagrange writes the quadratic form in 3 variables as

At2 + 2Btu+ Cu2 + 2Dtv + 2Euv + Fv2,

using capital letters for the constants and t, u, v for the variables. He reduces first
to

A
(
t+

Bu

A
+
Dv

A

)2
+
(
C − B2

A

)
u2 + 2

(
E − BD

A

)
uv +

(
F − D2

A

)
v2

then, setting

a = C − B2

A
, b = E − BD

A
, c = F − D2

A
,

his form becomes

A
(
t+

Bu

A
+
Dv

A

)2
+ au2 + 2buv + cv2

So we should replace the variable t by a new variable w = t+ Bu
A + Dv

A , and this
is exactly what out general algorithm above tells us to do. Then we just use the
two-variable case, assuming that a 6= 0.
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Then he says (§8) “One can extend the same theory to functions of four or
more variables. Whoever has understood the spirit of the reduction I have used up
to now, will be able to discover without difficulty those needed in any special case.”

Here now is a case with actual numbers:

8.6.8 Example. We use Example 8.1.4, so q(x1, x2, x3) = x21 + 2x1x2 − x1x3 −
x22 + x2x3 + 4x23. We look for a variable with a pure square term: x1 will do. The
terms involving x1 are x21 + 2x1x2 − x1x3. The degree-one polynomial whose
square starts out like this is z1 = x1 + x2 − x3/2. Then

q(x1, x2, x3) = z21 − x22 + x2x3 − x23/4− x22 + x2x3 + 4x23

= z21 − 2x22 + 2x2x3 +
15

4
x23

We can now repeat the process on

q1(x2, x3) = −2x22 + 2x2x3 +
15

4
x23,

using x2 as our next variable for completing the square. Since a22 = −2, and
a23 = 1, by (8.6.3) we have s2 = (−1/2)(−2x2 + x3)

2 = −2x22 + 2x2x3− x23/2,
so when we subtract s2 from q1, all the terms involving x2 vanish. Let z2 =
−2x2 + x3, so s2 = −z22/2. We get q1 + z22/2 = 15

4 x
2
3 + x23/2 = 17

4 x
2
3. Finally

let z3 = x3. Substituting everything in, we have q written in our new coordinates
zi as z21 − z22/2 + 17

4 z
2
3 . So the quadratic form is diagonalized, the signature is 1

and the rank 3. You can check the result using Lagrange’s formulas from Example
8.6.7.

8.6.9 Example. Let’s write a general three-by-three case: So q(x1, x2, x3) =
2(a12x1x2 + a13x1x3 + a23x2x3. We assume a12 6= 0, so we will eliminate the
first two variables simultaneously.

Write linear forms y1 = a12x2 + (a13 + a23)x3 and y2 = −a12x1 + (a13 −
a23)x3 to make the change of variable. The change of basis matrix is 0 a12 a13 + a23

−a12 0 a13 − a23
0 0 1


which is indeed invertible,

It is now an easy exercise to subtract

1

2agh

(
y2g − y2h

)
from q, to verify that all the terms in x1 and x2 have indeed vanished.
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Now a special case:

8.6.10 Example. Let q = 2x1x2 + 4x1x3 + 8x2x3, so a12 = 1, a13 = 2, and
a23 = 4. We use the first two variables, so g = 1 and h = 2.

s(x) =
1

2
(x1 + x2 + 6x3)

2

t(x) =
1

2
(−x1 + x2 − 2x3)

2

and then q − (s − t) = −16x23, so all the terms involving x1 and x2 have been
eliminated. If we set y1 = x1 + x2 + 6x3, and y2 = −x1 + x2 − 2x3, y3 = 4x3,
then the form becomes (y21 − y22)/2− y23 .

To recapitulate how one uses the method in practice:

8.6.11 Definition. We have two moves:

1. Move I: When a diagonal term is non-zero (say akkx2k, with akk 6= 0), com-
plete the square on xk so as to eliminate all the off-diagonal terms involving
xk. This is illustrated by Example 8.6.8.

2. Move II: When all the remaining diagonal coefficients of A are zero, but the
off-diagonal coefficients agh = ahg are non-zero, use (8.6.4) and (8.6.5) to
eliminate the variables xg and xh from the quadratic form, and replace them
by two new variables that only occur as squares.

When we diagonalize a quadratic form in this way, we do not have to worry
about the order of the variables: so for example we can complete the square on x2
before doing anything to x1. When we write down a matrix for q, it is usual to do
the operations starting with the first row and column, so that we want to deal with
x1 before x2, etc. This is not a problem, since any order of the variables can be
achieved by a permutation. On the matrix level, this is realized by conjugation by
the appropriate permutation matrix.

8.6.12 Remark. Move II is only used if the quadratic form q is indefinite. Indeed,
in the diagonalization it produces diagonal terms with opposite signs.

8.6.13 Example. We revisit Example 8.5.8, that we solved using eigenvalues and
eigenvectors earlier. The matrix of the quadratic form is

q(x1, x2, x3) = x21 + x1x2 + x1x3 + x22 + x2x3 + x23 (8.6.14)



8.6. COMPLETING THE SQUARE 124

We want to change variables to new variables z1, z2, z3 by completing the square
to remove the cross terms. Starting with x1, we see we must take

z1 = x1 +
1

2
x2 +

1

2
x3.

transforming the form to

z21 +
3

4
x22 +

1

2
x2x3 +

3

4
x23 (8.6.15)

So we have eliminated x1 and replaced it by the new variable z1. We now repeat
the process, eliminating x2 by completing the square on the terms

3

4
x22 +

1

2
x2x3 =

3

4
(x22 +

2

3
x2x3) (8.6.16)

We set z2 = x2+ 1
3x3, square this and substitute 3

4(x22+ 2
3x2x3) out of (8.6.15)

as before to get

z21 +
3

4
z22 +

2

3
x23 (8.6.17)

We set z3 = x3, completing the change of variables:

z1 = x1 +
1

2
x2 +

1

2
x3

z2 = x2 +
1

3
x3

z3 = x3

We call the triangular, and invertible, matrix of coefficients D−1, so that we
have z = D−1x. We use D−1 and not D to keep the same notation as in (7.8.6): it
is D−1, since here we are writing the new basis in terms of the old one. We need
to compute D. By back-substitution, solving for the xi in terms of zj , we see it is
the upper triangular matrix

D =

1 −1/2 −1/3
0 1 −1/3
0 0 1


8.6.18 Exercise. Compute B = DTAD:

B =

 1 −0 0
−1/2 1 0
−1/3 −1/3 1

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

1 −1/2 −1/3
0 1 −1/3
0 0 1


and show you get the diagonal matrix D(1, 3/4, 2/3), confirming the computation
above.
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It is worth double checking this (and any other) computation. The determinant
of A is 1/2 by an easy computation. The determinant of B is the product of the
diagonal elements, thus also 1/2. This is as it should be. The determinant of the
product DTAD is the product of the individual determinants, and D and DT have
determinant 1, since they are triangular with 1’s along the diagonal.



Lecture 9

The Spectral Theorem

The main result of the lecture, one of the most important results in linear algebra,
indeed, all of mathematics, the Spectral Theorem 9.2.1, tells us that the eigenvalues
and eigenvectors of a real symmetric matrix are real. We prove it without introduc-
ing complex number, using the Rayleigh Quotient instead. An immediate corollary
of the Spectral Theorem is Theorem 9.2.5, which shows that we can diagonalize
real symmetric matrices using orthogonal matrices, studied in §6.7 precisely for
this appearance. This gives another proof of Theorem 8.3.2.

The cost of not using complex numbers is that we have to use the Weierstrass
Theorem 16.2.2 that says that a continuous function on a compact set has both a
minimum and a maximum.

Then we list various ways of characterizing positive definite (Theorem 9.4.1)
and semidefinite (Theorem 9.5.1) forms. You need to learn to recognize when a
Hessian is positive semidefinite or not.

9.1 The Rayleigh Quotient

We fix a basis on the vector spaceV , as well as the standard inner product for this
basis. Given the quadratic form xTAx, we make the following definition which
will be used in the proof of the Spectral Theorem 9.2.1 and in Theorem 13.1.3.

9.1.1 Definition. The Rayleigh quotient is the real-valued function, defined for all
non-zero vectors x, defined as:

R(x) =
〈x, Ax〉
〈x,x〉

.

We have already looked at a Rayleigh-like functions in Example 11.1.6 (the
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second example). Also see Example 16.3.8. Throughout we use Theorem 7.4.5 for
symmetric matrices: 〈x, Ax〉 = xTAx = 〈Ax,x〉.

9.1.2 Theorem. The Rayleigh quotient is a continuous function on Rn \ 0. Let m
denote the inf , andM the sup of its values on Rn\0. Then both are finite, andR(x)
attains both m and M at points em and eM on the unit sphere U = {x|‖x‖ = 1}.
Furthermore

• m is the smallest eigenvalue of A and em is any eigenvector of A corre-
sponding to m.

• M is the largest eigenvalue ofA and eM is any eigenvector ofA correspond-
ing to M .

Note that this shows that A has real eigenvalues m and M .

Proof. R is clearly continuous everywhere it is defined, namely everywhere except
at the origin.

9.1.3 Lemma. For any non-zero t ∈ R , R(tx) = R(x), so the Rayleigh quotient
is homogeneous of degree 0.

Proof. Both numerator and denominator of the Rayleigh quotient are homoge-
neous functions of degree 2 (see Definition 12.3.1), so t2 can be factored out of
both, removing all the t from R, showing that it is homogenous of degree 0.

9.1.4 Definition. A ray emanating from a point c through a point e different c is
the set of t(e − c), for t ∈ R+. Thus a ray is a half-line ending at c and passing
through e.

The lemma says that the Rayleigh quotient is constant along rays emanating
from the origin. Since each ray intersects the unit sphere in a point, all values of R
are attained on the unit sphere U .

Since U is closed and bounded, andR(x) is continuous on U , we can apply the
maximum theorem: R(x) attains both its minimum and its maximum values on U .
As we will see in the easy Theorem 13.1.1, any maximizer or minimizer for R is a
critical point for R, namely a point e where the gradient of R vanishes. Thus the
importance of the following proposition:

9.1.5 Proposition. Let e ∈ U be a point where the gradient of R vanishes:
∇R(e) = 0. Then e is an eigenvector of A with eigenvalue a = R(e).
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Proof. Let f be an arbitrary but fixed non-zero vector in Rn, and let t be a real
variable. We evaluate the Rayleigh quotient at e + tf , and write the composite
function as

g(t) = R(e + tf).

The numerator of g(t) is

p(t) = 〈e + tf , A(e + tf)〉 = 〈e, Ae〉+ 2t〈e, Af〉+ t2〈f , Af〉 (9.1.6)

and its denominator is

r(t) = 〈e + tf , e + tf〉 = 〈e, e〉+ 2t〈e, f〉+ t2〈f , f〉 (9.1.7)

Now g′(t) = 〈∇R((e + tf), f〉 by the chain rule. We evaluate g′(t) at t = 0. Since
∇R(e) = 0 by hypothesis, we get g′(0) = 0.

On the other hand, since g(t) = p(t)/r(t), by the quotient rule we get

g′(0) =
p′(0)r(0)− p(0)r′(0)

r2(0)
= 0.

Now r2(0) = 1, since e is on U , and p(0) = R(e), which we denote a. So we get:

g′(0) = p′(0)− ar′(0) = 0. (9.1.8)

Next we compute the derivatives of p(t) and r(t) at 0, using (9.1.6) and (9.1.7)
respectively.

p′(0) = 2〈f , Ae〉
r′(0) = 2〈f , e〉

Equation 9.1.8 reads, after substituting in these values:

2〈f , Ae〉 − 2a〈f , e〉 = 0 , or 〈f , Ae− ae〉 = 0.

Since f is an arbitrary vector in Rn, this means that Ae − ae is perpendicular to
every vector, which can only happen if it is the zero vector: Ae − ae = 0. Thus
e is an eigenvector of A with eigenvalue a = R(e), which concludes the proof of
the proposition.

It is now easy to prove Theorem 9.1.2. The maximum and minimum values of
R are attained on U at critical points of R, so that the gradient of R vanishes there.
Thus the corresponding vector e is an eigenvector with eigenvalue a. Thus the
minimum is attained at the eigenvector(s) corresponding to the smallest eigenvalue,
and the maximum at the eigenvector(s) corresponding to the largest eigenvalue.
This concludes the proof of the theorem.
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9.2 The Spectral Theorem for a Real Symmetric Matrix

In §8.3, starting with our symmetric matrixA, we looked for diagonalizationsD =
CTAC where D is diagonal and C is a change of basis matrix. In this section we
will show that this diagonalization can be achieved with an orthogonal matrix C,
namely a matrix such that C−1 = CT . This means that D and A are similar, and
therefore have the same characteristic polynomial. See §6.7.

9.2.1 Theorem (The Spectral Theorem). IfA is a real symmetric n×nmatrix, then
its eigenvalues are real and its eigenvectors can be selected to form an orthogonal
basis of the vector space V .

The spectrum of a matrix is the set of its eigenvalues. This theorem is called the
spectral theorem because it describes the eigenvalues of a real symmetric matrix:
they are real. The first paragraph of Steen [62] discusses the early history of the
spectral theorem, at the time it was called the principal axis theorem. We have
already seen the contribution of Sylvester in his law of inertia 8.5.5. We have used
the method of Lagrange (§8.6) and that of Jacobi (Theorem 6.9.6) to diagonalize
quadratic forms. In §13.7 we will discuss principal axes when considering the level
sets of objective functions.

9.2.2 Example. Before starting the proof, let’s work out the familiar 2 × 2 case.
Let A be an arbitrary 2× 2 matrix [

a b
c d

]
To compute the eigenvalues of A, we need the roots of the characteristic polyno-
mial of A, namely the determinant∣∣∣∣t− a −b

−c t− d

∣∣∣∣ = t2 − (a+ d)t+ ad− bc.

The quadratic formula tells us that this polynomial has real roots if and only if the
discriminant is non-negative. The discriminant is

(a+ d)2 − 4(ad− bc) = a2 + 2ad+ d2 − 4ad+ 4bc = (a− d)2 + 4bc.

When the matrix is symmetric, b = c, so we get (a− d)2 + 4b2, a sum of squares,
which is always non-negative. So the eigenvalues:

λi =
a+ d±

√
(a− d)2 + 4b2

2
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are real.
What about the eigenvectors? We could compute them, but we only need to

show they are orthogonal. First assume the matrix has a double eigenvalue. This
corresponds to the discriminant being 0, which means that b = 0 and a = d.
Because the matrix is diagonal, any non-zero vector in the plane is an eigenvector.
There is therefore no difficulty in finding two eigenvectors that are orthogonal.
Now assume that the eigenvalues are distinct. Then Proposition 7.4.7 shows they
are orthogonal, which settles the theorem in dimension 2.

We now do the case of general n.

Proof of the Spectral Theorem. Let R(x) be the Rayleigh quotient of the symmet-
ric matrix A.

Then Proposition 9.1.2 gives us an eigenvector em of A of length 1, where the
Rayleigh quotient achieves its minimum value on the unit sphere, with correspond-
ing real eigenvalue a. We now rename these:

e1 = em and a1 = a

We want to apply Proposition 9.1.2 to A restricted to the subspace V1 of V , the
orthogonal complement of e1 in V . V1 is a vector space of dimension n − 1. We
need the following

9.2.3 Lemma. A maps V1 to V1. In other words, if x ∈ V1, then Ax is in V1, and
so is perpendicular to e1.

Proof. We have

〈Ax, e1〉 = 〈x, Ae1〉 by self-adjointness 7.4.5,

= a1〈x, e1〉 because Ae1 = a1e1,

= 0 because x ∈ V1.

The Rayleigh quotient, when restricted to the unit sphere U1 in V1, has a mini-
mum value a2. Since U1 ⊂ U , we have a2 ≥ a1. Proposition 9.1.2 shows that a2 is
a real eigenvalue of A with unit length eigenvector e2. Repeat the process. Contin-
uing in this way, we find an orthonormal basis of eigenvectors e1, e2, . . . , en with
real eigenvalues a1 ≤ a2 ≤ · · · ≤ an.

We could also have started with an eigenvector corresponding to the largest
eigenvalue, which we also know is real from our Rayleigh quotient result.
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9.2.4 Definition. Let A be a symmetric n × n matrix. Let e1, e2, . . . , en be the
collection of orthonormal eigenvectors found in the Spectral Theorem, and λi the
corresponding eigenvalues. Let Q be the matrix whose i-th column is the eigen-
vector ei. Then Q is called the matrix of eigenvectors of A, and λ = (λ1, . . . , λn)
the vector of eigenvalues.

We write D for D(λ1, λ2, . . . , λn), the diagonal matrix with diagonal entries
the eigenvalues.

9.2.5 Theorem. Let A be a real symmetric n×n matrix, Q its matrix of eigenvec-
tors, and λ its vector of eigenvalues. Then Q is an orthogonal matrix and

Q−1AQ = D or A = QDQT (9.2.6)

Proof. That the matrix Q is orthogonal follows immediately from the fact that
its columns, the eigenvectors, are orthonormal. We can write all the eigenvector-
eigenvalue equations in one matrix equation:

AQ = QD, (9.2.7)

as a moment’s thought will confirm. Multiply on the left byQ−1, to getQ−1AQ =
Q−1QD = D.

9.2.8 Exercise. Show that (9.2.7) encodes all the eigenvector-eigenvalues, as claimed.

Review Definition 8.5.2 for the meaning of p, k, and m in the next result.

9.2.9 Corollary. Start with a symmetric matrix A. Its rank is the number of non-
zero eigenvalues. p is the number of positive eigenvalues, k is the number of zero
eigenvalues, and m is the number of negative eigenvalues.

Proof. The matrix D = D(λ1, λ2, . . . , λn) is congruent to A because Q is an or-
thogonal matrix, so Q−1 = QT . Now p, k, and m are invariants of the congruence
class. They are easy to compute for the matrix D.

9.2.10 Corollary. Assume further that A is positive definite, thus invertible. The
eigenvalues of A−1 are 1/λi with the same eigenvectors ei, and therefore the
same eigenvector matrix Q, so A−1 is also positive definite. Then the eigenvalue-
eigenvector decomposition of A−1 can be written:

Q−1A−1Q = D(1/λ1, 1/λ2, . . . , 1/λn)
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Proof. All the matrices in (9.2.6) are invertible, so just compute the inverse using
the fact that the inverse of the orthogonal matrix Q is its transpose, that the in-
verse of the diagonal matrix D(λ1, λ2, . . . , λn) is D(1/λ1, 1/λ2, . . . , 1/λn) and
that computing the inverse of a product of invertible matrices reverses the factors
of the product.

So Q is a change of basis matrix that diagonalizes the quadratic form, as in
Theorem 8.3.2. It is a “better” change of basis because it preserves distance and
angle - that is what being orthogonal means. Note finally, that the diagonal matrix
obtained by this method is uniquely defined, since it consists in the eigenvalues of
A.

Why not always diagonalize by this method? The answer is that it is harder
(and more expensive computationally) to compute the eigenvalues than to do Gaus-
sian elimination.

9.2.11 Example (Example 8.5.8 once again). In §8.6 we will compute a diagonal
matrix (associated to the quadratic form given by (8.5.10) by change of basis), and
obtain D(1, 3/4, 2/3). In (8.5.8) we computed the eigenvalues of the same form q,
and obtained D(1/2, 1/2, 2) . From the preceding remark see that D(1/2, 1/2, 2)
can also be viewed as being obtained from a change of basis. Thus, as we claimed
in the remark before Definition 8.5.2, the matrix D itself is not unique. However,
in accordance with the Law of Inertia 8.5.5, the numbers p+, p0 and p− are the
same: indeed, for both, we get (3, 0, 0). The form q is positive definite.

9.2.12 Example. By Proposition 7.7.12, A and Aσ have the same type: if one is
positive definite, the other is; if one is positive semidefinite, the other is, and so on.

Indeed, they have the same characteristic polynomial and therefore the same
eigenvalues. Therefore by Corollary 9.2.9 they have the same signature.

9.3 The Symmetric Square Root of a Symmetric Matrix

9.3.1 Definition. Let A be a positive semidefinite symmetric n× n matrix. Write
its orthogonal matrix of eigenvectors Q and its matrix Λ of eigenvalues, so that by
Theorem 9.2.5, A = QΛQT . Because A is positive semidefinite, its eigenvalues
λi are nonnegative by the Spectral Theorem 9.2.1. So set σi =

√
λi, let Σ the

diagonal matrix with the σi on the diagonal, so Σ2 = Λ. Finally let R = QΣQT .
The symmetric n× n matrix R is called the square root of A, since A = R2. R is
written

√
A.
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Conversely, if a symmetric matrixA has a square rootR, meaning a symmetric
matrix R such that A = R2, then for any x,

xTAx = xTR2x = 〈RTx, Rx〉 = ‖Rx‖ ≥ 0,

so A is positive semidefinite. We have established:

9.3.2 Proposition. Every positive semidefinite matrix A has a square root. Con-
versely if a symmetric matrix has a square root, it is positive semidefinite. Further-
more, A is positive definite if and only if its square root is.

The last statement is clear, since the eigenvalues of
√
A are the square roots of

those of A.

9.3.3 Proposition. Let M = UR, where R is the symmetric square root of the
positive semidefinite matrix A, and U is any orthogonal matrix. Then

MTM = A

.

Proof. Since U is orthogonal, Proposition 6.7.2) tells us that UT = U−1. Then

MTM = RTUTUR = RTR = A.

SoM could also be called a square root ofR, but it is not generally symmetric.
If we replace the diagonal matrix Σ in Definition 9.3.1 by a diagonal matrix S
where we replace any number of diagonal elements by their negative, we get a new
symmetric matrices S such that A = S2. We will not consider these.

9.4 Positive Definite Quadratic Forms

We defined positive definite quadratic forms, and positive semidefinite quadratic
forms in Definition 8.1.7, and noted their importance in minimization theory in
Proposition 8.1.9. We now study them in more detail.

Here we collect different ways of characterizing positive definite quadratic
forms, in others words necessary and sufficient conditions for a form to be pos-
itive definite. We also collect a number of necessary conditions.

9.4.1 Theorem. Let q(x) be a quadratic form in n variables, with matrix A. The
following conditions are equivalent.
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1. q is positive definite. So q(x) > 0 for all x 6= 0. In matrix terms, xTAx > 0.

2. The eigenvalues of A are positive.

3. The signature of A is n.

4. The leading principal minors of the matrix A of q are positive.

5. There is a n× n symmetric invertible matrix R such that A = RTR.

Note that the number of positive pivots is the number p in the inertia. So (3) is
equivalent to having all the pivots positive.

Proof. Much of the proof follows from earlier work. First, (2)⇔ (3) is a special
case of Corollary 9.2.9.

Then (3) ⇔ (4) follows from Theorem 6.9.6. Indeed, since D0 = 1 in that
theorem, if all the pivots dk are positive, then all the leading principal minors Dk

are, and conversely, by the formula dk = Dk/Dk−1, 1 ≤ k ≤ n.
Next we show the equivalence of (1) and (2). First (1)⇒ (2): for every eigen-

vector e with eigenvalue a, we have

q(e) = 〈e, Ae〉 = 〈e, ae〉 = a〈e, e〉

Since q is positive definite q(e) > 0, and 〈e, e〉 is the norm of e, and therefore
positive. Thus a is positive.

Now (2)⇒ (1). By the Spectral Theorem, we can write any vector z in Rn as a
linear combination

∑n
i=1 ziei of the eigenvectors e1, e2, . . . , en. As before, let ai

denote the eigenvalue associated to ei. Then

Az =
n∑
i=1

ziAei =
n∑
i=1

ziaiei.

We need to show that q(z) is positive for all z 6= 0.

q(z) = 〈z, Az〉 =

n∑
i=1

aiz
2
i

because the eigenvectors are orthogonal of length 1. This is positive since all the
ai are positive, so we are done.

Finally we show the equivalence of (1) and (5). To show (5) ⇒ (1), just note
that if x 6= 0, then Rx 6= 0, since R is invertible. So

〈Rx, Rx〉 = 〈x, RTRx〉 = 〈x, Ax〉 > 0.
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To show (1) ⇒ (5) just use the symmetric square root
√
A for R. It is invertible

when A is positive definite by Proposition 9.3.2.

9.4.2 Corollary. If A is positive definite, all the diagonal elements aii are positive.
All principal minors are positive too.

9.4.3 Exercise. Prove the corollary using Proposition 7.7.12: if A is positive def-
inite, then so is Aσ for any permutation σ. Exercise 7.7.13 then shows that any
principal minor of A can be transformed into a leading principal minor of Aσ for a
suitable σ.

This corollary is a useful tool for disproving that a quadratic form is positive
definite. All you need to do is find a diagonal entry or a principal minor that is not
positive, and you know the form is not positive definite.

9.4.4 Example. The matrix associated to the quadratic form considered in Exam-
ple 8.6.9 has zeroes along the diagonal, so it is not positive definite. Indeed, we
noted that it is indefinite.

9.4.5 Proposition. Write the characteristic polynomial P (t) = det (tI −A) of A
as (see (7.3.2))

p(t) = tn − p1tn−1 + p2t
n−2 + · · ·+ (−1)npn (9.4.6)

Then pi is the sum of the
(
n
i

)
principal minors of degree i. In particular p1 is the

trace, which is the sum of the n principal minors aii of degree 1, and pn is the
determinant of A, namely the unique principal minor of degree n.

Work out what happens when n = 3. The general case is proved using permu-
tations and symmetric functions. We will not provide a proof, but one can be found
in Horn and Johnson [32], p. 42. This result is used in Theorem 9.5.1.

9.4.7 Corollary. A is positive definite if and only if pi > 0 for all i, 1 ≤ i ≤ n.

Proof. First assume all the pi are positive. In particular pn 6= 0, so that 0 is not a
root of p(t). A eigenvalue of A is by definition a root of p(t): the alternation of the
signs of the coefficients means that for negative t all the terms in the sum (9.4.6)
have the same sign, so that characteristic polynomial cannot vanish. Therefore all
the eigenvalues are positive and we are done.

Now assume that A is positive definite. Then all the principal minors of A are
positive (see Corollary 9.4.2), so their sum is also, by Proposition 9.4.5.
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This is very convenient for proving or disproving that a symmetric matrix gives
a positive definite form: just compute the characteristic polynomial and check the
signs of the pi.

9.4.8 Example. Compute the characteristic polynomial of the matrix (8.5.10). You
will get

t3 − 3t2 +
9

8
t− 1

2

so the pi as defined by (9.4.6) are all positive, and the matrix is positive definite.
This confirms something we already knew for this example.

9.4.9 Example. Let Qn is the n× n matrix

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


Let’s show Qn is positive definite. Note that detQ1 = 2, detQ2 = 3, and
detQn = 2 detQn−1 − detQn−2, so detQn = n+ 1. This allows us to compute
all the leading principal subminors: they are all positive, so Qn is positive definite.
Amusingly one can find a formula for the inverse of Qn. First consider the n × n
matrix Rn, where

R2 =

[
2 1
1 2

]
, R3 =

3 2 1
2 4 2
1 2 3

 , R4 =


4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

 ,

so that Rn is the symmetric matrix with entries

rij = (n+ 1− j)i , i ≤ j. (9.4.10)

Note that if En denotes the n× n matrix with all entries equal to 1, then the upper
left hand n × n block of Rn+1 = Rn + En. Then by induction and using the ap-
propriate block decomposition (see §6.10) one can show that: QnRn = (n+ 1)In,
so the inverse of Qn is 1

n+1Rn. We use this matrix in an optimization problem in
Example 13.2.3. Compare this example to Example 8.5.12, which is only positive
semidefinite.
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9.4.11 Example. We work on a (n+1)-dimensional vector space with coordinates
x0, x1, . . . , xn. We let the quadratic form be xTAx, where the entries of A are
aij = 1

i+j−1 , 0 ≤ i, j ≤ n. So

A =


1 1/2 1/3 . . . 1/(n+ 1)

1/2 1/3 1/4 . . . 1/(n+ 2)
. . . . . . . . . . . . . . .

1/(n+ 1) 1/(n+ 2) 1/(n+ 3) . . . 1/(2n+ 1)


Thus A is a Hankel form, as defined in Example 8.2.7. Our goal is to show that
this quadratic form is positive definite. Instead of using one of the criteria we have
developed, recall from integral calculus that∫ 1

0
ykdy =

1

k + 1
, k ≥ 0.

The quadratic form can be written

xTAx =

n∑
i=0

n∑
j=0

(∫ 1

0
yi+jdy

)
xixj

=

∫ 1

0

( n∑
i=0

n∑
j=0

yi+jxixj

)
dy =

∫ 1

0

( n∑
i=0

yixi

)2
dy

Notice what we did: we interchanged the integral with the two finite summations,
and then the key step was to recognize the integrand on the second line as a square.

Then, to show that this form is positive definite, we need to show that for any
choice of constants x0, x1, . . . , xn, not all zero, this integral is non-zero. It is
clearly non-negative, so the only issue is showing that it is not zero. This is the
integral of the square of a non-zero polynomial, thus a continuous function. In a
neighborhood of a point where the polynomial does not vanish, we get a positive
contribution to the integral, so we are done.

One can produce many more examples of this type by using the algebraic mo-
ments

sk =

∫ 1

0
ykf(y)dy , k ≥ 0.

of an integrable function f(y). See [32] p. 393.
In the same vein, consider a polynomial f(x) =

∑m
i=0 aix

i of degree m in
one variable x that never takes on negative values. Then m must be even: just
consider the behavior at ±∞. So write m = 2n + 2. It is possible to show that
f(x) is the sum of the squares of two polynomials h and g of degree at most n+ 1:
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f(x) = g(x)2 + h(x)2: see [51], Chapter 7, for a proof. From the coefficients of f
form the (n+ 1)× (n+ 1) Hankel matrix where si = ai. Then one can prove:

9.4.12 Proposition. A Hankel form is positive semidefinite if and only if the se-
quence si are the coefficients of a polynomial that never takes on negative values.

See [10], Exercise 2.37, for the sketch of a proof.

9.5 Positive Semidefinite Quadratic Forms

Here is the theorem, parallel to Theorem 9.4.1, characterizing positive semidefinite
quadratic forms. The parallelism fails in one respect: one needs to check that all
the principal minors, not just the leading principal minors, are nonnegative.

9.5.1 Theorem. Let q(x) be a quadratic form with matrix A. The following con-
ditions are equivalent.

1. q is positive semidefinite. So q(x) ≥ 0 for all x. In matrix terms, xTAx ≥ 0.

2. The eigenvalues of A are nonnegative.

3. The signature of A is its rank, so the pivots are all nonnegative.

4. The principal minors of the matrix A are all nonnegative.

5. There is a n× n symmetric matrix R such that A = RTR.

Proof. The proofs of (1)⇔ (2), (2)⇔ (3), (1)⇔ (5) are similar to those in Theo-
rem 9.4.1.

It remains to show (1) ⇔ (4). First (1) ⇒ (4): replace the form with matrix
A by one with matrix Aε = A + εI , where ε is any positive number and I is the
n×n identity matrix. SinceA is positive semidefinite, for any ε > 0,Aε is positive
definite. Thus by Corollary 9.4.2 all its principal minors are positive. Take the limit
as ε→ 0, we see that the principal minors of A must be nonnegative.

Finally, (4) ⇒ (1). So we assume that all the principal minors of A are non-
negative. Replace A with Aε as before. Notice that every principal minor of Aε is
of the form det (M + εIm), where M is a principal submatrix of size m of A, and
Im is the identity matrix of size m. Thus, other than a missing negative sign, this is
the characteristic polynomial of the matrixM , using the variable ε. By Proposition
9.4.5, this shows that this minor can be written as a polynomial in ε of degree m:
εm + . . . where all the lower degree terms have nonnegative coefficients. So it is
positive, and now Corollary 9.4.7 implies that Aε is positive definite: xTAεx > 0
when x 6= 0. So let ε go to zero to get xTAx ≥ 0 as required.
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9.5.2 Example. Consider the matrix

A =

[
0 0
0 −1

]
.

Its leading principal minors are both zero, and yet it is clearly not positive semidef-
inite. The problem is that the 1 × 1 principal minor a22 = −1 is negative, so the
hypotheses of the theorem are not satisfied. Indeed, this form is negative semidefi-
nite and the associated function has a weak maximum at the origin.

More generally, a theorem of Jacobi ([25], theorem 2 in §X.3) shows how to
compute the signature of a quadratic form from the signs of the leading principal
minors.
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Lecture 10

Sequences

We review sequences infinite sequences in 10.1, then prove the standard results
about convergence of sequences in §10.2. All this material is covered in multivari-
able calculus, and is provided for the reader’s convenience.

10.1 Sequences

An infinite sequence in Rn is an infinite list of points in Rn:

a1, a2, a3, . . . ,an, . . . ,

usually, as here, indexed by the natural numbers N.
Here is the more formal definition1 with values in Rn:

10.1.1 Definition. A sequence is a function from the natural numbers N to Rn.

As is customary, instead of using the usual functional notation a(i) for se-
quences, we write the variable i of the sequence function as a subscript, so we
write ai, and when ai is a vector, we write it in boldface. It is not important that
the first index in the sequence be 1: it could be -1, 0, 100, or, in fact, any integer
whatsoever. It is convenience and the context that suggests the start index.

The value of the sequence at any given natural number i is called the i-th term
of the sequence. We typically write sequences within curly brackets: {ai}, or by
listing a few terms in the sequence, say a1, a2, a3, a4, . . . enough so that the pattern
of subsequent terms is clear. As already mentioned, if the sequence takes values in
Rn, n > 1, we write {ai}.

1Stewart [63] has a discussion of sequences in §11.1.
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10.1.2 Definition. A sequence {ai} converges if there is a point a ∈ Rn such that:
For every ε > 0 there is a sufficient large integer N such that i ≥ N implies that
d(ai,a) < ε. When the sequence converges the point a is called the limit of the
sequence, and is written limi→∞ ai. When a sequence does not converge, it is said
to diverge.

10.1.3 Example. {1/i} means the sequence 1, 1/2, 1/3, . . .. It is easy to see that
this sequence converges to 0.

10.1.4 Example. The sequence {cosπi} can be evaluated to give the sequence
−1, 1,−1, 1,−1, . . .. Note, as in this example, that the terms of a sequence do not
have to be distinct. The sequence {cosπi} does not converge: instead it bounces
back and forth between −1 and 1.

10.1.5 Example. The sequence {i2}, or 1, 4, 9, 16, . . . does not converge, because
the terms get arbitrarily large. We say it diverges to infinity.

Here are three simple but important theorems about convergent sequences.

10.1.6 Theorem. The limit of a convergent sequence is unique.

10.1.7 Exercise. Prove Theorem 10.1.6. Hint: do this by contradiction: assume
the sequence converges to two different values. See the proof of Theorem 3.1.3 for
a model.

10.1.8 Theorem. Suppose ai and bi are two convergent sequences in R, converging
to a and b respectively. Then

1. limi→∞(ai + bi) = limi→∞ ai + limi→∞ bi = a+ b ;

2. limi→∞ cai = c limi→∞ ai = ca, for all c ∈ R;

3. limi→∞(aibi) = ab;

4. limi→∞ 1/ai = 1/a as long as all the terms of the sequence {ai} and its
limit a are non-zero.

Proof. We sketch a proof of the first statement. We must show that for any ε > 0,
there is an integer N such that for all i ≥ N ,

|ai + bi − a− b| < ε (10.1.9)

Since {ai} converges to a, we can find a N1 such that for i ≥ N1,

|ai − a| < ε/2. (10.1.10)
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Similarly we can find a N2 such that for i ≥ N2,

|bi − b| < ε/2. (10.1.11)

By the triangle inequality,

|ai + bi − a− b| < |ai − a|+ |bi − b| (10.1.12)

so that adding (10.1.10) and (10.1.11) and applying (10.1.12) gives the desired
result 10.1.9.

If {ai} is a sequence in Rn, we write the coordinates of the point ai as ai,j ,
1 ≤ j ≤ n.

10.1.13 Theorem. A sequence {ai} in Rn converges to the point a = (a1, a2, . . . an)
if and only if the sequence of j-th coordinates, {ai,j}, 1 ≤ j ≤ n, converges to aj
for all j, 1 ≤ j ≤ n.

Proof. We only prove one of the two implications, leaving the other one to the
reader. We want to show that the sequence {ai} converges to a, assuming that the
sequences of coordinates all converge to the appropriate coordinate of a. Thus for
any positive ε we need to find an appropriate N . Write δ = ε/

√
n. For this δ we

can find a Nj such that when i ≥ Nj , |ai,j − aj | < δ.
Let N be the maximum of the Nj . Note that when i ≥ N , we have

‖ai − a‖ =

√√√√ n∑
j=1

(ai,j − aj)2 ≤ δ
√
n (10.1.14)

So we get the convergence condition for the sequence {ai} using N .
The other implication is proved in a similar way.

Thus to check the convergence of a sequence of vectors, it is enough to check
the convergence of the coordinates.

10.1.15 Definition. A sequence {ai} in Rn is bounded if there exists a real number
D such that ‖ai‖ ≤ D for all i. Thus {ai} is unbounded if for any real number D
there exists an index i such that ‖ai‖ > D.

Note that the second statement in this definition is just the contrapositive of
the first. The sequence in Example 10.1.5 is not bounded, while the sequences in
Examples 10.1.3 and 10.1.4 are.
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10.2 Convergence Tests for Sequences

10.2.1 Theorem. If all the terms of a convergent sequence {ai} lie in a closed set
S, then the limit a is also in S.

10.2.2 Exercise. Prove Theorem 10.2.1. First treat the easy case where the se-
quence takes on only a finite number of values. Otherwise, establish that the limit
of the sequence is a limit point of S, and use the definition of a closed set.

10.2.3 Definition. Let {si} be a sequence in R. Then {si} is increasing if si+1 ≥
si for all i, and {si} is decreasing if si+1 ≤ si for all i. We simply say that {si} is
monotonic if it is either increasing or decreasing.

10.2.4 Theorem. If the sequence {si} is monotonic and bounded, then it con-
verges. to the least upper bound of the sequence in the case of an increasing
sequence, and to the greatest lower bound for a decreasing sequence.

Proof. Assume the sequence {si} is increasing and bounded above by m. Then by
Theorem 14.2.5 the set of terms in the sequence has a least upper bound we call s.
We need to show that {si} converges to s. So for every ε > 0, we need to find a N
such that when i ≥ N s − si < ε. Because s is the least upper bound, for every
ε there is a term that is within ε of s. So there is an sN satisfying s − sN < ε.
Because the sequence is increasing, for any i > N we have s − si ≤ s − sN < ε
which is exactly what we needed.

We also have the squeezing principle for sequences, which is only stated here
in R, but which could be easily adapted to Rn.

10.2.5 Theorem. Consider three sequences of real numbers {ai}, {bi}, and {ci},
with ai ≤ bi ≤ ci for all i ≥ i0. If {ai} and {ci} converge to the same limit L,
then {bi} also converges, and to the same value L.

Proof. Because {ai} converges to L, for any ε > 0 there is an N1 such that if
i ≥ N1, |ai − L| < ε. Because {ci} converges to L, for the same ε, there is an N2

such that if i ≥ N2, |ci − L| < ε. Let N be greater than i0, N1 and N2. Because
ai ≤ bi ≤ ci, we have |bi − L| < ε, which shows that {bi} converges to L.



Lecture 11

Continuous Functions in Several
Variables

This chapter reviews the notion of continuity of a real-valued function at a point,
phrasing it using the language of distance functions.1

11.1 Definitions

As in the one-variable case (see §3.1) we first need to define the limit of a function
f at a point a. Compare this to Definition 3.1.1, which is now the special case
n = 1. Note in particular that f need not be defined at the point a.

11.1.1 Definition. Let D be a set in Rn, let a be a limit point of D , and assume
that the real-valued function f is defined on D. Then we say that f(x) approaches
` as x approaches a if for all ε > 0 there exists a δ > 0 such that when d(x,a) < δ
, x ∈ D and x 6= a, then |f(x)− `| < ε. We write limx→a f(x) = `, and call ` the
limit of the function f(x) at p. If there is no value ` that works, we say the limit
does not exist.

11.1.2 Definition. A function f defined on a set D ⊂ Rn to R is continuous at a
point a ∈ D if limx→a f(x) = f(a).

In other words, for all ε > 0 there is a δ > 0 such that all x ∈ D such that
d(x,a) < δ get mapped by f into the interval of radius ε around f(a).

Here is the prototypical example:
1Stewart [63] gives a good discussion of both the one-variable case (§2.5) and the multi-variable

case (§14.2).
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11.1.3 Example. Fix a point p in Rn, and let f(x) = ‖x − p‖. Then f(x) is
continuous.

Proof. Note that f(x) = d(x,p). We fix a x and show that f is continuous at x.
This means that for all ε > 0 we need to find a δ > 0 such that for all y such that
‖x− y‖ < δ, then |f(x)− f(y)| < ε. We can take δ = ε. Indeed, by the triangle
inequality,

‖x− p‖ ≤ ‖x− y‖+ ‖y − p‖ or f(x) ≤ ‖x− y‖+ f(y)

so just move the right-most term to the left side, and then repeat, interchanging the
role of x and y.

11.1.4 Exercise. Now consider the distance function d(x,y) in Rn as a function
of the 2n coordinates of x and y. Show that d is a continuous function at (x∗,y∗)
by taking a point x close to x∗ and a point y close to y∗, and writing

‖x− y‖ ≤ ‖x− x∗‖+ ‖x∗ − y∗‖+ ‖y∗ − y‖

by a generalization of the triangle inequality. Write down all the details of an ε− δ
proof, and illustrate with a picture in R2. In Example 22.3.4 we show that this
function is convex.

11.1.5 Exercise. In the same vein, now consider a non-empty set S in Rn, and
define the distance of x to S to be

DS(x) = inf
s∈S

d(x, s).

Show that DS(x) is a continuous function. For which points x does one have
DS(x) = 0?

Hint: To say that DS(x) = d means that there is an infinite sequence of points
sn ∈ S such that ‖x − sn‖ ≤ d + 1/n. This is just a rephrasing of the definition
of the least upper bound. You need to show that for any ε > 0 there is a δ > 0
such that for all y with ‖x− y‖ < δ, then |DS(x)−DS(y)| < ε. Use the triangle
inequality ‖y − sn‖ ≤ ‖y − x‖+ ‖x− sn‖.

To understand what it means for a real-valued function to have a limit in several
variables, we look at some examples in R2.

11.1.6 Example. Consider the function in the plane

f(x, y) =
x2 − y2√
x2 + y2

. (11.1.7)
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It is defined everywhere in the plane except the origin.
Check that lim(x,y)→(0,0) f(x, y) = 0. Thus we can extend f to the plane by

giving it the value 0 at the origin, and the extended function is continuous.
Now consider

g(x, y) =
xy

x2 + y2
, (11.1.8)

which is also defined everywhere but the origin. Switching to polar coordinates,
we let x = r cos θ and y = r sin θ. Then after simplification, we get g(x, y) =
cos θ sin θ = sin 2θ/2. Now a δ-neighborhood of 0 is given by r < δ. In other
words, to let (x, y) go to 0, we let r → 0. We see that no matter how small
δ is, g(x, y) takes on all values between −1/2 and 1/2 in the δ-neighborhood,
depending on the angle θ at which we approach the origin. Therefore g(x, y) does
not have a limit at 0. We continue studying this function in Example 12.1.15.

You should compare these two examples to Example 16.3.8 and Example 12.1.29.

11.2 A Theorem

Next we make the connection with limits of sequences.

11.2.1 Theorem. Let f be a continuous function defined on a set D ⊂ Rn, and
{ai} a convergent sequence in D such that its limit a still lies in D. Then

lim
i→∞

f(ai) = f(a). (11.2.2)

Conversely, if for any sequence {ai} in D converging to a, (11.2.2) is satisfied,
then the function f is continuous at a.

Proof. We just provide a sketch of a proof, and leave the details to you. First
assume f is continuous at a, and pick an ε > 0. Thus we can find a δ > 0 such
that all points in Nδ(a) satisfy |f(a)− f(ai)| < ε. We now use this δ as the ‘ε’ for
the sequence function {ai}: since it converges to a, there is a N for which all the
terms ai, i ≥ N satisfy d(a,ai) < δ. So |f(a)− f(ai)| < ε, and we are done.

Note that this is just a special case of the general result saying that the compo-
sition of two continuous functions is continuous.

For the converse, do a proof by contradiction: assume f is not continuous, and
construct a sequence {ai} converging to ai such that f(ai) does not converge to
f(a).

11.2.3 Example. The coordinate functions f(x) = x1, f(x) = x2, etc. are con-
tinuous, so any polynomial in the xi is continuous. Any rational function, meaning
a quotient of polynomials, is therefore continuous except where the denominator is
equal to zero. The function ‖x‖ is continuous, as a special case of Example 11.1.3.
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11.2.4 Exercise. Now consider the real-valued function f(x, y) on the open disk
x2 + y2 < 1 in R2 such that

f(x, y) =

{
‖(x, y)‖ if (x, y) 6= 0;
1 if (x, y) = 0.

(11.2.5)

Use Definition 11.1.2 to prove that f defined by (11.2.5) is not continuous at 0.



Lecture 12

Differentiation and Taylor’s
Theorem

We complete the review of multivariable calculus by showing how to approximate
real-valued C2-functions of several variables in a neighborhood of a point of in-
terest. This method is important in optimization. The main theorem is Taylor’s
theorem, with versions of the mean value theorem and the chain rule proved along
the way.

Here is a more detailed summary.
After a review of differentiation in several variables in §12.1, we write the chain

rule, both for the first derivative and the second derivative, using linear algebra
notation. In particular we introduce the Hessian of a function.

We conclude the lecture with Taylor’s theorem in several variables. We will
only need it in degrees 1 and 2, so those are the only cases presented. There are
many ways to approach Taylor’s theorem, in one and several variables, especially
in terms of getting expressions for the remainder. For our needs, the Lagrange form
of the remainder is enough: see the comment following Theorem 4.2.2.1

12.1 Differentiation in Several Variables

In this section we give some of the basic definitions and results for differentiation
in several variables, showing how similar they are to the definitions in one variable
given in Lecture 3. Even though we are mainly interested in functions f : Rn → R,
we start with functions f : Rn → Rm. We use the notation and definitions of §5.1
throughout.

1See [74], §8.4.4 for more details on Taylor’s theorem in several variables.



12.1. DIFFERENTIATION IN SEVERAL VARIABLES 150

Then we define the Hessian of a function in several variables, and finally we
prove Clairault’s Theorem 12.1.28, which gives hypothesis under which the mixed
partials of a function commute. We will use this theorem throughout the course,
applying it to the objective function. It tells us that the Hessian of our objective
function is a symmetric matrix when f is sufficiently differentiable, which it usu-
ally is.

12.1.1 Differentiability

Referring back to the Definition 11.1.1 of a limit, we can define differentiability by
extension of the single-variable case:

12.1.1 Definition. Let f be a function from an open set U ⊂ Rn to Rm. Let x be a
point in U , and h an arbitrary vector such that x + h is in the domain of f . If there
exists a m× n matrix A

lim
h→0

‖f(x + h)− f(x)−Ah‖
‖h‖

= 0, (12.1.2)

then f is differentiable at x and A is the derivative f ′(x) of f at x.

A necessary condition for the limit (12.1.2) to exist is that limh→0 ‖f(x+h)−
f(x)‖ = 0, in other words that f be continuous.

Note that in (12.1.2) the norm in the numerator is that on Rm, while that on the
denominator is on Rn. Because U is open, for any sufficiently small h, if x is in
U , then so is x + h, so we can evaluate f at x + h.

12.1.3 Theorem. The matrix f ′(x) is uniquely defined.

The proof is the same as that of Theorem 3.1.3, so we omit it. Limits and
continuity of functions of several variables are discussed in §16.1.

As in the one-variable case, write

f(x + h)− f(x) = f ′(x)h + r1(h) (12.1.4)

Then by definition of f ′(x), we have

lim
h→0

‖r1(h)‖
‖h‖

= 0 (12.1.5)

Thus the derivative of f at x is a n×m matrix f ′(x). As x varies, so does the
matrix f ′(x).

Therefore the derivative function f ′(x) is a function from Rn to Rnm – since
the set of n × m matrices is a vector space of dimension nm.2 What kind of
function is f ′(x)? Just as in the one-variable case, we say:

2We study this space in §??.
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12.1.6 Definition. The function f(x) is continuously differentiable, written C1, if
f ′(x) is a continuous function

If f ′(x) is differentiable, using Definition 12.1.1 with m replaced by nm, then
we write its derivative f ′′(x). Then f ′′(x) is a function from Rn to Rn2m.

12.1.7 Definition. If f ′′(x) is a continuous function, then f(x) is twice continu-
ously differentiable, written C2.

We now turn to partial derivatives. To keep the notation manageable, we as-
sume that f maps to R rather than to Rm. Thus A is just a row vector (a1, . . . , an).
Let ei be the i-th coordinate vector on Rn, Then fixing the point x∗ ∈ Rn, let the
partial derivative of f with respect to xi be

∂f

∂xi
(x∗) = lim

t→0

f(x∗ + tei)− f(x∗)

t
,

if this limit exists. In other words, the i-th partial derivative of f at x∗ is the
derivative of the function of one variable

gi(t) = f(x∗ + tei). (12.1.8)

12.1.9 Definition (The gradient). Let f be a real-valued function defined on an
open set U in Rn containing point x∗, and assume that all the partial derivatives of
f exist at x∗. The gradient of f(x) at x∗, written∇f(x∗), is the n- vector

∇f(x∗) =
( ∂f
∂x1

(x∗),
∂f

∂x2
(x∗), . . . ,

∂f

∂xn
(x∗)

)
.

The gradient is always a row vector.

12.1.10 Example. The gradient of the function f(x, y, z) = x sin y − x2z + y/z
is the row vector

(sin y − 2xz, x cos y + 1/z,−x2 − y/z2).

12.1.11 Theorem. If the real-valued function f is differentiable at x∗, all of its
partial derivatives exist at x∗, and

f ′(x∗) = ∇f(x∗). (12.1.12)

Proof. If f(x) is differentiable, so is the function gi(t) from (12.1.8), and an easy
chain rule computation show that

∂f

∂xi
(x) =

dgi
dt

(0) = Aei = ai (12.1.13)

so A = ∇f(x∗).
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12.1.14 Remark. It is tempting to guess that if all the partials of f exists, then f
is differentiable.3 Unfortunately, if the partial derivatives of f are not continuous,
this may fail, as the next example shows.

12.1.15 Example. In (11.1.8) we considered the function4

f(x, y) =

{
xy

x2+y2
if (x, y) 6= 0;

0 if (x, y) = 0.
(12.1.16)

and showed that it is not continuous at 0, and therefore not differentiable at 0. On
the other hand, both its partials exist at all points. Indeed, when xy 6= 0,

∂f

∂x
(x, y) =

y(y2 − x2)
(x2 + y2)2

,
∂f

∂y
(x, y) =

x(x2 − y2)
(x2 + y2)2

,

while both its partial derivatives at 0 exist, and are equal to zero, as a direct limit
computation shows. For example

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

0

x
= 0

Thus the functions ∂f
∂x (x, y) and ∂f

∂y (x, y) are defined everywhere, but they are not
continuous at 0. For instance

∂f

∂x
(0, y) = 1/y,

which does not approach 0 as y → 0.

12.1.17 Theorem. f is C1 on a open set U in Rn if and only if all its partial
derivatives exist and are continuous on U .

Proof. The⇒ implication follows from Theorem 12.1.11. For the⇐ implication,
we show that if all the partial derivatives exist and are continuous on U , then f
is C1. For simplicity we only write the proof when n = 2. It is a good exercise
in summation notation to write down the general case. Fix a point x∗ = (a, b)
of the domain of f and small numbers h and k so that the rectangle bounded by
(a ± h, b ± k) is entirely in the domain U of f . This is possible since U is open.
Write h = (h, k).

We first show f is differentiable, with derivative given by the partials. In other
words, we show that the limit of

f(x∗ + h)− f(x∗)− h∂f∂x (x∗)− k ∂f∂y (x∗)

‖h‖
(12.1.18)

3As Cauchy did in [16], §33.
4See [48] §I.3, for an early reference.
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as h→ 0 is 0.
Write

f(a+ h, b+ k)− f(a, b) = f(a+ h, b+ k)− f(a, b+ k) + f(a, b+ k)− f(a, b)

and apply the mean value theorem twice to get

f(x∗ + h)− f(x∗) = f(a+ h, b+ k)− f(a, b)

= h
∂f

∂x
(a+ λh, b+ k) + k

∂f

∂y
(a, b+ µk),

where 0 < λ < 1, and 0 < µ < 1.
Now substitute this into (12.1.18) to get

h∂f∂x (a+ λh, b+ k) + k ∂f∂y (a, b+ µk)− h∂f∂x (x∗)− k ∂f∂y (x∗)

‖h‖
or

h
(
∂f
∂x (a+ λh, b+ k)− ∂f

∂x (x∗)
)

+ k
(
∂f
∂y (a, b+ µk)− ∂f

∂y (x∗)
)

‖h‖
(12.1.19)

Now use the fact that the partials are continuous, which implies that as h→ 0,

∂f

∂x
(a+ λh, b+ k)→ ∂f

∂x
(x∗)

∂f

∂y
(a, b+ µk)→ ∂f

∂y
(x∗)

Then as h→ 0, the limit of the terms in the big parentheses in (12.1.19) is 0, which
shows that f is differentiable. The derivative is given by the gradient according to
Theorem 12.1.11. Since the gradient is continuous by assumption, f is C1, and we
are done.

12.1.2 The Hessian

Next we define the Hessian of a real-valued function f of n variables. We denote
the Hessian of a function by the corresponding upper case letter. So the Hessian of
f is F .

Recall that
∂2f

∂xj∂xi
(x) means

∂

∂xj

(∂f(x)

∂xi

)
.
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12.1.20 Definition. Assume that the function f(x) of n variables is C1 and that all
its second partials exist. Let

Fij(x) =
∂2f

∂xj∂xi
(x) for 1 ≤ i, j ≤ n.

The n× n matrix F (x) = [Fij(x)] is called the Hessian matrix of f at x.

In Corollary 12.1.28 we give a simple hypothesis under which the Hessian is
a symmetric matrix. Thus for i 6= j, Fij(x) = Fji(x). We say that the mixed
partials commute, meaning that the order in which the derivatives are taken is ir-
relevant. For most of the functions f we use as objective function in these notes,
this hypothesis will be satisfied.

12.1.21 Example. Let f(x, y) = x3 + 2x2y − xy2 − y, so

∂f

∂x
= 3x2 + 4xy − y2, and

∂f

∂y
= 2x2 +−2xy − 1.

Computing the y-partial of the first term, and the x-partial of the second, we get
the same result:

∂2f

∂x∂y
= 4x− 2y =

∂2f

∂y∂x
,

so the mixed partials are the same.

12.1.3 Partial Derivatives Commute

The last goal of this section is to prove Clairault’s Theorem 12.1.28 that “mixed
partials commute”.5

To prove it, we need another generalization of the mean value theorem 3.2.1.

12.1.22 Theorem. The function f(x, y) is defined on the open ball B = Br(p) of
radius r around the point p = (a, b) ∈ R2. Pick non-zero reals h and k so that
the point (a + h, b + k) is in B. Assume that the partial derivatives ∂f/∂x and
∂2f/∂y∂x exist in B. Consider

∆(h, k) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b) (12.1.23)

Then there are numbers λ and µ, with 0 < λ < 1 and 0 < µ < 1 such that

∆(h, k) = kh
∂2f

∂y∂x
(a+ λh, b+ µk) (12.1.24)

5See [63], p.916 for a multivariable calculus reference, and [55], p. 235 for a statement with
fewer hypotheses.
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Proof. We apply the mean value theorem twice. Let u(t) = f(t, b + k)− f(t, b).
Then u(t) is differentiable by hypothesis, and its derivative is

u′(t) =
∂f

∂x
(t, b+ k)− ∂f

∂x
(t, b).

We define ∆(h, k) = u(a+ h)− u(a). By the mean value theorem we get:

∆(h, k) = hu′(a+ λh),

for some λ with 0 < λ < 1. Using the definition of u(t) we get

∆(h, k) = h
(∂f
∂x

(a+ λh, b+ k)− ∂f

∂x
(a+ λh, b)

)
(12.1.25)

The function ∂f/∂x is differentiable as a function of the y variable. We apply the
mean value theorem a second time, this time to

w(t) =
∂f

∂x
(a+ λh, t),

on the interval [b, b+ k]. This gives a µ, 0 < µ < 1, so that

kw′(b+ µk) = w(b+ k)− w(b).

We recognize the right-hand side of (12.1.25) as h(w(b + k)− w(b), so (12.1.24)
follows by substituting out this term using our last chain rule computation.

12.1.26 Theorem (Clairault’s Theorem). Suppose f(x, y) is defined on an open set
U ⊂ R2, and that the partial derivatives ∂f/∂x, ∂f/∂y, ∂2f/∂y∂x, ∂2f/∂x∂y
exist on U , and are continuous at the point p = (a, b) ∈ U . Then

∂2f

∂x∂y
(p) =

∂2f

∂y∂x
(p)

Proof. We apply Theorem 12.1.22 twice, first as written, and then with the roles of
x and y interchanged, so that the order of the partials in (12.1.24) is reversed. Let

c =
∂2f

∂y∂x
(p) and d =

∂2f

∂x∂y
(p)

Then by continuity of ∂2f/∂y∂x and ∂2f/∂x∂y at p, for any ε > 0 there is a ball
Br(p) such that for any (a+ h, y + k) ∈ Br(p),∣∣∣c− ∆(h, k)

hk

∣∣∣ < ε, and
∣∣∣d− ∆(h, k)

hk

∣∣∣ < ε. (12.1.27)

This implies c = d as required.
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12.1.28 Corollary. Let f(x) be a C2-function on an open set U ∈ Rn, and let
F (x) be the Hessian of f at x. Then F (x) is a symmetric matrix for all x ∈ U .

We use the function in the next exercise to construct a function where the mixed
partials fail to commute.

12.1.29 Exercise. Consider the function in the plane minus the origin

g(x, y) =
x2 − y2

x2 + y2
.

Compute the limit of g(x, y) as you approach the origin along the line y = tx, for
a given slope t, namely compute

lim
t→0

g(x, tx).

Also compute limt→0 g(ty, y). Your computation will show that you get different
results: thus g(x, y) does not have a limit as you approach 0, so g(x, y) cannot be
extended to a continuous function in the plane.

12.1.30 Example. This example, given by Peano in [26], Annotazione N. 103, is
one of the earliest examples of a function where both mixed partials exist, and yet
are not equal. Let

f(x, y) =

{
xy x

2−y2
x2+y2

, if x2 + y2 6= 0;

0, if x2 + y2 = 0.

Note that when (x, y) 6= (0, 0), this is xyg(x, y) for the function g(x, y) of Exer-
cise 12.1.29. Show that f is C1, so that the second partials exist at 0. Then compute
the two mixed partials of f , notice that they are both defined at 0, and evaluate:

∂2f

∂x∂y
(0, 0) = 1 and

∂2f

∂y∂x
(0, 0) = −1,

so Theorem 12.1.26 fails6. This is because the second partials are not continuous
at 0, as you should check.

There is an analogous result for higher order partials, but it will not concern us.
6See Rudin [55], Exercise 27 p.242, Zorich [74], p.474, [28], Counterexample IV.4.2 p. 316.
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12.2 The Chain Rule and Linear Algebra

As usual let f(x1, . . . , xn) be a C1 real-valued function from an open neighborhood
U ∈ Rn of a point x∗.

Let g(y) be a vector valued function: Rp → Rn, with coordinate functions
gj(y1, . . . , yp), 1 ≤ j ≤ n. Assume g is defined in a neighborhood V of a point
y∗ in Rp that maps to the point x∗, and that g(V ) ⊂ U .7 Then we can define the
composite ϕ = f(g) of the two functions near y∗.

ϕ(y1, . . . , yp) = f(g1(y1, . . . , yp), . . . , gn(y1, . . . , yp)), (12.2.1)

or more compactly ϕ(y) = f(g(y)). Thus ϕ(y) : Rp → R.
We assume that both f and g are C1. The chain rule shows that the composite ϕ

is C1, too, and it computes its partial derivatives. We will record this information in
the gradient vectors of the functions. Recall that gradients of functions are written
as row vectors. So∇ϕ is a row vector of length p,∇f a row vector of length n and
∇g a n× p matrix whose (j, k) entry is ∂gj/∂yk.

We now use the chain rule to compute the gradient ∇ϕ. Before doing this, we
recall the familiar result from single-variable calculus, where n = p = 1. Then the
ordinary chain rule says:

ϕ′(y) = f ′(g(y))g′(y), (12.2.2)

or, in words, the derivative of the composite function is the derivative of the outside
function evaluated at the value of the inside function, time the derivative of the
inside function.

12.2.3 Theorem. The functions f(x), g(y) and their compositeϕ(y) are as above:
in particular f and g are C1. Then ϕ is also C1, and

∇ϕ(y) = ∇f(g(y))∇g(y),

so evaluating at y∗, remembering that x∗ = g(y∗):

∇ϕ(y∗) = ∇f(x∗)∇g(y∗).

Note how this generalizes the ordinary chain rule, with derivatives being re-
placed by gradients. What is the product in the new chain rule? ∇f is a row vector
of length n, and ∇g(y) is a n × p matrix, so the product is matrix multiplication,
and the result is a row vector of length p, as required.

7 An elementary approach to this material is given in Stewart [63], §14.5. A more advanced
reference is Strichartz [70] §10.1.3.
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Proof. Carry out the computation of each partial derivative of f , and then fit them
together in a matrix.

∂ϕ

∂yk
(y) =

n∑
j=1

∂f

∂xj
(g(y))

∂gj
∂yk

(y) = ∇f(g(y))
∂g

∂yk
(y) (12.2.4)

where the product on the right is that of the row vector ∇f(g(y)) by the k-th
column of the n × p matrix ∇g. For more detains see for example Stewart [63],
§14.5.

Next we compute the Hessian of the composite function ϕ (12.2.1). We assume
that the functions f and g are C2, so that the composite ϕ is also, by the chain rule
applied to the first derivatives. We write F for the n × n Hessian matrix of f , Φ
for the p× p Hessian matrix of ϕ and Gj for the p× p Hessian of gj .

To see what to expect, we first work out the answer when n = p = 1, as in the
ordinary chain rule. So we differentiate with respect to y the expression in (12.2.2),
using the chain rule and the product rule, getting

ϕ′′(y) = f ′′(g(y))(g′(y))2 + f ′(g(y))g′′(y). (12.2.5)

12.2.6 Example. An important special case of the general formula is the case
where g is a function from R to Rn. We say that g is a parametrized curve.
So we are treating the case p = 1, n arbitrary. We use the name t for the vari-
able of g, which has n coordinate functions g1(t), . . . , gn(t). So the composite
ϕ(t) = f(g(t)) is a scalar function of one variable. Let us compute its first and
second derivatives. Let g′(t) be the column vector (g′1(t), . . . , g

′
n(t)), and let g′′(t)

be the column vector (g′′1(t), . . . , g′′n(t)). Then by specializing Theorem 12.2.3 to
this case we get:

ϕ′(t) = ∇f(g(t))g′(t), (12.2.7)

the product of a row n-vector by a column n-vector, giving a number as required.
Differentiating again, writing out the dot product on the right-hand side, we can
organize the result as

ϕ′′(t) = g′(t)TF (g(t))g′(t) +∇f(g(t))g′′(t). (12.2.8)

Notice how the two terms on the right-hand side match the two terms in (12.2.5).
If the parametrized curve is a line, meaning that the functions gi(t) are linear in t,
then g′′(t) = 0, so the second derivative is

ϕ′′(t) = g′(t)TF (g(t))g′(t).
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Finally, the general case.

12.2.9 Theorem. The chain rule for Hessians gives:

Φ(y) = ∇g(y)TF (g(y))∇g(y) +
n∑
j=1

∂f

∂xj
(g(y))Gj(y) (12.2.10)

so evaluating at y∗ we get

Φ(y∗) = ∇g(y∗)TF (x∗)∇g(y∗) +

n∑
j=1

∂f

∂xj
(x∗)Gj(y

∗)

Proof. This is an easy, if complicated, exercise using the product rule for differ-
entiation. You should first check that the sizes of the matrices are correct. The
dimension of most of the matrices is given above: you also need that ∇g(y) is a
n× p matrix, whose i-th row is the gradient of gi. Finally ∂f

∂xj
is a scalar. Just use

the product rule combined with the ordinary chain rule, computing one entry of the
symmetric matrix Φ at a time, namely

Φi,k =
∂2ϕ

∂yi∂yk

taking ∂
∂yi

of (12.2.4). You get

Φi,k =
n∑
j=1

(
∂

∂yi

( ∂f
∂xj

(g(y))
)∂gj
∂yk

(y) +
∂f

∂xj
(g(y))

∂

∂yi

(∂gj
∂yk

(y)
))

=
n∑
j=1

( n∑
l=1

( ∂2f

∂xl∂xj
(g(y))

∂gl
∂yi

(y)
)∂gj
∂yk

(y) +
∂f

∂xj
(g(y))

∂2gj
∂yi∂yk

(y)

)
and you conclude by recognizing this as the appropriate term of (12.2.10).

12.2.11 Exercise. Verify that the terms on the right-hand side of (12.2.8) have the
right dimensions to yield a number.

12.2.12 Exercise. Let f(x, y, z) = x2+y2+z2 and let g(t) = (t, t2, t3). Compute
g′(t) and the gradient∇f(x, y, z). Compute the matrix product in (12.2.7). On the
other hand, substitute x = t, y = t2 and z = t3 into f , and compute ϕ′(t) directly,
confirming your first answer. Next, repeat with the second derivative, so compute
the Hessian F of f , and compute the matrix product in (12.2.8). Then, just as you
did for the first derivative, compute ϕ′′(t) directly, confirming your answer.
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12.2.13 Exercise. Let f(x, y, z) = x2+y2+z2 again, and let g(r, θ) = (r cos θ, r sin θ, r).
The composite ϕ(r, θ) is a function from R2 to R. Compute its gradient and its
Hessian directly, and then confirm your answer using the chain rule.

We will use Theorem 12.2.9 in (17.7.2) and in §29.1.

12.3 Homogeneous Functions

As a simple example of the chain rule, we look at homogeneous functions.

12.3.1 Definition. A real-valued function f(x1, . . . , xn) is homogeneous of degree
d ∈ Z, if for any positive real number t,

f(tx) = f(tx1, tx2, . . . , txn) = tdf(x). (12.3.2)

Homogeneous functions arise in many branches of mathematics and economics.
They are functions that are “independent of scale”, as a moment’s thought should
tell you. The central theorem concerning homogeneous functions is due to Euler:

12.3.3 Theorem (Euler’s Theorem). If f(x) is C1 and homogeneous of degree d,
then its partial derivatives ∂f/∂xi are homogenous of degree d − 1 and we have
Euler’s formula:

n∑
j=1

xj
∂f

∂xj
= df(x). (12.3.4)

Proof. For any fixed x we let g(t) = tx, so g(t) is a function from R to Rn, and
f(tx) is the composite f(g(t)) = f(tx1, tx2, . . . , txn). Differentiate both sides of
(12.3.2) with respect to t. The right-hand side gives dtd−1f(x). The left-hand side
of (12.3.2) is the composite f(g(t)), so we compute the derivative with respect to
t using the chain rule. Clearly g′(t) = x, so we get

d

dt
(f(g(t)) = 〈∇txf,x〉

so equating the derivatives, we get
n∑
j=1

∂f

∂xj
(tx)xj = dtd−1f(x).

Set t = 1 to get Euler’s formula.
To show that all the partials of f are homogeneous of degree d − 1, take the

partial of (12.3.2) with respect to xj . The right-hand side gives td∂f(x)/∂xj again.
The left-hand side, by the chain rule again, gives t∂f(tx)/∂xj . Equating the two
and dividing by t, we get the result.
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12.3.5 Example. The prototypical example of a function f(x1, . . . , xn) that is ho-
mogenous of degree d, is a homogeneous polynomial of degree d. First a concrete
example of degree 4 in 3 variables:

x4 + x2z2 − 3xy2z + yz3

You should verify homogeneity and Euler’s formula for this example.
More generally, a polynomial in n-variables is homogenenous of degree d if

each monomial is of the form: xa11 x
a2
2 . . . xann , for non-negative integers aj , where∑n

j=1 aj = d.
Finally the ratio f/g of a homogeneous polynomial of degree d1 by a homoge-

neous polynomial of degree d2 is homogeneous of degree d = d1 − d2. Thus the
function in Example 12.1.29 is homogeneous of degree 0.

12.4 Taylor Polynomials in Several Variables

This section extends our investigation of Taylor polynomials to the case of several
variables.

Let f(x) be a function from Rn to R defined on S. Fix a point a = (a1, . . . , an)
in the interior of domain S. For the purposes of this section, we assume that f is
C2 (see Definition 12.1.7) in a neighborhood of the point a. As in the case of one
variable, we wish to approximate f by a polynomial in a neighborhood of a. This
will be a polynomial in the n variables x1, x2, . . . , xn.

In this course, we only need the Taylor polynomials of degrees 1 and 2. The
Taylor polynomial of degree 1 is

P1(x) = f(a) +∇f(a) · (x− a).

so its vanishing gives the tangent space to the graph of f at a.

12.4.1 Definition. The second-degree Taylor polynomial of f at the point a is

P2(a,x) = f(a) +∇f(a) · (x− a) +
(x− a)TF (a)(x− a)

2
(12.4.2)

12.4.3 Exercise. Verify that when n = 1, , the expression in (12.4.2) produces the
one-variable Taylor polynomial.

12.4.4 Exercise. How many quadratic terms are there in n variables x1,x2 . . . xn?
In two variables x1 and x2, we have the constant term 1, the two linear terms x1
and x2, and the three quadratic terms x21, x1x2, and x22. In three variables x1, x2
and x3, we have the constant term 1, the three linear terms x1, x2, and x3, and the
six quadratic terms x21, x22, x23, x1x2, x1x3, and x2x3. What is the general formula?
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The first step in establishing Taylor’s theorem is to work one direction at a time
and apply Taylor’s theorem in one variable. So we fix a vector h = (h1, h2, . . . , hn)
and define a new function

g(t) = f(a + th)

of the single variable t, assuming t is sufficiently small that a+ th is in the domain
of f , and f is C2 there. Obviously g(0) = f(a). Note that g(t) is the composite
of the function

t 7→ (a1 + h1t, a2 + h2t, . . . , an + hnt) = a + th

and the function f(x), by setting, for each index i, xi = ai + h1t. We differentiate
g(t) using the chain rule.

dg

dt
(t) =

n∑
i=1

∂f

∂xi
(a + th)

dxi
dt

= ∇f(a + th) · h (12.4.5)

We differentiate a second time using the chain rule. Since the ai and hi are
constants, we get

d2g

dt2
(t) =

n∑
j=1

n∑
i=1

∂2f

∂xj∂xi
(a + th)hihj (12.4.6)

We can rewrite the right-hand side of (12.4.6) as the product of three matrices:

n∑
j=1

n∑
i=1

∂2f

∂xj∂xi
(a + th)hihj = hTF (a + th)h (12.4.7)

where h is a column vector, and hT is its transpose. The middle n × n matrix
F (x + th) is the Hessian matrix of f evaluated at x + th. The product of these
three matrices—the size of which, going from left to right, being 1×n, n×n, and
n× 1—makes sense and is a scalar, as required.

Now we write the second-degree Taylor polynomial of g(t) in terms of the
Hessian of f . First we adapt the Generalized Mean Value Theorem 4.2.2 to this
situation.

12.4.8 Theorem (GMVT in Several Variables, Degree 2 Case). Assume the func-
tion f is C2 on an open region containing the line segment [a,a + h]. Then

f(a + h) = f(a) +∇f(a) · h +
hTF (a + t∗h)h

2
(12.4.9)

for some t∗, 0 ≤ t∗ < 1.
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Proof. According to Theorem 4.2.2 in degree 2 applied to g, we have

g(t) = g(0) + t
dg

dt
(0) +

1

2

d2g

dt2
(t∗)t2 (12.4.10)

where t∗ is a value between 0 and t.
Substituting the values we have computed for the first two derivatives of g in

(12.4.5) and (12.4.6), and substituting in (12.4.7), produces

f(a + th) = f(a) + t∇f(a) · h +
hTF (a + t∗h)h

2
t2 (12.4.11)

To get (12.4.9) just set t = 1 in (12.4.11).

12.4.12 Theorem (Taylor’s Theorem in Several Variables, Degree 2 Case). Assume
the function f is C2 on an open region containing the line segment [a,a+h]. Then

f(a + h) = f(a) +∇f(a) · h +
hTF (a)h

2
+ r2(h) (12.4.13)

where r2(h) is a function of h such that limh→0
r2(h)
‖h‖2 = 0.

Proof. We argue as in the corresponding proof in the one variable case: Theorem
4.3.2. We subtract (12.4.13) from (12.4.9) to get

r2(h) =
hTF (a + t∗h)h

2
− hTF (a)h

2

=
hT
(
F (a + t∗h)− F (a)

)
h

2
(12.4.14)

Now divide by ‖ h ‖2. The right-hand side of (12.4.14) is a sum of terms each
having a product hihj in factor, one hi from the h on the left, and the other hj from
the h on the right. Clearly |hihj | ≤‖ h ‖2. What is left in the sum are terms of the
form

∂2f

∂xi∂xj
(a + t∗h)− ∂2f

∂xi∂xj
(a) (12.4.15)

and because f is C2, these go to 0 as h→ 0, proving the result.8

8 For a different proof, see [70], §10.2.3.
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12.4.16 Example. Consider f(x, y) = ex+2y at a = (0, 0). Then f(0, 0) = 1 and
∇f(0, 0) = (1, 2). The Hessian at the origin is[

1 2
2 4

]
(12.4.17)

and is symmetric . Then the approximation for ex+2y at the origin is 1 + x+ 2y +
1
2(x2 + 4xy + 4y2). Below is a graph of f(x, y) together with the approximation
(below it):
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12.4.18 Question. Can one determine if the function f has a local minimum or
maximum at an interior point a, just from its quadratic approximation given by
Theorem 12.4.12? The answer is often yes.

The tools for answering this question will be developed in the next lecture on
linear algebra, and the question is answered in §13.1. In some cases, an answer
cannot be given just from the quadratic information: see §13.5.



Lecture 13

Unconstrained Optimization

We now have all the tools needed to do multivariable optimization. The key re-
sults in this lecture are in §13.1: they are Theorem 13.1.2, and especially Theorem
13.1.3. To prove them, we need the whole repertory of mathematics we have de-
veloped: Taylor’s Theorem and the Rayleigh quotient, as well as our detailed study
of the Hessian of functions.

The two theorems correspond to sufficient and necessary conditions for a min-
imum. In §13.5 we discuss the ambiguous case, meaning the case where we are at
a critical point where the Hessian is positive semidefinite but not positive definite,
so that the necessary condition is satisfied, but the sufficent condition fails. We will
see that even in two dimensions the situation is complicated: we give the classic
example of Peano 13.5.3.

In §13.3 we treat the method of Least Squares, sometimes described as the
most important optimization result, because of its innumerable applications. There
are another long optimization example worth mentioning: the maximization of the
Cobb-Douglas utility function 13.4.1, used extensively in economics.

Then in §13.7 we turn to the description of the level sets of a positive definite
Hessian: they are ellipsoids. We analyze them by finding their principal axes,
which means finding their eigenvectors. This is a geometric interpretation and
refinement of what was done in Lecture 8, and is not needed in the rest of the
lectures.

13.1 The Theorems

We state the main results of unconstrained optimization. The main goal of the rest
of this course is to generalize these results to the case where the set over which
optimization is considered is a subset of Rn defined by equalities (see Lecture 28
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and 29) or inequalities (see Lecture 31 and 23).
The outline will be the same in all cases: first we prove a necessary condition

for an extremum, assuming only that the objective function is C1. Because only
first derivatives are involved, this is called a first-order condition. Then we turn to
second-order conditions, meaning conditions involving the second derivative: first
a necessary condition and then a sufficient condition.

Here are the three results in the current situation.

13.1.1 Theorem. Let f(x) be a real-valued C1 function defined on an open set U
in Rn. Assume that a ∈ U is a local minimizer or maximizer for f . Then a is a
critical point of f : the gradient∇f vanishes at a.

Proof. If a is not a critical point there is a direction v in Rn in which the directional
derivative of f is non-zero. Restricting f to the line ` = a + tv parametrized by a
real variable t, you get a function g(t) = f(a+tv) in one variable t: the restriction
of f to the line `. The function g(t) has a minimum or maximum at t = 0, since
f does at a. But then single-variable calculus tells us that g has a critical point
(the derivative g′ is 0) , which is a contradiction, since the derivative of g is the
directional derivative of f in direction v.

13.1.2 Theorem. Let f(x) be a real-valued C2 function defined on an open set U
in Rn. Assume that a ∈ U is a local minimizer for f . Then the Hessian F of f at
a is positive semidefinite.

Proof. The proof is almost the same as that of the previous theorem: assume the
Hessian at a is not positive semidefinite. Then by the Spectral Theorem f has a
negative eigenvalue with an associated real eigenvector e. Again restricting f to the
line ` containing the vector e, the restriction g(t) = f(a + te) has derivative 0 and
has negative second derivative, so a cannot be a minimizer for g by the well-known
theorem from single-variable calculus: see Theorem 3.3.4.

A similar theorem holds for maxima. Thus we have established easy necessary
conditions for a local maximum or minimum. Next we turn to sufficient conditions,
given by the next theorem, the main result of this section.

13.1.3 Theorem. Let f(x) be a real-valued C2 function defined on an open set U
in Rn. Assume that a ∈ U is a critical point of f and that the Hessian F of f is
positive definite at a. Then f(x) has a strict local minimum at a.

Proof. This is a consequence of Taylor’s theorem in several variables. Since a is a
critical point,∇f(a) = 0. Write x = a + h for an arbitrary point x near a. Then

f(x) = f(a) +
hTFh

2
+ r2(h), where

r2(h)

‖ h ‖2
→ 0 as h→ 0.
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The expression
hTFh

‖ h ‖2
(13.1.4)

is the Rayleigh quotient associated to the quadratic form F , so its minimum value
λ for h 6= 0 is attained on the unit sphere U by Theorem 9.1.2. Since F is positive
definite, this minimum value λ is strictly positive: by the Spectral Theorem it is the
smallest eigenvalue. So Expression 13.1.4 is bounded below by λ for any h 6= 0.

Thus for h sufficiently small this term dominates the remainder r2(h) which
by Taylor’s Theorem 12.4.8 goes to 0 as h goes to 0. In other words (hTFh)/2 +
r2(h) remains positive. This means, precisely, that f(x) has a strict local minimum
at a.

Completely analogously, we have

13.1.5 Theorem. Let f(x) be a real-valued C2 function defined on an open set U
in Rn. Assume that a ∈ U is a critical point of f and that the Hessian of f is
negative-definite at a. Then f(x) has a strict local maximum at a.

13.2 Examples

13.2.1 Exercise. Let f(x, y) = x2 + y2. What is the signature of the Hessian F of
f at the origin? What kind of form is the F ? Conclusion?

Now do the same thing for g(x, y) = x4 + y2.

As we noted above, these theorems are multivariable analogs of the single-
variable theorems stated in §3.3.

13.2.2 Example (The folium of Descartes). In the plane let f(x, y) = x3 + y3 −
3xy. The curve C in the plane given by f(x, y) = 0, in other words, one of the
level sets of f(x, y) can be described by changing to polar coordinates x = r cos θ,
y = r sin θ. Form the composite function ϕ(r, θ) = f(r cos θ, r sin θ). If you set
it to 0, you get the solutions r = 0 and

r(θ) =
3 sin θ cos θ

sin3 θ + cos3 θ
.

For which values of θ is this not defined? What happens as θ approaches these
values? The representation r(θ) is called a parametric representation of the curve
C.

A different parametric equation for C is obtained by writing y = tx, which
yields

x =
3t

1 + t3
, y =

3t2

1 + t3
.
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Thinking of t as time, this describes a trajectory on the level set. When t is non-
negative the trajectory describes a folium, meaning a leaf. See the graph below.
What happens as t→ ±∞?

The partial derivatives of f are 3x2 − 3y and 3y2 − 3x. Check that the only
critical points are the origin and the point (1, 1). The Hessian of f is[

6x −3
−3 6y

]
.

Thus at the point (1, 1), the matrix is positive definite, guaranteeing a local mini-
mum. At (0, 0), the matrix is indefinite, with eigenvalues ±3, so we have a saddle
point. There is no global minimum or maximum: why?

-2 -1 0 1 2

-2

-1

0

1

2

Here is a graph showing the level curves of f , including C, the level curve at
level 0. Make sure you can label each one of the level curves, including the leaf.
Also see [28], IV.4.8, p. 324.

13.2.3 Example. Consider the positive definite matrix Qn from Example 9.4.9
Suppose we want to solve the unconstrained optimization problem

1

2
xTQnx− bTx + c = 0 (13.2.4)

where b is a constant n-vector. To find the critical points, set the gradient to zero.

Qnx− b = 0.
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Since Qn is invertible, multiplying by the inverse gives

x = Q−1n b.

So, using our explict formula (9.4.10) forQ−1n , we could solve this numerically for
any choice of b.

13.2.5 Exercise. Let b = (1, 0, . . . , 0) and work out the previous example numer-
ically.

13.3 The Least Squares Method

Suppose you want to solve the system of linear equations

Ax = b

whereA is am×nmatrix withm larger - perhaps much larger - than n. So we have
more equations than variables. The system is overdetermined. For simplicity we
assume thatA has maximal rank, which by hypothesis is n. Thus the columns aj of
A are linearly independent. and form a basis for the range R(A) of A, a subspace
of dimension n of Rm. If b is not in R(A), the system is inconsistent, which
means it admits no solution. Instead we could ask for an approximate solution. For
example, we look for the point c in R(A) that is closest to b. We already solved
this minimization problem in §7.5 using orthogonal projection and the Pythagorean
Theorem. The vi there are the aj here. Here we want to give an explicit description
of the solution in terms of A.

In our new notation, the problem is

13.3.1 Problem (Least Squares). Assumem > n, Given am×nmatrixA of rank
n, and a m-vector b, the method of least squares finds the unique solution x of the
minimization problem:

Minimize the function ‖Ax− b‖

Equivalently, we can minimize the square f(x) = ‖Ax−b‖2 of this function.
Writing it out, we see that

f(x) = 〈Ax− b, Ax− b〉 = xTATAx− xT (2ATb) + bTb. (13.3.2)

Thus f(x) is a quadratic polynomial in x.
This equation suggests we need to understand the n× n matrix ATA.



13.3. THE LEAST SQUARES METHOD 170

13.3.3 Proposition. Let A be a an m × n matrix, with m ≥ n. If A has maximal
rank n, then the n× n matrix ATA is positive definite.

Proof. Because A has maximal rank, its nullspace is trivial, so the only n-vector x
such that Ax = 0 is the zero vector. So assume x 6= 0. Then

xT (ATA)x = ‖Ax‖2 ≥ 0

Now ‖Ax‖2 = 0 implies that Ax is the zero vector, and this cannot be the case.
Thus xT (ATA)x > 0 whenever x 6= 0. Theorem 9.4.1 then says ATA is positive
definite.

Here is an example.

13.3.4 Exercise. Compute ATA for the rank 2 matrix

A =

1 1
1 0
1 1

 to get ATA =

[
3 2
2 2

]
.

Show this is positive definite. Let b be the vector [0, 0, 1], Write the function
‖Ax− b‖2 explicitly.

As we will see in §13.7, the level curves of f are ellipsoids.
Since ATA is positive definite, we find the unique minimum to Problem 13.3.1

by solving for its critical point: take its gradient using (13.3.2) and set it to zero:

2ATAx− 2ATb = 0.

Differentiating again, we see that the Hessian of f is the constant matrix 2ATA.
As noted, this matrix is positive definite, and therefore invertible, so we can solve
for x and conclude that our least squares problem has a unique minimizer at

x∗ = (ATA)−1ATb

Thus Ax∗ is the point in the range of A that minimizes the distance to b. It can be
written

Ax∗ = A(ATA)−1ATb

The matrix A(ATA)−1AT is the key to understanding this situation. We now
connect with Theorem 7.6.2 describing orthogonal projections.

13.3.5 Proposition. A(ATA)−1AT is an orthogonal projection matrix.
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Proof. We use Theorem 7.6.2. First we show that A(ATA)−1AT is symmetric by
computing its transpose:(
A(ATA)−1AT

)T
= A

(
(ATA)−1

)T
AT = A

(
(ATA)T

)−1
AT = A(ATA)−1AT

Next we compute its square:(
A(ATA)−1AT

)2
= A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT

by cancelation of the matrix ATA and its inverse in the middle of the expression,
so we are done.

Thus the transformation that takes an arbitrary b ∈ Rm to

c = (ATA)−1ATb ∈ R(A)

is the orthogonal projection of b to R(A). As we proved in §7.5, c is the point at
minimum distance onR(A).

This is a special case of the function DS we studied in Exercise 11.1.5. When
we study convex sets and convex functions, we will see that for any convex set C,
the distance function DC is a convex function: see Example 22.3.5. Now R(A) is
a convex set, so that result applies. Indeed, linear functions are convex.

13.3.6 Exercise. Compute A(ATA)−1AT for the matrix A of 13.3.4 and verify
that it is a projection matrix.

Do the same for matrix

A =


1 1 0
0 0 0
0 1 0
−1 0 1


Also confirm that ATA is positive definite.

From yet another point of view, by Corollary 7.2.4 of the Four Subspaces theo-
rem, we can write b uniquely as the orthogonal sum of an element b′ ∈ R(A) and
an element y in the nullspace N (AT ):

b = b′ + y.

Now apply A(ATA)−1AT to this equation to get

A(ATA)−1ATb = A(ATA)−1ATb′.

Now b′ = Ac for some n-vector c. So

A(ATA)−1ATb = A(ATA)−1ATAc = Ac.

This is the desired expression of the projection of b as a linear combination of
the columns of A.
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13.4 The Cobb-Douglas Utility Function

Next we turn to an important example, which is actually a constrained optimization
problem.

13.4.1 Example (Maximization of the Cobb-Douglas utility function). This ex-
ample is a 19th century favorite, found both in [58], §154, and [26], §137. In
economics it is called the Cobb-Douglas function. Let the objective function be

f(x) = xd00 x
d1
1 x

d2
2 . . . xdnn , (13.4.2)

where the dj are positive real numbers. We impose some constraints: all the xj are
non-negative, and they satisfy the linear condition

a = p0x0 + p1x1 + · · ·+ pnxn (13.4.3)

for positive constants a and pj . The goal is to find maximize f subject to these
constraints.

In words, we write the positive number a as a weighted sum of n + 1 non-
negative numbers x0, x1, . . . , xn, and we seek to maximize the product of the xi
raised to the di power, for fixed integers di.

Expressed this way. we have a constrained optimization problem, because the
xi are are non-negative and not independent variables: they satisfy (13.4.3). We
can remove this constraint by solving for the variable x0 in terms of the others.
View this as a problem in n independent variables, substituting

x0 = (a− p1x1 − · · · − pnxn)/p0

in 13.4.2. This is still a constrained problem, since we require xj ≥ 0, 1 ≤ j ≤ n
and a−p1x1−p2x2−· · ·−pnxn ≥ 0: this last equation expresses the requirement
that x0 be non-negative. This is the feasible set: it is a n-simplex in Rn. Its
n + 1 vertices are the origin and the n points with a/pj in the j-th position, and
0 everywhere else. On the boundary of the simplex f takes the value 0, which is
clearly the minimum value. So we know that the maximizer is an interior point of
the simplex. We compute the partial derivatives of f considered as a function of
x1 through xn alone, as explained above. Then we set the partials to 0. Because
of the multiplicative nature of f , it is easier to write the “logarithmic derivative”:
in other words, instead of maximizing f , we maximize ln x. This makes sense
since f takes on non-negative values in our feasible set, so ln is defined. The two
problems are equivalent because ln is an increasing function. Now

ln f = d0 lnx0 + d1 lnx1 + . . . dn lnxn.
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By the chain rule,

∂ ln f

∂xj
=
dj
xj

+
d0
x0

∂x0
∂xj

=
dj
xj
− d0
x0

pj
p0
.

so at a maximizer x∗, for j ≥ 1 we have
dj
xj
− d0pj
p0x0

= 0.

Since we can let any one of the variables xk play the role of x0, all the partials
vanish when

pjxj
dj

=
pkxk
dk

(13.4.4)

for all j and k between 0 and n. Set D =
∑n

i=0 di. Use (13.4.4) to eliminate all
the xj except for a fixed xk from the constraint, getting

a =
pkxkD

dk
, so xk =

dka

pkD
.

Do this for each index k: we get a unique critical value x∗ expressed in terms
of the constants of the problem. Then

f(x∗) =
( a
D

)D(d0
p0

)d0 . . . (dn−1
pn−1

)dn−1
(dn
pn

)dn > 0. (13.4.5)

Since x∗ is the unique interior point where all the partials vanish, and since f
vanishes on the entire boundary of the region we are considering, this is both a
local and the global maximum of the function. Thus we do not have to make the
Hessian computation.

13.4.6 Exercise. Show that the Hessian F of f at x∗ is negative definite.
Hint: It is easiest to compute F/f .

13.4.7 Example (Interpretation as a utility function). In Example 13.4.1, think
of the variables xj as quantities of n + 1 commodities labeled by 0 to n, and pj
as the price of the j-th commodity. The quantity a represents the total income
of a consumer, and f is the consumer’s utility function. The consumer wants to
maximize her utility subject to her income constraint. The computation above
shows that there is a unique maximizer for the Cobb-Douglas utility function, and
we have computed both the maximizer x∗ and the maximum value f(x∗) of the
utility function explicity. One often assumes thatD = 1: for example in [56], p.19.
x∗ is called the vector of demands. If the consumer starts with quantities x0 of the
commodities, then the difference vector x∗ − x0 is called the consumer’s excess
demand. The j-th coordinate of the excess demand is positive if the consumer
wants to acquire more of the j-th commodity, and negative if the consumer wants
to get rid of some of her holding of the j-th commodity.
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13.5 The Ambiguous Case

Let f be a C2 function, and p an interior point of its domain where the gradient
vanishes. By ambiguous case, we mean that the necessary condition for a minimum
is satisfied at p (so the Hessian is positive semidefinite), but the sufficient condition
is not satisfied (so it is not positive definite). Thus we cannot conclude that p is a
minimizer. In the case of a function of a single variable, we proved an additional
Theorem 3.3.6 that closes most of the distance between the two theorems. This is
much harder even in the case of two variables, that we discuss now. The variables
are called x and y.

This issue created a long discussion in the 19-th century, because Lagrange
thought that if one could prove that a function had a minimum at x∗ when restricted
to all lines passing through x∗, it would have a minimum. This turned out to be
false, as demonstrated by Peano in [26], Annotazioni N.133-136. Example 13.5.3
gives his key example. The issue of how to determine if there is an extremum when
the Hessian is only semi-definite remains an active research area: see [3].

Let z = f(x, y) be the graph of a C2 function of two variables in the neighbor-
hood of the origin in R2. We assume that the function has a critical point at 0, so
the partials vanish:

∂f

∂x
(0) =

∂f

∂y
(0) = 0

By adjusting by a constant, we may assume that f(0) = 0. We intersect the
graph of the surface with its tangent plane z = 0 and analyze geometrically what
can happen if the Hessian of f at the origin is positive semidefinite.

13.5.1 Example. f(x, y) = x2 + y3. The origin, a critical point, is neither a
minimizer nor a maximizer. The intersection of the graph with the tangent plane
z = 0 is a plane curve called a cuspidal cubic. We will use this curve later: see
Definition 28.2.3 and Example 28.4.3. Here is a graph of the level curves near the
origin.
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13.5.2 Example. f(x, y) = x2 + y4 clearly has a minimum at the origin. The
intersection of the graph with the tangent plane z = 0 is just one point.

13.5.1 Peano’s Example

13.5.3 Example. This famous example is discussed in [26], Annotazioni N.133-
136, [27], §57 and [30], §25. Let f(x, y) = y2−3x2y+2x4. Note that f factors as
(y− x2)(y− 2x2). The Hessian of f at the origin is positive semidefinite: indeed,
it is the matrix [

0 0
0 2

]
(13.5.4)

13.5.5 Lemma. The origin is a local minimizer for f restricted to any line through
the origin.

Proof. Indeed take the line y = ax, and use it to substitute y out of the equation
of f . You get a2x2 − 3ax3 + 2x4. If a 6= 0, the restriction to the line is positive
definite, since the quadratic term then has a positive coefficient. Therefore the
origin is a strict local minimizer on that line. When a = 0, we are left with 2x4, so
again the origin is a strict local minimizer. Finally we should check the line x = 0.
The restriction of f to this line is y2, so again the origin is a strict minimizer.

This suggests that the origin is a local minimizer for f in a neighborhood of
the origin. And yet

13.5.6 Lemma. The origin is a maximizer for the restriction of f to the parabola
y = ax2, for any a between 1 and 2.

Proof. Substituting out y, the restriction of f to the parabola is x4(a− 1)(a− 2).
When 1 < a < 2, the coefficient is negative, showing that there are points in the
plane arbitrarily close to the origin where f takes on negative values, showing that
the origin is not a minimizer.

Here is a graph in the plane of the level curves near the origin: the level curves
for level −1/4, 0 and 1/4 are given and labeled.
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Here is an analytic formula for a level curve with positive level ε2:

(y − x2)(y − 2x2)− ε2 = 0

Solving as a quadratic polynomial in y we get

y =
3x2 ±

√
x4 + 4ε2

2

This defines two functions of x for all values of x. They intersect the y-axis at ±ε.
On the graph, the level curves at level 0.25 are shown, so ε = 0.5 so they intersect
the y-axis at ±0.5.

On the other hand if we consider a level set with negative level −ε2:

(y − x2)(y − 2x2) + ε2 = 0

Solving in the same way we get

y =
3x2 ±

√
x4 − 4ε2

2

which is only defined when x2 ≥ 2ε. By symmetry, just consider the case x ≥
√

2ε
and only look at the smaller of the two y values, which is

y =
3x2 −

√
x4 − 4ε2

2
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Thus when x =
√

2ε, we get y = 3ε, so in conclusion we get a point on the −ε2
level curve at (

√
2ε, 3ε), which approaches the origin as ε → 0. This shows, in

yet another way, that the origin is not a minimum. Notice that the point (
√

2ε, 3ε)
approaches the origin along the parabola y = 3x2/2, one of the parabolas discussed
earlier.

13.6 Gram Matrices

This section is connected to the Gram-Schmidt orthonormalization of a basis a1,
a2, . . . an of Rn. See [68], §4.4, or [60], §6.2. This material will be useful in
understanding ellipsoids.

We do something slightly more general here, building on Proposition 9.3.2. Let
R be a n× n matrix with columns r1, . . . , rn.

13.6.1 Definition. The Gram matrix of R, or of the n vectors ri, 1 ≤ i ≤ n, is the
symmetric matrix A = RTR.

We do not assume that R is symmetric, so it is not the symmetric square root
of A we studied in §9.3. Note that aij = 〈ri, rj〉, so we can take the square root of
the diagonal elements:

σi =
√
aii = ‖ri‖.

We also define

dij = ‖ri − rj‖ =
√
σ2i + σ2j − 2〈ri, rj〉 =

√
aii + ajj − 2aij ,

so that

aij =
σ2i + σ2j − d2ij

2
.

13.6.2 Definition. When ri and rj are non-zero, the correlation coefficient ρij is

ρij =
〈ri, rj〉
‖ri‖‖rj‖

If U is an orthogonal matrix, then UR has the same Gram matrix as R, as we
saw in Proposition 9.3.3. An easy corollary is

13.6.3 Proposition. A is the Gram matrix of a matrix R if and only if A is a
(symmetric) positive semidefinite matrix.
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Proof. By Theorem 9.2.5, we can write the symmetric matrix A as A = QDQT ,
where D is diagonal and Q is orthogonal. So RTR = QDQT . Multiply this
equation on the left by QT and on the right by Q. Then

QTRTRQ = D

using the defining property of an orthogonal matrix. But the left-hand side can be
written (RQ)TRQ = D, which shows that the diagonal entries of D are the dot
products of the columns of RQ, so they are non-negative.

13.6.4 Exercise. Find the symmetric square root of the 3× 3 matrix in (8.5.11).

13.7 Ellipsoids and Level Sets

The simplest functions (other than linear functions) that we use as objective func-
tion is the quadratic

f(x) =
1

2
xTAx + bTx (13.7.1)

where A is an n × n symmetric matrix, and b ∈ Rn. Indeed this is what we do
in §8.1. Because we are focusing on minimization, we generally assume that A is
positive semidefinite, as per Proposition 8.1.91. In this section we assume that A is
positive definite and we examine the level sets Sv = {x ∈ Rn | f(x) = v} of f .

The critical points of f are given by the solutions of the equation Ax + b = 0.
Since A is invertible, this has a unique solution c = −A−1b. Because the Hessian
of f is the positive definite A, Proposition 8.1.9 or its generalization Theorem
13.1.3 applies, so that f has a unique strict minimum at c. Writing b in terms of c,
we get b = −Ac. So we can write, completing the square:

f(x) =
1

2

(
xTAx− 2cTAx

)
=

1

2

(
(x− c)TA(x− c)− cTAc

)
(13.7.2)

We want to study the level sets Sv of f . Writing v̂ = 2v + cTAc, this means
looking at the solutions of

(x− c)TA(x− c) = v̂ (13.7.3)

for fixed values of the constant v̂.
Because A is positive definite, (x− c)TA(x− c) is non-negative, and it takes

the value 0 only when x = c.
1We have already considered special cases of this: Examples 8.6.13 and 9.4.9.



13.7. ELLIPSOIDS AND LEVEL SETS 179

13.7.4 Definition. If A is a positive definite n× n matrix, the set of x ∈ Rn such
that

(x− c)TA(x− c) = r2 (13.7.5)

is the ellipsoid E of center c based on A, with radius r > 0. We write it E(A, c, r).

Thus the level sets of f(x) are ellipsoids based on A with center c and varying
radii r. In particular E(A, c, r1) and E(A, c, r2) do not meet if r1 6= r2.

Warning. In the mathematics literature, the term ellipsoid denotes higher di-
mensional generalizations of the ellipse in the plane. See for example [63] p. 836
or [67], p. 335. This is the definition we use. In the recent optimization literature
(see for instance [10],p.30), ellipsoid often refers to the region bounded by what we
call an ellipsoid. Furthermore the matrix A is sometimes replaced by A−1. Finally
the radius r is often taken to be 1. Indeed, by rescaling the coordinate system by a
factor of 1/r in each coordinate direction, it is clearly enough to consider the case
r = 1.

13.7.6 Example. The standard way of writing the equation of an ellipsoid in R3 is

x2

a2
+
y2

b2
+
z2

c2
= 1.

We will see how to get this equation starting from a general positive definite matrix
A.

Let R the symmetric square root of A as per Definition 9.3.1 .

13.7.7 Proposition. The ellipsoid E(A, c, r) can be written as the set of x ∈ Rn
of the form

x = c +R−1u for ‖u‖ = r. (13.7.8)

Proof. To see the equivalence of these two representations, first change the coor-
dinate system so the center of the ellipsoid is the origin. Then E(A,0, r) is the set
of x such that

xTAx = 〈Rx, Rx〉 = r2 (13.7.9)

So if we set u = Rx, then ‖u‖ = r, and x = R−1u, so the two representations
are equivalent.

Since the set {u ∈ Rn | ‖u‖ = r} is just the sphere of radius r centered at the
origin, we see that we get the ellipsoid E(A, c, r) by distorting the sphere by the
matrix R and then translating it by c. To understand the distortion introduced by
R, we need the eigenvectors and eigenvalues of A and R.
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13.7.10 Definition. The directions of the eigenvectors ofA are called the principal
axes of the ellipsoid.

Recall from Definition 9.3.1 that the eigenvectors of A are the same as those of
R. As usual we list the eigenvalues of A in increasing order: λ1 ≤ λ2 ≤ · · · ≤ λn.

It is easiest to understand an ellipsoid in the basis of principal axes with as
origin of the coordinate system the center of the ellipsoid. Remembering that the
eigenvalues of R are σi > 0, with σ2i = λi, we see that (13.7.5) can be written in
the principal axes coordinate system as

n∑
i=1

σ2i x
2
i = r2 (13.7.11)

Let ai = r/σi. Then (13.7.11) becomes, after division by r2:

n∑
i=1

x2i
a2i

= 1 (13.7.12)

So we have generalized the equation of the ellipse and justified the name ellipsoid.
The ±ai are just the intercepts of the ellipse with the i-th coordinate axis, and we
see how to write them in terms of the invariants of A and the level r of the level
curve.

Then, going back to the original coordinate system and assuming that the σi
are distinct, so strictly increasing, the two points on this ellipsoid that are closest
to the center of the ellipsoid are c ± en/σn, and two points that are furthest from
the origin are c± e1/σ1. This follows immediately from Proposition 9.1.2.

13.7.13 Example. We start with the function

f() =
1

2
xTAx + bTx

with

A =

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1


as in Example 8.6.13 and b = (1, 2, 3).

We computed the eigenvalues and eigenvectors of A in Example 8.5.8. The
eigenvectors are (1/2, 1/2, 2) and the matrix Q of orthonormal eigenvectors is

Q =


1√
2

1√
6

1√
3

0 − 2√
6

1√
3

1√
2

1√
6

1√
3


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Note that Q is not uniquely determined, because there is a repeated eigenvalue.
Indeed, for the first two columns of Q you may pick any two mutually perpendic-
ular vectors (x1, x2, x3) of length 1 such that their coordinates add up to 1. You
should check this by verifying that QTAQ = D(1/2, 1/2, 2). In order to get the
center c, we need to compute the inverse of A. Since we have the eigenvalue and
eigenvector matrices, we compute A−1 = QD(2, 2, 1/2)QT and get

A−1 =

 3
2 −1

2 −1
2

−1
2

3
2 −1

2
−1

2 −1
2

3
2


so

c =

 3
2 −1

2 −1
2

−1
2

3
2 −1

2
−1

2 −1
2

3
2

1
2
3

 =

−1
1
3


Here is the Mathematica code to graph a level surface, with the center of the

ellipse at the origin, in the original coordinates:

ContourPlot3D[
{{x, y, z}.{{1, 1/2, 1/2}, {1/2, 1, 1/2}, {1/2, 1/2, 1}}.{x, y, z}
== 2},
{x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

and here it is now in the principal axes coordinates. Notice that the vertical axis
corresponds to the eigenvalue 2, while the other two axes correspond to eigenvalues
1/2.

ContourPlot3D[
{{x, y, z}.{{1/2, 0, 0}, {0, 1/2, 0}, {0, 0, 2}}.{x, y, z}
== 2},
{x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

13.7.14 Example. Now let’s take the positive definite matrix

A =

[
1 1
1 3

]
The eigenvalues are λ1 = 2 −

√
2 and λ2 = 2 +

√
2, and the corresponding

eigenvectors (not normalized to length 1) are v1 = (−1−
√

2, 1) and v2 = (−1 +√
2, 1). Thus the principal axes are (−1−

√
2)x+y = 0 and (−1+

√
2)x+y = 0.

Let us graph the level curves at levels 1/16, 1/4, 1, 4 and 16 to the function
f(x) = xTAx, and the principal axes. We get:
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-4 -2 0 2 4

-4

-2

0

2

4

Now let us perturb f near the origin by adding terms −x3/5 − y3/5. By
Theorem 13.1.3 we know that there will still be a minimum at the origin, and that
the level curves near the origin will not change much. Here is what we get with
the same level curves, and with the principal axes of the previous quadratic shown
again for comparison.

-4 -2 0 2 4

-4

-2

0

2

4

Notice the saddle point somewhere near the point (2.5, 1).



Part V

Analysis



Lecture 14

Open and Closed Sets in Real
Vector Spaces

This lecture starts our study of real analysis, which for us will mean the study of
continuous or differentiable functions on the real vector space Rn. In the multi-
variable calculus course you have taken, you have studied the case of the plane R2

and space R3, but perhaps not the general case that we will study here.
This chapter has two independent goals. The first is to establish, without proof,

the completeness of the real numbers. We use this all the time: in fact we already
needed it in the proof of the Mean Value Theorem 3.2.1. It is important that you
understand it. The second goal is to define open and closed subsets of Rn. This
is something you know well already in the case of the real line (open and closed
intervals), but becomes more interesting as the dimension gets larger.

This is the first step in the study of the topology of Rn, namely the structure
of its open and closed sets. In a later lecture, Theorem 16.1.4 relates open sets to
continuous functions, which explains their importance to us and to mathematics
more generally.

14.1 Ordered Fields

In this section we review the properties that the real numbers R share with the
rational numbers Q: each one forms is an ordered field.

To say that F is a field is just to formalize the law of arithmetic: F has two
operations, addition, noted +, and multiplication, noted ·, satisfying the following
properties:

1. Associativity: (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c);
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2. Commutativity: a+ b = b+ a and a · b = b · a.

3. Existence of a neutral element 0 for addition: a + 0 = a, and a neutral
element 1 6= 0 for multiplication: a · 1 = a.

4. Existence of inverses: for all a ∈ F there is an element b such that a+b = 0.
b is then written −a. For all a 6= 0 in F , there is a c such that a · c = 1. c is
written 1/a or a−1.

5. Multiplication distributes over addition: a · (b+ c) = a · b+ a · c.

All this you know well. All the properties of arithmetic can be deduced from these
rules.

14.1.1 Definition. To say that the field F is ordered means that any two elements
a and b can be compared: a > b, such that

1. If a > b, then a+ c > b+ c, for all c ∈ F .

2. If a > 0 and b > 0 then a · b > 0.

It is perhaps more surprising that all the familiar rules for manipulating in-
equalities come from these two plus the laws of arithmetic. If you are working out
examples, you will need to use the fact that a − b means a + (−b), and that a/b
means a · (1/b).

14.1.2 Example. We prove, using only the rules above:

1. −a = (−1) · a.

By definition 1 + (−1) = 0. Multiply by a and use distributivity of multi-
plication over addition: a+ (−1) · a = 0. Add −a to get the result.

2. a > 0⇔ −a < 0.

By the first inequality property, we may add −a to both sides of a > 0 and
keep the inequality, so a+ (−a) > −a. By definition of −a we get 0 > −a,
which is what we want.

3. a > b⇔ −a < −b.
First add −a to a > b: we get 0 > b− a by the first inequality property, and
using a − a = 0. Now add −b to this, getting −b > −a, as required. This
time you use b− b = 0.

4. a > b and c > d⇒ a+ c > b+ d.

Use the first inequality property twice.
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5. 1 > 0.

Proof by contradiction. Since 0 6= 1, we would have 0 > 1. We show this
leads to a contradiction. By a previous result, this would imply −1 > 0.
Take a positive a: a > 0. By the second inequality result, letting b = −1,
and a previous item, −a > 0 is positive. But then a + (−a) > 0, but this is
absurd, since the left-hand side is 0.

14.1.3 Exercise. Prove the following implications from the rules above:

1. a > b and c < 0⇒ ac < bc;

2. a > 0⇔ 1/a > 0;

3. a > b > 0⇔ 0 < 1/a < 1/b.

4. a 6= 0⇒ a · a > 0.

5. 0 < 1.

To conclude, note that ≥ is an example of a binary relation (on Q or R), dis-
cussed in §2.2. It is

• reflexive: a ≥ a;

• antisymmetric: a ≥ b and b ≥ a implies a = b;

• complete: for any two elements a and b, we have either a ≥ b or b ≥ a;

• transitive: a ≥ b and b ≥ c implies a ≥ c.

14.2 The Completeness of the Real Numbers

Next we turn to an important property of real numbers R: the completeness of R
that Q does not share. Formalizing this concept serves as a preliminary to our study
of Rn.

14.2.1 Definition. Let S be a set of real numbers.

1. A real number u is called an upper bound for S if for all s ∈ S, s ≤ u. If S
admits an upper bound, then it is said to be bounded above.

2. A real number l is called a lower bound for S if for all s ∈ S, l ≤ s. If S
admits a lower bound, then it is said to be bounded below.

3. If S admits both an upper and lower bound, we say simply that it is bounded.
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14.2.2 Example. The set R is neither bounded above nor bounded below. The set
of positive reals is bounded below, while the set of negative reals is bounded above.
The interval [0, 1] is bounded both above and below—or just bounded.

We generalize our notion of boundedness to Rn in §15.1.

14.2.3 Definition. Again let S be a set of real numbers.

1. Assume S is bounded above. The real number u0 is called the least upper
bound or lub for S, if u0 is an upper bound for S and u0 ≤ u for any upper
bound u of S.

2. Assume S is bounded below. The real number l0 is called the greatest lower
bound or glb for S, if l0 is an lower bound for S and l ≤ l0 for any lower
bound l of S.

14.2.4 Remark. It is convenient to extend this definition to unbounded sets S: we
let the supremum or sup of S be ∞ if S is not bounded above, and the lub(S)
otherwise. Similarly, we let the infimum or inf of S be −∞ if S is not bounded
below, and the glb(S) otherwise.

The needed property of R, the completeness of R, is the assertion that the
following statement holds.

14.2.5 Theorem. Every set S ⊂ R that is bounded above has a least upper bound,
and every set S ⊂ R that is bounded below has a greatest lower bound.

A proof of this difficult result can be found in [55], ch. 1 or [70], §2.3. For a
historical account, see [28] §III.1.

Here are two corollaries that show its power.

14.2.6 Theorem (The Archimedean Property). If x and y are in R, with x > 0,
then there is a positive integer n such that nx > y.

Equivalently, if x > 0 in R, then there is a positive integer n such that x > 1/n.

Proof. The result is obvious if y ≤ 0, so we assume y > 0. Proof by contradiction.
Given a positive x, let S be the set of nx, for all positive integers n. If the result
is false, then for all positive integers n, nx ≤ y, so that y is an upper bound for
S. But then by Theorem 14.2.5, S has a least upper bound that we call M . Since
x > 0 by hypothesis, M − x < M , and so M − x is not an upper bound, meaning
that there is an integer m such that M − x < mx. Thus M < (m + 1)x ∈ S,
which is a contradiction since M is an upper bound and (m+ 1)x is in S.

To get the equivalent version just let y be 1. To go back from the equivalent
version, replace x by x/y.
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14.2.7 Exercise. Let (a, b) be a open interval in R, with b−a > 1. Write a careful
proof that (a, b) contains an integer.

Hint: Let m be the largest integer less than or equal to a, and show that m+ 1
is in (a, b).

14.2.8 Theorem (Density of the Rationals). If x and y are in R, x < y, then there
is a rational number between them: ∃p ∈ Q such that x < p < y.

Proof. Let z = y − x. By the archimedean property we can find an integer n so
that nz > 1. So there is an integer m strictly between nx and ny:

nx < m < ny.

Divide this equation by n to see that the rational number p = m/n meets the
requirement.

This theorem says that between two real numbers, no matter how close to-
gether, there is a rational number. We say that the rational numbers are dense.

14.2.9 Exercise. With the notation of Theorem 14.2.8, show that there are an infi-
nite number of rationals in the open interval (x, y).

14.3 Cells and Balls

Now we move from R to Rn.
In preparation for defining open and closed sets, we define two important col-

lections of subsets of Rn: cells and balls.

14.3.1 Definition (Cells).
The generalization of an interval in R to a subset of Rn is called an n-cell.

n-cells are defined by n pairs of real numbers (α1, β1), . . . (αn, βn) with αi ≤ βi
for all i, 1 ≤ i ≤ n. The n-cell delimited by (αi, βi), 1 ≤ i ≤ n, is the collection
of points x ∈ Rn such that αi ≤ xi ≤ βi for all i.

When n = 1 (a 1-cell), we have a closed interval [α1, β1]. When n = 2
(a 2-cell), we have a closed rectangle, with sides parallel to the coordinate axes.
When n = 3 (a 3-cell), we have a closed rectangular box, with sides parallel to the
coordinate axes.
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This figure depicts a 3-cell (a rectangular prism) with (α, β) pairs (0.5, 1.5), (0, 1), (0.5, 1.5):
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14.3.2 Definition (Balls). For each point p in Rn, called the center, and each
strictly positive real number r, called the radius, we define the open ball Nr(p) as
the set of points y at distance less than r from p: Nr(p) = {y|d(p,y) < r}.

The closed ball N r(p) is N r(p) = {y|d(p,y) ≤ r}. Thus it is the union of
the open ball Nr(p) as well as the n− 1-sphere of radius r centered at p, defined
next.

14.3.3 Definition (Spheres). The (n− 1)-sphere in Rn centered at p and of radius
r is the set of points y at distance exactly r from p:

Sr(p) = {y ∈ Rn | d(p,y) = r}.

14.3.4 Example. When n = 1, a ball is just an interval of length 2r centered at p,
with ‘closed’ and ‘open’ meaning the same thing for balls and intervals.

A 2-ball is a disk of radius r centered at p, with the closed disk including the
circle of radius r. In R3, a ball is just an ordinary ball of radius r centered at p,
with the closed ball including the ordinary sphere of radius r centered at p.

In higher dimensions, we continue to use the words ball and sphere.

Our definition of balls serves as the basis for our definitions of neighborhoods
and open sets.
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14.4 Open and Closed Sets

14.4.1 Definition.

1. The r-neighborhood, r > 0, of a point p is the open ball of radius r centered
at p: formally, Nr(p).

2. A set S in Rn is open if for every x ∈ S there is a radius r > 0 with
Nr(x) ⊂ S. That is, for any point in an open set, there exists an open ball
with positive radius that is wholly contained within the set. The empty set,
denoted ∅, is open by convention.

Note that we can write the definition that S is open in Rn, only using the
distance function d(x,y) on Rn discussed in §5.4:

S is open in Rn if for every x ∈ S there is a real r > 0 such that every y ∈ Rn
with d(x,y) < r is in S.

Indeed, if d(x,y) is the Euclidean distance function, this is the same definition.

14.4.2 Exercise. Prove that any open ball Nr(p) is an open set.
Hint: Prove that any point x in Nr(p) has a neighborhood contained in the

ball. Draw the picture in R2 to see what you need to do. You will need the triangle
inequality (Definition 5.4.1).

14.4.3 Definition. A point p is a limit point of a set S if for every ε > 0, the
neighborhood Nε(p) of p contains a point of S other than p. Note that p can be a
limit point of S without being contained in S, as the following examples show.

14.4.4 Example. Limit points of open balls.

1. The points 1 and −1 are limit points of the interval (−1, 1), as are all the
points in (−1, 1). The set of limit points of (−1, 1) is the closed interval
[−1, 1].

2. In Rn, the limit points of Nr(p) are N r(p).

14.4.5 Exercise. Take the set of points in R of the form 1
n for all positive integers

n. What are the limit points of this set?

14.4.6 Exercise. Prove that if p is a limit point of S, every neighborhood of p
contains an infinite number of points in S.

Hint: Prove this by contradiction.

14.4.7 Definition. A set S is closed if it contains all its limit points. The empty set
is closed by convention.
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14.4.8 Exercise. Prove that N r(p) is a closed set.

We will use the following definitions in later lectures:

14.4.9 Definition. A point p is an interior point of a set S if there is a neighborhood
Nr(p) of p contained in S. The set of all interior points of S is called the interior
of S, written intS.

Note that this implies that all the points in an open set S are interior points of
S.

14.4.10 Definition. The closure S̄ of S is the union of S and all its limit points. It
is a closed set.

14.4.11 Definition. A point p is a boundary point of S if p ∈ S̄ and p is not in
the interior of S. The set of all boundary points of S is called the boundary.

Note that a boundary point p can belong to S or not, depending on S. A closed
set contains all its boundary points. An open set has no boundary points. The
boundary of the closed n-ball N r(p) is the (n− 1)-sphere Sr(p).

14.4.12 Definition. The complement of a set S in Rn, denoted Sc, is the set of
points x in Rn that are not in S.

Note that the complement of a complement is the original set: (Sc)c = S.

14.4.13 Theorem. The complement of an open set is closed, and the complement
of a closed set is open.

Proof. We begin by proving that if a set S ⊂ Rn is open, its complement Sc

is closed. We pick an arbitrary point x outside of Sc, which by definition is in
S. Definition 14.4.7 provides that a closed set contains all its limit points, so we
need to prove that x is not a limit point of Sc. Since x is in S and S is an open
set, Definition 14.4.1 tells us that there exists a radius r > 0 such that Nr(x) is
contained in S. Accordingly, no point in Nr(x) is in the complement Sc. Because
x is a positive distance r away from Sc, x is not a limit point of Sc. So Sc is closed.

We now assume that S is closed, proving that its complement Sc is open. Pick
any point x in the complement Sc, meaning any point that is not in S. S is closed,
so by Definition 14.4.7, x cannot be a limit point of S. We know, then, that there
exists a neighborhood of x in Sc. By Definition 14.4.1, Sc is open.

14.4.14 Exercise. Show that a non-empty set S in Rn, apart from Rn itself, cannot
be both open and closed.



14.4. OPEN AND CLOSED SETS 192

Hint: Prove this by contradiction, so assume S is both open and closed. Since
S is non-empty, it contains a point s. Since its complement Sc is non-empty, it
contains a point p. Consider the line segment L joining s and p. For x ∈ L,
consider the distance function d(x, s), and let m = glbx∈Sc d(x, s) giving the
greatest lower bound of the distance of a point x ∈ L ∩ Sc to the point s ∈ S. Let
q be the point realizing this distance. Discuss what happens if q ∈ S, or not.

14.4.15 Theorem.

1. Any union of open sets is open, and a finite intersection of open sets is open.

2. Any intersection of closed sets is closed, and a finite union of closed sets is
closed.

Note the difference between taking a finite union, meaning a union over a finite
number of sets, and “any union,” meaning a union over a possibly infinite number
of sets. If we write the union as ∪i∈IUi, where the Ui are the open sets, that the set
I indexing the opens is called the indexing set. A typical and very large index set
might be all the points in the set, for example the unit disk.

Proof. We start with an arbitrary union ∪i∈IUi of open sets. Pick a point p in the
union: we must show it is an interior point of the union. Now p belongs to one of
the open sets in the union, say U0. So by definition a neighborhood N of p is in
U0, and therefore in the union. We are done.

Now we show that a finite intersection ∩ni=1Ui of open sets is open. Pick a
point p in the intersection: so p is in each Ui. Since Ui is open, there is a open ball
Nri(p) of radius ri > 0 around p in Ui. Let r be the smallest of the ri. Then the
ballNr(p) is in all the Ui, and therefore in the intersection. Note that this argument
would break down if we had an infinite number of sets. Then we would have to
take for r the infimum of the ri: even though all the ri are positive, their infimum
might be 0.

We could prove the results for closed sets in the same way. Or we could get
them from Theorem 14.4.13, using DeMorgan’s Law (see §2.1.4): for an arbitrary
collection I of sets Ci, i ∈ I , we have

(
⋃
i∈I

Ci)
c =

⋂
i∈I

Cci (14.4.16)

14.4.17 Exercise. Prove the equality in (14.4.16) and fill in the details in the second
part of the proof.
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14.4.18 Exercise.

1. For any positive integer m, let Gm be the open set Gm = N 1
m

(0) in Rn.
Thus, the indexing set is infinite. Determine both the union U and the inter-
section I of all the Gm. What is U? What is I? Check that Theorem 14.4.15
is satisfied.

2. For any positive integer m, let Fm be the closed set Fm = N 1
m

(0) in Rn.

Determine both the union U and the intersection I of all the Fm. What is U?
What is I? Check that Theorem 14.4.15 is satisfied.

Hint: Try this in R first.

14.5 The Nested Interval Theorem

For use in the next lecture (see the proof of Theorem 15.1.6), we prove a result
about intervals in R that depends on the existence of least upper bounds and great-
est lower bounds discussed in §14.2. We also use the definition of infinite sequence,
discussed in the next lecture.

14.5.1 Theorem. Let Ik, 1 ≤ k < ∞. be a nested sequence of closed intervals in
R, meaning that Ik+1 ⊂ Ik for all k ≥ 1. The intersection of the Ik is non-empty.
Furthermore, if the lengths `k of the intervals Ik converge to 0 as k approaches
infinity, the intersection is a single point.

Proof. Let Ik = [ak, bk] such that ak ≤ bk. The hypothesis that the Ik are nested
means that

a1 ≤ a2 ≤ · · · ≤ ak ≤ ak+1 ≤ · · · ≤ bk+1 ≤ bk ≤ · · · ≤ b2 ≤ b1

This expression demonstrates that the collection of ak is bounded above (by the
bk) and therefore has a least upper bound a. By the definition of the least upper
bound, ak ≤ a for all k; the inequalities above, meanwhile, confirm that a ≤ bk
for all k. a therefore belongs to the interval Ik for all k. By the same reasoning,
the collection of bk is bounded below (by the ak) and therefore has a greatest lower
bound b. As before, ak ≤ b ≤ bk for all k, and we may conclude that b belongs to
the interval Ik for all k.

With the a and b terms defined, we can flesh out the train of inequalities:

a1 ≤ a2 ≤ . . . ak ≤ ak+1 ≤ · · · ≤ a ≤ b ≤ · · · ≤ bk+1 ≤ bk · · · ≤ b2 ≤ b1

This expression shows that the interval [a, b] belongs to all the Ik, proving that the
intersection of all Ik is non-empty.
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The length `k of Ik is bk − ak. Note that {`k} is a decreasing sequence, so it
converges by Theorem 10.2.4.

In the second part of the theorem,we assume the sequence {`k} converges to
zero. Thus the ak and bk converge to the same value c. Since a and b are between
ak and bk, they must be equal to c, which is the unique point of intersection.

Now we generalize our theorem to Rn. We only deal with the special case we
need later.

14.5.2 Definition. A hypercube in Rn is an n-cell delimited by [αi, βi], 1 ≤ i ≤ n,
where βi − αi are all equal to the same value ` called the length of the side of the
hypercube.

The hypercube is the n-dimensional generalization of the line segment in R,
the square in R2 and the cube in R3.

14.5.3 Exercise. Show that the maximum distance between two points in the hy-
percube C in Rn of side length ` is `

√
n.

14.5.4 Theorem. Let Ck, 0 ≤ k < ∞ be a nested sequence of closed hypercubes
in Rn, meaning that Ck+1 ⊂ Ck for all k ≥ 0. The intersection of the Ck is
non-empty. Furthermore, if the lengths `k of the side of Ck converge to 0 as k
approaches infinity, the intersection is a single point c.

Proof. By hypothesis Ck = {x ∈ Rn|αk,i ≤ xi ≤ βk,i}, and the nesting means
that αk,i ≤ αk+1,i and βk+1,i ≤ βk,i for all k. Thus in each coordinate direction
we have a nested sequence of intervals, so by Theorem 14.5.1 in the limit we get a
non-empty interval, so we have a non-empty hypercube. If the lengths `k converge
to 0, in the limit we have a hypercube with side length 0, and that is the desired
point c.

14.5.5 Exercise. As with Theorem 14.5.1, consider intervals Ik = [ak, bk], k ∈ N.
Start with a segment of length 1, a1 = −1/2 and b1 = 1/2, so I1 = [−1/2, 1/2].
Define the other intervals recursively by the following probabilistic rule:

1. With probability p, ak+1 = ak and bk+1 = ak+bk
2 .

2. With probability 1− p, ak+1 = ak+bk
2 and bk+1 = bk.

Note that Ik is a set of nested intervals, regardless of p. Show that the length of
the intervals goes to 0 as k goes to∞. Thus in the limit there is only one point q
nested in all the intervals
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Now some extra credit for those who know some probability theory. Assume
that p = 1

2 . Describe the probabilities of various outcomes of where q ends up.
You should first try doing this in the case you only perform n nestings, so that you
are left with an interval In of length 2−n.

14.6 Relatively Open Sets

We start out with a simple example showing the potential pitfalls of the definition
of open set. Let S be an open set in R2. View R2 as a subspace of R3: for example,
make R2 the xy coordinate plane. Is S open in R3? No. In fact its interior is empty.
To clarify the situation, we define relatively open sets, using the distance function
d(x,y) from §5.4.

14.6.1 Definition. S is open relative to Y if for all x ∈ S there is a real r > 0
such that every y ∈ Y with d(x,y) < r is in S.

14.6.2 Definition. Assume S is an arbitrary set in Y . We can define the relative
interior of S in Y : it is the set of all x ∈ S such that there is a real r > 0 such that
every y ∈ Y with d(x,y) < r is in S. We write the relative interior as relintY S.

14.6.3 Example. Let S be the closed unit disk in a plane Y . If we put Y in R3,
and view S as a set there, its interior is empty. On the other hand, as a set in Y , the
interior of S is the open disk U . So U is the relative interior of S in R3.

The next theorem tells us exactly how to determine what sets are relatively
open.

14.6.4 Theorem. A set S in Rn that is contained in a subset Y of Rn is open
relative to Y if and only if S is the intersection with Y of an open set U in Rn.

Proof. First we assume that S is open relative to Y . We must construct an open
set U in Rn such that U ∩ Y = S. By Definition 14.6.1, for each p ∈ Y there is a
rp > 0 such that the set Sp = {y ∈ Y | d(p,y) < rp} is in S. Then take for U the
union of all the rp neighborhoods of p in Rn. As we saw in Theorem 14.4.15, this
union is an open set: by construction its intersection with Y is S, which is what we
need.

In the other direction, assume that S = Y ∩U for some open set U ⊂ Rn. Now
pick any point p ∈ S. Then p is in U . Since U is open, there is a r > 0 such that
Up = {x ∈ Rn | d(p,x) < r} is contained in U . Since U ∩ Y = S, Up ∩ Y ⊂ S,
which says that S is open relative to Y .
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Here is an application of linear algebra. As usual S ⊂ Y ⊂ Rn. For conve-
nience we assume that the origin of Rn is in S. Let Y be the linear subspace of
smallest dimension in Rn containing S.1 Letm be the dimension of Y , so Y = Rm
for some m, m ≤ n. Then if m < n, the interior of S in Rn is empty, but it need
not be empty in Y . This is what happens in Example 14.6.3.

1This is a concept we will study later on: the affine hull of S: see Definition 18.2.4 and Corollary
18.4.5 where the relative interior is used.



Lecture 15

Compact Sets

In this lecture we study compact sets, which, in finite dimensional vector spaces,
are simply the sets that are both closed and bounded. Compact sets form a power-
ful generalization of finite sets, and many of the desirable properties of finite sets
remain true for compact sets. Compact sets are an essential ingredient for opti-
mization theory, so this chapter (often viewed by students as the most difficult in
this course) needs to be studied very carefully.

The lecture starts with the key section of the chapter: the definition and and
central properties of compactness in a finite dimensional vector space

Then, after a review of infinite sequences in Chapter 10.1 for those who need
it, we introduce Cauchy sequences, a useful tool for discussing convergence of se-
quences, thanks to Theorem 15.2.2. We use standard results about the convergence
of sequences proved §10.2. to connect issues of convergence of sequences to the
metric space structure of Rn studied in §5.1. The second main result of the chap-
ter is the the notion of sequential compactness. Theorem 15.4.2 shows that it is
equivalent to compactness. We will use this result in the next lecture.

The lecture concludes with an optional section 15.5 showing how Cauchy se-
quence allows the construction of the real numbers starting from the rational num-
bers. This gives some additional insight on the completeness of R, studied in §14.2

15.1 Compact Sets

Compact sets play a key role in optimization. The definition given here for compact
sets is not the most general one (see Rudin [55], Definition 2.32 or Strichartz [70],
§9.2.4), but it works in Rn, where it is called the Heine-Borel Theorem. In the
Exercises 15.1.10 and 15.1.11 the equivalence of the definition given here and the
more general one is established.
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15.1.1 Definition. A set S in Rn is compact if it is closed and bounded.

We just learned about closed sets. We now define boundedness.

15.1.2 Definition. A set S in Rn is bounded if it is contained in a ball Nr(0) of
some finite radius r.

The key examples of compact sets are the ones given in Definitions 14.3.1
and 14.3.2: Cells are compact, and closed balls are compact. Open balls are not
compact because they are not closed.

The next theorem will be proved using a variant of the pigeon hole principle:

15.1.3 Proposition. If an infinite number of objects are fit into a finite number of
slots, then at least one of the slots will contain an infinite subset of the objects.

Proof. Proof by contradiction: assume that the objects have been put into a finite
number n of slots, and assume that in each slot there is only a finite number of ele-
ments. Let m be the maximum number of elements in a given slot (note that since
there are only a finite number of slots, it makes sense to talk about the maximum).
Then clearly the total number of elements is bounded by nm, a finite number. So
we have a contradiction.

15.1.4 Exercise. Let the infinite set be the integers. Devise a method to put them in
m slots, for any positive integer m, such that each slot contains an infinite number
of integers. Now do it so that only one slot contains an infinite number of integers.

15.1.5 Theorem. Every infinite subset of a compact set S in Rn has a limit point
in S.

We will also need a slight variant of this theorem.

15.1.6 Theorem. Every infinite subset of a bounded set S in Rn has a limit point
in Rn.

Proof. We prove both theorems simultaneously. Let I denote an infinite subset of a
bounded set S. Since S is bounded, it is contained in an n-cell C0, which we might
as well assume is a hypercube with sides of length `. We divide C0 into smaller
cells by slicing it in half in each dimension. So now we have 2n smaller n-cells,
each a hypercube (see Theorem 14.5.4) with side length `/2. The union of these
smaller cells is C0. There is overlap on the boundary of each one of the closed
hypercubes, but that doesn’t matter: we only care that the union of the smaller
cells is equal to C0.

Since I ⊂ S has an infinite number of elements, the pigeon hole principle
(Proposition 15.1.3) tells us that there must be an infinite number of elements of I
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in at least one of the smaller n-cells. Pick one such smaller cell—call it C1—and
repeat the same subdivision process on it. Of the (2n)n resulting n-cells, select one
of them—C2 ⊂ C1—that also contains an infinite number of elements of I . The
hypercube C2 has sides of length `/22. Continuing in this way, for any positive
integer k we can find a hypercube Ck of side length `/2k containing an infinite
number of elements of I . Note that the Ck form an infinite sequence of nested
hypercubes with side length converging to 0, so by Theorem 14.5.4 the intersection
of the Ck is a single point p. We now show that given any open neighborhood of p,
no matter how small, we can find a k such thatCk is contained in the neighborhood.
More formally

15.1.7 Proposition. Given a neighborhood Nε(p), there is an integer k such that
Ck ⊂ Nε(p).

Proof. Since the hypercubes Ci are nested, we see that p is contained in any hy-
percube of the sequence. The length of the side of Ci is `/2i, so by Exercise 14.5.3
the maximum distance between any two points in Ci is

√
n`/2i. So to find a Ci

contained in a ε neighborhood of p, we simply need to solve for i in

√
n
`

2i
< ε or

√
n
`

ε
< 2i.

This can be done by taking i large enough, since the left-hand side of the second
equality is fixed. Note that we are using the archimedean property.

By Definition 14.4.3, p is a limit point of the set I ⊂ S. This proves Theorem
15.1.6. For Theorem 15.1.5, we just add that S is closed. This means that the limit
point p is in S (Definition 14.4.7), which completes the proof.

15.1.8 Exercise. Draw a figure for the theorem in R2.

15.1.9 Definition. An open cover of a set S in Rn is a collection of open sets Ui,
i ∈ I , where i is an arbitrary index set such that S ⊂ ∪i∈IUi.

By Theorem 14.4.15, an arbitrary union ∪i∈IUi of opens is open. The stan-
dard definition of compactness says that a set S is compact if every open cover of
S admits a finite subcover, meaning that one can find a finite number of Ui that
continue to cover S. To avoid confusion with the definition of compactness used
in these notes, we will refer to a set with this property as a set with the finite-open-
cover property. This definition is the right definition of compactness in infinite
dimensional spaces, and is equivalent to Definition 15.1.1 in Rn, as the next four
exercises establish.
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15.1.10 Exercise. In this exercise, you are asked to show that the finite open cover
definition of compactness implies Definition 15.1.1. Thus you must show that any
set S in Rn that satisfies the finite-open-cover property is closed and bounded. To
show that S is bounded, cover Rn by Ui = Ni(0), open ball centered at the origin,
for all positive integers i. Convince yourself that any point in Rn is in a Ni(0), for
large enough i. If a finite cover for S can be extracted from this cover, there there
is a ball with largest radius containing S, which is therefore bounded. To show that
S is closed, assume by contradiction that p is a limit point of S that is not in S.
For any positive integer i, let Ui be the complement of the closed ball N1/i(p). By
Theorem 14.4.13 each Ui is open, and their union covers Rn r p so it covers S.
Show that no finite subcover of the {Ui} covers S.

15.1.11 Exercise. Now assume that S is a closed hypercube. Let Ui, i ∈ I , be
an arbitrary open cover of S. Assume that it does not admit a finite subcover, and
derive a contradiction as follows. Divide S into smaller and smaller n-cells as in
the proof of Theorem 14.5.4. At each step there must be at least one of the smaller
hypercubes that does not admit a finite cover by the Ui, i ∈ I . This constructs
a nested sequence of hypercubes Ck where the side length goes to 0, which all
fail to have a finite subcover. Now there in a unique point c in the intersection
of all these hypercubes by Theorem 14.5.4. It lies in one of the open sets of the
cover, call it U0. Therefore a small enough ball centered at c is in U0, which means
that for a large enough K, the entire hypercube CK is in U0. This contradicts the
construction of the Ck as hypercubes that do not admit a finite subcover, so we are
done.

15.1.12 Exercise. Next show that if C is a closed subset of S, where S has the
finite-open-cover property, then C also has the property. Hint: if Ui, i ∈ I , is an
open cover of C, then add to this open cover the complement Cc of C, which is
open by Theorem 14.4.13. In this way you get an open cover for S, which has the
finite-open-cover property.

15.1.13 Exercise. Use the last two exercises to show that any compact set C in Rn
has the finite-open-subcover property, by putting C in a closed hypercube.

Before reading further, you may want to read Chapter 10 to review sequences.

15.2 Cauchy Sequences

As the main theorem of this section shows, Cauchy sequences1 provide a way
of discussing convergent sequences without mentioning the value the sequence
converges to. This section is not essential for what follows.

1See [12] p.123 for historical details.
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15.2.1 Definition. A sequence {ai} in Rn is a Cauchy sequence if for every ε > 0
there is an integer N such that d(ai,aj) < ε for all i ≥ N and j ≥ N .

15.2.2 Theorem. Any Cauchy sequence in Rn converges, and every convergent
sequence is Cauchy.

Proof. First we prove that any convergent sequence {ai}, is Cauchy. Let a be the
limit of the sequence. Thus for any ε > 0 there is an integer N so that i ≥ N
implies d(ai,a) < ε/2 for i ≥ N . But then by the triangle inequality (5.4.14)

d(ai,aj) ≤ d(ai,a) + d(aj ,a) ≤ ε

Now we go in the other direction: we assume the sequence is Cauchy. For
each positive integer N let CN be the smallest hypercube containing all the ai for
i ≥ N . Because {ai} is a Cauchy sequence, it is bounded. Thus a CN exists
for each N : be sure you see that, it is the key point of the proof. By elementary
logic, since CN+1 does not need to contain the point aN , but otherwise contains
the same points in the sequence as CN , CN+1 ⊂ CN for all N . So the CN form a
nested sequence of hypercubes. Finally we show that the length of the side of the
hypercubes converges to 0 - this is the second use of the Cauchy criterion. Indeed,
for every ε > 0 there is a N such that d(ai,aj) < ε for all i ≥ N and j ≥ N .
By Exercise 14.5.3 this means that the side of any hypercube Ci, for i ≥ N is less
than or equal to ε/

√
n. So the limit of the sequence of hypercubes is a single point

a, and the Cauchy sequence {ai} converges to a.

Note that this last step requires the completeness of R: otherwise there might
be nothing to converge to.

15.2.3 Exercise. Write a careful proof to show that Cauchy sequences are bounded.

See §15.5 for an extended example of Cauchy sequences.

15.3 Subsequences of sequences

Next, we need the notion of a subsequence of a sequence. While the formal defi-
nition is a little forbidding, the idea is simple: out of the terms of a sequence, just
pick out any infinite subset of terms. First an example.

15.3.1 Example. Start with the sequence {1/i}. We could pick out

• the even numbered terms 1/2, 1/4, 1/6, 1/8, . . . , 1/(2i)

• or the powers of two: 1/2, 1/4, 1/8, 1/16, . . . , 1/(2i).
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• or the terms where i is a prime number: 1/2, 1/3, 1/5, 1/7, 1/11, . . . Note
that in this case there is no formula for the terms.

There are many other possibilities, of course. An infinite number, in fact.

Here is how one defines a subsequence formally.

15.3.2 Definition. Take any infinite sequence {ij} of increasing positive integers,
indexed by j:

i1 < i2 < i3 < · · · < ij < · · · .

Then {xij} is a subsequence indexed by j of the sequence {xi}, indexed by i.

So in the first sequence in Example 15.3.1, i1 = 2, i2 = 4, and ij = 2j, so the
j-th term of the subsequence is 1/(2j). In the second example, ij = 2j .

Here is the main way we use compactness in these lectures.

15.3.3 Theorem.

1. Let {ai} be an arbitrary sequence in a compact set S in Rn. Then it is
possible to find a convergent subsequence {aij} of {ai}, converging to a
point in S.

2. Let {ai} be a bounded sequence in Rn. Then it is possible to find a conver-
gent subsequence {aij} of {ai}.

Proof. Part (2) of the theorem follows easily from part (1), so let’s prove it first,
assuming part(1): Since the sequence is bounded, by definition all its value lie in a
some closed ball B. B is compact, so the result follows from part (1).

Now we prove part (1). If we denote the collection of points in the sequence
by S, then S could be a finite or an infinite set.

If S is a finite set, then, for an infinite number of indices in the sequence, the
sequence takes on the same value a. So just take the subsequence corresponding
to these indices: we get the constant sequence which obviously converges to its
unique value, and we are done.

If S is infinite, we use Theorem 15.1.5, which tells us that the infinite set S has
a limit point p.

Here is how we pick the subsequence required by the theorem, which we call
{bj}. We first pick an element b1 from the full sequence {ai}. We can assume that
b1 6= p, since the sequence has an infinite number of values. Let r1 = d(b1,p).
Then r1, the distance between b1 and p, is positive.

We build the sequence recursively as follows, assuming that rj and bj , where
bj = aij , for some index ij , have been defined. Let rj+1 =

rj
2 . By Exercise 14.4.6,
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we know that the neighborhood Nrj+1(p) contains an infinite number of elements
of the sequence {ai}. Thus we can find one with index i greater than any given
index, in particular greater than ij . Call that index ij+1, and let bj+1 = aij+1 . This
gives a subsequence aij , which converges to p since the distance to p halves at
each step.

15.4 Sequential Compactness

One of the key uses we have for sequences is the following definition.

15.4.1 Definition. A subset S of Rn is sequentially compact if every sequence in
S has a subsequence that converges to a point in S.

15.4.2 Theorem. A subset S of Rn is sequentially compact if and only if it is
compact.

Proof. Theorem 15.3.3 shows that compactness implies sequential compactness.
To prove the other implication assume that S is sequentially compact. First we
show S is closed: to do this we need only show that it contains all its limit points.
A limit point of S gives rise to an infinite sequence in S. One can then construct
a subsequence converging to the limit point, which by the definition of sequential
compactness is in S, so S is closed. Finally we need to show that S is bounded.
Assume it is not. Then one can construct a sequence {xn} with ‖xn‖ ≥ n. Se-
quential compactness would imply that one can find a convergent subsequence, but
this is impossible since the lengths go to infinity.

15.5 An Equivalence Relation on Cauchy Sequences

We conclude with an example of Cauchy sequences of rational numbers. This gives
an interesting example of an equivalence relation that also illustrates some proof
techniques, and sheds some additional light on the completeness of R: §14.2

Let {ai} be an infinite sequence where all the ai are rational numbers. We start
with the index set of all positive integers i , and to each index i we associate a
rational number ai.

We restate the definition of Cauchy sequence using only rational numbers. The
only change is the use of 1/M where M is a natural number, in place of ε.

15.5.1 Definition. We say the sequence {ai} of rational numbers is a Cauchy se-
quence if

∀M ∈ N, ∃N ∈ N such that ∀n ≥ N and m ≥ N then |an − am| <
1

M
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In words: for any rational number of the form 1/M there is an positive integer N
such that for all integers m and n, both at least N , am and an are less than 1/M
apart.

15.5.2 Definition. We say that two Cauchy sequences of rationals, {ai} and {bi},
are equivalent if

∀M ∈ N, ∃N ∈ N such that ∀n ≥ N then |an − bn| <
1

M
(15.5.3)

In words they are equivalent if the n-th term of both sequences are arbitrarily close
if n is large enough.

15.5.4 Theorem. Definition 15.5.2 gives an equivalence relation on Cauchy se-
quences.

Proof. We need to prove three things. The first two (the fact that it is reflexive and
symmetric) are simple and left to the reader. The third one (transitivity) is harder,
and gives a good example of a proof involving sequences.

Suppose that we have three Cauchy sequences of rationals {ai}, {bi} and {ci}.
We assume that {ai} and {bi} are equivalent and that {bi} and {ci} are equivalent.
We must show that this implies that {ai} and {ci} are equivalent.

What do we know? We fix a positive integer M . Since {ai} and {bi} are
equivalent

∃N1 ∈ N such that ∀n ≥ N1 then |an − bn| <
1

2M

Since {bi} and {ci} are equivalent

∃N2 ∈ N such that ∀n ≥ N2 then |bn − cn| <
1

2M

So let N be the larger of N1 and N2. Then for n ≥ N

|an − cn| ≤ |an − bn|+ |bn − cn| by the triangle inequality in R

≤ 1

2M
+

1

2M
=

1

M
by hypothesis

so we are done.

Thus equivalence classes of Cauchy sequences of rationals are well defined. So
we may ask: what are the equivalence classes? The beautiful answer is that each
equivalence class corresponds to a distinct real number, and all real numbers are
accounted for in this way.

Indeed, the method can be used to construct the real numbers. This is done in
[70], §2.3.1. Note that this approach makes the density of the rationals in the reals
(Theorem 14.2.8) almost obvious.
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15.5.5 Example. Let x be a real number. Let ai be the rational number which is
the decimal expansion of x truncated after i terms. Then {ai} is a Cauchy sequence
representing the real number x. Now modify {ai} by replacing the first N terms,
for any fixed integerN , by any numbers whatsoever. Call this sequence {bi}. Show
that {bi} is equivalent to {ai}. If x has a terminating decimal expansion, then
the sequence {ai} is constant after a finite number of terms, so the modification
proposed does nothing.



Lecture 16

The Maximum Theorem

The main theorem of this chapter is the Weierstrass Maximum Theorem 16.2.2,
certainly the most-used theorem of this course. It guarantees that a continuous
function on a compact set in Rn has a global maximum and a global minimum.
The theorem builds on the results on compact sets in Lecture 15, and then on some
results on continuity that we establish early in the lecture. The reader may want to
review more elementary properties of continuity in several variables in Chapter 11,
if only to establish notation and to see the statements of the key theorems.

One intermediate result, Theorem 16.2.1, is worth mentioning here: it says
that the image of a compact set under a continuous function is compact. The major
steps in the proof of the Weierstrass Theorem are conceptually simple and worth
understanding. Be sure to remember the key examples: 16.2.3, 16.2.4 and 16.2.5,
which show why all the hypotheses of the Weierstrass Theorem are needed.

The lecture concludes with two optional sections. The first, §16.3, gives two
generalizations of the notion of continuity, called upper and lower semicontinu-
ity. They come up now because we use them to formulate a generalization of the
Weierstrass Theorem that will prove useful later: see §21.5.

16.1 Continuous Functions

The notion of continuity of a real-valued function at a point, using the language of
distance functions.1 is reviewed in Chapter 11. Here we generalize to the case of a
function from Rn to Rm.

From now on, f(x) is a function from a subset D ⊂ Rn to Rm. Thus we
have two different Euclidean spaces with different Euclidean distance functions.

1Stewart [63] gives a good discussion of both the one-variable case (§2.5) and the multi-variable
case (§14.2).
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To keep them distinct, we call the distance in the domain dn and the distance in the
range dm.

16.1.1 Definition. A Rm-valued function f defined on a setD ⊂ Rn is continuous
at a point a ∈ D if for every ε > 0 there exists a δ > 0 such that the set M = {x ∈
D | dn(x,a) < δ} is mapped by f to the set M = {y ∈ Rm | dm(y, f(a)) < ε}.
Thus f(N) ⊂M .

When a is a point in the interior of D, we can take for N a neighborhood of
a in Rn. However, if a is on the boundary of D, then no ball around a, no matter
how small the radius, lies completely inside D. So we are forced to take instead
the set N of the definition, which is the intersection of D with the δ-neighborhood
of a in Rn.

16.1.2 Remark. We could repeat Theorem 11.2.1 in this context. Instead just note
that if f is not continuous at p, then there is a sequence of points {pi} converging
to p, but such that the sequence {f(pi)} does not converge to f(p).

Finally here is a theorem connecting continuity to the metric structure of Rn.
This gives us another definition of continuity: a function is continuous if and only
if the inverse image under f of every open set is open. First a definition.

16.1.3 Definition. Let f be a function defined on D ⊂ Rn and mapping into Rm.
Let U be a subset of Rm. Then the inverse image f−1(U) under f of a set U ⊂ Rm
is the set of x ∈ Rn such that f(x) ∈ U .

Note that we do not assume that U is contained in the range of f .

16.1.4 Theorem. Let f : D → Rm be a continuous function from a set D ⊂ Rn
into Rm. Then for any open set U in Rm, f−1(U) is open relative to D.

Conversely, if the inverse image under f of every open set is open, then f is
continuous.

According to Definition 14.6.1 this means that for any x ∈ f−1(U), then every
x′ ∈ D sufficiently close to x is in f−1(U). Because we only use metric properties
of Rm, and because any subset of a metric space is a metric space, as we noticed
in Exercise 5.4.16, we could avoid the use of relative openness by restricting from
Rn to D.

Proof. To show that f−1(U) is open in D, it is enough to consider a p ∈ D, with
its image q = f(p) in Rm. Since U is open, for sufficiently small ε > 0, the
neighborhood Nε(q) is contained in U . Since f is continuous at p, there is a δ > 0
such that the points x ∈ D∩Nδ(p) get mapped intoNε(q). Since p is an arbitrary
point of f−1(U), this says that f−1(V ) is open relative to D.
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For the converse, pick a point p ∈ D, and its image q = f(p) in Rm. Let
U = Nε(q), for an arbitrary ε > 0. Consider its inverse image f−1(U). By
hypothesis it is open, so it contains a δ-neighborhood of p in D. By construction
this δ-neighborhood of p is mapped under f to U , which is the statement that f is
continuous at p.

16.1.5 Exercise. Prove that f is continuous if the inverse image under f of any
closed set is closed.

Hint: Use the fact that the complement of a closed set is open.

16.1.6 Exercise. Assume that the inverse image under f of any compact set is
closed. Show that this does not imply that f is continuous by producing a coun-
terexample. There are counterexamples even when n = m = 1. Show that there
still are counterexamples when the domain of f is compact. When the range of f
is compact, f is continuous by Exercise 16.1.5. Explain.

16.2 The Weierstrass Theorem

The main step in the proof of the Weierstrass theorem is interesting in its own right.

16.2.1 Theorem. If S is a compact set in Rn, and f a continuous function from S
to Rm, then f(S) is compact.

Proof. Take an infinite sequence {yn} in f(S). Then we can find a sequence {xn}
in S, such that f(xn) = yn for each n. Because S is compact and therefore
sequentially compact, we can find a subsequence of {xn} that converges to a x ∈
S. Continuity of f says that the image of this subsequence under f converges to
f(x), which shows that f(S) is sequentially compact and therefore compact.

Next we turn to the the Weierstrass theorem2, also called the maximum theo-
rem.

16.2.2 Theorem (Weierstrass Theorem). If S is a compact set in Rn, and f a con-
tinuous function from S to R, then f has a global maximum and a global minimum
on S

This means that there is a point xm ∈ S such that for all x ∈ S, f(xm) ≤
f(x), and a point xM ∈ S such that for all x ∈ S, f(xM ) ≥ f(x). This is
sometimes described by the following inaccurate language: “f attains its maximum

2References: In Rudin [55] the theorem appears as Theorem 4.16. In Stewart’s Calculus book
[63] the two variable case is discussed in §14.7, p.959.
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and minimum values on S”. One should really say that f is bounded on S and that
it attains its least upper bound and greatest lower bound on S.

The function may take on its maximum or minimum value at several points,
indeed, an infinite number of points. Consider, for example, the functions

• f(x) = x2 on the interval [−1, 1] or

• g(x) = −x2 − y2 on the unit disk centered at 0 in R2.

We first produce “counterexamples” to Theorem 16.2.2 when we drop any one
of the hypotheses.

16.2.3 Example. The theorem can fail if f is not continuous. Let f(x) be the
function on the interval [−1, 1] defined in (11.2.5). Does f has a minimum on the
interval? If it has does, the minimum has to be 0. But the function does not take on
the value 0, as you can easily see, there is no minimum and the theorem fails.

16.2.4 Example. The theorem can fail if the set S is not closed. Consider the open
interval S = (0, 1) and the function f(x) = x. As x → 0 from the right, f(x)
decreases to 0, but it never takes on the value 0 on S, even though 0 is the glb of
the values of f on the interval. As x → 1 from the left, f(x) increases to 1, but
it never takes on the value 1 on S, even though 1 is the lub of the values of f on
the interval. So this function has neither a minimum nor a maximum on S, and the
theorem fails.

16.2.5 Example. The theorem can fail if S is not bounded. Take for S the un-
bounded interval [0,∞) of non-negative numbers, and let f(x) = x. f gets arbi-
trarily large as x→∞, so again the theorem fails.

Next an example in two variables.

16.2.6 Exercise. Consider the function f(x, y) = x2 + 2y2.

1. Find the minimum value of this function on the closed disk N1(0). Where
is it attained?

2. Restrict the function f(x, y) to the boundary of N1(0), which is the unit
circle. Using a trigonometric substitution, study the behavior of the function
f there: in particular find its minima and its maxima.

3. Finally find the maxima on N1(0). Justify your answer.
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We now prove the Weierstrass Theorem 16.2.2. As noted in the first lecture,
Remark 1.1.6, it is enough to show the function f has a minimum, since to get the
maximum we simply take −f .

Theorem 16.2.1 tells us that f(S) is compact in R.
Thus, by Theorem 14.2.5, the set of all values of f(x) on S has a greatest

lower bound m, which by compactness of f(S) is in f(S), since it is by definition
a limit point of a sequence in f(S). Then there is a x ∈ S with f(x) = m, and the
theorem is proved.

16.3 Lower Semicontinuous Functions

In Lecture 21, in order to understand the continuity of convex functions of the
boundary of their domain, after establishing their continuity on the interior, we
generalize the notion of continuity of a function to that of lower and upper semi-
continuity. We mainly consider lower semicontinuity, because, as we will see in
§16.4 lower semicontinuous functions achieve their minimum on compact sets, so
they satisfy a generalized Weierstrass Theorem 16.4.1.

We first define the lim inf of a function at a point. Recall the notation N ε(x0)
for the closed ball of radius ε around the point x0 from Definition 14.4.1. We write
R for the real numbers extended by∞ and −∞.

16.3.1 Definition. The limit inferior of a sequence {xn} in R is its smallest limit
point (see Definition 14.4.3) in R. It is written lim inf{xn}. Let f be a function
from an open set S ⊂ Rn to R, and let x0 be a point in the closure S of S. Then
let

lim inf
x→x0

f(x) = lim
ε↘0

(
inf{f(x) | x ∈ N ε(x0) ∩ S}

)
Notice that the right-hand side defines an increasing sequence (since we are

taking the inf over smaller and smaller sets), so the limit exists (if the sequence is
unbounded, we say its limit is∞).

16.3.2 Definition. We say that f , a function from a set S ⊂ Rn to R, is lower
semicontinuous if for all x0 ∈ S, f(x0) = lim infx→x0 f(x).

16.3.3 Exercise. Check that an alternate way of defining lower semicontinuity is:
f is lower semicontinuous at x0 ∈ S, if for all ε > 0 there is a δ > 0 such that

for all x ∈ Nδ(x0) ∩ S, f(x) > f(x0)− ε.

This exercise makes it clear that continuous functions are lower semicontinu-
ous: for continuous functions, the conclusion is that f(x) is in the open interval
(f(x0)− ε, f(x0) + ε), while lower semicontinuity only requires the that f(x) be
in the unbounded interval (f(x0)− ε,∞).
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16.3.4 Theorem. The function f is lower semicontinuous at x0 ∈ S if and only if
the following two conditions are satisfied. Let c0 = f(x0).

• For any sequence {xn} in S converging to x0 such that the sequence {f(xn)}
has a limit c, then c0 ≤ c.

• There is a sequence {xn} in S converging to x0 such that limn f(xn) = c0.

This follows immediately from the definition.

16.3.5 Example. Let I be the closed interval [−1/2, 1/2] in R. Let f(x) be the
function on I given by

f(x) =

{
x+ 1, if −1/2 ≤ x < 0;
x, if 0 ≤ x ≤ 1/2.

Then f(x) is lower semicontinuous, but not continuous at 0.
Similarly, if g(x) is the function defined on all of R, given by

g(x) =

{
1
x2
, if −1/2 ≤ x < 0;

x, if 0 ≤ x ≤ 1/2.

Then g(x) is lower semicontinuous but not continuous at 0.
By a simple change in the definition of f :

h(x) =

{
x+ 1, if −1/2 ≤ x ≤ 0;
x, if 0 < x ≤ 1/2.

we get a function that is not lower semicontinuous at 0. Note that both f and g
attain their minimum value 0 on I, while h does not. As we see in the next section,
lower semicontinuous function attain their minimum on compact sets. On the other
hand h is upper semicontinuous and attains its maximum.

A more interesting example is given below in Example 16.3.8.
In Definition 21.1.14 we define the sublevel sets Sc of any real-valued function

f(x) defined on a set S. Sc is just the set where f takes values at most c. They are
connected to lower semicontinuity by the following theorem.

16.3.6 Theorem. The function f is lower semicontinuous on S if and only if ∀c ∈
R, the sublevel set Sc is closed relative to S.
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Proof. First assume f is lower semicontinuous. Take a sequence of points {xn}
in Sc converging to a point x0 ∈ S. We need to show that x0 is in Sc. Since
f(xn) ≤ c, then lim infx→x0 f(x) ≤ c. Then lower semicontinuity of f says that
f(x0) ≤ c, so x0 ∈ Sc as required.

Next assume that f is not lower semicontinuous at x0. Then there is a se-
quence {xn} in S converging to x0 with lim infx→x0 f(x) = c < f(x0). Let
ε = (f(x0)− c)/2. Then, for large enough n, xn is in Sc+ε, while x0 is not. This
contradicts the hypothesis that Sc+ε is closed.

Remark: we also have to consider the case where c is −∞. The proof above
goes through by taking for (c+ ε) any number less than f(x0).

16.3.7 Example. The sublevel set Sc of the function f(x) from Example 16.3.5 is
the closed interval 0 ≤ x ≤ c, when c < 1/2, the union of the point x = −1/2
and the interval 0 ≤ x ≤ 1/2, when c = 1/2, and the union of the two intervals
−1/2 ≤ x ≤ c − 1 and 0 ≤ x ≤ c when c ≤ 1/2, confirming that f is lower
semicontinuous. On the other hand, the sublevel set Sc of the function h(x), for
0 < c < 1/2, is the interval 0 < x ≤ c, which is not closed, confirming that h is
not lower semicontinuous.

16.3.8 Example. Here is a multivariable example of a lower semicontinuous func-
tion that is not continuous. We will study this example in detail in §9.1: it is the
Rayleigh quotient of a quadratic form. Start with the function f(x, y) on R2r {0}
given by

f(x, y) =
3x2 − 2xy + 3y2

x2 + y2
(16.3.9)

For any positive real number λ, f(λx, λy) = f(x, y), so f is homogenous of
degree 0: see §12.3. Since f is clearly continuous on the unit circle

U = {x2 + y2 = 1} ⊂ R2,

by the Weierstrass Theorem 16.2.1 it attains its minimum m and its maximum M
on U . Parametrizing U by x = cos t and y = sin t, 0 ≤ t ≤ 2π, we get

g(t) = f(cos t, sin t) = 3− 2 cos t sin t = 3− sin 2t,

using the usual trigonometric identities. Then m = 2 and M = 4. Then extend
f(x, y) to all of R2 by setting f(0) = 2. This extended function is a lower semi-
continuous function on R2 but is not continuous at the origin. Indeed, if you take
a sequence of points (xi, yi) approaching the origin along suitable rays you can
get any limit between 2 and 4. If instead we extend f by setting f(0) = 4, the
extended function is upper semicontinuous.
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For more complicated Rayleigh quotients the determination of m and M is an
exercise in linear algebra: the computation of the eigenvalues and eigenvectors of
a symmetric matrix: See Theorem 9.1.2.

16.3.10 Exercise. Be sure that you can graph z = f(x, y) in R3.

It is left to you to define the lim sup, the notion of upper semicontinuous func-
tion, and the analog of Theorem 16.3.6 for the upper level set Sc = {x ∈ S |
f(x) ≥ c}.

16.4 A Generalization of the Weierstrass Theorem

In these lectures we will only apply this generalization when we know that f is
convex. Lemma 21.3.8 then implies that f takes values in R ∪ ∞, which is what
we assume in the next theorem.

16.4.1 Theorem (Generalized Weierstrass Theorem). If S is a compact set in Rn,
and f a lower semicontinuous function from S to R ∪ ∞, then f has a global
minimum on S.

Proof. Consider the set C of c ∈ R such that the sublevel set Sc is non empty. We
first show that C is bounded below. Suppose not: then there is a sequence {cn}
of values of f on S getting arbitrarily negative. Thus we get a sequence of points
{xn} in S, with f(xn) = cn. Since S is compact, we can extract a converging
subsequence that we still call {xn}. Lower semicontinuity then says that the value
of f at the limit x of the sequence is −∞. This contradicts our hypothesis that f
takes values in R ∪∞.

Thus C is bounded below. So Theorem 14.2.5 says that C has a greatest lower
bound, that we call c0 Let {cn} be a decreasing sequence of real numbers con-
verging to c0. Then each Scn is non-empty, so there is a xn ∈ Scn . Because S is
compact we can extract a subsequence from the sequence {xn} that converges to
some x0. The fact that f is lower semicontinuous implies that f(x0) ≤ c0, so we
must have f(x0) = c0, showing that the minimum value is actually attained, and
we are done.

We will use this result in the proof of Theorem 29.7.2.
There is of course a second theorem obtained by letting f be an upper semi-

continuous function from a compact set S to R ∪ −∞. The conclusion is that f
has a global maximum on S. The proof is left to you: just replace f by −f .



Lecture 17

Function Graphs and the Implicit
Function Theorem

With this lecture we begin our study of nonlinear optimization by examining the
geometry of the feasible set. We have already looked at convex feasible sets in
Lecture 22, and on polyhedral feasible sets in Lectures 19 and 25. Here we look
at a set F ⊂ Rn defined by the vanishing of m functions hi(x1, . . . , xn), m < n.
When the equations hi = 0 are of degree 1, this is what we studied in Lectures 19
and 25. When the functions hi are more complicated: e.g. polynomials of degree
> 1, it can be difficult even to find a single point x∗ in F . Once we have found
such a point x∗, we need to determine what F looks like in a neighborhood of x∗.

This turns out to be a difficult question, except when the point x∗ is regular:
see Definition 17.1.4. When x∗ is regular, and the functions hi are C1, we can write
a neighborhood of x∗ in F as the graph of a function, using the Implicit Function
Theorem 17.6.6. An important mathematical object emerges from this discussion:
the tangent space to F at a regular point. We study it in §17.2. We also discuss
vector fields.

The main result of this lecture is the Implicit Function Theorem, stated in §17.6.
It is worth first studying the special case given in §17.5, and even more importantly
the linear case stated as Theorem 17.6.3. They both help understand the full the-
orem. Work through the examples in §17.8 to understand the statement of what
is probably the most important theorem in multivariable calculus. Then in §17.9
there are corollaries to be used in later lectures on nonlinear optimization, starting
with §28.6 and then §31.2.
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17.1 Subsets of a Real Vector Space

We are given m functions hi, 1 ≤ i ≤ m, in n variables xj , 1 ≤ j ≤ n, where
m < n.

17.1.1 Definition. Let U be the intersection of the domains of all the hi. We
assume that U is not empty. Write h(x) for the vector function from U ⊂ Rn →
Rm whose coordinate functions are the hi. The function h(x) defines a map from
U ⊂ Rn to Rm.

Let
F = {x ∈ U ⊂ Rn | h(x) = 0} (17.1.2)

We call this subset F because we are thinking of it as the feasible set for an opti-
mization problem.

Simply deciding whether the set F is empty or not is already difficult. Con-
sider, for example, the locus given by the vanishing of the single equation

h(x1, . . . , xn) =
n∑
j=1

x2j − t = 0

where t is a real number. When t is greater than 0, we get the sphere of radius
√
t

in Rn. However, if t < 0 the locus is empty.
Assume F is non-empty, indeed, that we have found a point x∗ in it. The

next question is: what does F look like in a neighborhood U of x∗? Assume the
functions hi are C1. Write

∇h =


∂h1
∂x1

. . . ∂h1
∂xn

...
...

...
∂hm
∂x1

. . . ∂hm
∂xn

 . (17.1.3)

The i-th row of the m×n matrix∇h is the gradient∇hi of the scalar function
hi. The ij-th entry of the matrix is ∂hi

∂xj
. When we evaluate the matrix ∇h at x∗,

we write∇h(x∗).

17.1.4 Definition. A point x∗ satisfying h(x∗) = 0 is regular if the m× n matrix
∇h(x∗) has rank m.

Here is an equivalent way of stating regularity, that readers who have studied
differential geometry may have seen.

17.1.5 Definition. A submersion is a C1-map h from an open set U in Rn to Rm
such that the m× n matrix∇h has (maximal) rank m at all x ∈ U .
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If x∗ is regular, a m×m minor of the matrix∇h does not vanish at x∗. Since
the entries of this matrix are continuous (by the assumption that h is C1), this minor
does not vanish in a small enough neighborhood of x∗. So regularity is an open
condition on the zero locus of a C1 map.

Thus

17.1.6 Theorem. Regularity at a point x∗ in the set F = {x|h(x) = 0} implies
regularity for all x in a small enough neighborhood of x∗ in F .

17.2 Tangent Vectors and Vector Fields

To each point p ∈ Rn, we attach a new vector space Tp of dimension n, which we
call the tangent space to Rn at p.

Thus we get an n-dimensional collection of n-dimensional vector spaces. To
specify an element of

⋃
p∈Rn Tp requires two n-tuples of real numbers: first, the

point p and second an n-tuple (v1, v2, . . . , vn) determining a vector v ∈ Tp, which
we called a tangent vector to Rn at p. We write it vp, and view it as an arrow
starting at p with tip at p + v.

Equivalently, we can consider an ordered pair of points x0 and x1 in Rn as the
element v = x1 − x0 in Tx0 .

17.2.1 Example. Here are some examples of tangent vectors at different points in
R2. First a tangent vector at p = (1, 0). Note that addition is performed in Tp
as if the origin of the vector space had been transferred to p. If vp = (1, 1)p and
wp = (1,−1)p then vp+wp = (2, 0)p. and then a tangent vector at q = (−1, 1):
vq = (−1, 0)q.

There is how this concept will come up in this course.

17.2.2 Definition. Let f1, f2, . . . fn be n functions of the n variables x1, . . . , xn
with common domain U . Then, ei being the standard coordinate vectors, write

f1e1 + f2e2 + · · ·+ fnen (17.2.3)

defines a vector field on U , namely an assignment for every x∗ ∈ U of the tangent
vector (f1(x

∗), . . . , fn(x∗))x∗ .

The most important vector field for us is the gradient ∇f of a differentiable
function f(x), where

fi =
∂f

∂xi

It is a vector field where the tangent vector assigned to Tp is∇f(p).
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When is a vector field (17.2.3) the gradient of a function f? When it is, it is
called a conservative vector field, and f is called the potential function of the vector
field. A necessary condition when the fi are differentiable is given by Clairault’s
Theorem 12.1.26.

∂fi
∂xj

=
∂fj
∂xi

for all 1 ≤ i, j ≤ n

Further analysis of this issue is given, for example, in [63], §16.3.

17.2.4 Example. For the function f(x, y) = x2+2x−y3 draw the gradient field of
f(x, y) at a few points. Now consider the curve in the plane given by the equation
f(x, y) = 0. Add it to the gradient field graph. What can you say?

17.3 The Tangent Space of a Subspace

We define the tangent space of a subspace of Rn at a point. Recall from §17.2 the
definition of the n-dimensional tangent space Tp of Rn at p. It allows us to define
the tangent space of a subspace as follows:

17.3.1 Definition. If M is a subspace of x ∈ Rn given by hi(x) = 0, 1 ≤ i ≤ m,
and x∗ ∈ M , then the tangent space TM,x∗ of M at x∗ is the subspace of Tx∗
orthogonal to the m vectors∇hi(x∗).

This definition is mainly useful when x∗ is regular. Then, since the matrix
∇h(x∗) has rank m, the nullspace, which is the tangent space, has dimension
n −m. This describes TM,x∗ as a linear subspace of Tx∗ . We are more interested
in seeing what it looks like inside of Rn itself. For that, we consider the tangent
space from the point of view of the Taylor polynomial of the functions hi.

First the case where there is just one constraint h(x) = 0. Let P1(x
∗,x) be

the Taylor polynomial of degree 1 of h(x1, . . . , xn) centered at a point x∗ where
h(x∗) = 0. Then

P1(x
∗,x) = h(x∗) +∇h(x∗) · (x− x∗) = ∇h(x∗) · (x− x∗).

Assume that ∇h(x∗), the gradient of h evaluated at x∗, is a non-zero vector.
Then we get a non-trivial affine equation

∇h(x∗) · (x− x∗) = 0. (17.3.2)

This equation is the best linear approximation of h(x) = 0 at the point x∗, and it
is the equation of the tangent space of h = 0 at x∗ in Rn.
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Now make the same construction for them- vector h(x) = (h1(x), . . . , hm(x))
of C1 functions. Assuming none of gradients are the zero vector, we get a collection
of m affine equations

∇h(x∗) · (x− x∗) = 0.

These equations given the best linear approximation to h(x) = 0 near x∗, and
generalize the equation found in Definition 17.3.1.

We can rewrite these equations as

∇h(x∗) · x = b,where b is the constant∇h(x∗) · x∗ (17.3.3)

The coefficients ∇h(x∗) on the left-hand side form a m × n matrix of rank m if
and only if the point x∗ is regular for the equations h(x) = 0.

17.3.4 Theorem. TM,x∗ is an affine space of dimension≥ n−m. It has dimension
n−m if and only if x∗ is regular for the constraints h.

Proof. This is just a way of restating the rank-nullity theorem of linear algebra,
quoted in §7.2, giving the dimension of the nullspace of a linear map in terms of
its rank. Since m is the maximum possible rank, it corresponds to the nullspace of
smallest possible dimension, as the theorem states.

For more details on tangent spaces, see [47].

17.3.5 Example. Assume we are in R2 with coordinates x1 and x2. Let h(x1, x2)
be the function x21 + x22 − 1, and let M be the subset of R2 given by h(x1, x2) =
0, so that M is the unit circle centered at the origin. The matrix of partials of
h is just the gradient matrix [2x1, 2x2]. If we evaluate at any point on the unit
circle, we do not get the zero matrix, which just says that the matrix has rank
1, the maximal rank possible. We write the Taylor polynomial of degree 1 of h
at (x∗1, x

∗
2), and set it to zero to give us the linear equation of the tangent line:

2x∗1(x1 − x∗1) + 2x∗2(x2 − x∗2) = 0 or

x∗1x1 + x∗2x2 = 1.

So if (x∗1, x
∗
2) is the point (1, 0), we get as equation for the tangent line x1 = 1,

while if it is (−1, 0), we get x1 = −1. If the point x∗ is (cos θ, sin θ), then the
equation of the tangent line to the circle at x∗ is

cos (θ)x1 + sin (θ)x2 = 1.

The Implicit Function Theorem will allow us to transform a feasible set F into
the graph of a function in a neighborhood of a regular point x∗, so the next thing
we do is study such graphs in §17.4.
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17.4 Graphs of functions

Assume we have a function g : Rn−m → Rm. We denote its m coordinate func-
tions by gi, 1 ≤ i ≤ m. You may wonder why we have changed our indexing
convention: why does g take its values in Rn−m instead of Rn? This is because g
will serve later at the implicit function of the Implicit Function Theorem, and the
indexing above is the indexing we will need. It is also because we want the graph
of g to be a subset of Rn.

You of course know what the graph of a real-valued function f(x) is. In the
current context we would write it at the subset of Rn+1 given as (f(x),x). We
now generalize this to a function mapping to Rm.

17.4.1 Definition. The graph of a function g : Rn−m → Rm is the subset Γ of Rn
given by

Γ = (g1(x), . . . , gm(x), x1, . . . , xn−m)

for all x = (x1, . . . , xn−m) in the domain of g.

It is a matter of convenience to list the values of g before the variables. In
this representation the last n−m variables can vary freely and are therefore called
the free variables. while the first m variables are uniquely determined by the free
variables, and are therefore called the bound variables.

17.4.2 Example. Let g(x1, x2) be the function from R2 to R2 with coordinate
functions g1(x1, x2) = x21 + x22, and g2(x1, x2) = x31 − x32 − 1. The graph of
g(x1, x2) is the collection of points in R4 (x21 +x22, x

3
1−x32− 1, x1, x2), for all x1

and x2 in R2. So n = 4 and m = 2.

We get a m × (n −m) matrix ∇g of partial derivatives of the m real-valued
functions gi with respect to the n−m free variables.

Expressing a part of a subset of Rn in this way is known as parametrizing it.
We will only be considering the implicit function parametrizations derived from
the Implicit Function Theorem. We want to see what the chain rule tells us when
we are dealing with the graph of a function.

17.4.3 Definition. In Theorem 22.1.2, we used the well-known expression for the
tangent hyperplane to the graph of a real-valued function at a point (x∗1, . . . , x

∗
n−m).

It generalizes readily to the expression for the tangent space to the graph of a func-
tion g to Rm. It is the intersection of the tangent hyperplanes to each one of the gi,
so we write

yi = gi(x
∗) +∇gi|x∗(x− x∗).

In this notation the variables on Rn are y1, . . . , ym, x1, . . . , xn−m. Move the terms
with the variables x y to the left hand side, and the constants to the right hand side.
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In block matrix notation, this gives the system of m linear equations in n variables
y and x [

−Im ∇g|x∗
] [y

x

]
=
[
−Im ∇g|x∗

] [−g(x∗)
x∗

]
This matrix of coefficients of this system contains the identity matrix, so it has
maximal rank m. So the set of solutions is an affine space of dimension n − m,
and this is the tangent space to the graph.

17.4.4 Example. Continuing with Example 17.4.2, when x∗1 = 1 and x∗2 = 0, we
get the point (1, 0, 1, 0) on the graph. ∇g1|(1,0) = (2, 0) and ∇g2|(1,0) = (3, 0).
The two tangent equations are

y1 = 1 + 2(x1 − 1)

y2 = 3(x1 − 1),

so the variable x2 does not appear.

17.5 The Implicit Function Theorem: the Simplest Case

Let h(x, y) be a C1 function of two variables. Let C be the set of solutions in R2

of the equation h(x, y) = 0, and let (x0, y0) be a point on C. Since h(x, y) is C1,
we can compute its partials, and evaluate then at (x0, y0). Set

∂h

∂x
(x0, y0) = a and

∂h

∂y
(x0, y0) = b.

In calculus1 you learned how to compute the derivative of h(x0, y0) implicitly in a
neighborhood of the point (x0, y0), if certain conditions are satisfied.

Namely, if a 6= 0, then in a neighborhood of (x0, y0) the curveC can be written
as a graph (g(y), y) for a C1 function g(y) such that g(y0) = x0 and g′(y0) =
−b/a.

17.5.1 Example. The simplest case is the affine function h(x, y) = ax + by − c,
for constants a, b and c. Note that a and b are the appropriate partials of h as per
the notation above. In this case we can solve explicitly for x as a function of y:
x = − b

ay. So this is g(y), and the derivative is − b
a as predicted by (17.5.8).

17.5.2 Example. The next example is h(x, y) = x2 + y2 − 1. The vanishing
locus of h is the unit circle centered at the origin in the plane. We assume that this

1See [63], §3.6 and also p. 936.
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relation makes x an implicit function g of y in a small neighborhood of a point
(x0, y0) such that h is satisfied, meaning h(x0, y0) = x20 + y20 − 1 = 0. In fact in
this case, we can write g explicitly. If x is non-negative, g(y) =

√
1− y2 and if

x is negative, g(y) = −
√

1− y2. When y = ±1, so x = 0 there is a problem:
indeed

∂h

∂x
= 2x

so (17.5.7) is not satisfied at (0,±1). At all other points on the circle, it is satisfied,
the points of the circle are regular for the constraint of being on the circle. By
reversing the roles of x and y, you can see that the remaining two points (0,±1)
are also regular, but you need to write y as a function of x.

17.5.3 Example (The Nodal Cubic). Consider the equation

h(x, y) = y2 − x2(x+ 1) = 0.

Here is a graph of the curve, called the nodal cubic, because of the singular point
at the origin, which is called a node. By definition a point is singular if it is not
regular.
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The gradient of h is∇h = (−2x− 3x2, 2y). Consider the following cases:

1. First let us locate all the points of C where the gradient is the zero vector.
When x and y are both 0, the gradient is 0, and the point is on the curve.
There is also the solution x = −2/3, y = 0, but since h(−2/3, 0) 6= 0, this
is not a point on the curve C.

2. Now consider the points where only the first coordinate of the gradient van-
ishes, so the gradient is vertical. There is just one solution in x, giving−2/3,
and that determines two values of y, y = ±

√
1/32/3. The gradient is per-

pendicular to the tangent to the curve, drawn on the next graph for the point
with positive y coordinate.
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3. Finally consider the points where only the second coordinate of the gradient
vanishes: y = 0, so x2(x + 1) = 0. We have already considered the point
(0, 0), so we are left with (−1, 0) where we have also drawn the tangent line.
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We ask: in the neighborhood of which points on the locus y2 − x2(x+ 1) = 0
does the graph make x a function of y? at which points does is make y a function
of x? It is clear that no matter how small a neighborhood you take of the origin,
the locus is not the graph of a function.

Here is a different way of describing C: we can parametrize it in terms of the
parameter t,

x(t) = t2 − 1 and y(t) = t(t2 − 1)

Indeed, plug this values into h and see what happens when you expand h(t2 −
1, t(t2 − 1)). We think of t as time, and the curve C is then the trajectory of a
particle, starting at the bottom right, going through the origin a first time at t =
−1, going around the loop, going through the origin a second time at t = 1 and
exiting the picture at the upper right. The velocity vector v(t) = (x′(t), y′(t)) =
(2t, 3t2 − 1), so we can draw the tangent line at any point of the curve.

Back to the general case. Assume the relation given by h(x, y) = 0 makes x
an implicit function of y in a small neighborhood. Writing this unknown function
x = g(y), we have

h(g(y), y) = 0 (17.5.4)

so take the derivative with respect to y using the chain rule: you get

∂h

∂x
(g(y), y)

dg

dy
+
∂h

∂y
(g(y), y) = 0 (17.5.5)

which can be evaluated at (x0, y0), where x0 = g(y0):

∂h

∂x
(x0, y0)

dg

dy
(y0) +

∂h

∂y
(x0, y0) = 0 (17.5.6)
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If
∂h

∂x
(x0, y0) 6= 0 (17.5.7)

we can solve for
dg

dy
(y0) = −

∂h
∂y (x0, y0)

∂h
∂x(x0, y0)

(17.5.8)

and this is what is known as the implicit differentiation of h at (x0, y0). As we saw
in §17.3, the equation of the tangent line to h(x, y) = 0 at (x0, y0) is:

∂h

∂x
(x0, y0)(x− x0) +

∂h

∂y
(x0, y0)(y − y0) = 0.

The generalization of this result to several variables is called the implicit func-
tion theorem: see Rudin [55], p.223. We state it in Theorem 17.6.6 after setting up
our notation in Remark 17.6.1.

Now we differentiate (17.5.5) with respect to y using the chain rule again, in
order to get a formula for the second derivatives. We assume that both h and g are
C2. This computation is a special case of that of Theorem 12.2.9, so we redo it from
scratch. Write hx and hy for the first partials of h, and hxx, hxy, hyy for the second
partials. Also write g′ and g′′ for the derivatives of g(y). Then the derivative of
(17.5.5) is:

(
hxx(g(y), y)g′(y) + hxy(g(y), y)

)
g′(y) + hx(g(y), y)g′′(y)

+ hxy(g(y), y)g′(y) + hyy(g(y), y) = 0.

This can be written in block matrix form (suppressing the points where the
functions are evaluated) as:

[
g′ 1

] [hxx hxy
hxy hyy

] [
g′

1

]
+ hxg

′′ = 0. (17.5.9)

Since g′ = −hy/hx, we get (since hx 6= 0), solving for the second derivative
of g:

g′′ =
−1

hx

[
−hy
hx

1
] [hxx hxy
hxy hyy

][
−hy
hx
1

]
= − 1

h3x

(
h2xhyy − 2hxhyhxy + h2yhxx

)
. (17.5.10)
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17.6 The Implicit Function Theorem

17.6.1 Remark. What follows is a generalization of the computation leading to
(17.5.8): h becomes a function h from Rn to Rm, n > m. so it has m coordinates
hi which are functions of n variables (x1, x2, . . . , xn). The case examined above
is n = 2, m = 1. We mimic the split (x, y) that we had above by writing the
variables in two groups: the first group of m variables replacing x we write xb (b
for basic or bound) and the second group of (n − m) variables replacing y, we
write xf (f for free).

Let us see what we need to generalize the one variable computation.

• For (17.5.4) we need a function g of (n − m) variables xf . g(xf ) has m
coordinates gi, 1 ≤ i ≤ m that we put into the first m slots of h.

• For (17.5.5) we need to perform a chain rule computation.

• For (17.5.6) we evaluate at a point x∗ = (x∗b ,x
∗
f ) at which h vanishes. The

point x∗ is the point of interest for the entire computation and has been given
in advance.

• For (17.5.7) and (17.5.8), since we are now dealing with vector functions,
we see that ∂h∂x(x0, y0) needs to be replaced by the m×m matrix of partials
we will call∇bh, defined by

∇bh =

[
∂hi
∂xj

(x∗)

]
where i, 1 ≤ i ≤ m is the row index and j is the column index, so the
i-th row of ∇bh is the gradient of hi with respect to xb. Throughout the
whole computation, gradients will therefore be row vectors, leading to some
peculiar-looking matrix multiplications.

• We let ∇bh∗ denote the value of the gradient ∇bh at x∗. In order to gen-
eralize the key (17.5.7), the matrix ∇bh∗ must be invertible: division by
the non-zero derivative is replaced by multiplication by the inverse matrix
(∇bh∗)−1.

Before dealing with the general case of the implicit function theorem, let’s state
and prove the easy linear case. Indeed, we already used this case in the study of
the asymmetric form of linear optimization, when we looked for a basic submatrix
of a m× n matrix of rank m.

First our notation. Let H be a m × n matrix of rank m, and x a n-vector
of variables. We study the linear function Hx. After changing the order of the
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columns of H , if necessary, we may write H =
[
Hb Hf

]
and x = (xb,xf ),

where Hb is a m×m matrix of rank m, Hf a m× (n−m) matrix, xb a m vector,
and xf a n−m vector. By block multiplication (see (??)),

Hx = Hbxb +Hfxf . (17.6.2)

17.6.3 Theorem (The Linear Case of the IFT). Consider the collection of m equa-
tionsHx = 0. Since them×m matrixHb is invertible, then for every xf ∈ Rn−m
there is a unique xb ∈ Rm such that

xb = −H−1b Hfxf . (17.6.4)

Proof. Indeed, since

H

[
xb
xf

]
= Hbxb +Hfxf = 0,

and Hb is invertible, we can solve for xb by left multiplication by the inverse of
Hb.

Our goal is to generalize this to the nonlinear case. We cannot hope to do
this over the entire vector space: we only hope for an open neighborhood of the
point of interest x∗. Furthermore (17.6.4) expresses the xb variables as a function
(which we call g in the general case) of the xf variables. What will generalize is
the computation of the gradient of g with respect to its variables xf : in the linear
case, the gradient is clearly −H−1b Hf ; in the general case it is given by (17.6.9).

We start by setting up our notation.

17.6.5 Notation. Let h(xb,xf ) be a continuously differentiable (C1) function de-
fined on an open set U in Rn and mapping to Rm, m < n, where the variables are
written as compound vectors xb = (x1, . . . , xm) and xf = (xm+1, . . . , xn). Write
∇bh for the m×m matrix of partials of h with respect to the first m variables xb.
Thus the (i, j)-th entry of∇bh, 1 ≤ i, j ≤ m, is

∂hi
∂xj

(x).

In the same way we define∇fh as the m× (n−m) matrix of partials with respect
to the remaining n−m variables.

17.6.6 Theorem (The Implicit Function Theorem). Let h(xb,xf ) be a C1 function
from an open set U in Rn to Rm, m < n. Suppose there is a point (x∗b ,x

∗
f ) ∈ U

satisfying h(x∗b ,x
∗
f ) = 0 such that the m×m matrix

∇bh(x∗b ,x
∗
f ) is invertible.
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Then there exists a C1 map g(xf ) from Rn−m to Rm such that

h(g(xf ),xf ) = 0 and g(x∗f ) = x∗b , (17.6.7)

defined on a sufficiently small open set M in Rn−m containing x∗f . Furthermore if
h(x) is Ck (and not just C1 as above) then g(xf ) is Ck.

We will not prove this important result, but we derive the following two corol-
laries.

17.6.8 Corollary. Since the m × m matrix ∇bh(g(x∗f ),x∗f ) is invertible, for xf
close enough to x∗f , the m ×m matrix ∇bh(g(xf ),xf ) remains invertible. Then
the m× (n−m) matrix

∇g(xf ) =

[
∂gi

∂xm+j
(xf )

]
of partials of the implicit function g(xm+1, . . . , xn) can be written as

∇g(xf ) = −
(
∇bh

(
g(xf ),xf

))−1
∇fh

(
g(xf ),xf

)
(17.6.9)

In particular, evaluating at x∗b = g(x∗f ), we get

∇g(x∗f ) = −
(
∇bh

(
g(x∗f ),x∗f

))−1
∇fh

(
g(x∗f ),x∗f

)
(17.6.10)

Proof. This is a chain rule computation on (17.6.7), similar to the one done in
Theorem 12.2.3. Take the partial ∂/∂xj of (17.6.7), where xj is a free variable.
We get ∑

k∈B

∂h

∂xk

(
g(xf ),xf )

) ∂g

∂xj
+
∂h

∂xj
(g(xf ),xf ) = 0. (17.6.11)

So summing over the free variables we get

∇bh
(
g(xf ),xf

)
∇g(xf ) +∇fh

(
g(xf ),xf

)
= 0. (17.6.12)

Conclude by inverting the matrix∇bh(g(xf ),xf ).

17.6.13 Remark. We now have several ways of describing the tangent space of
h(x) = 0 at the regular point x∗. The first uses Definition 17.3.1: it is the set
of vectors perpendicular to the m vectors ∇hi(x∗), in other words the vectors
perpendicular to the rows of the m × n matrix ∇h(x∗). By regularity we know
that this matrix has rank m, so by reordering the columns, we may assume that it
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can be written in blocks as
[
Ab Af

]
where Ab is an invertible m×m matrix and

Af is a m× (n−m) matrix. If we write the n vector x = (xb,xf ) as a m vector
xb followed by an (n−m) vector xf , we get Abxb +Afxf = 0, so, inverting Ab,
we get xb = −A−1b Afxf , so that the tangent vectors can be written[

−A−1b Af
In−m

]
xf (17.6.14)

for any choice of (n−m) vector xf .
The second uses the definition of the tangent space of the graph of the implicit

function g given in Definition 17.4.3: it is the set of vectors perpendicular to the
rows of the m× n matrix [

−Im ∇g|x∗
]

(17.6.15)

The chain rule computation of (17.6.12) shows that the column vectors of the
n× (n−m) matrix [

∇g|x∗
In−m

]
(17.6.16)

are in the tangent space according to the first definition. As these columns are
linearly independent, they form a basis for the tangent space - assuming, as al-
ways, that x∗ is regular. By Corollary 17.6.8, this is the same matrix as the one in
(17.6.14).

To close the loop, notice that the matrices (17.6.15) and (17.6.16) can be mul-
tiplied in blocks, giving

[
−Im ∇g|x∗

] [∇g|x∗
In−m

]
= ∇g|x∗ −∇g|x∗ = 0m,n−m,

the expected result according to the second definition.

We also get a formula for the Hessian of g, in exactly the way we obtained
(17.5.9) by applying Theorem 12.2.9. We treat a special case in §17.7, and handle
the general case at the beginning of Lecture 29.

A good reference for the implicit function theorem and its history is Krantz-
Parks [35]. The proof of the Implicit Function Theorem given in Rudin [55], chap-
ter 9 is recommended.

17.7 Application to Level Sets

The Implicit Function Theorem is useful in understanding level sets of functions.
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We start with a real-valued C2 function f(x) of n variables, defined on an open
neighborhood U of a point x∗. Let c = f(x∗), and let Lc be the c-level set of f ,
namely

Lc = {x ∈ U | f(x) = c}, (17.7.1)

so we have just one equation. We use the implicit function theorem to understand
the structure of Lc near x∗, when the gradient ∇f(x∗) is not the zero vector, so
that x∗ is not a critical point for f . Since there is only one equation, that is all we
need to be able to apply the IFT at x∗.

Without loss of generality assume ∂f/∂x1(x∗) 6= 0, so x1 can be used as the
bound variable. We write x∗ = (x∗1,x

∗
f ), where x∗f denotes the free variables x2,

. . . , xn.
We can write x1 as an implicit function g(xf ) in a neighborhood of x∗f . By

Corollary 17.6.8, setting ∂f/∂x1(x∗) = a 6= 0, we have

∇g(x∗f ) = −
∇ff(x∗)

∂f/∂x1(x∗)
.

Next we compute the Hessian G of g at x∗. From Theorem 12.2.9, we get

[
∇gT In−1

] [F11 F12

F T12 F22

] [
∇g
In−1

]
+

∂f

∂x1
(x∗)G = 0 (17.7.2)

where we have suppressed the point where the gradients and the Hessians are eval-
uated. Here ∇g is a row vector with n − 1 entries. F , the n × n Hessian of f ,
is broken into square diagonal blocks F11 of size 1 (corresponding to the bound
variable), and F22 of size n − 1 (corresponding to the free variables), and F12 is
a row vector with n − 1 entries. You should convince yourself that the sizes are
appropriate for block multiplication.

The (n− 1)× (n− 1) symmetric matrix

F⊥(x) =
[
∇g(xf )T In−1

] [ F11(x) F12(x)
F12(x)T F22(x)

] [
∇g(xf )
In−1

]
(17.7.3)

is interesting. In Definition 17.4.3 we saw that the n−1 columns of the n×(n−1)
matrix [

∇g(x)
In−1

]
are the generators of the tangent space of the graph of g (or of f : it is the same)
at the point xf . This means that F⊥(x) is the restriction of the Hessian of f at x∗

to the tangent space of the level set at x, or, which is the same, to the orthogonal
complement of∇f(x), for any x on the level set close enough to x∗.
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17.8 Examples of the IFT

In order to understand the Implicit Function Theorem, it is important to see how it
extends the linear case discussed in Theorem 17.6.3. It is also important to work
out some examples where the implicit function g cannot be found explicitly.

17.8.1 Example. We take n = 3 and m = 1. We consider

h(x1, x2, x3) = x21 + x1x2 + x1x3 + x22 + x2x3 + x23 − 25 (17.8.2)

near the point x∗ = (1, 2, 3). Note that h(1, 2, 3) = 0 as required.
The gradient of h is

∇h = (2x1 + x2 + x3, x1 + 2x2 + x3, x1 + x2 + 2x3)

so evaluated at x∗ we get
∇h∗ = (7, 8, 9).

Thus the equation of the tangent plane at x∗ is

7(x1 − 1) + 8(x2 − 2) + 9(x3 − 3) = 0 (17.8.3)

Here xb = x1, xf = (x2, x3), so ∇bh∗ = 7 6= 0 so that we can apply the IFT.
Furthermore∇fh∗ = (8, 9). So (17.6.10) gives:

∇g∗ = −1

7
(8, 9) (17.8.4)

The linear approximation of the implicit function g is given by the tangent plane
17.8.3. If you solve for x1 in the tangent plane, and take the gradient with respect
to x2 and x3 you get (17.8.4).

17.8.5 Example. We take n = 3 and m = 2. We add to (17.8.2), which we now
call h1, a second

h2(x1, x2, x3) = 36x21 + 9x22 + 4x23 − 108

So

∇h∗ =

[
7 8 9
72 36 24

]
and ∇bh∗ =

[
7 8
72 36

]
and the determinant of∇bh∗ = −180 6= 0 so we can apply the IFT. The inverse of
∇bh∗ is

(∇bh∗)−1 = − 1

180

[
36 −8
−72 7

]
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Note that the linear approximation of h at (1, 2, 3) is given by

[
7 8 9
72 36 24

]x1 − 1
x2 − 2
x3 − 3

 = 0 (17.8.6)

Now (17.6.10) gives:

∇g∗ = − 1

180

[
36 −8
−72 7

] [
9
24

]
(17.8.7)

which does result from (17.8.6)

17.9 Extensions of the IFT

Here is a typical extension of the IFT, used in the proof of the Lagrange Multiplier
Theorem in §28.6.

In Rn, suppose given a collection of m < n function h(x), and a point x∗

in the set F = {x | h(x) = 0}. Consider the m × n matrix A of partials of
h(x) evaluated at x∗. Assume it has maximal rank m. As always, after reordering
the columns of A, which simply amounts to changing the labels of the variables,
we may assume that the square submatrix formed by the first m columns of A
is invertible. Now apply the IFT as stated. The tangent space TF,x∗ to F at x∗,
defined in 17.3.1 is the linear space of v satisfiying

Av = 0. (17.9.1)

17.9.2 Corollary. Assume the IFT applies to the set F at x∗, where h is C1. For
any nonzero vector v in the tangent space TF,x∗ , there is a parametrized curve
x(t) defined on a small enough interval I given by −ε ≤ t < ε for some ε > 0,
satisfying

1. x(0) = x∗.

2. ẋ(0) = v, where ẋ denotes the derivative with respect to t.

3. x(t) is C1.

4. x(t) ∈ F , for all t ∈ I . In other words, h(x(t)) = 0.

Proof. Take the line xf (t) in Rn−m given by xf (t) = x∗f + vt. It satisfies

xf (0) = x∗f and ẋf (0) = v. (17.9.3)
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Then, using the implicit function g associated to h at x∗, we get a curve in Rn
by taking for the first m coordinates g(xf (t)) and for the last n −m coordinates
xf (t). In other words we are taking the graph of g restricted to the curve xf (t).
By the IFT we have:

h
(
g
(
xf (t)),xf (t)

))
= 0,

so that the parametrized curve

x(t) =
(
g(xf (t)),xf (t)

)
lies on F as required. The remaining conditions are immediate from (17.9.3) and
the chain rule.

The following extension will be used in §31.2.

17.9.4 Corollary. In addition to the hypotheses of Corollary 17.9.2, assume for
convenience that coordinates have been chosen so x∗b = 0. Also assume that the
implicit function g(x) satisfies 2

∇g(x∗)v ≺ 0.

Then the curve x(t) can be chosen so that, on a (perhaps smaller) interval I , it
satisfies not only the conclusions of Corollary 17.9.2 but also

g(x(t)) ≺ 0, for all t ∈ I.

Proof. We compute the derivative of g(x(t)) at t = 0 by the chain rule, and get
∇g(x∗)v ≺ 0 by hypothesis. Thus each one of the coordinate functions of g(x(t))
is strictly decreasing at t = 0, so for t positive and small enough, since g(x(0)) =
0, we have g(x(t)) ≺ 0 as required.

17.10 The Contraction Principle

17.10.1 Definition. Let X be a finite dimensional vector space over R, together
with its distance function d (see Definition 5.4.1). Let ϕ be a mapping from X to
itself. If there exists a real number c < 1 such that

d(ϕ(x), ϕ(y)) ≤ cd(x,y) for all x,y ∈ X, (17.10.2)

then ϕ is a contraction of X.
2Recall that the≺ sign in the equation means that for every index k, 1 ≤ k ≤ m,∇gk(x∗)v < 0.
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17.10.3 Proposition. Contractions are continuous.

Proof. According to Definition 16.1.1 we have to show that for every ε-neighborhood
14.4.1 Nε(ϕ(a)) of ϕ(a) ∈ X there is a δ-neighborhood Nδ(a) of a such that

ϕ(Nδ(a)) ⊂ Nε(ϕ(a))

It is clear that for a contraction δ = ε will do the trick.

17.10.4 Definition. Let ϕ be a mapping fromX to itself, and x a point ofX . Then
x is a fixed point of ϕ if ϕ(x) = x.

17.10.5 Theorem. If X is a finite dimensional vector space over R and ϕ a con-
traction of X , then ϕ has a unique fixed point x.

Proof. First we prove uniqueness by contradiction. If x and y are distinct fixed
points and ϕ a contraction, then by (17.10.2)

d(x,y) = d(ϕ(x), ϕ(y)) ≤ cd(x,y) < d(x,y)

an impossibility unless d(x,y) = 0 by the definition of a distance function (see
5.4.1).

Next we prove existence by constructing a sequence {xn} converging to the
fixed point. We start with an arbitrary point x0 ∈ X , and define xn = ϕ(xn−1) for
any n. So we have a sequence. We show it is a Cauchy sequence (see Definition
15.2.1).

Indeed, by construction

d(xn,xn−1) = d(ϕ(xn−1), ϕ(xn−2)) ≤ cd(xn−1,xn−2) ≤ · · · ≤ cnd(x1,x0)

so for n < m

d(xn,xm) ≤
m∑

i=n+1

d(xi,xi−1)

≤
( m∑
i=n+1

ci−1
)
d(x1,x0

≤ cn

1− c
d(x1,x0).

Thus it converges by Theorem 15.2.2 and we are done.



Part VI

Convexity and Optimization



Lecture 18

Convex Sets

Why do we study convexity in optimization? Calculus helps us find local extrema,
but we are really interested in finding global extrema, a harder problem. When the
objective function is convex or concave, finding global extrema is an easier task.
In economics and applied science, meanwhile, it is often reasonable to assume
that the objective function is convex (or concave, depending on the situation). The
domain of definition of a convex or concave function is a convex set, so we start by
studying convex sets.

The core of the lecture is the three named theorems on convex sets :

• Carathéodory’s Theorem 18.5.1,

• The Separating Hyperplane Theorem for disjoint convex sets 18.6.8,

• Minkowski’s Theorem 18.7.1.

The basic definitions and the key theorems for convex sets are given in §18.1.
The main thrust is to show that the convex hull of a set is the same as the set of
convex combinations of points in the set: this is the content of Theorem 18.1.28.
Other than the many examples, all the intermediate results in this section build up
to this theorem.

In §18.2 we study affine geometry, a slight generalization of linear geometry
that is useful in understanding convex geometry. In particular, it allows us to define
the dimension of a convex set. Then in §18.3 we study the two key examples we
will need for optimization theory: polytopes and polyhedra. Next in §18.4 we
study the topology of convex sets. We are especially interested in knowing when a
convex set is closed, and when it is compact. Theorem 18.4.9 is important.

The lecture concludes (§18.8) with an application to permutation matrices and
doubly stochastic matrices. This section will not be used later in the course.
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The standard (encyclopedic) reference for convexity is Rockafellar’s treatise
[53]. I quite like [10]. Other sources for convexity applied to optimization are
[5], [7], and [22]. An excellent reference for convex sets is Barvinok [4]. A more
elementary approach, with applications to optimization, is given in Lay [40].

18.1 The Convex Hull and Convex Combinations

18.1.1 The Convex Hull

Take two distinct points p and q in Rn. There is a unique straight line L passing
through both of them. By extension of the notation in R we denote [p,q] and (p,q)
the closed and open segments of points on L bounded by p and q. The points r of
(p,q) can be parametrized by

r = λp + (1− λ)q, for λ ∈ R, 0 < λ < 1. (18.1.1)

18.1.2 Definition. A point r is between p and q if it satisfies (18.1.1), so that it is
in the open segment (p,q).

18.1.3 Definition. A set S in Rn is convex if for every pair of points p and q in S,
every point between p and q is in S.

In other words, if two points are in S, then any point of the open segment
joining the two points is in S.

Before giving some examples of convex sets, we make some definitions and
set up some notation that will be used throughout this course.

18.1.4 Definition. An affine hyperplane in Rn is the set of points x = (x1, . . . , xn)
satisfying an equation

∑n
i=1 aixi = c. We can rewrite this by thinking of the

coefficients (a1, . . . , an) as the coordinates of a vector a, so the equation becomes,
using the inner product:

〈a,x〉 = c. (18.1.5)

We denote this hyperplane by Ha,c. If a = 0 this equation is uninteresting, indeed
contradictory if c 6= 0, so we assume a is non-zero. The vector a is called the
normal to the hyperplane. By dividing the equation by the length of a, we may, if
we wish, assume that a has length 1. This still does not prescribe a uniquely: you
can still multiply the equation by −1.

18.1.6 Definition. Start with the hyperplane (18.1.5). Then the two closed half-
spaces associated to this hyperplane are:

H+
a,c = {x | 〈a,x〉 ≥ c}, and H−a,c = {x | 〈a,x〉 ≤ c}.
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Note that H+
a,c is the half-space the normal vector a points into. The open half-

spaces: H̊+
a,c and H̊−a,c are obtained by replacing ≥ (resp.≤) by > (resp. <) in the

definitions of the closed half-spaces. The hyperplane Ha,c is called the face of all
these half-spaces.

18.1.7 Example. The following sets are convex:
The empty set;1

A point;
A line or a segment on a line;
Any affine hyperplane Ha,c;
More generally, any linear space;
A closed or open half-space.

18.1.8 Example. We show that every closed ball is convex. Change coordinates so
that its center is at the origin. Then the closed ball N r(0) is just the set of points
x ∈ Rn such that ‖x‖ ≤ r. Given two points p and q such that ‖p‖ ≤ r and
‖q‖ ≤ r, we must show that ‖λp + (1 − λ)q‖ ≤ r for all λ, 0 < λ < 1. By the
triangle inequality we have

‖λp + (1− λ)q‖ ≤ λ‖p‖+ (1− λ)‖q‖ ≤ λr + (1− λ)r = r,

so we are done.

18.1.9 Exercise. Prove that closed half-spaces are closed sets and open half-spaces
are open sets.

18.1.10 Definition. A point r of a convex set S is an extreme point of S if it is not
between two points of S.

In other words, one cannot find distinct points p and q in S so that (18.1.1) is
satisfied. Extreme points are very useful in solving optimization problems: see for
example Theorem 22.4.10.

18.1.11 Example. Let T be the closed region in R2 bounded by a triangle. Con-
vince yourself T is convex. The extreme points of T are the vertices of the triangle.

18.1.12 Remark. An extreme point of C must be a boundary point of C, but a
boundary point need not be an extreme point. Indeed if you take T as above, only
the vertices are extreme points, but the edges of the triangle are boundary points.

1In a few texts, the empty set is not taken to be convex: see for example [7], p. 36. The majority
of references say that the empty set is convex: [4], [10], [22], [33], [40], [52], [53], [66]. This is
simply a matter of convention.
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18.1.13 Example. The extreme points of the closed ball N r(p) in Rn are all the
points of the boundary, namely the (n− 1)-sphere Sr(p).

18.1.14 Exercise. If you remove an extreme point from a convex set, what remains
is convex. Conversely, if you remove a point from a convex set, and the remainder
is convex, the removed point was an extreme point. Combining Example 18.1.13
and this exercise, we see that open balls are convex.

18.1.15 Theorem. The intersection of any collection of convex sets in Rn is convex.

Proof. Let Cα, α ∈ I , be such a collection, where the index set I may be infinite.
If the intersection is empty, we are done; if there is just one point in the intersection,
likewise. So take any two points p and q in the intersection. For every α ∈ I , the
segment [p, q] is in Cα, so it is in the intersection, which is therefore convex.

18.1.16 Exercise. Show that to prove that a point p is an extreme point of the
convex set S, it is enough to show that it is an extreme point of the intersection of
S with a ball Nr(p) of arbitrarily small radius r > 0.

18.1.17 Definition. The convex hull of a set S ∈ Rn is the intersection of all
convex sets containing S. It is denoted CoS.

18.1.18 Corollary. The convex hull of any set S is convex.

18.1.19 Example. The convex hull of a regular polygon in R2 is convex; so are
n-cells. See Definition 14.3.1.

18.1.20 Exercise. Find the convex hull of the set of points (x, y) in R2 satisfying
x2 + y2 = 1 and x ≤ 0. Draw the picture.

18.1.2 Convex Combinations

18.1.21 Definition. Let x1, . . . ,xr, be a collection of r points in Rn, where r is
any positive integer. Then x is a convex combination of the points xi if there exist
non-negative real numbers λi,

∑r
i=1 λi = 1 such that

x =
r∑
i=1

λix
i (18.1.22)

18.1.23 Exercise.

• if x0,x1,x2 are three distinct, non-aligned points in the plane, then the set
of convex combinations of x0,x1,x2 is the triangle and the inside of the
triangle formed by the three points.
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• if x0,x1,x2,x3 are four distinct points in R3, such that any three span a
plane, and the four points do not lie in a plane, then the set of convex com-
binations of x0,x1,x2,x3 is a tetrahedron2 and its interior.

18.1.24 Theorem (The Convex Combinations Theorem). A set S is convex if and
only if all finite convex combinations of points of S are in S.

Proof. By definition, S is convex if convex combinations of two points of S are
in S. So half of the theorem is clear, and we only need to show that a convex
combination of r points of a convex set S is in S, for any r ≥ 2. We do this by
induction on r. We start the induction at r = 2: this is the definition of convexity,
so there is nothing to do.

Next we assume that the result is known for r ≥ 2, namely that any convex
combination of r points is in S, and we prove it for r + 1. Let x1, . . . , xr+1 be
r + 1 arbitrary points of S, and let

x =

r+1∑
i=1

λix
i , where all λi ≥ 0 and

r+1∑
i=1

λi = 1.

We need to show x ∈ S. We may assume that λi > 0 for all i, since otherwise
there is nothing to prove since there are only r terms. Let γ =

∑r
i=1 λi, so by the

last remark 0 < γ < 1. Then let

γi = λi/γ , 1 ≤ i ≤ r,

so that the point y =
∑r

i=1 γix
i is a convex combination of r points of S, and

is therefore in S by induction. Then x = γy + λr+1x
r+1, and γ + λr+1 = 1,

so x is a convex combination of two points of S and is therefore in S, since S is
convex.

18.1.25 Definition. For any set S, let K(S) be the set of all finite convex combi-
nations of points of S.

By taking just one point in the convex combination, so r = 1 and λ1 = 1, we
see that S ⊂ K(S). When S is empty, K(S) is empty.

18.1.26 Theorem. For any set S, K(S) is a convex set.

Proof. To show that K(S) is convex, we need to show that if k1 and k2 are points
of K(S) then for any λ, 0 ≤ λ ≤ 1, λk1 + (1 − λ)k2 is in K(S). Since k1 is a

2If you do not remember what a tetrahedron is, you can use this as a definition.
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convex combination of points of S, we have

k1 =

n∑
i=1

µixi, for µi ≥ 0 ,
n∑
i=1

µi = 1,

and similarly for k2:

k2 =

m∑
j=1

νjyj , for νj ≥ 0 ,
m∑
j=1

νj = 1,

where the xi and yj are all in S. Then

λk1 + (1− λ)k2 =
n∑
i=1

λµixi +
m∑
j=1

(1− λ)νjyj . (18.1.27)

To show that the right-hand side is a convex combination of the n+m points {xi}
and {yj} we need to show that all the coefficients in (18.1.27) are non-negative,
which is easy, and that they sum to 1, which we check:

n∑
i=1

λµi +
m∑
j=1

(1− λ)νj = λ
n∑
i=1

µi + (1− λ)
m∑
j=1

νj = λ+ 1− λ = 1,

so this is in K(S).

18.1.28 Theorem. For any set S, the convex hull is equal to the set of convex
combinations: CoS = K(S).

Proof. By Theorem 18.1.26 K(S) is convex, and it contains S. Since CoS is the
intersection of all convex sets containing S, we have:

CoS ⊂ K(S)

To get the opposite inclusion, take a convex combination
∑r

i=1 λixi of elements
xi of S, and an arbitrary convex set T containing S. All we need to do is show
that this convex combination is in T . Since the xi are in S, they are in T , and
Theorem 18.1.24 shows that all convex combinations of points of T are in T , so
we are done.

An immediate corollary of this theorem is that any point in the convex hull of a
set S can be written as a finite convex combination of points in S. We will improve
this in Carathéodory’s Theorem 18.5.1, which says that if S is in Rn, we only need
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convex combinations with at most n + 1 points. You can read the proof of that
theorem now, if you want.

Since we no longer need to make the distinction between the convex hull and
the set of all convex combinations, in both cases we write K(S) and refer to it as
the convex hull.

18.1.29 Theorem. Let T : V →W be a linear transformation between two vector
spaces V and W . Let S be a convex set in V . Then its image T (S) under T is
convex in W .

Proof. Take any two points p and q in T (S). We must show that for any λ, 0 <
λ < 1, λp + (1−λ)q is in T (S). By definition of T (S), there is a a ∈ S such that
T (a) = p and a b ∈ S such that T (b) = q. Since S is convex, for our choice of
λ, λa + (1− λ)b is in S. By linearity of T ,

T (λa + (1− λ)b) = λT (a) + (1− λ)T (b) = λp + (1− λ)q,

which is therefore in T (S), as required.

18.1.30 Example. Ellipsoids are convex.

Proof. We can move the center of the ellipsoid to the origin, so it is written as the
set of x satisfying xTA−1x ≤ 1, where A is a (symmetric) n× n positive-definite
matrix. A has a symmetric square root R, which is also an invertible n×n matrix.
By Proposition 13.7.7, the ellipsoid is the image of the closed unit ball under the
invertible linear transformation given by R. Since the ball is convex, its image
under R is convex by Theorem 18.1.29, so the ellipsoid is convex.

18.1.31 Definition. If S and T are non-empty subsets of Rn, and a and b are fixed
real numbers, then the Minkowski sum of S and T with coefficients a and b, written
aS + bT , is

aS + bT := {as + bt | ∀s ∈ S,∀t ∈ T}.

If T is empty, then aS + bT := aS. Similarly, if S is empty, aS + bT := bT .

18.1.32 Proposition. If S and T are convex, then so is the Minkowski sum aS+bT ,
for any choice of a and b.

Proof. Pick two points as1 + bt1 and as2 + bt2 in aS + bT . We must show that
for any λ, 0 < λ < 1,

λ(as1 + bt1) + (1− λ)(as2 + bt2)
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is in aS + bT . This can be written

a(λs1 + (1− λ)s2) + b(λt1 + (1− λ)t2)

and since S and T are both convex, this is in aS + bT .

18.1.33 Exercise. Let S be a convex set in the plane with coordinates x and y. As-
sume S contains an entire line L. For simplicity, and without loss of generality, let
L be the line with equation y = 0, namely the x-axis. What are all the possibilities
for S?

Hint: S could be just the line L, or the entire plane, or the upper half-plane
y ≥ 0, or the lower half-plane y ≤ 0. In order to analyze the remaining cases,
assume that S only contains points in the upper half-plane. Assume that it contains
a point p with second coordinate y = a, for some a > 0. Then show, by connecting
p to points on the lines with very large and very small x coordinates, that S contains
the entire strip of points (x, y) with 0 ≤ y < a. Finally let b be the greatest lower
bound of y-coordinates of points in the upper half-plane that are not in S. Note that
b is greater than or equal to any a found previously. Then show that S is contained
in the strip of points (x, y) with 0 ≤ y ≤ b. Then what can you say?

18.1.34 Exercise. If S is the closed ball of radius r1 centered at c1, and T the
closed ball of radius r2 centered at c2, then S + T is the closed ball B of radius
r1 + r2 centered at c1 + c2.

Hint: First show that S + T ⊂ B, because every point in S + T is at most at
distance r1 + r2 from c1 + c2. Then show the opposite inclusion, by writing every
point of the boundary of B as the sum of points from S and T . Make a picture in
R2.

18.2 Affine Geometry

An intermediate geometry between linear geometry and convex geometry is affine
geometry. The language of affine geometry and affine sets clarifies the concepts
of convex geometry. The exposition parallels that of convex sets, to emphasize the
connection. To study convexity we consider collections of positive real numbers
λi such that

∑
λi = 1. To study affine geometry we just drop the hypothesis that

the λi are positive. That is the only change. Later on, in §19.2 we will study a third
geometry on the same model: conical geometry. The λi will be positive, but we
drop the hypothesis that their sum is 1. Finally linear algebra can be viewed as the
case where there is no requirement on the λi.

A more detailed exposition of affine geometry is given in [33], §2.4. In Roberts
and Varberg [52], §3, the theory of convex and affine sets is developed in even
closer parallel than here.
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18.2.1 Definition. A set S in Rn is affine if for every pair of points p and q in S
and every real number λ, the point λp + (1− λ)q is in S.

In other words, if two points are in S, then any point on the line joining the two
points is in S.

18.2.2 Example (First Examples of Affine Sets). Most of the convex sets in Def-
inition 18.1.7 are affine. More generally let A be an m × n matrix, and let H be
the set of solutions x of Ax = b, where b is a fixed m-vector. Again, you should
convince yourself that this space is affine. Note that H could be empty if b is not
in the range of A.

As we will see soon, this is essentially the complete list of affine subspaces in
Rn.

18.2.3 Theorem. The intersection of any collection of affine sets in Rn is affine.

Proof. Use the proof of Theorem 18.1.15.

18.2.4 Definition. The affine hull of a set S ∈ Rn is the intersection of all affine
sets containing S.

18.2.5 Corollary. The affine hull of a set S is affine.

18.2.6 Definition. Let x1, . . . ,xr be a collection of r points in Rn, where r is any
positive integer. Then x is an affine combination of the points xi if there exists real
numbers λi,

∑r
i=1 λi = 1, such that

x =
r∑
i=1

λixi

18.2.7 Theorem (The Affine Combinations Theorem). A set S is affine if and only
if all finite affine combinations of points of S are in S.

Proof. Follow the proof of Theorem 18.1.24.

18.2.8 Definition. For any set S, letA(S) be the set of all finite affine combinations
of points of S.

By taking the number of points r in the affine combination to be 1, so that
λ1 = 1, we have

S ⊂ A(S) (18.2.9)

18.2.10 Theorem. For any set S, A(S) is an affine set.
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Proof. Follow the proof of Theorem 18.1.26.

18.2.11 Theorem. For any set S, the affine hull is equal to the set of affine combi-
nations.

Proof. Follow the proof of Theorem 18.1.28.

18.2.12 Definition. We say that the points x0, . . . , xk are affinely dependent if
there are real numbers ai, such that

k∑
i=0

aix
i = 0, with

k∑
i=0

ai = 0 and not all ai = 0. (18.2.13)

We say they are affinely independent otherwise.

18.2.14 Example. The points (1, 0, 0), (0, 1, 0) and (0, 0, 1) in R3 are affinely
independent. Indeed, if you add the origin to this set of points, it is still affinely
independent.

18.2.15 Exercise. Show that if there is repetition in the list of points x0, . . . , xk,
so for example if x0 = x1, the points are affinely dependent.

18.2.16 Proposition. The points x0, . . . , xk are affinely dependent if and only if
the vectors xi − x0, 1 ≤ i ≤ k, are linearly dependent.

Proof. Assume that x0, . . . , xk are affinely dependent, so there are real numbers
ai satisfying (18.2.13). Then

a0 = −
k∑
i=1

ai. (18.2.17)

If a0 6= 0, substitute a0 into the equation of affine dependence, getting

k∑
i=1

ai(x
i − x0) = 0. (18.2.18)

Not all the coefficients in this equation are zero by (18.2.13), so this is the required
equation of linear dependence between the xi − x0.

To get the other implication, start from the equation of linear dependence
(18.2.18) and define a0 by (18.2.17). This gives (18.2.13), the required equation of
affine dependence.

An important special case occurs when x0 is the origin: starting from a basis
of Rn, and adding the origin, you get an affinely independent set of n+ 1 points.
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18.2.19 Exercise. Prove that if x is an affine combination of x0, . . . , xk, and if the
xi, 0 ≤ i ≤ k, are affinely dependent, then x is an affine combination of a smaller
number of the xi.

At this point the theory of affine sets and that of convex sets diverge: the theory
of affine sets is much simpler. The next theorem shows that all non-empty affine
sets are translates of linear spaces, a concept we will now make precise by using
a special case of the Minkowski sum, where the first set is a point, and the second
set a linear subspace of Rn.

18.2.20 Definition. A set S of the form s + V , where s is a point in S and V a
linear subspace of Rn is called a translate of V , or a flat3.

18.2.21 Theorem. A non-empty subset S of Rn is affine if and only if it is a trans-
late of a linear subspace V of Rn.

Proof. First we assume the set S is the Minkowski sum s+V , and show it is affine.
We take two points s + v1 and s + v2 in S, and show that for any λ ∈ R,

λ(s + v1) + (1− λ)(s + v2) = s + λv1 + (1− λ)v2 ∈ S.

This is true because V is a subspace, so when v1 ∈ V and v2 ∈ V , any linear
combination of the two is in V . Thus S is affine. Finally, since the origin 0 is in
V , s + 0 = s is in S.

Next we assume that S is affine. Pick any s ∈ S. Consider the Minkowski sum
V := −s + S. It contains the origin. To show V is a subspace, we must show that
it is closed under scalar multiplication and vector addition. So pick any −s + s1

and −s + s2 in V . We must show that for any λ1 and λ2 in R,

λ1(−s + s1) + λ2(−s + s2) = −(λ1 + λ2)s + λ1s
1 + λ2s

2 is in V.

This element is in V if and only if when s is added to it, the new element is in S.
This new element is written

(1− λ1 − λ2)s + λ1s
1 + λ2s

2.

This is an affine combination of s, s1, and s2 which is therefore in S.

18.2.22 Theorem. Any non-empty affine set S in Rn can be written as s+V , where
s is an arbitrary point of S, and V is a uniquely determined linear subspace of Rn.
Indeed, V is the Minkowski sum S − S.

3A term used in many books on affine geometry: see for example Lay [40], p. 12.
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Proof. This all follows from Theorem 18.2.21 except the uniqueness of V , which
we obtain by its description as a Minkowski sum. In the previous theorem, we
constructed for each s ∈ S a linear space Vs such that S = s + Vs. Indeed,
Vs = S − s. We will show that Vs ⊂ Vt, for any t ∈ S. This implies that all the
Vt are the same, finishing the proof. Let s1 − s be an arbitrary element of Vs, so
s1 ∈ S, Since s2 := s1 − s + t is an affine combination of points of S, s2 is in S,
so s2 − t = s1 − s is in Vt, as required. Thus all the Vs are the same, showing that
each one is S − S.

18.2.23 Definition. Let S be a non-empty affine set. Let V be the linear space
associated to it by Theorem 18.2.22. Then the dimension of S is the vector space
dimension of V . If V is empty, the dimension of S is −1.

18.2.24 Definition. The dimension of a convex set C is the dimension of the affine
hull of C.

18.2.25 Example. As we will soon see, an m-simplex is the convex hull of m+ 1
affinely independent points. So its dimension is m.

18.2.26 Example. Assume S is an affine space of dimension n − 1 in Rn, and V
its associated linear space. Then S is a hyperplane, and V a hyperplane through the
origin. If a is a normal vector for V , so V := Ha,0, then S is the parallel (meaning
it has the same normal vector) hyperplane Ha,c, where c = a · s, for any s ∈ S.

Since a is the normal vector for V , we have a · v = 0, for all v ∈ V . Since S
is written s + V , for any s ∈ S, we see that a · s is constant on S. If we call this
value c, this shows that S is Ha,c.

18.2.27 Example. Let’s write the equations of the affine line in R3 through the
points (3, 0, 1) and (1, 2, 0). That means we need to find all the solutions in
(a, b, c, d) of the equations

ax+ by + cz = d

that verify 3a + c = d and a + 2b = d. We have 2 equations in 4 unknowns, and
we can easily solve in terms of a and b:

c = −2a+ 2b

d = a+ 2b

Notice that there is only one linear equation through the points: indeed, when
d = 0, we have , up to a scalar, −2x+ y + 6z = 0. The two affine equations, are,
for example, x− 2z = 1 and y + 2z = 2.
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18.3 Polytopes and Polyhedra

18.3.1 Convex Independence

Just as we defined linear independence and affine independence for a set of points,
we can do the same for convex independence.

18.3.1 Definition. A set S of two or more points is convexly independent if no point
s0 in S is in the convex hull of the remaining points. A single point is convexly
independent.

18.3.2 Exercise. Show that if a (necessarily finite) set of points is linearly inde-
pendent, then it is affinely independent. If a set is affinely independent, then it is
convexly independent. Given an example of

1. An infinite set of points that is convexly independent. Because it is infinite,
it cannot be affinely independent;

2. A finite set of points that is convexly independent, and not affinely indepen-
dent.

3. An affinely independent set of points that is not linearly independent.

The following lemma will be used in the proof of Theorem 18.3.4. Its proof is
a simple exercise, and is left to you.

18.3.3 Lemma. Assume a set S is not convexly independent, so that there is a point
s0 ∈ S that is a convex combination of other points of S. Then s0 is not extreme
for the convex hull of S.

18.3.4 Theorem. If S is a finite set of points, then the extreme points E of the
convex hull of S form the unique convexly independent subset of S with convex
hull equal to the convex hull K(S) of S.

Proof. If the set S is not convexly independent, then an s0 ∈ S can be written as
a convex combination of the remaining points of S. Then remove s0 from S: the
remaining points have the same convex hull as S. Continue doing this one point at a
time until you are left with a convexly independent subset S0 with the same convex
hull as S. None of the removed points is extreme by Lemma 18.3.3, and conversely
it is easy to see that the extreme points are all contained in S0. Write the points
of S0 as ai, 0 ≤ i ≤ m. To conclude the proof we must show that all the ai are
extreme. We prove this by contradiction. Assume, without loss of generality, that
am is not extreme. Then it can be written as a combination am = λp + (1− λ)q,
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with 0 < λ < 1 and p and q in K(S) = K(S0), with p 6= am 6= q. Since p and
q are in the convex hull of the S0, they can be written

p =
m∑
i=0

µia
i,

m∑
i=0

µi = 1, µi ≥ 0;

q =
m∑
i=0

νia
i,

m∑
i=0

νi = 1, νi ≥ 0;

so that

am = λp + (1− λ)q =

m∑
i=0

(
λµi + (1− λ)νi

)
ai.

For all i, 0 ≤ i ≤ m, define

πi = λµi + (1− λ)νi. (18.3.5)

Then πi ≥ 0, as you should check, and

m∑
i=0

πi = λ
m∑
i=0

µi + (1− λ)
m∑
i=0

νi = λ+ (1− λ) = 1. (18.3.6)

Moving the term in am to the left-hand side, we get:

(1− πm)am =
m−1∑
i=0

πia
i

If 1− πm > 0, divide by it to get

am =

m−1∑
i=0

πi
1− πm

ai.

Since all the coefficients in this sum are non-negative, and

m−1∑
i=0

πi
1− πm

= 1,

this expresses am as a convex combination of the remaining ai: a contradiction to
the assumption of convex independence.

If 1 − πm = 0, the only other possibility, then all the other πi are 0, since
they are non-negative and (18.3.6) holds. By (18.3.5), since λ and 1 − λ are both
positive, this forces µi = νi = 0, for 0 ≤ i ≤ m − 1. This in turn says that
p = q = am, so that am is extreme. So all the points in S0 are extreme.
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18.3.2 Polytopes

18.3.7 Definition. A polytope is the convex hull of a finite number of points.

18.3.8 Remark. By Theorem 18.3.4, it suffices to consider polytopes on convexly
independent sets of points, which are then called the vertices of the polytope. This
definition agrees with the more general definition of vertex since we are just talking
about the extreme points of the convex set.

If the vertices are a0, . . . ,am, and we write A for the (m+ 1)× n matrix with
rows ai, then we denote the polytope on these points by

PA = {x ∈ Rn | x =

m∑
i=0

λia
i, for 0 ≤ λi ≤ 1, 0 ≤ i ≤ m,

m∑
i=0

λi = 1}.

(18.3.9)
A simplex is the special case of a polytope where the vertices are affinely in-

dependent:

18.3.10 Definition. A m-simplex in Rn, for m ≤ n is the set of all convex combi-
nations of m + 1 affinely independent points a0, . . . , am. The ai are the vertices
of the simplex, and the segments [ai,aj ] are the edges. We write the simplex:

H(a0, . . . ,am) = {x =
m∑
i=0

λia
i | λi ≥ 0 ,

m∑
i=0

λi = 1} (18.3.11)

18.3.12 Example. A convenient n-simplex in Rn is the one where a0 is the origin,
and then ai is the i-th unit coordinate vector ej .

18.3.13 Definition. The λi in (18.3.11) are the barycentric coordinates of the point
x in the m-simplex H(a0, . . . ,am). The barycenter or centroid of the m-simplex
is the point

c :=
1

n+ 1
(a0 + a1 + · · ·+ an) (18.3.14)

of the simplex.

The barycentric4 coordinates are uniquely determined for every point in the
affine hull of the vertices of the simplex. This is easily seen: if there were two
sets of barycentric coordinates, they could be used to produce an equation of affine
dependence between the vertices, a contradiction.

4Introduced by Möbius in 1827: see [33], p. 134
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18.3.15 Example. The unit cube in Rn is the polytope with vertices all the points
whose coordinates are either 0 or 1. Thus it has 2n vertices. Its vertices are the 2n

points whose coordinates are either 0 or 1. So in R2, the vertices are (0, 0), (0, 1),
(1, 0), (1, 1).

The crosspolytope is the polytope in Rn with vertices the 2n points whose
coordinates are all 0 except in one position, where the coordinate is either 1 or −1.
The crosspolytope in R2 has vertices (−1, 0), (1, 0), (0,−1), (0, 1) and thus is just
a rotated square. In R3 its vertices are the six points (−1, 0, 0), (1, 0, 0), (0,−1, 0),
(0, 1, 0), (0, 0,−1), (0, 0, 1), so it is not a rotated cube: it does not have enough
vertices.

For further examples see [40], chapter 8.

18.3.3 Polyhedra

A dual notion to polytope is that of a polyhedron.

18.3.16 Definition. A polyhedron P in Rn is the set of solutions x of a system of
linear inequalities Ax ≤ b, where A is an m × n matrix and b is a m-vector. If
the i-th row of A is noted ai, then P is the intersection of the m half-spaces H−

ai,bi
(see Example 18.1.7) so it is closed and convex. We write P (A,b) when we need
to indicate the dependence on A and b.

18.3.17 Definition. Each one of the inequalities 〈ai,x〉 ≤ bi, 1 ≤ i ≤ m, is called
a constraint, and ai is the normal vector to the constraint. By an active constraint
at p we mean a constraint that gives an equality when evaluated at p: 〈ai,p〉 = bi.

We will use this terminology when we study constrained optimization. See for
example §25.1, Definitions 25.3.2, and 31.1.5.

You should contrast this notation P (A,b) for a polyhedron with the notation
PA given in (18.3.9) for a polytope. In both cases we have m× n matrix A. In the
case of a polyhedron, the rows of A represent the coefficients of the inequalities
that the points of the polyhedron must satisfy, while for a polytope, the rows of A
are the vertices.

We will prove later that any bounded polyhedron is a polytope, Theorem 18.7.8,
and then that any polytope is a polyhedron, the famous Weyl-Minkowski Theorem
20.2.14). Thus there must be a way of passing from the representation P (A,b) for
the bounded polyhedron to the representation PA for the same set considered as a
polytope: the matrix A will be different, of course. We now show how to do this
for a simplex.

18.3.18 Theorem. A simplex is a polyhedron.
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Proof. Suppose the simplex S is given by n + 1 affinely independent vectors a0,
a1, . . . , an in Rn. If S is in a bigger space, just take the affine hull of S to get
to a space of the right dimension. To establish the result, we will write S as the
intersection of n+ 1 half-spaces.

For any j, 0 ≤ j ≤ n, let H ′j be the affine hyperplane that goes through
bi = ai− aj , for all i except j. Since the n+ 1 points ai are affinely independent,
the n points bi are linearly independent by Proposition 18.2.16, so H ′j is uniquely
determined, as we show in the lemma below. Write the equation of H ′j as cj1x1 +

· · · + cjnxn = dj . The equation for the hyperplane Hj passing through the ai,
i 6= j, is cj1x1 + · · · + cjnxn = ej , where ej = dj + f(aj), so only the right-hand
side of the equation changes. If you substitute for the xk the coordinates aik of the
i-th point ai, then the cjk and ej must satisfy these n equations. Now let H+

j be
the half-space bounded by Hj that contains the last generator aj of the simplex S.
Clearly H+

j contains S and is convex. So the intersection C := ∩nj=0H
+
j contains

S and is convex. Any point p in Rn is an affine combination of the ai, so it can be
written

p =
k∑
i=1

λiai

with
∑k

i=1 λi = 1. Those that are convex combinations of the ai also have all
λi ≥ 0. Suppose that there is a point p ∈ C that is not a convex combination of the
ai. Then there is an i such that λi < 0. We evaluate Hi on p. By linearity we see
that its value is λi times the value at ai, since it vanishes at all the other aj . Since
λi is negative, the point λiai is in the interior of the half-space H−j , so it is not in
C, and we have our contradiction.

18.3.19 Lemma. Take n linearly independent points bi, 1 ≤ i ≤ n, in Rn. Then
there is a unique hyperplane H passing through these points.

Proof. Write B for the n × n matrix whose i-th row are the coordinates of bi.
Write the equation of H as

c1x1 + c2x2 + . . . cnxn = d,

so the vector c and the unknown number d satisfy the system of n equation Bc =
d, where d = (d, d, . . . , d). Linear independence of the points bi is equivalent to
saying that the matrix B is invertible, so there is a unique solution to the system
of equations, up to scaling by a non-zero constant. Thus the hyperplane H is
unique.

This concludes the proof of the theorem.
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We only state the next theorem for the n-simplex in Rn, so that its affine hull
is all of Rn.

18.3.20 Theorem. The n-simplex in Rn contains an open set.

Proof. Using the notation of the proof of Theorem 18.3.18, we see that the inter-
section of the open half-spaces H̊+

j , which is open, is contained in S.

This result is used in the proof of Theorem 18.4.2.

18.3.21 Example. The two polytopes in Example 18.3.15 are polyhedra. To prove
this we need to exhibit the inequalities they satisfy.

The unit cube in Rn is given by the 2n inequalities {x ∈ Rn | 0 ≤ xi ≤
1, i = 1, . . . , n}.

The crosspolytope is given by the non-linear inequality {x ∈ Rn |
∑n

i=1 |xi| ≤
1}. We write this as a collection of linear equations by setting εi = ±1, 1 ≤ i ≤ n.
Thus there are 2n possible vectors ε = (ε1, . . . εn). We claim the crosspolytope is
given by the inequalities

{x ∈ Rn | −1 ≤
n∑
i=1

εixi ≤ 1, ∀ε}.

Because −ε is an element of the set if ε is, all the inequalities on the left-hand side
are unnecessary. To show that we get the desired vertices, we need to use Theorem
18.7.3. For example, let’s show that the point (1, 0, . . . , 0) is a vertex: we need
to find n linearly independent defining inequalities that vanish at this point. Just
consider those ε with ε1 = 1: by varying the remaining coefficients it is easy to
construct a linearly independent set.

18.3.22 Exercise. Show that the representation of the crosspolytope as a polyhe-
dron given in Example 18.3.21 gives the same set as the crosspolytope. For the
crosspolytope in R3, write down explicitly a linearly independent set of active con-
straints at the point (1, 0, 0).

18.3.4 Regular simplices

18.3.23 Definition. A simplex is regular if all its edges have the same length.

18.3.24 Example. Regular simplices exist in all dimensions. In dimension 1 we
have the interval, in dimension 2 any equilateral triangle, in dimension 3 a pyramid
(or tetrahedron) with base an equilateral triangle and sides an equilateral triangle
of the same size. This construction can be pursued in all dimensions, for example
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by using barycentric coordinates. Assume you have a regular simplex in Rn with
vertices a0, . . . , an and with edge length e. Let c be the barycenter of the simplex.
Then for every i, 0 ≤ i ≤ n, we have

ai − c =
1

n+ 1

n∑
j=0,j 6=i

(ai − aj) (18.3.25)

By hypothesis, all the vectors ai − aj in this sum have the same length e. Next
work in the affine plane spanned by any three of the vertices, say ai, aj and ak.
Since they form an equilateral triangle, the angle between ai − aj and ai − ak is
60 degrees, so its cosine is 1/2, so

〈ai − aj ,ai − ak〉 = e2/2.

This allows us to compute the length of ai−c. Indeed, by (18.3.25) we can get the
dot product

〈ai − c,ai − c〉 =
1

(n+ 1)2
〈
n∑
j 6=i

(ai − aj),
n∑
k 6=i

(ai − ak)〉

=
1

(n+ 1)2

n∑
j 6=i

( n∑
k 6=i
〈ai − aj ,ai − ak〉

)
=

e2

(n+ 1)2

n∑
j 6=i

(1 + (n− 1)/2)

=
e2

(n+ 1)2
(n(n+ 1)

2

)
=

n

2(n+ 1)
e2.

so the vertices are all on a sphere of radius

rn = e

√
n

2(n+ 1)

centered at c.
Observe that as n increases, rn increases: see Exercise 18.3.26. The computa-

tion confirms the easy facts from elementary geometry: r1 = e/2 and r2 = e/
√

3.
This computation gives us conditions a regular simplex must satisfy. Now we

construct the regular simplex of side length e in Rn by induction on n. Start at
n = 1, with a line segment of length e. Assuming the regular simplex Sn of
dimension n, with vertices a0, . . . , an and side length e has been constructed,
we construct the one in dimension n + 1 by taking a line L perpendicular to the
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plane of Sn passing through the barycenter cn of Sn. The last vertex an+1 of
a regular simplex Sn+1 extending the simplex Sn can be found on L at distance

rn+1 +
√
r2n+1 − r2n from the plane of Sn. The barycenter cn+1 of Sn+1 is the

point on L at distance
√
r2n+1 − r2n from cn, on the same side as an+1. Note how

we used the fact the rn increase with n.

18.3.26 Exercise. Prove that the function

f(x) =
( x

x+ 1

)1/2
is increasing. Hint: do a derivative computation.

18.3.27 Exercise. When n = 3, we see that the regular tetrahedron of side length e
is inscribed in a sphere of radius r3 = e

√
3/8. Confirm this using space geometry

as follows. We can set e = 1 by changing our unit of length. Center the sphere of
radius

√
3/8 at the origin, so its equation is

x2 + y2 + z2 = 3/8.

Pick a point a3 on this sphere, say (0, 0,
√

3/8), and take the sphere of radius 1
centered at a3. The points at the right distance from a3 must lie on this sphere,
which has equation

x2 + y2 + (z −
√

3/8)2 = 1.

Find the set of common solutions of these two equations by subtracting the second
from the first. You get a linear equation in z. Plug the solution of this equation
into either of the two equations, and show you get the equation of a circle of radius
1/
√

3. Explain why you are done.

18.4 The Topology of Convex Sets

We first look at convex sets, and show that both their closure and their interior is
convex. Then we look at open sets and show that their convex hull is open. We also
show that the convex hull of a compact set is compact. Finally an example shows
that the convex hull of a closed set is not necessarily closed.

18.4.1 Theorem. If C is a convex set in Rn, then its closure C̄ is also convex.

Proof. We must show that if x and y are in C̄, then the segment (x,y) of points
between x and y is in C̄. A point z in (x,y) can be written z = λx + (1 − λ)y,
with 0 < λ < 1. Because x is in the closure of C, it can be written as the limit
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of a sequence {xi} of points of C, and similarly y can be written as the limit of a
sequence {yi} of points of C. Because C is convex, the segment (xi,yi) is in C.
In particular the point zi = λxi + (1− λ)yi is in C. The sequence {zi} converges
to z, so z is in the closure of C, as required.

18.4.2 Theorem. For a convex set C in Rn, the set of its interior points is non-
empty if and only if the dimension of C is n.

Proof. We first prove: if C has a non-empty interior, then it has dimension n.
Indeed, if it has a non-empty interior, just pick a point in the interior: a small
open ball around that point is in C, so an n-simplex is in C. The affine hull of an
n-simplex has dimension n, so we are done.

In the other direction, if the dimension of C is n, then one can find n + 1
affinely independent points in C. But then the simplex on these n + 1 points is in
C, so we conclude with Theorem 18.3.20.

For a convex set of dimension n we have:

18.4.3 Lemma. If C is a convex set, then the set of its interior points, known as its
interior C̊, is convex.

Proof. We must show that if x and y are in C̊, then the segment [x,y] is in C̊. So
pick a point z in [x,y]. It can be written z = λx + (1− λ)y, with 0 ≤ λ ≤ 1. and
since C is convex we have z ∈ C. Pick an arbitrary u in a ε-neighborhood of 0, so
that z + u is within ε of z. Then

z + u = λ(x +
u

λ
) + (1− λ)y. (18.4.4)

Since x is in C̊, x+u/λ is in C, if ε is small enough. Then the convexity of C and
(18.4.4) show that z + u is in C. Since this is true for any u in an ε-neighborhood
of z, z is an interior point of C.

In the same way we can prove:

18.4.5 Corollary. If C is a convex set and if M is the affine hull of C, then the set
relintC, the interior of C relative to M , is also convex.

18.4.6 Theorem. The convex hull of an open set S is open.

Proof. Given any point x in the convex hullK(S) of S, we must show that a small
ball centered at x is in K(S). Let u stand for an arbitrary element of Rn of length
less than some ε > 0. Then we must show that x + u is in K(S). Note that ε will
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depend on x. By definition we can write x of a convex combination of some finite
number r of points xi of S:

x =
r∑
i=1

λixi where
r∑
i=1

λi = 1 and λi ≥ 0, ∀i,

Then

x + u =

r∑
i=1

λi(xi + u). (18.4.7)

An εi > 0 neighborhood of each xi is contained in S. By taking ε smaller than the
smallest of the εi, we see that for any u of length less than ε, each xi + u is in S,
so by (18.4.7) x + u is in K(S), and we are done.

18.4.8 Example. The following example in R2 shows that the convex hull of a
closed set need not be closed. Let S be the set of points (x, y) in the plane such
that y ≥ 1/(1 + x2). It is easy to see that S is closed. The convex hull of S is the
set of points (x, y), y > 0, so it is not closed.

First we show that any point (a, b) with b > 0 is in the convex hull. If b ≥ 1,
it is already in S, so we may assume b < 1. Then take the horizontal line y = b.
It intersects the curve y = 1/(1 + x2) in two points, showing that the point is in
the convex hull. Finally, we take any point (a, b), with b ≤ 0. We examine how a
line through (a, b) could meet S in two points on either side of (a, b). This cannot
happen since there is no point in S with second coordinate less than or equal to 0.

On the other hand we have:

18.4.9 Theorem. The convex hull of a compact set S in Rn is compact.

Proof. We first show that the convex hull K(S) of a bounded set S is bounded. If
S is bounded, then there is a R such that ‖x‖ ≤ R for all x ∈ S. Any element in
the convex hull of S can be written as a convex combination of some number k+ 1
elements of S, so by the triangle inequality

‖
k∑
i=0

λixi‖ ≤
k∑
i=0

(λiR) = R,

since
∑k

i=0 λi = 1. Thus the elements in the convex hull are bounded by the same
R.

To finish the proof, we show that K(S) is closed. We need Carathéodory’s
Theorem 18.5.1. Take any x in the closure of K(S). We must show (by Definition
14.4.7) that x is in K(S). We know that there is a sequence of points xj in K(S)
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approaching x. Each one of the xj can be written, using Carathéodory’s Theorem,
as

xj =

n∑
i=0

λijyij ,

where the numbers λij are all bounded, since between 0 and 1, and the points
yij ∈ S are all bounded, since within a ball of radius R around the origin. We
now use Theorem 15.3.3, which tells us that we can extract a convergent subse-
quence from any bounded sequence. We set the index i to 0. Then we can find a
subsequence of the j so that both the subsequence of the λ0j and the y0j converge
on the subsequence. Then we take a subsequence of the subsequence that makes
the λ1j and the y1j converge. We can repeat the process a finite number of times,
and we end up with a subsequence of the {j} that we write {jk} so that all the
subsequences converge:

lim
k→∞

λijk = λi and lim
k→∞

yijk = yi.

Because S is closed and {yijk} is in S for all k, the limit yi is in S. Now

lim
k→∞

xjk = lim
k→∞

n∑
i=0

λijkyijk =
n∑
i=0

λiyi

and by construction this is x. So we have written x as a convex combination of
elements of S, as required.5

As a special case, we get

18.4.10 Corollary. A polytope is a compact set.

Proof. This is immediate, since a polytope is the convex hull of a finite number of
points.

5This proof can be found in [52] p.78. Another proof is given in [33], §5.3. Here is a different
proof from [22], p.15, using another key theorem of Lecture 16.

Let ∆n be the collection of λ ∈ Rn+1 of points with coordinates λi with λi ≥ 0 and
∑n

i=0 λi =
1. ∆n is closed and bounded and therefore compact. We define a map:

(λ,x0, . . . ,xn) 7→
n∑

i=0

λix
i

on ∆n × S × · · · × S, which is a compact set in Rn2+2n+1. Clearly the image is contained in
the convex hull of S. By Carathéodory’s Theorem it actually contains the convex hull. The map is
continuous and the domain compact, so by Theorem 16.2.1 the image is compact, which is what we
needed.
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18.4.11 Exercise. A convex body is a compact convex set of dimension n in Rn. Its
interior is non-empty by Theorem 18.4.2. Let C be a convex body with boundary
B. Pick a point p in the interior of C. Now consider the sphere Sr(p) of radius r
centered at p, and Show there there is a one-to-one map f : Sr(p)→ B.

Hint: Recall Definition 9.1.4 for the concept of a ray r emanating from the
point p. Such a ray r meets any sphere centered at p in a unique point. Because
C is compact and convex, r also meets B in a unique point. Explain why. This
establishes the map. Once you have studied convex functions, you should prove
that this map is continuous. This is used in Theorem 26.7.10. See Exercise 18.7.10
for a similar construction.

18.5 Carathéodory’s Theorem

Next a beautiful and important theorem that tells us how many terms r we need in
the convex combination of the convex hull of any set in Rn. We have already used
it in the proof of Theorem 18.4.9. The important fact is not so much the bound
itself, but that there is a uniform bound for all points.

18.5.1 Theorem (Carathéodory’s Theorem). If S is a set in Rn and x a point in the
convex hull of S, then x can be written as a convex combination of at most n + 1
points in S.

Proof. Theorem 18.1.28 says any x ∈ K(S) can be written as a convex combina-
tion of points in S, but it does not give us a bound. We find a bound by arguing
by contradiction. Assume there is a point x ∈ K(S) for which the shortest repre-
sentation as a convex combination of points of S required N points, N > n + 1,
so

x =
N∑
i=1

λixi where all xi ∈ S , and λi > 0 , and
N∑
i=1

λi = 1

Consider the N − 1 points (xi−xN ), 1 ≤ i ≤ N − 1. Since N − 1 > n, these
points are linearly dependent in Rn, so we write an equation of linear dependence
(so not all the coefficients are 0)

N−1∑
i=1

γi(xi − xN ) = 0

or
N∑
i=1

γixi = 0
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where we have set γN = −
∑N−1

i γi.
The following argument will be used many times in this set of lectures so is

well worth remembering. Let t be a real variable. For every t ∈ R we can write

x =

N∑
i=1

(λi − tγi)xi

Setting ηi(t) = λi− tγi, and recalling that the λi are all positive, our goal is to find
a value of t so that all the ηi are non-negative, and at least one is 0. For such value
of t the ηi(t) give a representation of x as a convex combination of at most N − 1
points of S, the desired contradiction. So look at the set I+ of indices i where γi
is positive. Since the sum of all the γ is 0, this set is non-empty. Consider the set
of ratios λi/γi, i ∈ I+. Pick an index i0 for which this ratio is minimal, and let
t0 = λi0/γi0 , so that ηi0(t0) = 0 and all the other η are non-negative. Then x is a
convex combination of fewer than N of the xi, the desired contradiction.

18.5.2 Corollary. If the dimension of the convex hull of S is d < n then the esti-
mate in Carathéodory’s Theorem improves to d+ 1.

18.5.3 Exercise. According to Definition 18.3.10, the n-simplex in Rn is the con-
vex combination of its n+ 1 vertices S spanning Rn. Show that there are points in
the simplex that are not a convex combination of fewer than n+ 1 points, showing
that Carathéodory’s Theorem gives the best general bound for the number of points
needed.

18.5.4 Definition. Let the polytope P (see Definition 18.3.7) in Rn be the convex
hull of its m extreme points a1, . . . , am. Without loss of generality we can assume
that the dimension ofP is n, som ≥ n+1. To each set of n+1 affinely independent
subsets of the m points ai we can associate a simplex Sj with that set of points as
vertices. These simplices are called the subsimplices of P .6

Note that a simplex has only one subsimplex: itself.

18.5.5 Corollary. A polytope is the union of its subsimplices.

Proof. Just use the main argument in the proof of the theorem.

18.5.6 Example. Find the subsimplices of the cube and the crosspolytope (see
18.3.15) in R3.

6Definition 19.3.10 does something similar in the context of cones.
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18.6 Separation Theorems

A hyperplane Ha,c divides Rn into two half-spaces H+
a,c and H−a,c. Our goal is to

show that any two disjoint convex sets in Rn can be separated by a hyperplane. We
first state carefully what we mean by separation.

Let S and T be two sets in Rn.

18.6.1 Definition. S and T are separated by Ha,c if

〈a, s〉 ≥ c, for all s ∈ S,
〈a, t〉 ≤ c, for all t ∈ T.

In other words, S is contained in the closed half-space H+
a,c and T in the open

half-space H−a,c. In particular the two closed half-spaces H+
a,c and H−a,c are sep-

arated by Ha,c, even though their intersection is precisely Ha,c. Even worse, the
hyperplane Ha,c is separated from itself.

Here is a separation definition with a stronger requirement:

18.6.2 Definition. S and T are strictly separated by Ha,c if

〈a, s〉 > c, for all s ∈ S,
〈a, t〉 < c, for all t ∈ T.

This definition implies that the sets S and T are disjoint. The open half-spaces
H̊+

a,c and H̊−a,c are strictly separated by Ha,c. Strict separation obviously implies
separation.

18.6.3 Proposition. LetC be a non-empty closed set, and let b be a point not inC.
Then there is a point c0 ∈ C that minimizes the distance d(c,b) between a point
c ∈ C and b. The minimum distance d is positive. If C is convex, the distance
minimizing point c0 is unique.

Proof. The function D(x) giving the distance between x and b is continuous, as
we showed in Example 11.1.3. Pick any point c in C, and let D0 = D(c) be its
distance to b. Now consider the set C0 that is the intersection of C with the closed
ball of radius D0 centered at b. Obviously the point that minimizes the distance
between C and b is in C0. The set C0 is closed and bounded, therefore compact,
so by the Weierstrass Theorem 16.2.2 there is a point c0 ∈ C0 where the distance
is minimum. This distance cannot be 0, as that would imply that b is in the closure
of C: but C is closed and b is not in C, so that is impossible.

Now assume further that C is convex. If there are two distinct distance min-
imizing points c0 and c1 in C, then by convexity any point in the line segment
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[c0, c1] is in C. But since c0 and c1 are at the same distance from b, the points in
between are closer, which is a contradiction. This shows there is a unique mini-
mizer.

18.6.4 Corollary. LetC be a non-empty closed and convex set, and let b be a point
not in C. The point c0 found in Proposition 18.6.3 that minimizes the distance from
b to C is the only point c of C satisfying

〈b− c,x− c〉 ≤ 0, for all x ∈ C. (18.6.5)

This says that for all x ∈ C, the angle of vertex c0 and sides through b and x is at
least a right angle.

Proof. First we show that the equation is satisfied for c0. Assume there is a point
x ∈ C such that (18.6.5) fails, so the angle is acute. Then points on the open
segment (c0,x) close enough to c0 would be closer to b than c0. Since these
points are in C by convexity, this is a contradiction.

To show that c0 is the only such point of C, suppose there is a second one, call
it c. The triangle with vertices b, c0 and c would have two angles of at least π/2,
an impossibility.

18.6.6 Theorem. Let C be a closed convex set, and b a point not in C. Then there
is a hyperplane Ha,c that strictly separates C and b.

Proof. Let c0 be the unique point in C that realizes the minimum distance d be-
tween b and a point of C, found in Proposition 18.6.3. Let a = c0 − b, and let
m be the midpoint of the segment [c0,b], so m = (c0 + b)/2. The equation of
the hyperplane with normal vector a and passing through m is 〈a,x〉 = 〈a,m〉.
Letting c = 〈a,m〉, we claim that this hyperplane Ha,c strictly separates C and b.

It is clear by construction that b is in the open half-space H̊−a,c, and Corollary
18.6.4 shows that C is in H̊+

a,c: indeed the hyperplane Ha,c is perpendicular to
a = c0 − b.

18.6.7 Theorem. Let C be convex, and b a point in Rn that is not in C. Then
there is a hyperplane Ha,c with b on the hyperplane, and C in one of the closed
half-spaces bounded by Ha,c.

Proof. The result follows immediately from Theorem 18.6.6 except when b is in
the closure C̄ of C. In that case we can find a sequence of points {bi} in the
complement of C̄ converging to b. By Lemma 18.4.1, C̄ is convex.

We apply Theorem 18.6.6 to the point bi and the closed convex set C̄, getting a
hyperplaneHai,ci with C̄ in the positive open half-space and bi in the negative open
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half-space. As already noted, we may assume that ai has length 1. Thus we can
view each ai as a point on the unit sphere, which is compact. By the fundamental
Theorem 15.3.3 on sequences in compact sets, out of the sequence {ai} we can
extract a convergent subsequence which converges to a point a on the unit sphere.
The sequence {ci} converges to c = 〈a,b〉.

As noted, for each index i in the subsequence and every x in C, 〈ai,x〉 > ci.
Thus in the limit we get 〈a,x〉 ≥ c, as desired.

18.6.8 Theorem (The separating hyperplane theorem for disjoint convex sets). Let
B and D be disjoint convex sets in Rn. Then there is a hyperplane Ha,c so that

B ⊂ H+
a,c and D ⊂ H−a,c.

B and D are separated by Ha,c. For all b ∈ B and d ∈ D we have

〈a,b〉 ≥ c ≥ 〈a,d〉.

Proof. We consider the set S = B − D of Definition 18.1.31: the case a = 1
and b = −1. S is convex by Proposition 18.1.32, and does not contain the origin
since B and D are disjoint. So apply Theorem 18.6.7 to S and the origin: there is
a hyperplane Ha,c containing the origin (which implies that c = 0) such that S is
in the half-space H+

a,0, so that

〈a, s〉 ≥ 0, for any s ∈ S. (18.6.9)

Recall that s = b − d, for b ∈ B and d ∈ D. If m is the greatest lower bound
of 〈a,b〉, ∀b ∈ B, and M is the least upper bound for all 〈a,d〉, ∀d ∈ D, then
(18.6.9) tells us that m ≥ M . Then the hyperplane Ha,c, where c takes any value
between m and M separates B and D.

In Theorem 18.6.7 we required that the point b not be in the convex set C.
However, notice that the only property of b we used is that there is a sequence of
points {bi} in the complement of the closure C̄ of C converging to b. This says
that b is a boundary point of C.

18.6.10 Definition. Let C be a set, x a boundary point of C. Then a hyperplane
Ha,c that passes through x and hasC in one of its half-spaces is called a supporting
hyperplane to C at x. Given a supporting hyperplane Ha,c to C, the closed half-
space (see Definition 18.1.7)H±a,c containing C is called the supporting half-space.

In this new language, Theorem 18.6.7 says
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18.6.11 Theorem. A convex set C has at least one supporting hyperplane at each
one of its boundary points.

Theorem 22.1.2 will tell us that when the boundary of C is given by the graph
of a differentiable function, the supporting hyperplane is unique.

18.6.12 Corollary. A closed setX in Rn is convex if and only if it is the intersection
of all its supporting half-spaces.

Proof. If X is convex, for any point b not in X , take the separating hyperplane
through the unique point of X at minimum distance from b: see Corollary 18.6.4.
The corresponding half-space will not contain b. If X is not convex, there exists a
point b not in X but in the convex hull of X . It is not possible to separate b from
X .

18.6.13 Definition. A half-space H−a,c is called a support for a set S if S ⊂ H−a,c.

This definition allows us to state the following

18.6.14 Corollary. The convex hull of a set S is the intersection of the supports of
S.

The proof is an exercise for the reader.

18.7 Minkowski’s Theorem

18.7.1 Theorem (Minkowski’s Theorem). Let C be a compact convex set, and let
E be the set of extreme points of C. Then E is non-empty and C is the convex hull
of E.

Proof. We prove this by induction on the dimension of the convex setC. The result
is clear if C has dimension 1 - and therefore is a closed interval: every point in C
is in the convex hull of the two end points of the interval. Assume the result true
for dimension n− 1. Let C be a compact convex set of dimension n.

First let x be a boundary point of C, and H a supporting hyperplane of C
through x. C ∩ H is a compact convex set of dimension at most n − 1. Thus by
induction, x can be written as a convex combination of extreme points of C ∩H .
But an extreme point of C ∩H is an extreme point of C: x is not an interior point
of a segment [a,b] ∈ H , because x is extreme in C ∩H . On the other hand x is
not an interior point of a segment [a,b] transverse to H , thus meeting H just in the
point x, since H is a supporting hyperplane of C, so that C is contained in one of
the closed half-planes delimited by H .
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Now assume x is not a boundary point ofC: take any line ` through x. Because
C is compact, ` intersects C in two points x1 and x2 in the boundary of C, with
x ∈ [x1,x2]. By the previous argument, x1 and x2 are in the convex hull of
extreme points, so is x.

As Example 18.1.13 shows, the number of extreme points of a compact convex
set need not be finite. By Definition 18.3.7 a polytope has only a finite number of
extreme points, and Corollary 18.7.5 shows the same is true for polyhedra.

18.7.2 Definition. If the compact convex set C has a finite number of extreme
points, each extreme point of C is called a vertex.

We will use the word vertex and extreme point interchangeably.

18.7.3 Theorem. Let p be a boundary point of the polyhedron P = P (A,b).
Then p is an extreme point of the polyhedron if and only if the normal vectors of
the constraints that are active at p span Rn. In particular there must be at least n
active constraints at p for it to be an extreme point.

Proof. First assume that the active normal vectors do not span. Then the intersec-
tion of the hyperplanes Hai,bi is a positive dimensional linear space containing p.
So we can find a line segment p + tu, −ε ≤ t ≤ ε, ε > 0 in P so p is not extreme.

Next assume that the active ai at p span. Assume that p is not extreme, and
derive a contradiction. If p is not extreme, we can find q and r different from p in
P with

p =
q

2
+

r

2
. (18.7.4)

For each active i, we have

〈ai,q〉 ≤ bi, because q ∈ P ;

〈ai, r〉 ≤ bi, because r ∈ P ;

〈ai,p〉 = bi, because i is active at p;

1

2
〈ai,q〉+

1

2
〈ai, r〉 = bi, by (18.7.4).

Thus, for each active constraint, we have

〈ai,p〉 = 〈ai,q〉 = 〈ai, r〉 = bi.

Since the active ai span, the system of all 〈ai,x〉 = bi has only one solution, so q
and r are not distinct from p. Thus p is extreme.

18.7.5 Corollary. A polyhedron has either no extreme points, or a finite number of
extreme points.
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Proof. Theorem 18.7.3 tells us that the extreme points are the points where any set
of at least n linear equations with linearly independent left-hand sides meet. For
each set of n such equations there is at most one solution, so all in all there are only
a finite number of solutions and therefore only a finite number of vertices. Indeed,
the number of solutions is at most

(
m
n

)
. In particular ifm < n there are no extreme

points.

The corollary does not exclude the possibility that a polyhedron has no extreme
points. Indeed, any polyhedron defined by fewer than n half-spaces has no extreme
points.

18.7.6 Example. Consider the polyhedron P in R3 given by the inequalities x ≥ 0,
y ≥ 0, z ≥ 0 and x+ y ≤ 3, −1 ≤ z− x ≤ 2, and y+ z ≤ 4. We want to find the
vertices of P , by considering the points in P where three inequalities with linearly
independent directions vanish. Clearly the origin 0 is a vertex: it satisfies all the
constraints and the three positivity constraints are active there. The next easiest
vertices to find are those that are the intersection of two positivity constraints and
one other equation. An easy computation gives the vertices (1, 0, 0), (0, 3, 0) and
(0, 0, 2). Next we find those where only one coordinate vanishes. Checking cases,
we get (1, 2, 0) , (2, 0, 4), (3, 0, 4), (3, 0, 2), (0, 3, 1), (0, 2, 2). There are no ver-
tices where all three coordinates are non-zero: this is because the directions of the
constraints (other than the positivity constraints) only span a 2-dimensional vector
space. We end up with a compact polyhedron with 10 vertices: so it is the convex
hull of these vertices.

The following corollary will be useful.

18.7.7 Corollary. Let P be a non-empty polyhedron in Rn given as the intersection
of m half-spaces H−

ai,bi
. Assume that the normal vectors ai span Rn, so that m ≥

n. Then P has at least one extreme point.

Proof. Pick a collection of n normal vectors that form a basis of Rn. By reordering
the half-spaces, we can assume they are ai, 1 ≤ i ≤ n. The polyhedron P0 which
is the intersection of these n half-spaces clearly has a unique extreme point: the
intersection p of the n linearly independent hyperplanes Hai,bi , 1 ≤ i ≤ n. Next
define the polyhedron P1 to be the intersection of P0 with Han+1,bn+1

. If p is in
Han+1,bn+1

, it is an extreme point of P1. Otherwise linear algebra tells us that
we can find a subset of n − 1 of the n half-spaces defining P0, such that their
normal vectors and an+1 form a basis of Rn. The intersection point p1 of the
corresponding hyperplanes is an extreme point of P1. Continuing in this way,
adding one half-space at a time, gives the result.
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We will use this result in Theorem 19.6.13. Compare it to Exercise 18.7.10.

18.7.8 Theorem. A bounded polyhedron P is a polytope.

Proof. Our goal is to apply Minkowski’s Theorem 18.7.1. Since P is the intersec-
tion of m half-spaces given by ai · x ≤ bi, P is closed. Since it is bounded, it is
compact. Since it is a polyhedron, it is convex. Minkowski’s Theorem tells us that
P is the convex hull of its extreme points, which are finite in number by Corollary
18.7.5. Thus P is a polytope.

We will prove the converse later: Corollary 20.2.14. We already proved the
result for simplices in Example 18.3.18.

18.7.9 Exercise. Prove the following result. If C is a compact convex set, then a
point p ∈ C at maximum distance from the origin is an extreme point of C. There
is nothing special about the origin in this statement: any point will do.

Hint: If p is not extreme, then it is between two points q and r in C. A little
geometry in the plane spanned by the three points q, r and 0 gives the result.

18.7.10 Exercise. Prove that a closed convex set C has an extreme point if and
only if it does not contain a line.

Hint: First assume C contains a line L. A point on the line clearly is not an
extreme point. Pick a point p off the line that is extreme. Then Exercise 18.1.33
shows that in the plane spanned by L and p, C contains a strip bounded by L on
one side, and by the line L′ parallel to L through p on the other. Because C is
closed, L′ is in C, and p is not extreme. This contradiction proves the result.

Now assume that C does not contain a line. Pick a point q in C. We now
construct a function whose domain is the set of lines ` through q. This set of lines
is compact, by an argument similar to the one used in the proof of Theorem 9.1.2.
Consider the function d(`) that associates to ` the distance from q to the closest
point where ` intersects the boundary of C. Since C contains no lines, this distance
is finite. Show d(`) is continuous, so it has a maximum. Conclude using Exercise
18.7.9.

18.8 Convexity Applied to Permutation Matrices

Consider the vector space of all real matrices of size n × n. It has dimension n2,
with coordinates the entries xij of the general n× n matrix X . Inside this space,
we can look at the following set:
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18.8.1 Definition. A doubly stochastic matrix is a square matrix P with non-
negative real entries such that the sum of the elements in each row and in each
column add up to 1.

Thus the doubly stochastic n × n are defined by the 2n linear equations:
Ri : {

∑n
j=1 xij = 1}, and Cj : {

∑n
i=1 xij = 1}, and the n2 inequalities xij ≥ 0.

We need to study the system of linear equations Ri and Cj . In the 2 × 2
case, where we have 4 variables and 4 equations: we list the variables in the order
x11, x12, x21, x22, and list the row equations first, and then the column equations.
A moment’s thought will convince you that we get the matrix (1.4.14) from the
transportation problem.

The first question to ask is: what is the rank of the system of equations Ri and
Cj? It is clearly at most 2n−1, because we have the relation

∑n
i=1Ri =

∑n
j=1Cj .

The proof of Theorem 26.2.1 will show that the rank is exactly 2n − 1. Thus the
doubly stochastic matrices live in an affine subspace L of dimension n2−2n+1 =
(n− 1)2, and are defined by n2 inequalities inside L.

18.8.2 Theorem. Doubly stochastic matrices form a convex and compact subspace
D in the space of all n× n matrices.

Proof. This is a good exercise in the techniques we have developed. First we show
they form a convex set. Let A and B be two doubly stochastic matrices. We must
show that for every t, 0 < t < 1, the matrixC = tA+(1−t)B is doubly stochastic.
This is obvious since the ij-th entry cij of this matrix is taij + (1 − t)bij , and is
therefore a convex combination of aij and bij , and thus 0 ≤ cij ≤ 1. Furthermore

n∑
i=1

cij = t
n∑
i=1

aij + (1− t)
n∑
i=1

bij = t+ (1− t) = 1

so the column sums are equal to 1. An obvious modification of this argument shows
the row sums are also 1, so the set is convex.

The doubly stochastic matrices are clearly bounded (since all entries are be-
tween 0 and 1) so we need to prove that they are closed. Let A(n) be a convergent
sequence of doubly stochastic matrices. We must show that the limit is doubly
stochastic. This is true because equalities are preserved in the limit, and inequali-
ties a ≤ b are too.

Then by Minkowski’s Theorem 18.7.1 the set of doubly stochastic matrices
D is the convex hull of its extreme points. Furthermore, since D is a bounded
polyhedron in L, it is a polytope by Theorem 18.7.8, so it has a finite number of
extreme points. What are they?



18.8. CONVEXITY APPLIED TO PERMUTATION MATRICES 267

Permutation matrices, which we looked at in §6.4, are obviously doubly stochas-
tic. They are extreme points ofD. Indeed, by Theorem 18.7.3, all we need to show
is that the normal vectors to active constraints span the ambient space. Now we
have n2−n active constraints (all the zeroes of a permutation matrix) in a (n−1)2-
dimensional affine space L, and they clearly span. Thus the permutation matrices
are extreme points.

The converse, showing that all the extreme points are permutation matrices, is
harder. It is proved below.

18.8.3 Theorem. The permutation matrices are the extreme points of the doubly
stochastic matrices.7

Proof. The proof is by induction on n. The case n = 1 is clear. Now consider
the case n. Select an extreme point of the doubly stochastic matrices. By Theorem
18.7.3 the corresponding matrix X satisfies (n − 1)2 active constraints, so the
matrix must have at least (n− 1)2 entries that are 0. By the pigeon-hole principle
applied to the n rows of the matrix, because (n − 1)2 > n(n − 2), at least one
row (say the i0-th row) must contain at least n − 1 zeroes. That is the maximum
number of zeroes in a given row, since the sum of the entries in the row must be
1. This show that for some j0, the entry xi0j0 = 1. All the other entries in the
i0-th row and the j0-th column must be 0, since we are dealing with a doubly
stochastic matrix. Therefore, if you remove the i0-th row and the j0-th column
from X , you get a (n − 1) × (n − 1) doubly stochastic matrix. It has at least
(n− 1)2 − 2(n− 1)− 1 = (n− 2)2 zeroes, so it is an extreme point of the set of
n− 1× n− 1 doubly stochastic matrices. By induction, it is a permutation matrix
of size n − 1. Putting the missing row and column back in, we get a permutation
matrix of size n, which completes the proof.

Thus we have constructed a beautiful polytope with n! vertices. When n = 2,
the polytope consists of the matrices[

a 1− a
1− 1 a

]
, 0 ≤ a ≤ 1.

This is just the unit interval in L = R, with the vertices a = 0 and a = 1.
For n = 3, we get the matrices a b 1− a− b

c d 1− c− d
1− a− c 1− b− d a+ b+ c+ d− 1

 ,
7This theorem due to Dénes König and Garrett Birkhoff. It is called the Birkhoff-von Neumann

Theorem in [4], Theorem II.5.2. Other references are [39], p.164, [9], Exercise 4.22, p.74. The proof
here follows Barvinok [4].
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where all entries of the matrix are non-negative, a polyhedron in L = R4.
Carathéodory’s Theorem 18.5.1 implies that any n×n doubly stochastic matrix

is a convex combination of at most (n− 1)2 + 1 permutation matrices.



Lecture 19

Convex Cones and the Farkas
Alternative

As a first step to doing linear optimization, we study the feasible set of a linear
optimization problem. We start with the set F of solutions x of the system of
equations Ax = b, x � 0, where A is an m×n matrix and all the variables xi are
constrained to be non-negative. Later in the lecture we consider more general F .
Our final results on the structure of F is given in §19.6. In order to understand
F , we introduce a new type of geometry called conical geometry in §19.2. It
is closely related to convex geometry. The key to understanding F is the finite
cone CA associated to the matrix A, introduced in §19.3. Finite cones are the
conical analogs of polytopes in convex geometry. First we prove that finite cones
are convex in Proposition 19.3.4 and then the harder result that finite cones are
closed in Corollary 19.4.5.

The main result of this lecture is the Farkas Alternative 19.5.1, a crucial ingre-
dient in the proof of the Duality Theorem 25.5.1 of linear optimization. The two
tools used in the proof of the Farkas Alternative are the separation theorem for con-
vex sets, which we studied in §18.6, and the fact that finite cones are closed, men-
tioned above. We give three versions of the Farkas Alternative. Theorem 19.5.1
has the most important case. Corollary 19.7.9 contains a version with inequalities
that can be reduced to the first version by introducing slack variables: see Defini-
tion 19.7.2. The most general version is discussed in §19.8: in it we have a mixture
of constraint equalities and inequalities, and we only require that some of the co-
ordinates of x be non-negative. To handle this last issue, we use another standard
device: the replacement of a variable xi that is not constrained to be non-negative
by two non-negative variables ui and vi with xi = ui− vi. This last section should
be skipped on first reading.
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19.1 Introduction

The linear algebra notational conventions of Appendix A.5 remain in force. We
also use conventions from Appendix A.3: For example, we say a vector x is pos-
itive (resp. non-negative), and write x � 0 (resp. x � 0) , if all its coordinates
xj > 0 (resp. xj ≥ 0).

We also need some notation and results from Lecture 18 on Convex Sets. The
hyperplane in Rn with equation

∑n
j=1 ajxj = c is writtenHa,c as noted in (18.1.5).

Recall the Separation Theorem 18.6.8, the definition of a supporting hyperplane in
Definition 18.6.10 and of an extreme point in Definition 18.1.10.

In linear algebra we solve the equation

Ax = b (19.1.1)

Here A is an m× n matrix, so x is an n-vector and b an m-vector.
As usual we write aj = (a1j , a2j , . . . , amj) for the j-th column of A. Then

(19.1.1) can be written

x1a1 + x2a2 + · · ·+ xnan = b (19.1.2)

If b is not the zero vector, this can be solved if and only if b is a linear combination
of the columns of A. If b is the zero vector, then the solutions x belong to the
nullspace of the linear transformation associated to A. In this lecture we study the
following

19.1.3 Problem. We require that the solutions x of the system (19.1.1) be non-
negative. In other words, we study the system of equations

Ax = b, with x � 0.

When is the set of solutions F of this system not empty? How can it be described?

An important criterion is given by the Farkas Alternative 19.5.1, the main result
of this lecture.

The geometric object in Rm represented by non-negative linear combinations
of the columns aj of A:

{x ∈ Rn|x1a1 + x2a2 + · · ·+ xnan, xi ≥ 0 for all i}, (19.1.4)

is called the finite cone on A, written CA. We study it in §19.3.
The key, albeit elementary, remark is that Equation 19.1.2 has a solution x � 0

if and only b is in CA. Finite cones are analogs of the polytopes studied in convex
geometry: see Definition 18.3.7. Just as polytopes are the convex hull of a finite
number of vectors, finite cones are the conical hull of a finite number of vectors: in
our example the columns ai, 1 ≤ i ≤ n of A. We will see that this conical hull is a
convex set in Proposition 19.3.4, so we will be able to use the results of Lecture 18.
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19.2 Conical Geometry and Polyhedral Cones

In these lectures we reviewed linear algebra, and then introduced other related
geometries: affine geometry and convex geometry. In this lecture we introduce
one last geometry on the same model: conical geometry, the geometry of cones.

We will study conical analogs of polytopes and polyhedra. Because we will be
working in the column space of the m × n matrix A, our cones will live in Rm,
rather than the usual Rn.

19.2.1 Definition. A set C ⊂ Rm is a cone with vertex 0 if whenever x is in C,
then λx is also in C, for all real numbers λ ≥ 0.

We will be especially interested in cones that are convex sets, which we call
convex cones.

19.2.2 Proposition. A set C ⊂ Rm is a convex cone if and only if

1. it is a cone

2. and
x1 + x2 ∈ C whenever x1,x2 ∈ C. (19.2.3)

Proof. A convex set obviously satisfies (19.2.3), so we only need to show that
(19.2.3) implies that the cone C is a convex set: in other words we must show that
for all x1,x2 ∈ C and any λ, 0 < λ < 1, λx1 + (1 − λ)x2 is in C. This is clear
since the cone property implies that λx1 and (1− λ)x2 are in C.

19.2.4 Example. The simplest cone is a ray, defined in §9.1 as follows. Pick a
non-zero vector a. The ray ra on a is the set of elements ta, for t ≥ 0.

If a cone contains a non-zero point a, it contains the ray ra. Just as we defined
extreme points in convex geometry, we define extreme rays in conical geometry.

19.2.5 Definition. A ray ra in the cone C is an extreme ray if for any x and y in
C, if x + y is in ra, then both x and y are in ra.

19.2.6 Example. Consider C, the closed first octant {x ∈ R3 | x � 0}. C is
a convex cone. Its extreme rays are the coordinate axes. For example take the
ray r on (1, 0, 0). Can we write it as a sum of elements x = (x1, x2, x3) and
y = (y1, y2, y3) in the first octant? This would force xi = yi = 0 for 2 ≤ i ≤ 3,
meaning that both x and y are on the ray r. Finally convince yourself that C has
no other extremal rays.
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In what follows, B is a n×m matrix, the transpose of the m× n matrix A we
have been considering. We introduce B because our cones lie in Rm, rather than
Rn, so the roles of m and n are interchanged. Write b1, . . . , bn for the rows of B.
They are m-vectors.

19.2.7 Theorem. The polyhedron P (B,0) (see Definition 18.3.16) is a closed,
convex cone in Rm defined by n inequalities: Bx ≤ 0.

Proof. Because we take the right-hand side of the defining equation of the polyhe-
dron, to be 0, we get a cone, as the defining equations are homogeneous of degree
1. As noted in Definition 18.3.16, it is convex and closed, so we are done.

Because a polyhedral cone is convex, it has a dimension d as a convex set. Of
course d ≤ m, but we could have d < m if the inequalities defining the polyhedron
imply both b1x1 + · · · + bmxm ≤ 0 and −b1x1 − · · · − bmxm ≤ 0 for some
combinations of the rows of B. We will usually, without warning, restrict ourself
to the affine space of dimension d containing the polyhedral cone: the affine hull
of the cone.

This allows us to make a definition:

19.2.8 Definition. Any cone that can be written as P (B,0), for a matrix B with
m columns, is a polyhedral cone in Rm.

19.2.9 Theorem. The extreme rays of the polyhedral cone P (B,0) are the inter-
section of m−1 hyperplanes of the form bj ·x = 0, where the vectors bj are rows
of B that are linearly independent in Rm. In particular the matrix B must have at
least m− 1 columns for P (B,0) to have an extreme ray.

Proof. We modify the proof of Theorem 18.7.3. We see that rp is an extreme ray
of P (B,0) if and only if the normal vectors bj of the hyperplanes that are active
at p, meaning that bj · p = 0, span the orthogonal complement of rp in Rm. So
there must be at least m− 1 linearly independent active constraints at rp.

This is because any collection of hyperplanes of the form bj · x = 0 intersect
at the origin. So if they also intersect at p, then they intersect along the ray rp. So
we proceed as in the proof of Theorem 18.7.3, but working in the affine hyperplane
passing through p and perpendicular to rp.

19.3 Finite Cones

Finite cones are our main concern in this lecture. They are the analog in conical
geometry of polytopes (see Definition 18.3.7) in affine geometry.
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19.3.1 Definition. A setC in Rm is a finite cone, if there is a finite set ofm-vectors
a1, . . . ,an in Rm such that C can be written

C = {x | x =
n∑
j=1

λjaj , for λj ≥ 0}.

Finite cones are sometimes called finitely generated cones.
Just as in Remark 18.3.8 we may assume that we have selected a minimal set

of aj generating the cone, meaning that if we remove one of them, the resulting
cone is strictly smaller. Then the aj are called the generators of the finite cone. Let
A be the m × n matrix whose columns are the aj , and let λ be the n-vector (λ1,
. . . , λn). Then

C = {x ∈ Rm | x = Aλ, for λ � 0} (19.3.2)

We call the cone CA when we want to emphasize the dependence on A.
The generators of a finite cone are not uniquely determined, since one can

obviously replace any generator by a positive multiple. One might hope that the
rays supported by the generators are uniquely determined. Indeed one might hope
that the generators of a finite cone are supported by the extreme rays of the cone:
see Definition 19.2.5. That is not the case, as shown by Example 19.3.6. In §20.5,
we will show when finite cones behave like polytopes.

19.3.3 Exercise. Define the conical hull of a finite collection of vectors, modeling
your definition on that of the convex hull: see Definition 18.1.17.

19.3.4 Proposition. Finite cones are convex.

Proof. Let C be the finite cone CA, so C is the set of points Az, for all vectors
z � 0, and the generators of C are the columns of A. Pick two arbitrary points
Az1 and Az2 in C, so z1 � 0 and z2 � 0. We must show that the segment
(Az1, Az2) ⊂ C. We parametrize the segment by λ, 0 < λ < 1. Now

λAz1 + (1− λ)Az2 = A(λz1 + (1− λ)z2)

by linearity. Furthermore, since all the coefficients of z1 and z2 are non-negative,
λz1 + (1− λ)z2 � 0, so this point is in the cone.

19.3.5 Definition. The dimension of a finite cone C is the dimension of C consid-
ered as a convex set: see Definition 18.2.24.

19.3.6 Example. Here are some examples of cones generated by the coordinate
vectors e1, . . . , em, the standard basis of Rm.
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• The cone generated by the ei, 1 ≤ i ≤ m, is the first octant. We determined
its extreme rays in Example 19.2.6.

• The cone generated by e1, . . . , ek, k < m, has dimension k. Its extremal
rays are the ei, 1 ≤ i ≤ k.

• The cone generated by ±ei, 1 ≤ i ≤ k, is a linear subspace of dimension
k of Rm. The next example shows that this is a minimal set of generators
of the cone, since removal of any of the generators results in a smaller cone.
There are no extreme rays when k ≥ 2. If k = 1 we have a line, and both
rays of this line are extreme.

• The cone generated by ei0 and ±ei, for i 6= i0, is the closed half-space
H+

ei0 ,0
. If m > 2, there are no extreme rays; if m = 2, so we are looking at

a half-plane, there are two extreme rays forming a line.

We are mainly interested in finite cones, but here is an example of a cone that
is not finite.

19.3.7 Exercise. Consider the set C in R3 defined by x21 + x22 ≤ x23 and xi ≥ 0
for 1 ≤ i ≤ 3. Show that C is a cone. Draw it by considering its intersection with
the plane x3 = r, where r ≥ 0. Is it convex? Show that it is not finite.

19.3.8 Example. The set C1 in R3 with coordinates (x, y, z) given by

xy ≥ z2, x ≥ 0, y ≥ 0, z ≥ 0

is a closed convex cone. Similarly the set C2 in R3 with coordinates (x, y, z) given
by

xy ≥ −z2, x ≤ 0, y ≥ 0, z ≥ 0

is a closed convex cone. Consider the Minkowski sum (see Definition 18.1.31)
M = C1 + C2. M is convex by Proposition 18.1.32, and is a cone because both
C1 and C2 are cones. It is clear that M is contained in the cone given by z ≥ 0
and y ≥ 0, since these inequalities are satisfied for all points in C1 and in C2. This
example is closely related to Example 18.4.8, and can be worked out in the same
way.

We now define the analog of a r-simplex: see Definition 18.3.10.

19.3.9 Definition. A finite cone C in Rm is basic if its generators are linearly
independent vectors.
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The generators aj , 1 ≤ j ≤ r of a basic cone C span a linear subspace V of
dimension r in Rm, and C ⊂ V . If we add the vertex a0 of the cone (the 0 vector),
then the r+1 vectors a0,a1, . . .ar are affinely independent by Proposition 18.2.16.

Let C be the finite cone CA associated to the m× n matrix A whose columns
are the generators of C. If C is basic, then A has rank n. In general, let r ≤ n be
the rank of A. Now consider a subset S = {aj1 ,aj2 , . . . ,ajr} of r generators of
CA. Such a subset is called basic if the r vectors are linearly independent. Note
that this implies that any remaining generator of C is linearly dependent on the
ones in S.

With this notation, we have

19.3.10 Definition (Basic Subcones). Let Sk be a basic subset of generator of C,
and Ak the m × r submatrix of A whose columns are the elements in S. Then
the finite cone Ck generated by the elements of Sk, namely the columns of Ak, is
called a basic subcone of C.

19.3.11 Remark. Each basic Ck is a subset of C, and has dimension r. Further-
more C has a finite number of basic subcones: at most

(
n
r

)
.

Here are some examples:

19.3.12 Example. Let C be the finite cone in R2 generated by the three vectors
(1, 0), (0, 1) and (−1, 0), which we call a1, a2 and a3. There are two pairs of
linearly independent generators:

• (a1,a2) generating the basic cone C1.

• (a2,a3) generating the basic cone C2.

The remaining pair is not linearly independent: indeed the two rays ra1 and ra3

form a line.

As the next example 19.3.13 shows, there can be inclusion relations among the
Cj .

19.3.13 Example. Let C be the finite cone in R2 generated by the three vectors
a1 = (1, 0), a2 = (0, 1) and a3 = (−1, 1). The corresponding basic cones are
called C1, C2 and C3. In this example C2 = C, so C itself can be generated by
two vectors and is itself basic. Clearly C1 ⊂ C2 and C3 ⊂ C2.

Things get more complicated in R3.
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19.3.14 Example. Consider the finite coneCA in R3 generated by the four columns
of the matrix

A =

1 0 1 1
1 1 0 0
0 1 1 0

 .
Note that any three generators are linearly independent. Show that the cone C is
not equal to any one of its basic cones, and that C itself is not all of R3. Intersect
C and its basic cones with the unit sphere S centered at the origin. We get a map
(called central projection) from C r 0 to S by associating to each non-zero vector
a ∈ C the vector a/‖a‖ in S. You can understand the cone C by understanding its
image under central projection to S.

19.3.15 Exercise. What are the basic subcones of Rm, considered as a cone, using
only the generators ±ei, 1 ≤ i ≤ m, considered in Example 19.3.6? How many
basic subcones are there?

19.4 Finite Cones Are Closed

The main result of this section is Corollary 19.4.5, the key tool for our proof of
the Farkas Alternative. First, Examples 19.3.12 and 19.3.14 suggest the following
theorem concerning the basis subcones (see Definition 19.3.10) of C.

19.4.1 Theorem. Let C be a finite cone in Rm, with associated basic cones Ck,
1 ≤ k ≤ q. Then C is the union of its basic subcones, which are finite in number.
In other words:

C = C1 ∪ C2 ∪ · · · ∪ Cq.

Before proving this, we rephrase the theorem’s statement. By Definition 19.3.1,
if b is in C, it can be written as a non-negative linear combination of the generators
of C. The theorem says that b can be written as a non-negative linear combination
of a linearly independent subset of the generators.

Proof. We reduce this to the key argument of the proof of Carathéodory’s Theorem
18.5.1. Pick a vector b in the cone C. Then we can write

b =

n∑
j=1

λjaj , for λj > 0. (19.4.2)

where possibly only a subset of the original generators appears in the sum. Further
assume that this is the shortest representation of b as a sum of the aj with positive
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coefficients. Finally, we assume that the aj appearing are not linearly independent,
and derive a contradiction. Write an equation of linear dependence

n∑
j=1

µjaj = 0, (19.4.3)

where not all the µj are 0. Multiplying this equation by −1, if necessary, we may
assume that at least one of the µj is positive. For a small enough positive real
number t, subtract t times (19.4.3) from (19.4.2) to get

b =
n∑
j=1

(λj − tµj)aj

Just as in the proof of Carathéodory’s Theorem, by a suitable choice of t we get a
representation of b as a linear combination with positive coefficients of a smaller
number of aj , a contradiction that proves the result.

19.4.4 Theorem. Basic cones are closed.

Proof. We know that polyhedral cones are closed (see Theorem 19.2.7), so it is
enough to show that a basic cone is a polyhedral cone. A basic cone is the ana-
log of a simplex, so we will imitate the proof of Theorem 18.3.18 that shows that a
simplex is a polyhedron. We may without loss of generality assume that the dimen-
sion of the cone is m: otherwise restrict to the smallest linear subspace containing
the cone. Consider the m + 1 affinely independent points 0, a1, . . . , am, and take
the m hyperplanes that pass through 0 (so that they are linear hyperplanes, and not
only affine ones) and m − 1 of the remaining m points. These hyperplanes are
supporting hyperplanes for the convex cone, so that by taking the intersection of
the corresponding half-spaces, we see that the cone is contained in their intersec-
tion. By the same argument as in the proof of Theorem 18.3.18, any point in the
intersection is in the cone, so we are done.

19.4.5 Corollary. Finite cones are closed.

Proof. A finite cone is a finite union of its basic subcones by Theorem 19.4.1 and
a finite union of closed sets is closed by Theorem 14.4.15, so we are done.

19.5 The Farkas Alternative

We now answer our original question: when does (19.1.2) have a non-negative
solution? The answer is given by the Farkas Alternative, the inequality form of
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Corollary 7.2.4. The result follows easily from the Separation Theorems in 18.6
and Corollary 19.4.5.

Note the use of the ‘exclusive’ or in the statement: it means that either one
or the other of the assertions of the alternative is true, but not both. See §2.1.2
for details. For a restatement in terms of necessary and sufficient conditions see
Corollary 19.5.3.

19.5.1 Theorem (The Farkas Alternative). Let A be an m × n matrix and b an
m-vector. Then either

1. The system of equations Ax = b has a solution x � 0,

or (exclusive)

2. there is a vector y in Rm with

yTA � 0 and yTb < 0.

Proof. We first translate the statement of the theorem into geometry: Let CA be
the finite cone in Rm generated by the columns aj of A, as in Definition 19.3.1.
Then either

1. b is in CA. Indeed, b = Ax =
∑n

j=1 xjaj , so if all the xj are non-negative,
b is in the cone generated by the aj , and that is CA, by definition.

Or (exclusive)

2. there exists a hyperplane Hy,0 in Rm through the origin that separates CA
and the point b. Indeed we require that CA only be in the closed positive
half-space H+

y,0, while b must be in the open negative half-space H̊−y,0). We
do not have strict separation because the origin, which is in CA, is also in
Hy,0.

Now we prove the result. By Proposition 19.3.4 CA is convex, and by Theorem
19.4.5 CA is closed.

If case 1 is false, we must show that case 2 is satisfied. Now the point b is
not in CA. By Corollary 18.6.4, there is a unique point bm in CA minimizing the
distance of b to a point of CA. The existence of bm follows from the fact that CA
is closed, and the uniqueness from the fact that it is convex. The same corollary
says that the hyperplane H through the point bm and perpendicular to b − bm is
a supporting hyperplane to CA at bm. By construction b is in an open half-space
bounded by H , since its distance to the closed set CA is positive. To finish the
proof, we need to show that the origin is on H . If the closest point bm is the
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origin, there is nothing to prove. Otherwise the closest point is on a ray r of CA,
and is not the origin. Because bm is the closest point, the entire ray is in H , so the
origin is in H . So we have found a hyperplane H meeting the requirements of case
2.

Now we have to prove the other implication: we assume that case 2 is false,
and show that case 1 is satisfied. This is easy, since the failure of case 2 means that
b is not at positive distance from CA. That just means, since CA is closed, that b
is in CA, and that is case 1, so we are done.

19.5.2 Remark. The entries of y are just the coordinates of a hyperplane in Rm.
We can replace y by −y without changing the hyperplane, which implies that the
alternative should be valid even after this replacement. Thus the alternative in
Farkas can be written

There is a vector y in Rm with yTA � 0 and yTb > 0.

Convince yourself that the Farkas alternative can be reformulated in the fol-
lowing way, which translates the ‘exclusive or’ into the more familiar language of
a necessary and sufficient condition.

19.5.3 Corollary. Let a1, a2, . . . , an be a collection of n vectors in Rm. Let b
be another vector in Rm. A necessary and sufficient condition for writing b as a
non-negative linear combination

b =
n∑
j=1

xjaj , xj ≥ 0 , ∀j (19.5.4)

is that for every vector y such that yTaj ≥ 0 for 1 ≤ j ≤ n, then yTb ≥ 0.

19.6 The Polyhedron Associated to the Farkas Theorem

The Farkas Alternative 19.5.1 tells us when the system

Ax = b , x � 0, (19.6.1)

has a solution in x for a given value b. This system is often called the canonical
system. In this section we fix a b for which there is a solution, and describe the
full set of solutions F of (19.6.1) for that b.

Recall that the columns of them×nmatrixA are the generators aj of the cone
CA (see Definition 19.3.1) in Rm. By definition, the system (19.6.1) has a solution
if and only if b ∈ CA.



19.6. THE POLYHEDRON ASSOCIATED TO THE FARKAS THEOREM 280

It could happen that the linear span W of the aj is strictly smaller than Rm, so
its dimension is p < m. Since (19.6.1) has a solution by assumption, this implies
b ∈ W . Choose a basis for W and then extend it to a basis for Rm. In this basis
the last m− p coordinates of the aj and of b are 0, so we could replace Rm by W .

So without loss of generality, we may assume:

19.6.2 Assumption (Rank Assumption). The m×n matrix A has rank exactly m.
Thus the m rows of A are linearly independent, so m ≤ n.

The rank assumption is harmless: we have simply written an equivalent set of
constraints in a more concise way, by removing dependent rows of A. The feasible
set is unchanged, and the new problem has the same solution as the old one.

The affine subspace V given by the solutions of the equations Ax = b has di-
mension n−m: each equation reduces the dimension by 1 by the rank assumption.
The set F of all solutions of (19.6.1) is the intersection of V with the convex cone
given by the positive octant Rn+ of vectors x � 0. F is therefore a polyhedron in
V , so by Definition 18.3.16 it is closed and convex. It is non-empty if and only if
V meets Rn+.

19.6.3 Example. Here is the most elementary example of this set-up: let A be the
matrix written in block notation as

[
I 0

]
, where I is the m ×m identity matrix

and 0 the m × (n − m) zero matrix. Then V is just the subspace of x such that
xi = bi, for 1 ≤ i ≤ m. The intersection of V with the positive octant is non-
empty if and only if all the bi are non-negative. If all bi are non-negative, and k of
them are positive, then the intersection has dimension k. So all possible dimensions
between 0 and n−m may occur.

Returning to the general case, we use linear algebra to study the polyhedron
F . By the rank assumption we can use the m equations Ax = b to solve for m
of the xj in terms of the remaining n −m variables. Computationally we do this
by Gaussian elimination. We start with a variable xj1 that appears (meaning its
coefficient a1,j1 is non-zero) in the first row of A. We divide this equation by a1,j1 ,
and then use this new equation to eliminate xj1 from the remaining equations. Then
we repeat the process: find a variable xj2 that appears in the second equation and
continue, getting xi2 , . . . , xim . By backsubstitution we can then eliminate all but
xik from the k-th equation.

19.6.4 Definition. Any collection of m variables for which this elimination pro-
cess is possible is called a set of basic variables for the system of equations. The
remaining variables are called free variables, since for any values of the free vari-
ables one gets a solution of the system.
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19.6.5 Exercise. Convince yourself that this use of the word basic agrees with
Definitions 19.3.9 and 19.3.10. In Example 19.6.3, the only collection of basic
variables are the first m variables.

The rank assumption guarantees that a set of basic variables exists. From ele-
mentary linear algebra we have:

19.6.6 Theorem. The variables xj1 , xj2 , . . . , xjm form a set of basic variables
if and only if the submatrix of A formed by the columns of index j1, . . . , jm, is
invertible.

By changing the indexing, we may assume that the basic variables are x1, x2,
. . . , xm. After this reindexing, we get a system of equations

[
I A′

]
x = b′ with

the same solutions as (19.6.1). We have n inequalities in the remaining xm+1,
xm+2, . . . , xn: first the n − m obvious ones xj ≥ 0, m + 1 ≤ j ≤ n. The
others come from the inequality xj ≥ 0 after solving for the basic variables xj ,
1 ≤ j ≤ m. So F is a polyhedron defined by n inequalities inside the affine space
V of dimension n−m.

If we assume instead that the basic variables are xn−m+1, xn−m+2, . . . , xn, we
get a system

[
A′′ I

]
x = b′′ equivalent to (19.6.1).

19.6.7 Exercise. Study (19.6.1) when A is the matrix[
a11 a12 1 0
a21 a22 0 1

]
(19.6.8)

Solve for x3 and x4 in terms of x1 and x2 and find all the inequalities satisfied by
x1 and x2. Is it possible to choose values for the aij so that the system does not
satisfy the Rank Assumption 19.6.2?

Choose values so that the polyhedron F is empty; non-empty and compact;
non-empty and unbounded.

Given a set of basic variables, we can study V and F by projection to the
subspace of non-basic variables. By reordering the variables, we assume that the
basic variables are the last m variables xn−m+1, . . . , xn. Consider the linear map
from Rn to Rn−m obtained just by forgetting the last m variables. So the matrix
of this linear transformation is the (n −m) × n matrix

[
In−m 0

]
, where In−m

is the identity matrix of size n−m and 0 is the zero matrix of size (n−m)×m.
This is called a projection, and is a minor variant of the orthogonal projection1 in
Definition 7.6.1.

1In terms of the notation there, the subspace K is the span of the basic variables, and R the space
of free variables. Instead of mapping to the entire space, we only map to the subspace R, which
means that we omit the bottom submatrix

[
0kr 0k

]
of zeroes.
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Here is why this projection map is useful. Rewrite system (19.6.1) as the equiv-
alent system [A, Im]x = b, where A is a new matrix of size m× (n−m) obtained
by Gaussian elimination. Thus the last m variables are basic.

19.6.9 Theorem. Let P be the projection from Rn to Rn−m obtained by omitting
the last m variables from the system

[
A Im

]
x = b, where A is an m× (n−m)

matrix. Then to each point q in Rn−m, there is a unique point p in V whose
projection P (p) is q. The image of F under projection is a polyhedron F ′ defined
by the inequalities

n−m∑
j=1

aijxj ≤ bi, for 1 ≤ i ≤ m;

xj ≥ 0, for 1 ≤ j ≤ n−m.

Furthermore the polyhedra F and F ′ have the same structure as convex sets.

Proof. The first statement just reiterates the fact that given any value for the free
variables, there is a unique solution for the basic variables. The fact that the projec-
tion of F is a polyhedron follows from Theorem 18.1.29, as does the last statement,
which simply means that if p1 and p2 are in F , and q1 and q2 are their images in
F ′, then λq1 + (1 − λ)q2 is the image of λp1 + (1 − λ)p2, for any 0 ≤ λ ≤ 1.
The determination of the inequalities defining F ′ is left to you.

19.6.10 Example. Here is a simple example where the projection can be visual-
ized. Take n = 3 and m = 1, so that we have a single constraint, say, x1 + 2x2 +
3x3 = 6, and of course the positivity constraints x � 0.

Then F is the intersection of the affine hyperplane H determined by the con-
straint with the first octant. Note that H intersects the x1-axis at the point (6, 0, 0),
the x2-axis at (0, 3, 0) and the x3-axis at (0, 0, 2). All three points are in the first
octant, since all their coordinates are non-negative. A moment’s thought should
convince you that F is the convex hull of the triangle in space bounded by the
three points.

A basic submatrix is just a 1 × 1 submatrix that is non-zero. In our example
all possible submatrices are basic, so we have 3 of them. We choose the third
coordinate as basic submatrix. Thus to get to the inequality problem, we project
by forgetting the x3 coordinate. What is the projection F ′ of F ? You should
check that it is the convex hull of the three points (6, 0), (0, 3) and the origin in the
plane. That is the simplex determined by three inequalities x1 ≥ 0, x2 ≥ 0, and
x1 + 2x2 ≤ 6. You should make a graph of F , F ′ and the projection.

Under the Rank Assumption 19.6.2, we make the definition:
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19.6.11 Definition. Let x be a solution of (19.6.1). Then x is basic if it has at
most m non-zero (and therefore positive) coordinates xi corresponding to linearly
independent columns ai of A.

In terms of Definition 19.6.4, this says that there is a collection of basic vari-
ables so that the only non-zero coordinates of our basic solution correspond to
these basic variables. It does not say that to each basic variable the coefficient of
the basic solution is non-zero: in particular a basic solution could have more than
n−m zeroes.

In Example 19.6.3, a basic solution exists if bi ≥ 0 for 1 ≤ i ≤ m. The
solution is xi = bi, 1 ≤ i ≤ m, and xj = 0, j > m. If one of the bi = 0, we get a
basic solution with fewer than m non-zero entries.

In general, reordering the columns of A if necessary, so that the basic variables
come first, we may assume that a basic solution is written x = [xB,0] where xB
is the vector of first m entries of x. By hypothesis the columns a1, . . . ,am of A
are then linearly independent.

So far we have only used linear algebra. Now, from our study of finite cones
we get the important

19.6.12 Theorem. If (19.6.1) has a solution, it has a basic solution.

Proof. Indeed, by Theorem 19.4.1, if there is a solution, the vector b lies in at least
one basic subcone, which is therefore generated by linearly independent columns
of A. Writing b is terms of these generators, we get a solution with non-zero
coordinates only along the generators of the basic subcone: therefore it is basic.

Then, recalling the Definition 18.1.10 of an extreme point of a convex set, we
get the equivalence:

19.6.13 Theorem. Assume that the set of solutions F of the system of equations
(19.6.1) is non-empty. Then the extreme points of the convex set F are precisely
the basic solutions of the system. In particular F always has extreme points.

Proof. We start with a basic solution x of the system of equations (19.6.1). Thus
x has r ≤ m non-zero entries, and the corresponding r columns of the matrix
A are linearly independent. Then, using the fact that A has rank m, to those r
columns can be added m − r additional columns, so that the m columns form a
basis for the column space of A. This gives a set of basic variables, generally not
uniquely determined if r < m. Then we can project V to the Rn−m of non-basic
variables and F to F ′ as described above. Under this projection, the basic solution
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x gets mapped to the origin in Rn−m, which is clearly an extreme point of F ′, and
therefore x is an extreme point of F by Theorem 19.6.9.

To go the other way, we start with an extreme point p of F , and must show that
it corresponds to a basic solution. We could invoke Theorem 18.7.3, but it is easier
to proceed directly. Consider the submatrix A′ of A corresponding to the columns
where p has non-zero (and therefore positive) entries. A′ is a m × r matrix for
some r > 0, and if p′ is the corresponding subvector of p, we have A′p′ = b.

A′ has trivial nullspace, as we now show: otherwise we can find a non-zero
q ∈ Rr with A′q = 0. Then for small enough ε, the vector p + εq has only
positive entries, and is a solution ofA′x′ = b. Thus, extending the r-vector p+εq
to an n-vector by putting zeroes in the appropriate places, we get a solution to
(19.6.1) for all small enough ε. This contradicts the assumption that p is extreme.
So A′ has trivial nullspace. This shows that r ≤ m. If r = m, we are done.
If r < m, complete the collection of linear independent columns of A already
selected by adding m− r additional columns in order to get a basis of the columns
space. The corresponding variables are basic, and therefore the extreme point is a
basic solution.

If F is compact, then it is the convex hull of its extreme points by Minkowski’s
Theorem 18.7.1.

19.6.14 Example. We continue Example 19.6.10. F is compact, and is the convex
hull of its three extreme points (6, 0, 0), (0, 3, 0) and (0, 0, 2). If we project F to F ′

by forgetting the third coordinate, as above, the extreme point (0, 0, 2) is projected
to the origin, which is extreme in F ′, as claimed.

19.7 Slack Variables and a Generalization of the Farkas
Alternative

In this section we examine the system of equations:

Ax � b, and x � 0, (19.7.1)

often called the standard system, to distinguish it from the canonical system 19.6.1:
We prove a version of the Farkas Theorem for it, and we also show that the poly-
hedron of solutions always has extreme points.

Later in this lecture we will generalize both systems in §19.8. The standard
and canonical cases are done separately because of their intrinsic importance and
because the notation of the general case is forbidding.
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We reduce the system of equations (19.7.1) to the canonical case by introducing
new variables, called slack variables, into each inequality to get back to the case of
equality.

19.7.2 Definition. Consider the inequality
∑n

j=1 ajxj ≥ b. Introduce a new vari-
able z, and replace the inequality by the system

n∑
j=1

ajxj − z = b with z ≥ 0 (19.7.3)

The two systems have the same solutions in x. The new variable z, which takes up
the slack between the inequality and the equality, is called a slack variable.

We rewrite the canonical system as the n+m inequalities

n∑
j=1

aijxj ≥ bi, for 1 ≤ i ≤ m; (19.7.4)

xj ≥ 0, for 1 ≤ j ≤ n.

We introduce m new slack variables zi, 1 ≤ i ≤ m, so that zi is associated with
the i-th constraint equation, replacing (19.7.4) by

n∑
j=1

aijxj − zi = bi, for 1 ≤ i ≤ m;

xj ≥ 0, for 1 ≤ j ≤ n;

zi ≥ 0, for 1 ≤ i ≤ m.

We can solve for the slack variables in terms of the xj since the matrix of coeffi-
cients of the system is, in block notation, [A,−I], where I is the m ×m identity
matrix, so that it is already diagonalized in the slack variables.

We easily see:

19.7.5 Proposition. The systemAx � b, and x � 0 is equivalent to the canonical
system

Ax− Iz = b, and x � 0, z � 0.

By this we mean that if x is a solution of the first system, then there exist a unique
z so that the pair (x, z) is a solution of the second system. Conversely, if (x, z) is
a solution of the second system, then x is a solution of the first system.
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Geometrically, this says that the feasible set F for the canonical problem,
which is in Rn+m, projects to the feasible set F ′ of the standard problem (in Rn)
under the map that forgets the last m coordinates. This is the same projection map
we studied in Theorem 19.6.9.

19.7.6 Example. We look for the solutions of x1+2x2 ≥ 4, x1 ≥ 0, x2 ≥ 0. Thus
n = 2,m = 1, and b = 4. The associated system with equality is x1+2x2−z = 4,
x1 ≥ 0, x2 ≥ 0, z ≥ 0. To go from the inequality x1 + 2x2 ≥ 4 to the equality, we
just solve for z = x1 + 2x2 − 4. Clearly there is always a unique solution.

19.7.7 Remark. This pairs each one of our n+m variables with one of our n+m
constraints.

• The original variable xj , 1 ≤ j ≤ n, is paired with the j-th constraint xj ≥ 0
in 19.7.4.

• The i-th slack variable zi is paired with the i-th equation in (19.7.4), which
just says zi ≥ 0.

19.7.8 Remark. The m ×m submatrix of the new constraint matrix given by the
slack variable columns is −I . So the constraint matrix has maximal rank m, an
observation that will be useful later.

The corresponding version of the Farkas Theorem is:

19.7.9 Corollary. Let A be an m× n matrix and b an m-vector. Then either

1. Ax � b has a solution x � 0

or (exclusive)

2. there is a vector y ∈ Rm, y � 0, yTA � 0 and yTb > 0.

Proof. We apply Theorem 19.5.1, substituting the block matrix
[
A− I

]
for A and

the vector [x, z] for x, and n+m for n . Then the alternative to the existence of a
solution is the existence of a y satisfying

yT
[
A −I

]
� 0, and yTb > 0.

The inequality on the left breaks up as two sets of inequalities : yTA � 0, and
yT I � 0. The first forces yTaj � 0. The last one says that y � 0 . These
inequalities are equivalent to the alternative given in the corollary.

As for the earlier Farkas alternative (see 19.5.3), we will occasionally use it in
the equivalent form:



19.8. THE GENERAL FARKAS ALTERNATIVE 287

19.7.10 Corollary. Let a1, a2, . . . , an be a collection of n vectors in Rm, viewed
as the columns of a m× n matrix A. Let b be another vector in Rm. A necessary
and sufficient condition for the equation Ax � b to have a solution x � 0 is that
every vector y � 0 such that yTA � 0, also satisfies yTb ≤ 0.

Theorem 19.6.9 tells us that the polyhedron defined by (19.7.1) always has
extreme points. We will not make much use of this fact, because to compute with
(19.7.1) we always use slack variables to transform it to a system of type 19.6.1,
and then use Theorem 19.6.13.

19.7.11 Example. Suppose that m = n = 2, both variables x1 and x2 are non-
negative, and our other constraints are

x1+2x2 ≥ 4

3x1+ x2 ≥ 3

Draw the feasible set, meaning the set in the plane satisfying the four inequalities.
Its boundary is polygonal with vertices the origin, a = (0, 3), b = (2/5, 9/5)
and c = (4, 0). The sides of the polygon are the vertical (x2) axis, the segment
[a,b], the segment [b, c] and the horizontal axis. Adding slack variables asks for
the solution of

x1+2x2 − z1 = 4

3x1+ x2 −z2 = 3

in the first octant (where all variables are non-negative) in R4. In this case it is
easier to see, without slack variables, that the feasible set is non-empty. Thus the
alternative in Farkas must be false. So there is no non-negative vector y ∈ R2 with

y1+3y2 ≤ 0

2y1+ y2 ≤ 0

and
4y1 + 3y2 > 0

This is easily seen by graphing the lines y2 = −1
3y1, y2 = −2y1, and y2 = −4

3y1.
Question: how can you modify the vector b = (4, 3) to make the alternative of
Farkas true?

19.8 The General Farkas Alternative

Here is the most general system of equations for the feasible set of a linear op-
timization problem. The idea is simple: was allow a mixture of equalities and
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inequalities, and only force some of the variables to be constrained to be non-
negative.

19.8.1 Definition. A is an m × n matrix, b a m-vector, and our variable x is an
n-vector. The coordinates of x are indexed by the running variable j, 1 ≤ j ≤ n.
We pick an arbitrary subset J of the index set {1, 2, . . . , n} and let J ′ be the
complement of J in the index set, so J ∪ J ′ = {1, 2, . . . , n}.

We also pick an arbitrary subset I of the index set {1, 2, . . . ,m} for the rows
of A, using as running variable i, 1 ≤ i ≤ m.

With this notation we write a set of equations derived from A and b as

•
∑
aijxj ≥ bi when i ∈ I,

•
∑
aijxj = bi when i /∈ I,

• xj ≥ 0 when j ∈ J .

Let us call this set of equations the (I,J )-system associated to A and b. We
denote it (A,b, I,J ).

This general form is given for completeness: we will almost always stick to the
forms given in (19.6.1) and (19.7.1). In this section you will find a version of the
Farkas Alternative for the general system.

19.8.2 Example. Here is how to describe the two key systems in this new notation.

• The canonical case treated in (19.6.1) corresponds to

I empty, since there are only equalities, and

J = (1, . . . , n), since all the variables xj are required to be non-negative.

• The standard case treated in (19.7.1) corresponds to

I = (1, . . . ,m), since there are only inequalities, and

J = (1, . . . , n), since all the variables xj are required to be non-negative.

The goal is to reduce the system of equations (A,b, I,J ) to the canonical
system. To do this we use two tools. The first one we have already met: slack
variables: see Definition 19.7.2. The second tool, new to this section, is to replace
a variable x, which is not constrained to be non-negative, as are the variables in our
canonical equation, by two non-negative variables u and v, writing x = u− v.

19.8.3 Proposition. Consider the system of equations (A,b, I,J ). Let m∗ be the
number of elements of I, and n∗ that of the complement J ′ of J . For each i ∈ I,
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we introduce a new slack variables zi, which we view as the coordinates of an m∗-
vector z. For each j ∈ J ′ we introduce a new variable wj which we view as the
coordinates of an n∗-vector w. Let AJ ′ denote the matrix formed by the columns
ofA corresponding to elements j ∈ J ′. SoAJ ′ is anm×n∗ matrix. Finally let II
denote the m×m∗ submatrix of the m×m identity matrix formed by only taking
the columns of index i ∈ I.

Then the system (A,b, I,J ) is equivalent to the canonical system

Ax−AJ ′w − IIz = b and x � 0,w � 0, z � 0. (19.8.4)

If we rewrite the left-hand side of (19.8.4) as block matrices, we get

[
A −AJ ′ −II

] x
w
z

 = b, and x � 0,w � 0, z � 0.

Proof. The proof is just a matter of keeping track of indices. Notice that a variable
xj , not constrained to be non-negative (so j ∈ J ′), gets replaced by xj−wj . where
both xj and wj are non-negative.

Thus, at the cost of introducing a number of extra variables, we can reduce to
a system of the form (19.6.1).

We now establish a generalization of the Farkas Alternative for our general
system.

19.8.5 Theorem (The General Farkas Alternative). Let A be an m × n matrix, b
an m-vector, I a subset of the index set 1 ≤ i ≤ m, J a subset of the index set
1 ≤ j ≤ n and J ′ its complement. Then either

1. the (I,J )-system (A,b, I,J ) has a solution x,

or (exclusive)

2. there is a vector y ∈ Rm, with (here aj is the j-th column of A):

• yi ≥ 0, if i ∈ I;

• yTaj ≤ 0, if j ∈ J ;

• yTaj = 0, if j /∈ J ; and

• yTb > 0.

Proof. We apply Theorem 19.5.1, substituting [A,−AJ ′ ,−II ] for A and [x,w, z]
for x, and n+n∗+m∗ for n . Then the alternative to the existence of a solution is
the existence of a y satisfying

yT
[
A −AJ ′ −II

]
� 0, and yTb > 0.
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The inequality on the left breaks up as three sets of inequalities :

yTA � 0,−yTAJ ′ � 0, and yT II � 0.

The first two together force yTaj = 0 if j ∈ J ′. The last one says that yi ≥
0 when i ∈ I. These inequalities are equivalent to the alternative given in the
corollary.

19.8.6 Example. Let

A =

[
a11 a12 a13
a21 a22 a23

]
Let I = (1, 2) and J = (3). So we are looking for the Farkas alternative to the
statement

Ax ≥ b has a solution x with x3 ≥ 0.
We form the matrix

Ã =

[
a11 a12 a13 −a11 −a12 −1 0
a21 a22 a23 −a21 −a22 0 −1

]
and apply the usual Farkas alternative 19.5.1 to Ã and b, using z for the variable,
so that z ≥ 0. Then, taking for example the first row ã1 of Ã, we get

〈ã1, z〉 = a11(z1 − z4) + a12(z2 − z5) + a13(z3)− z7

Let x1 = z1 − z4, x2 = z2 − z5 and x3 = z3. So x3 ≥ 0, while x1 and x2 have
arbitrary sign.

By Theorem 19.8.5 the alternative is that there exists a y = (y1, y2) with
yT ãj ≤ 0 and yTa1 = 0 and yTa2 = 0. Furthermore we require yTb > 0.
If the first two columns of A are linearly independent, then the only solution is
(0, 0).



Lecture 20

Polarity

In §20.1 we define support functions. In §20.2 the polar set is introduced and used
to prove the Bipolar Theorem 20.2.13. Its Corollary 20.2.14 shows that polytopes
are polyhedra.

In §20.3 we develop the notion of the conjugate of a function, which is the
precise analog of the polar of a set, studied in §20.2. The transformation from a
function to its conjugate is often called the Fenchel transform. It is a generalization
of the better known Legendre transform used in physics. This will be useful when
we study duality for convex functions later.

The material in §20.4 on polar cones is parallel to the material on convex sets
in §20.2 and that on convex functions in §20.3. Finally, in §20.5, we associate to
many finite cones a compact polytope. Alternate references for this material are
[23], [52] and [7].

20.1 Support Functions

Expanding on Definition 18.6.13, here is a way of encoding the description of
a closed convex set C as an intersection of hyperplanes. Another way will be
discussed in §20.2. This material can be skipped on first reading.

Fix a vector a, and look at all c ∈ R such that C is contained in the half-
space H−a,c. In the terminology of Defintion 18.6.13, H−a,c is a support for C. For
some vectors a, there may be no such c, in which case we set c = ∞. Otherwise,
because there will be a best - namely smallest - c that works: the c that makes Ha,c

a supporting hyperplane with C ∈ H−a,c. The traditional way of writing this c is

c = sup
x∈C
〈a,x〉.

This allows us to make a
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20.1.1 Definition. The support function of C is the function s(y) on Rn given by

s(y) =

{
supx∈C〈y,x〉 if the sup exists;
∞ otherwise.

The domain D of s is the set of y where s takes on finite values.

Support functions will be used in §20.3.
Note that D is a cone: if y ∈ D then λy ∈ D for every positive λ. We will

study cones in detail in Lecture 19.

20.1.2 Example. The domain of C is empty if C = Rn, and a single point if C is
a half-space. Indeed, if C = H−a,c, then the domain of its support function is the
point a and its value at that point is c.

If C is the single point x, then there is no need to take the sup, and the support
function is defined for all y, with s(y) = 〈y,x〉.

Note that the support function of a bounded set is defined for all y.

20.1.3 Exercise. Show that the support function of the sphere of radius r centered
at the origin, which is defined for all y, is s(y) = r‖y‖.

20.1.4 Exercise. Find the support function of the segment in the plane bounded by
the points (a1,a2) and (b1,b2).

Find the support function of the region above the parabola y = x2 in the plane.

20.1.5 Exercise. Show that the support function is positively homogeneous, namely
that s(λy) = λs(y) for every positive λ and any y in its domain. Note first that
this is verified in all the previous examples.

20.1.6 Proposition. The support function of a convex set is sublinear:

s(a + b) ≤ s(a) + s(b).

Proof. Here is a sketch. The only content is when both s(a) and s(b) are finite.
We need to show that

sup
x∈C
〈a + b,x〉 ≤ sup

x∈C
〈a,x〉+ sup

x∈C
〈b,x〉.

Obviously
〈a + b,x〉 = 〈a,x〉+ 〈b,x〉 , for any x,

so since the sup is taken separately on the right-hand side, we get the desired
inequality.
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Finally, the result that motivates the introduction of the support function:

20.1.7 Theorem. IfC is a closed convex set in Rn with support function s(y), then

C =
⋂
a∈D

H−a,s(a).

To handle the case where D is empty, the empty intersection is defined to be Rn.

This is just a restatement of Corollary 18.6.12.
While we are mainly interested in the support function of a convex set, the

definition makes sense for any set whatsoever. The support function will always be
positively homogeneous and sublinear: indeed, convexity of the set was not used
in establishing either property.

20.1.8 Example. The support function 20.1.1 of a convex set is a convex function.
Indeed, by definition, it is the sup of a collection of linear, hence convex func-

tions, so this is a special case of Example 22.3.11.

20.1.9 Exercise. Let s(y) be the support function of an arbitrary set S ⊂ Rn.
What is the set ⋂

a∈D
H−a,s(a)?

First work out what happens when S is just two distinct point (a1,a2) and (b1,b2)
in the plane.

Hint: This set is an intersection of closed half-spaces, so it is both closed and
convex. This is just a reformulation of Corollary 18.6.14.

20.2 Polarity for Convex Sets

The goal of this section is to build on Corollary 18.6.12, which says that a closed
set S is convex if and only if it is the intersection of all the half-spaces containing it.
How can we describe these half-spaces? We have already done this using support
functions in §20.1. Here is a second approach that should be compared to the
support function approach. This material should be skipped on first reading.

In Example 18.1.7 we wrote H−a,c = {x | 〈a,x〉 ≤ c}. As long as c 6= 0, we
get the same half-space by dividing the equation by c, so we look at: H−a,1 = {x |
〈a,x〉 ≤ 1}. This suggests that to the set S we associate all the vectors a so that S
is contained in H−a,1. We make this into a definition:
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20.2.1 Definition. Let S by a non-empty set in Rn. Then the polar set S∗ of S is
given by

S∗ = {y ∈ Rn | 〈y,x〉 ≤ 1 for all x ∈ S}. (20.2.2)

Thus S lies in the intersection of the half-spaces H−y,1, for all y ∈ S∗. Dually, S∗

is the intersection of the half-spaces:

S∗ =
⋂
x∈S

H−x,1.

20.2.3 Example. If the set S contains a single point a other than the origin, then S∗

is the closed half-space bounded by the hyperplane Ha,1 with equation 〈a,x〉 = 1,
that contains the origin.

If S only contains the origin, then S∗ is all of Rn.

20.2.4 Proposition. If S = N r(0), the closed ball of radius r centered at the
origin, then S∗ = N1/r(0)

Proof. This follows from the Cauchy-Schwarz inequality 5.4.6. To test if a non-
zero element y is in S∗, dot it with the unique element x on the same ray through
the origin and on the boundary of S. Then ‖x‖ = r and

〈y,x〉 = ‖x‖‖y‖ = r‖y‖ ≤ 1

so ‖y‖ ≤ 1/r. If this is true, then the Cauchy-Schwarz inequality shows us that
for any x ∈ N r(0),

〈y,x〉 ≤ ‖x‖‖y‖ ≤ 1,

as required.

We have the elementary

20.2.5 Theorem. If {Sα} is an arbitrary collection of sets indexed by α, then the
polar of the union of the {Sα} is the intersection of the polars of the Sα.

From this we deduce the useful:

20.2.6 Theorem. The polar of an arbitrary set S is a closed and convex set con-
taining the origin.

Proof. Write S as the union of its points, and notice from Example 20.2.3 that the
polar of a point is convex, closed and contains the origin. By Theorem 18.1.15, any
intersection of convex sets is convex, and by Theorem 14.4.15, any intersection of
closed sets is closed, so we are done.
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Another elementary consequence of Theorem 20.2.5 is

20.2.7 Theorem. If S ⊂ T , then T ∗ ⊂ S∗.

Proof. Because S ⊂ T , S∗ is the intersection of a smaller number of half-spaces
than T ∗, so certainly T ∗ ⊂ S∗.

20.2.8 Theorem. Assume that the polytope P has the points a0, . . . ,am as ver-
tices. Then

P ∗ = {y | 〈ai,y〉 ≤ 1 for all i = 0, . . . ,m}. (20.2.9)

Proof. This is easy. The right-hand side of (20.2.9) contains the left-hand side by
the definition of the polar, so all we need is the opposite inclusion. So take any
y satisfying the right-hand side inequalities. An arbitrary point in the polytope is
given by (18.3.9). Dot this expression with y to get

m∑
i=0

λi〈ai,y〉 ≤
m∑
i=0

λi = 1,

since the λi are non-negative, and
∑m

i=0 λi = 1. Thus y is in P ∗.

Thus the polar of a polytope PA is the polyhedron P (A,1), using the notation
of (18.3.9) and Definition 18.3.16.

The first important result of the section is

20.2.10 Theorem. Let S be a compact and convex set of dimension n in Rn that
contains the origin in its interior. Then S∗ is a compact convex set of dimension n
containing the origin in its interior.

Proof. Theorem 20.2.6 tells us that S∗ is closed, convex and contains the origin.
Thus we need only prove that S∗ is bounded and that the origin is an interior point.
Because the origin is an interior point of S, for some small radius r, the ballN r(0)
is contained in S. But then S∗ is contained in the ball N1/r(0) by Proposition
20.2.4 and Theorem 20.2.7, which shows that S∗ is bounded. Because S is compact
it is bounded, so is a subset of NR(0) for a large enough R. Proceeding as before,
this shows that the ball N1/R(0) is contained in S∗, showing that the origin is an
interior point.

The next step is to apply polarity twice.

20.2.11 Definition. The bipolar S∗∗ of a set S as the polar of the polar of S,
S∗∗ = (S∗)∗.
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Then in complete generality we have S ⊂ S∗∗. Indeed, rewrite (20.2.2) for S∗:

S∗∗ = {x ∈ Rn | 〈y,x〉 ≤ 1 for all y ∈ S∗}. (20.2.12)

Comparing this to (20.2.2) shows that if x is in S, then it is in S∗∗, so S ⊂ S∗∗.
Now the main result of this section.

20.2.13 Theorem (The Bipolar Theorem). Let S be a closed convex set containing
the origin. Then the bipolar S∗∗ of S is equal to S.

Proof. We have just established the inclusion S ⊂ S∗∗. To get the opposite in-
clusion, pick a point b not in S. We must show it is not in S∗∗. Since S is
convex and closed, by the Separation Theorem 18.6.6, we can find a hyperplane
H = {x | 〈a,x〉 = 1} strictly separating S and b. Because 0 ∈ S, we have
〈a,x〉 < 1 for all x ∈ S, and 〈a,b〉 > 1. The first inequality says that a is in S∗,
from which the second inequality say that b is not in S∗∗, and we are done.

By this result and Theorem 20.2.6 we see that S = S∗∗ if and only if S is a
closed convex set containing the origin.

20.2.14 Corollary. A polytope is a polyhedron, and a bounded polyhedron is a
polytope.

Proof. The last statement is Theorem 18.7.8, so we need only prove the first one.
By restricting to the affine hull of the polytope P , we can assume it has maximum
dimension, so that it has a non-empty interior. Then by translating it, we can
make the origin an interior point. Then by Theorem 20.2.10, P ∗ is compact, and
by Theorem 20.2.8 it is a polyhedron, therefore a bounded polyhedron. So by
Theorem 18.7.8, P ∗ is a polytope, so its polar (P ∗)∗ is a polyhedron. By the
Bipolar Theorem, (P ∗)∗ = P , so P is a polyhedron as claimed.

We now see that bounded polyhedra and polytopes are the same. This result is
known as the Weyl-Minkowski Theorem: see [73].

We could pursue this line of inquiry by determining the polar of a given poly-
tope. Example 18.3.18 shows that the polar polytope of a simplex is again a sim-
plex. This is investigated in [40], chapter 9, which is a good reference for the
material in this section. A more advanced reference is [4], chapter IV.

20.2.15 Exercise. Show that the polar polytope of the cube is the crosspolytope.
from which is follows that the polar polytope of the crosspolytope is the cube. First
work this out in R2 and R3.
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20.3 Conjugate Functions and Duality

This section is harder than the previous ones, and should be skipped on first read-
ing. It is the analog for convex functions to §20.2 for convex sets.

We apply Example 22.3.11 to generate a new convex function from any func-
tion f(x) : the new function is called the conjugate, or the polar, of the original
function. The conjugate of the conjugate is closely related to the original function,
as always happens in duality.

Assume that f(x) is defined on the set D ⊂ Rn. We do not assume that f is
convex. For each fixed vector a ∈ Rn, we ask: for which numbers c is the affine
function 〈a,x〉 − c no bigger than f(x):

〈a,x〉 − c ≤ f(x), ∀x ∈ D,

or, rearranging,
c ≥ 〈a,x〉 − f(x), ∀x ∈ D.

By definition the best possible c is supx∈D{〈a,x〉 − f(x)}.
So to each vector a we can associate this number, which allows us to define a

new function, called the conjugate of f ,

f∗(y) := sup
x∈D
{〈y,x〉 − f(x)}. (20.3.1)

The conjugate f∗ is often called the Fenchel transform of f . It generalized the
Legendre transformation for differentiable functions: see Rockafellar [53], Section
26, and [54], p. 16. Here is the Legendre transformation in its simplest form.

20.3.2 Definition (The Legendre Transform). Assume that f(x) is strictly convex
and C2 on Rn. In fact we will assume that the hessian of f is positive definite at
every point. Since f is strictly convex, by Corollary 22.1.10 the map ∇f : Rn →
Rn that associates to x ∈ Rn the gradient ∇f of f evaluated at x is one-to-one
onto its image that we call D. Because f is C2, ∇f is C1, and its gradient is the
n × n Hessian of f . Because we assume the Hessian is positive definite, the map
∇f satisfies the hypotheses of the inverse function theorem.

To compute the value of f∗(y) at any point y, we must maximize the function

〈y,x〉 − f(x),

holding y fixed. This is an unconstrained maximization problem, whose solutions
(by Theorem 13.1.2 are given by the solutions of the equations

y −∇f(x) = 0.
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If y is in D, there is exactly one solution x0, otherwise there is none. When there
is a solution, it is necessarily a maximum because the function 〈y,x〉 − f(x) is
concave, as it is the sum of a linear function, which is both concave and convex,
and the function −f which is concave because f is convex. This is the content of
Theorem 22.4.1.

In other words the mapping∇f(x) has an inverse on D, which we write s(y).
Thus the conjugate of f can be written:

f∗(y) = 〈y, s(y)〉 − f(s(y)). (20.3.3)

This is the Legendre transform of f . It shows that the conjugate function of a
strictly convex differentiable function can be found by solving an optimization
problem: we do this in Examples 20.3.7 and 20.3.8 below. We can also compute
the gradient of f∗(y) using the product rule and the chain rule. Because s is a
vector function, its gradient∇s is actually a n×nmatrix, which accounts for what
happens to the dot product.

∇f∗(y) = s(y) + yT∇s(y)−∇f(s(y))∇s(y) (20.3.4)

You should check that all the terms in this equation have the right dimension. Since
s(y) is the inverse function to ∇f(x), we have ∇s(y) = y, so the last two terms
in (20.3.4) cancel, and we are left with

∇f∗(y) = s(y).

Taking one more derivative, we see that the Hessian of f∗(y) is the gradient of
s(y). Since s is the inverse of ∇f , its gradient is the inverse of the Hessian of f :
this is where we use our assumption that the Hessian of f is positive definite. But
the inverse of a positive definite matrix is positive definite, so we saw in Corollary
9.2.10, so the Hessian of f∗ is positive definite and f∗ is strictly convex. Thus
f∗ satisfies the same hypotheses as f , so that we can compute its conjugate in the
same way we computed that of f . So if we write h(x) for the inverse of ∇f∗(y),
we have

f∗∗(x) = 〈x,h(x)〉 − f∗(h(x)).

so plugging in the value of f∗ from (20.3.3) we get

f∗∗(x) = 〈x,h(x)〉 − 〈y, s(y)〉+ f(s(y)).

Since x = s(y) and y = h(x), we get f∗∗(x) = f(x), so that applying the
conjugate operation twice gives us the original function.



20.3. CONJUGATE FUNCTIONS AND DUALITY 299

We want to generalize this result to the case where the function f is not differ-
entiable. We also want to start with a In this more general situation, we motivated
the definition of the conjugate in terms of the subgradient in (21.3.14), which we
now rewrite as a lemma:

20.3.5 Lemma. If a is a subgradient to the function f(x) at the point x0, then

f∗(a) = 〈a,x0〉 − f(x0).

For some y, f∗(y) may take the value +∞. Let D∗ ∈ Rn be the locus where
f∗(y) takes finite values, and call D∗ the proper domain of f∗.

20.3.6 Theorem. D∗ is a convex set, and f∗(x) is a convex function on D∗.

Proof. First we show that D∗ is a convex set. Take any two points y0 and y1

in D∗: we need to show that for any λ, 0 < λ < 1, the convex combination
λy0 + (1−λ)y1 is in D∗. Because y0 and y1 are in D∗ there exist finite c0 and c1
such that, for all x ∈ D,

c0 ≥ 〈y0,x〉 − f(x),

c1 ≥ 〈y1,x〉 − f(x).

Multiply the first equation by λ and the second by 1− λ, and add. You get

λc0 + (1− λ)c1 ≥ 〈λy0 + (1− λ)y1,x〉 − f(x),

so that λc0 + (1− λ)c1 is a bound for f∗(λy0 + (1− λ)y1), which establishes the
convexity of D∗.

Now we can establish the convexity of the function f∗ on D∗. For a fixed
x, 〈y,x〉 − f(x) is an affine, and therefore convex, function of y. So f∗(y) is
convex, since it is the pointwise least upper bound of a family of convex functions:
Example 22.3.11.

20.3.7 Example. Here is a concrete example of a conjugate function in one vari-
able. Let f(x) = x2, restricted to −1 ≤ x ≤ 1. Then

f∗(y) = max
−1≤x≤1

(yx− x2).

So for each fixed y, we want to maximize the function g(x) = −x2 + xy, −1 ≤
x ≤ 1. Clearly the quadratic −x2 + xy has unique maximizer at x = y/2. So,
when |y| ≤ 2, the maximizer is in the interval−1 ≤ x ≤ 1, so the maximum value
is g(y/2) = y2/4. When y > 2, the maximizer is at the end point is x = 1, so the
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maximum value is g(1) = y− 1. When y < −2, the maximizer occurs at y = −1,
so the maximum value is g(1) = −y − 1. So

f∗(y) =


−y − 1, if y ≤ −2;
y2/4, if −2 ≤ y ≤ 2;
y − 1, if y ≥ 2.

Here is a graph of the function, showing it is convex. It is even differentiable at
y = −2, and y = 2.

y � -x - 1 y � x - 1

y �

x2
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20.3.8 Example. Now for the same example in one extra dimension. Let f(x1, x2) =
x21 + x22, restricted to the closed unit disk D. Then

f∗(y) = max
x∈D

(
〈x,y〉 − x21 − x22

)
.

We compute this function in Example 31.4.5, using the techniques of constrained
optimization, getting:

f∗(y) =

{
y21+y

2
2

4 , if y21 + y22 ≤ 4;√
y21 + y22 − 1, if y21 + y22 > 4.

Each part of the function is convex, and they agree where they meet: the circle of
radius 2, confirming what Theorem 20.3.6 tells us: f∗(y) is convex.

20.3.9 Example. Pick an arbitrary set D, and let ψ(x) be the indicator function of
D: the function that takes the value 0 onD, and the value∞ everywhere else. Note
that ψ(x) is a convex function if and only if D is a convex set. Then by definition
its conjugate function ψ∗(y) = supx∈D〈x,y〉. Thus ψ∗ is the support function of
D, that we defined and studied in §20.1. Its importance stems the fact that D is
contained in the half-space H−y,c if and only if ψ∗(y) ≤ c.
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For a concrete example, let D by the interval [−2, 1]. Then since ψ∗(y) =
supx∈D yx, we see that if y ≥ 0, we have ψ∗(y) = y, while if y ≤ 0, ψ∗(y) =
−2y. Thus ψ∗(y) is a convex function.

Analogously, working backwards, we see that the function |y| is the conjugate
of the indicator function of the interval [−1, 1], so |y| is its support function.

20.3.10 Exercise. Show that the distance function ‖y‖ in Rn is the conjugate of
the indicator function of the closed unit ball in Rn.

20.3.11 Exercise. Show that f∗(0) = − infx∈D f(x).
Also show that if f and g have the same domain D, and f(x) ≤ g(x) for all

x ∈ D, then g∗(y) ≤ f∗(y).

Recalling Definition 21.3.12, we have:

20.3.12 Theorem. If the function f has a subgradient y0 at x0, then f∗ has sub-
gradient x0 at y0.

Proof. Lemma 20.3.5 establishes the formula

f(x0) + f∗(y0) = 〈y0,x0〉,

when y0 is a subgradient of f at x0. Rearranging, we have

f(x0) = 〈y0,x0〉 − f∗(y0).

20.3.13 Theorem. If the function f has a subgradient y at x, and if the subgradient
hyperplane corresponding to this subgradient only meets the graph of f at the point
(x, f(x), then f∗ is differentiable at y, and∇f∗(y) = x.

Proof. The proof has two parts: first an analysis of what happens near the unique
point of contact of the subgradient hyperplane with the graph, and second a global
analysis. The function is strictly convex near the point of interest.

Next we take the conjugate (f∗)∗ of the conjugate f∗, which we of course write
f∗∗. So

f∗∗(x) = sup
y
{〈x,y〉 − f∗(y)}. (20.3.14)

Because f∗∗(x) is a conjugate, it is a convex function. Entering the definition of
f∗(y) in (20.3.14), we get

f∗∗(x) = sup
y
{〈x,y〉 − sup

ζ∈D
{〈y, ζ〉 − f(ζ)}}.

When x ∈ D, this implies that f∗∗(x) ≤ f(x). Indeed, we have the important
theorem
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20.3.15 Theorem. The biconjugate f∗∗(x) is the largest convex and closed func-
tion less than or equal to f(x) at each point x ∈ D.

20.3.16 Theorem. f∗∗(x) = f(x) if and only if f has a supporting hyperplane at
x.

20.3.17 Theorem. If f∗ is differentiable at y, then letting x = ∇f∗(y), then
f(x) = f∗∗(x).

20.3.18 Example. The biconjugate of the indicator function ψ of an arbitrary set
D is the indicator function of the closure of the convex hull of D.

Indeed, the domain of definition of the biconjugate must be at least the convex
hull of D, since it must be defined on a convex set containing D. The indicator
function of the convex hull of D is the largest convex function less than or equal of
f . Finally since ψ∗∗ is closed, it must extend to 0 at every point in the closure of
the convex hull.

20.4 Polar Cones

We considered the polar set of a convex set in §20.2. As we will now see, the polar
set of a cone has a special form: in particular it is a cone. For that reason it is
sometimes called the dual cone, rather than the polar cone, but we will just call it
the polar cone. This section can be skipped on first reading.

20.4.1 Proposition. Let C be a cone in Rm, and let C∗ be the polar set of C. Then

C∗ = {y ∈ Rm | 〈y,x〉 ≤ 0 for all x ∈ C}. (20.4.2)

In particular C∗ is a cone.

Proof. Start from the defining equation 20.2.2 of the polar set: the set of y such
that 〈y,x〉 ≤ 1 for all x ∈ C. We need to show that any y such that 〈y,x0〉 > 0
for an x0 ∈ C, is not in C∗. Assume by contradiction that 〈y,x0〉 = a > 0.
Then test y on the point λx0, for λ > 0, which is in C because C is a cone. Then
〈y, λx0〉 = λa. So by taking λ > 1/a, we see that y is not in the polar set of
C.

20.4.3 Corollary. For any cone, C ⊂ C∗∗.

Proof. Since C∗ is a cone, we have

C∗∗ = {x ∈ Rm | 〈y,x〉 ≤ 0 for all y ∈ C∗}, (20.4.4)

so that by (20.4.2) all the x in C belong to C∗∗.
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20.4.5 Example. The polar of the ray ra defined in 19.2.4 is the closed half-space

H−a,0 = {x | 〈a,x〉 ≤ 0}

defined in Example 18.1.7. As per Theorem 18.1.7, it is closed and convex and
contains the origin.

20.4.6 Example. The polar of a linear space is the linear space orthogonal to it.

Proof. First consider the line L given parametrically as ta, where a is a non-zero
vector and t ∈ R. We just saw that the polar of the ray ra is the half-space H−a,0;
the polar of the opposite ray r−a is H+

a,0. Thus the polar of L is the intersection of
the two, namely the hyperplane Ha,0.

Now suppose L is a linear space of dimension k. Let a1, . . . , ak be a basis for
L. As noted in Example 19.3.6, L is a finite cone with minimal set of generators
±a1, . . . , ±ak. Thus the polar of L is the set of points y satisfying 〈ai,y〉 = 0, for
1 ≤ i ≤ k, which is the orthogonal complement.

Finally, if k = m, so L is the entire Rm, then the polar is the trivial cone
reduced to the origin: no rays at all.

More generally, we see:

20.4.7 Example. The polar of the finite cone CA generated by vectors a1, . . . , an
is the polyhedral cone (see Definition 18.3.16) P (AT ,0).

Since the finite cone consists of all elements
∑n

j=1 λjaj , for all λj ≥ 0, we see
that an element x of the polar must satisfy 〈aj ,x〉 ≤ 0 for all j. Conversely every
element x satisfying these inequalities is in the polar. To conclude, just note that
this defines P (AT ,0).

20.4.8 Theorem. Let C1 and C2 be convex cones in Rm. We can build new convex
cones in the following three ways:

1. The intersection C1 ∩ C2 is a convex cone.

2. The Minkowski sum (see Definition 18.1.31) C1 + C2 is a convex cone.

3. The polar C∗1 of C1 is a closed convex cone.

Proof. The intersection of cones is a cone, so just use Theorem 18.1.15 to get the
first statement.

We already proved the convexity of the Minkowski sum C1 + C2 in Example
19.3.8.

For the last statement, using Theorem 20.2.6 again, all we need is to show that
the polar C∗1 is a cone, and that is Proposition 20.4.1.
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20.4.9 Proposition. Let C1 and C2 be convex cones in Rm. If C1 ⊂ C2, then
C∗2 ⊂ C∗1 and (C∗1 )∗ ⊂ (C∗2 )∗.

Proof. This is a special case of Theorem 20.2.7.

20.4.10 Theorem. If C is a closed convex cone, then C = C∗∗.

Proof. This is a special case of the Bipolar Theorem 20.2.13, since cones always
contain the origin.

20.4.11 Exercise. In Corollary 20.4.3 we noticed that C ⊂ (C∗)∗. Use the Farkas
alternative to show that for a finite cone C, C = (C∗)∗. Hint: Take an element b
in (C∗)∗ and show it is in C. This proves Theorem 20.4.10 in the special case of
finite cones.

Finally just as in the case of bounded polyhedra and polytopes covered by
Corollary 20.2.14, we have:

20.4.12 Theorem (Weyl’s Theorem). Every finite cone is a polyhedral cone.

This is due to Hermann Weyl [73]. We follow his proof.

20.4.13 Corollary. The polar of a polyhedral cone is a finite cone. Every polyhe-
dral cone is a finite cone.

Proof. Write the polyhedral cone as P (AT ,0), so it is the polar of the finite cone
CA by Example 20.4.7. By Theorem 20.4.10 its polar, which is the bipolar of CA,
is also CA. That establishes the first point.

The last point follows by an argument similar to the proof of Corollary 20.2.14.
Next start with a polyhedral cone P (AT ,0), the polar of CA. By Weyl’s theorem
the finite cone CA is a polyhedral cone we can write P (DT ,0), for some m × k
matrix D. The polar of P (DT ,0) is the finite cone CD, so P (AT ,0) is the same
set as CD, and we are done.

20.5 From Finite Cones to Polytopes

In Definition 19.3.5 we defined the dimension of a finite cone as its dimension as
a convex set: see Definition 18.2.24). By restricting to the affine hull of the cone,
we can assume that we are working with a cone of maximum dimension.

One difficulty is working with cones is the fact that there are never compact
(because not bounded), and the best results we have found for convex sets concern
compact ones. To remedy this problem we define the base of a cone. The best
cones will have a base that is compact. That allows us to get interesting results.

This section can be skipped on first reading.
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20.5.1 Definition. Let C be a cone of dimension m in Rm, and let V be an affine
hyperplane not containing the origin. Then V is called a base for C if V intersects
every ray in C.1

Since a ray of C contains the origin which is not in V , it follows from linearity
that a ray and V can meet in at most one point. This simple remark shows:

20.5.2 Proposition. If the cone C contains a line L, then it does not have a base.

Proof. Indeed, the line meets V in at most one point, and yet it corresponds to two
rays (19.2.4) of C.

20.5.3 Proposition. Let C be a convex cone of dimension m in Rm. Assume V is
a base for C, and let K = V ∩ C. Then K is a convex set of dimension m− 1. If
the base K is compact, then C is closed

Proof. We have a map φ from C r 0 to K which associates to any point c 6= 0 in
C the intersection of the ray rc with V . This map is onto by definition. The map is
not defined at the origin, but otherwise each point of a ray of C maps to the same
point of K.

By choosing appropriate coordinates, we may assume that V is the affine hy-
perplane xm = 1, in which case, assigning the coordinates (x1, . . . , xm−1) to the
point (x1, . . . , xm−1, 1) of V , the map φ is written

φ(x1, . . . , xm) =
( x1
xm

, . . . ,
xm−1
xm

)
,

so φ is defined everywhere on Rm except the hyperplane xm = 0.
Note that the points of C r 0 have xm > 0, since all the rays of C meet V . If

k = (k1, . . . , km−1) is inK, then the corresponding ray inC is (tk1, . . . , tkm−1, t).
This explicit formula shows that φ is continuous (indeed differentiable) on C r 0.

It is now easy to prove that K is convex. Pick two points k0 and k1 in K.
We must show that kλ = λk1 + (1 − λ)k0 is in K, for λ ∈ (0, 1). The point
c1 = (k11, . . . , k

1
m−1, 1) in C is above k1, and the point c0 = (k01, . . . , k

0
m−1, 1) in

C is above k0. By convexity λc1 + (1− λ)c0 is in C, and its image under φ is kλ,
which is therefore in K.

Now assume K is compact. The map φ sending a non-zero c in C to K is
continuous, as we noted above . Now suppose c is a point in the closure of C, so
that there is a sequence of points ci in C converging to c. If we can show c is in C,
we are done. We can assume c is not the origin (which is in C), so we cam assume
that the same holds for every term in the sequence {ci}. Thus we get a convergent

1This has nothing to do with basic subcones.
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sequence φ(ci) in K, and since K is closed, it converges to a point in K. But that
means that the ray from this point is in C, showing that C is closed.

20.5.4 Theorem. Let C be a closed convex cone of dimension m in Rm. Assume
V is a base for C, and let K = V ∩C. Then r is an extreme ray2 of C, if and only
if p = r ∩ V is an extreme point3 of K.

Proof. The equivalence between the extreme rays of C and the extreme points
of K follows by comparing Theorem 18.7.3 and Theorem 19.2.9, noting that the
dimension of K is one less than the dimension of C.

20.5.5 Theorem (Minkowski’s Theorem for Cones). Assume C is a convex cone
with a compact baseK. Then every non-zero point ofC can be written as a conical
combination of points in the extreme rays of C. Namely, if c ∈ C,

c =

n∑
j=1

λjaj , 0 < λj

where the rays rai are extreme for C.

Proof. For a point c ∈ C, use Minkowski’s Theorem 18.7.1 to write φ(c) as a
convex combination of the extreme points of K. By the previous theorem the
rays above the extreme points of K are extreme rays of C. Choosing the same
coordinate system, pick the point of the extreme ray with last coordinate equal to
one, and take the same convex combination to get c as a convex combination of
points on extreme rays.

Finally we ask: which cones have a base? The most important result for us is

20.5.6 Theorem. If C is a closed cone that does not contain any lines, then C has
a compact base.

2see Definition 19.2.5
3see Definition 18.1.10



Lecture 21

Convex Functions

The basic properties of convex functions are established. First we study convex
functions in one variable because many of the properties of convex functions are
established by reducing to the single variable case. The connection to convex sets
is made through the domain of the convex function, which is always assumed to
be convex, and the epigraph defined in §21.3. The main results of this lecture
concern the continuity of convex functions: first and foremost, convex functions
are continuous on the interior of their domain: Theorem 21.4.3.

The final topic of the lecture is not needed immediately, and can be skipped
until needed later in the lectures. Precisely in order to understand how convex
functions behave on the boundary of their domain, in Lecture 16 we generalized
the notion of continuity to that of lower semicontinuity: §16.3. In §16.4 we proved
an extension of the Weierstrass theorem to such functions, which shows that for the
purposes of minimization lower semicontinuous functions are as useful as contin-
uous ones. Using these concepts, in §21.5 we show how convex functions that are
not continuous on the boundary of their domain can be made lower semicontinuous
without modifying them on the interior.

21.1 The Definitions

21.1.1 Definition. A function f : S ⊂ Rn → R is convex if
• The domain S of f is convex;
• For any two points x1 and x2 in S, and for all λ, 0 ≤ λ ≤ 1 we have:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (21.1.2)

In other words, the graph of the function f on the segment [x1,x2] is below the
secant line from (x1, f(x1)) to (x2, f(x2)).
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See Example 21.2.6 for the graph of a convex function in one variable, together
with three of its secant lines illustrating the convexity of the function.

As usual we can rewrite (21.1.2) as

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2), (21.1.3)

where
λ1 ≥ 0 , λ2 ≥ 0 , and λ1 + λ2 = 1. (21.1.4)

Just set λ1 = λ and λ2 = 1− λ.

21.1.5 Remark. If ` is a linear function, then for all a1 and a2 we have

`(a1x1 + a2x2) = a1`(x1) + a2`(x2), (21.1.6)

so convex functions generalize linear functions in two ways:
• they are sublinear, meaning that the equality in (21.1.6) is replaced by an

inequality;
• only certain coefficients are allowed: they must satisfy (21.1.4).

21.1.7 Definition. f is strictly convex if f is convex and the inequality in (21.1.2)
is strict for all x1 6= x2, and all λ, 0 < λ < 1.

Example 21.2.6 is strictly convex. A line, such as y = mx + b, is convex but
not strictly convex.

21.1.8 Exercise. Let f be a convex function from an open interval I in R. Assume
that for the two distinct points x1 and x2 in I, there exists a λ, 0 < λ < 1, such
that we get an equality in (21.1.2), so that f is not strictly convex.

1. Show that this implies that we get equality for all λ, 0 < λ < 1.
2. Consider the function g(λ) = f(λx1+(1−λ)x2), for 0 ≤ λ ≤ 1. Show that
g(λ) is equal to f(x2) + λ(f(x1)− f(x2)), so that it is an affine function of
λ. Thus the derivative g′(λ) is equal to f(x1)−f(x2), a constant. So convex
functions that are not strictly convex are locally affine.

3. Here is a geometric way of saying this: suppose you have three distinct
points x1, x2 and x3 in I, with x3 between x1 and x2, so that x3 = λx1+(1−
λ)x1, for some λ between 0 and 1. Assume that the three points (x1, f(x1)),
(x2, f(x2)), (x3, f(x3)) in R2 are aligned. Then the graph of the convex
function f is a line segment over the segment [x1, x2] in R. Convince your-
self this is the case.

21.1.9 Definition. f is concave if −f is convex.
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These lectures focus on convex functions, and leave the statements for concave
functions to the reader.

21.1.10 Example. A function f(x) = aTx + b, where a and x are in Rn, and b
is a real number, is both convex and concave, but neither strictly convex or strictly
concave. Compare to Exercise 21.1.8.

We now state and prove the analog of the Convex Combination Theorem 18.1.24
for convex sets.

21.1.11 Theorem (Jensen’s Inequality). A function f defined on a convex set S
is convex if and only if for any set of points x1, x2, . . . , xn in S, and any convex
combination

x = λ1x1 + λ2x2 + · · ·+ λnxn

we have
f(x) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn) (21.1.12)

Proof. First note that by the Convex Combination Theorem, x is in S, so f(x)
makes sense.

That (21.1.12) implies convexity is trivial, and the proof that convexity implies
Jensen’s inequality follows that of the Convex Combinations Theorem: induction
on the number r of points. We start at r = 2: the result is then the definition of a
convex function.

Next we assume that the result is known for r, so that (21.1.12) is satisfied
when n = r, and we prove it for r + 1.

We may assume that λi > 0 for all i, since otherwise there is nothing to prove.
Let Γ =

∑r
i=1 λi, so 0 < Γ < 1. Let γi = λi/Γ, 1 ≤ i ≤ r, so that the point

y =
∑r

i=1 γixi is a convex combination of r points of S, so by the induction
hypothesis,

f(y) ≤ γ1f(x1) + γ2f(x2) + · · ·+ γrf(xr). (21.1.13)

Then x = Γy + λr+1xr+1, and Γ + λr+1 = 1 so x is a convex combination
of two points of S, and is therefore in S since S is convex. By the definition of a
convex function,

f(x) ≤ Γf(y) + λr+1f(xr+1).

Now just substitute in f(y) from (21.1.13), and the definition of Γ.

21.1.14 Definition. The sublevel set Sc of a real-valued function f(x) on S is
defined by

Sc = {x ∈ S | f(x) ≤ c}.
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Thus, if c < d, Sc ⊂ Sd, and if f(x) = c, then x /∈ Sb for b < c. Note that we
can take c ∈ R. Then S∞ = S, and S−∞ is empty.

We have the following easy but important theorem:

21.1.15 Theorem. Assume f is a convex function. For each c ∈ R, Sc is a convex
set. Furthermore, if we let S0

c be the set {x ∈ S | f(x) < c}, it too is convex.

Proof. Suppose x1 and x2 are in Sc, meaning that f(x1) ≤ c and f(x2) ≤ c. We
must show that for all λ, 0 < λ < 1, f(λx1 + (1 − λ)x2) ≤ c. By (21.1.2), we
have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λc+ (1− λ)c = c

so we are done. The second assertion is proved in the same way.

21.1.16 Example. A simple function of two variables that is convex on all of R2

is the paraboloid of revolution f(x, y) = x2 + y2. Then the sublevel set c is the
disk of radius

√
c when c is not negative, and empty when c is negative. Thus it is

a convex set.

Quasiconvex functions, that we study in Lecture 24, are characterized by the
property that their sublevel sets are convex. See Theorem 24.1.12.

21.2 Convex Functions in One Variable

In this section we study convex functions in one variable. Much of what is done in
this section is redone later in the case of several variables, leading to some repeti-
tion in the exposition. However the functions are simpler and more transparent in
this case, so beginners, especially, are urged to read this section. Furthermore it can
happen, as in the result below, that to establish a property of a convex function with
domain S, it is enough to establish it for the restriction of the function to L ∩ S,
where L is any line meeting S. For example:

21.2.1 Theorem. A function f from the convex set S ∈ Rn is convex if and only if
for every line L meeting S, the restriction fL of f to L ∩ S is convex.

Proof. This is obvious, because
1. The convexity of the set S is checked on lines, since Definition 18.1.3 only

involves lines.
2. The inequality (21.1.2) is also checked on lines.
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Note that the domain of a convex function restricted to a line is an interval,
perhaps unbounded. We will usually assume the interval is open, because the con-
dition imposed by convexity at an end point is weaker than at an interior point.
Thus end points usually have to be handled separately. Our first result works for
any interval.

21.2.2 Theorem (The Three Secant Theorem). Let f be a convex function from an
interval S in R to R. Pick any three points x, y and z in S, x < y < z. Then

f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
≤ f(z)− f(y)

z − y

Each term is the slope of the secant between the corresponding points on the
graph of f , so writing slope(a, b) = f(b)−f(a)

b−a , we have:

slope(x, y) ≤ slope(x, z) ≤ slope(y, z), when x < y < z.

Proof. Express the point in the middle, y, as a convex combination of x and z.

y = (1− λ)x+ λz (21.2.3)

Since the three points are distinct, 0 < λ < 1.
Since f is convex, f(y) ≤ (1− λ)f(x) + λf(z), so

f(y)− f(x) ≤ λ(f(z)− f(x)) (21.2.4)

Divide (21.2.4) by the positive quantity y − x, which is equal to λ(z − x) by
(21.2.3). This gives the left-hand inequality in the theorem:

f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
.

We proceed similarly for the right-hand inequality, interchanging the roles of
x and y, and writing µ = 1− λ so

y = µx+ (1− µ)z. (21.2.5)

The convexity of f yields f(y) ≤ µf(x) + (1 − µ)f(z), so (note the change of
sign)

f(z)− f(y) ≥ µ(f(z)− f(x)).

Divide by z − y, which is equal to µ(z − x) by (21.2.5), to get the right-hand
inequality.
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21.2.6 Example. Let f(x) = x3/3 + 2x2 + x + 1. The second derivative of f
is 2x + 4, and this is non-negative for x ≥ −2, meaning that f is convex on that
interval: see Theorem 21.2.20. Take x = −2, y = 0 and z = 1.5. We draw the
graph of the function with its three secants.
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The slopes are clearly increasing as in the theorem.

If we knew that f is continuous on the interval [a, b], the following theorem
would follow from the Weierstrass theorem. But we do not yet know this. We will
use this result to prove that f is continuous.

21.2.7 Theorem. Assume the function f(x) is convex on the interval [a, b]. Then
• f is bounded above on [a, b] by M , the bigger of the two values f(a) and
f(b),
• f is bounded below by

2f
(a+ b

2

)
−M.

Proof. First we establish the upper bound. Let x be any point in the open interval
(a, b). Then x can be written as a convex combination of a and b: x = λa+(1−λ)b,
where λ = (b − x)/(b − a) and so is obviously between 0 and 1. Then since f is
convex,

f(x) ≤ λf(a) + (1− λ)f(b) ≤≤ λM + (1− λ)M ≤M,

where M is the greater of the two numbers f(a) and f(b).
For the lower bound, let c be the midpoint (a+ b)/2 of the segment. Then any

point on the segment can be written c+x, for |x| < (b− a)/2. Then by convexity,

f(c) ≤ f(c− x)

2
+
f(c+ x)

2
.

We rewrite this as

f(c+ x)

2
≥ f(c)− f(c− x)

2
≥ f(c)− M

2
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using the upper bound M . Then a lower bound is

m = 2f(c)−M.

21.2.8 Theorem. Let f(x) be a convex function in one variable defined on an open
interval S. Then f is continuous at all points of S.

Proof. Pick any point x0 in S and let u be a small positive number such that x0−u
and x0+u are in S. LetM be an upper bound for f on the interval [x0−u, x0+u].
To establish continuity of f at x0, for every ε > 0 we must find a δ > 0 so that if
|x− x0| < δ, then |f(x)− f(x0)| < ε. Pick a number h, 0 < h < 1.

Apply the Three Secant Theorem 21.2.2 to the triple x0 < x0 + hu < x0 + u,
to get the inequality

f(x0 + hu)− f(x0)

hu
≤ f(x0 + u)− f(x0)

u
,

so, multiplying by the positive number u,

f(x0 + hu)− f(x0)

h
≤ f(x0 + u)− f(x0) ≤M − f(x0). (21.2.9)

Next use the Three Secant Theorem on the triple x0 − u < x0 < x0 + hu to
get the inequality

f(x0)− f(x0 − u)

u
≤ f(x0 + hu)− f(x0)

hu
,

so, multiplying by the negative number −u,

f(x0)− f(x0 + hu)

h
≤ f(x0 − u)− f(x0) ≤M − f(x0). (21.2.10)

Equations 21.2.9 and 21.2.10, show that for all ε > 0, it suffices to take h <
ε

|M−f(x0)| to get sufficiently close. Thus we can find δ, and we are done.

21.2.11 Exercise. Let [a, b] be a closed interval inside the open domain of the
convex function f . Show that there is a constant L such that for all distinct x and
y in [a, b],

|f(y)− f(x)|
|y − x|

≤ L.

We say f(x) is Lipschitz continuous with Lipschitz constant L. Hint: This follows
easily from Theorem 21.2.2: use for z a point in the domain of f greater than b.
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21.2.12 Exercise. Prove that the function

f(x) =


2, if x = −1;

x2, if −1 < x < 1;

2, if x = 1.

on the closed interval [−1, 1] is convex. Note that it is not continuous at the end
points. Also see Example 21.3.10.

Next we study the differentiability of a convex function. For this we apply the
Three Secant Theorem again.

21.2.13 Definition. For any function f , let the right derivative f ′+(x) be

f ′+(x) = lim
y↘x

f(y)− f(x)

y − x
,

where y approaches x from above, assuming this limit exists. Let the left derivative
f ′−(x) be

f ′−(x) = lim
y↗x

f(y)− f(x)

y − x
,

where y approaches x from below.

21.2.14 Theorem. If f(x) is convex on the open set S, then f ′−(x) and f ′+(x) exist
for all x ∈ S, and are increasing functions. Furthermore f ′−(x) ≤ f ′+(x), with
equality if and only if the function is differentiable at x.

Proof. To show that f ′+(x) exists, we consider a decreasing sequence {yk} ap-
proaching x from above. It follows from Theorem 21.2.2 that the sequence f(yk)−f(x)

yk−x
decreases. Since this sequence is clearly bounded from below, by, say, the slope of
a secant at smaller values, by Theorem 21.2.2, Theorem 10.2.4 on bounded mono-
tone sequences tells us that the limit exists.

The analogous result for f ′−(x) is proved in the same way.

21.2.15 Exercise. Use Theorem 21.2.2 to finish the proof: show that f ′+(x) is an
increasing function and that f ′−(x) ≤ f ′+(x).

21.2.16 Example. Let f(x) be the function |x3+x|. Then f is convex on its entire
domain (you should check this), and is differentiable everywhere except at x = 0.
Indeed

f ′(x) =

{
−3x2 − 1, if x < 0;
3x2 + 1, if x > 0.
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At 0 we have f ′−(0) = −1, and f ′+(0) = 1, and it is easy to verify all the conclu-
sions of the theorem, as the following graph shows.
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Here is another illustration of how convex functions are simpler than more
general functions.

21.2.17 Theorem. If the convex function f is differentiable on the open interval S,
then its derivative f ′ is continuous, so f is C1.

Proof. This is a simple consequence of the Intermediate Value Theorem 3.4.3.
Indeed, Theorem 21.2.14 tells us that f ′ is an increasing function, so Corollary
3.4.4 shows that f ′ is continuous.

21.2.18 Theorem. If f(x) is C1 on the open interval S, then f is convex if and
only if f ′(x) is an increasing function on S. If x < y < z are three points in S, we
have

slope(x, y) ≤ f ′(y) ≤ slope(y, z).

Proof. First we give an elementary calculus proof that if f(x) is C1 with increasing
derivative on the open S, then f(x) is convex on S. Pick points x < z in S, and
let y = λ1x + λ2z be a point inbetween, where λ1 + λ2 = 1 and λ1 > 0, λ2 > 0
as usual. Rewriting (21.1.2), we must show

f(y) ≤ λ1f(x) + λ2f(z).

The left hand side is (λ1 + λ2)f(y), so rewriting the inequality, we need:

λ1
(
f(x)− f(y)

)
+ λ2

(
f(z)− f(y)

)
≥ 0. (21.2.19)

By the Fundamental Theorem of Calculus, the left hand side is

−λ1
∫ y

x
f ′(t)dt+ λ2

∫ z

y
f ′(t)dt.
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Now we use the fact that f ′(t) is increasing. In each integrand we replace t by
the appropriate end point value so that this expression decreases. Thus in the first
integral we replace t by the upper end point y, and in the second one by the lower
end point y, so that

λ1
(
f(x)− f(y)

)
+ λ2

(
f(z)− f(y)

)
≥ −λ1

∫ y

x
f ′(y)dt+ λ2

∫ z

y
f ′(y)dt.

Now we rearrange the right hand side, where we are integrating constants:

−λ1
∫ y

x
f ′(y)dt+ λ2

∫ z

y
f ′(y)dt = −λ1(y − x)f ′(y) + λ2(z − y)f ′(y)

The right hand side becomes:

f ′(y)
(
− λ1(λ1x+ λ2z − x) + λ2(z − λ1x− λ2z)

)
and then, grouping the terms in x and in z:

f ′(y)
(
λ1x(−λ1 + 1− λ2) + λ2z(1− λ1 − λ2)

)
= 0.

So we have established (21.2.19). The other statements are corollaries of Theorem
21.2.14, since the left and right derivatives then agree.

Finally, we assume that f is C2 (twice continuously differentiable). Then

21.2.20 Theorem. If f(x) is C2 on the open interval S, then f is convex if and
only if f ′′(x) ≥ 0 for all x ∈ S. Furthermore if f ′′(x) > 0 for all x ∈ S, f is
strictly convex on S.

Proof. By Theorem 21.2.18 we know that f is convex if and only if f ′(x) is an
increasing function. From single variable calculus, you know that a differentiable
function is increasing if and only if its derivative is non-negative. We reviewed this
in Theorems 3.1.14 and 3.2.4.

21.2.21 Example. The function f(x) = x4 is strictly convex on every interval,
even though f ′′(0) = 0. Thus there is no converse to the last statement of Theorem
21.2.20.

Theorems 21.2.18 and 21.2.20 are the two standard results concerning convex-
ity you learned in single variable calculus.1

1Calculus books talk about concave up and concave down, rather than convex and concave: see
[63], §4.3.
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21.2.22 Proposition. Assume that the real-valued function f is invertible and con-
vex (resp. concave) on the interval S ⊂ R to the interval T . Then the inverse
function f−1 : T → S is concave (resp. convex).

First Proof. Assume f is convex. Since f is invertible, it is either strictly increas-
ing on the entire interval S, or strictly decreasing. We only deal with the case f is
increasing. Pick two points x1 < x2 in S. Then f(x1) < f(x2). Let y1 = f(x1)
and y2 = f(x2). Thus f−1(y1) < f−1(y2), so the inverse function is also increas-
ing. By convexity

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (21.2.23)

Applying the increasing function f−1 to (21.2.23) we get

λx1 + (1− λ)x2 ≤ f−1
(
λf(x1) + (1− λ)f(x2)

)
,

which can be rewritten

λf−1(y1) + (1− λ)f−1(y2) ≤ f−1
(
λy1 + (1− λ)y2

)
.

This says precisely that f−1 is concave.

It is worth graphing f and its inverse function - the reflection in the 45 degree
line - to see why the result is correct.

Second Proof. If f and its inverse are twice differentiable, the result also follows
from a chain rule computation starting from the definition of the inverse function:

g(f(x)) = x.

Differentiate with respect to x using the chain rule to get

g′(f(x))f ′(x) = 1.

so that g′(f(x)) is positive since f ′(x) must be, since f is convex. Differentiate
again using the chain rule and the product rule to get:

g′′(f(x))f ′(x)2 + g′(f(x))f ′′(x) = 0.

Since g′(f(x)) is positive, the sign of g′′(f(x)) is the opposite of that of f ′′(x), so
we are done by Theorem 21.2.20.

21.2.24 Exercise. In the first proof, write out the case where f is decreasing.
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21.2.25 Exercise. Let f(x) be convex on the interval [a, b] and assume that f ′+(a) >
0. Show that f(x) is strictly increasing, and therefore invertible on [a, b]. This is a
sufficient condition for invertibility on a convex function. Write down a necessary
condition and find a function that satisfies the necessary condition and yet is not
invertible.

21.2.26 Exercise. Suppose that f is a convex function defined on all of R. Assume
that f is bounded from above, so that there is a constant M such that for all x ∈ R,
f(x) ≤M . Show that f is constant.

21.3 The Epigraph

We now begin our study of convex functions in several variables.
As you know, the graph of a real-valued function f with domain S in Rn is the

set Γ ⊂ Rn × R consisting of the pairs (x, f(x)) for x ∈ S. We now generalize
this. We use y to denote the coordinate of the values of the function, which we call
the vertical direction, so that the coordinates on Rn+1 are x1, . . . , xn, y.

21.3.1 Definition. The set Mf = {(x, y) ∈ Rn+1 | x ∈ S, y ≥ f(x)} is called the
epigraph of f , meaning the points above the graph.

The following theorem gives an alternate definition of convexity, used for ex-
ample by Rockafellar [53].

21.3.2 Theorem. The function f(x) is a convex function if and only if its epigraph
Mf is a convex set.

Proof. We first prove the⇒ implication, so we assume f(x) is convex. We need
to show that if the pairs (x1, y1) and (x2, y2) are in Mf , then so is the pair

λ(x1, y1) + (1− λ)(x2, y2) for 0 < λ < 1.

This pair can be written

(λx1 + (1− λ)x2, λy1 + (1− λ)y2),

so we need to prove that

λy1 + (1− λ)y2 ≥ f(λx1 + (1− λ)x2).

Because (x1, y1) and (x2, y2) are in the epigraph, yi ≥ f(xi). Because f is convex,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λy1 + (1− λ)y2.
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This shows that λy1 + (1− λ)y2 is in Mf , showing it is convex..
Now we prove the⇐ implication. We assume the epigraph is convex, so, since

(x1, f(x1)) and (x2, f(x2)) are in the epigraph,

λ
(
x1, f(x1)

)
+ (1− λ)

(
x2, f(x2)

)
is too. Thus, taking the last coordinate,

λf(x1) + (1− λ)f(x2) ≥ f
(
λx1 + (1− λ)x2

)
,

which says that f is convex.

21.3.3 Remark (The Boundary of Mf ). Since Mf is a convex set in Rn+1, it has
a supporting hyperplane at every point of its boundary, as we learned in Theorem
18.6.11 using the separation theorems.

What are the boundary points of Mf? Clearly any point (x∗, f(x∗)), where
x∗) in a point in the domain of f . Furthermore, if x∗ is a boundary point of S, then
any point (x∗, y) with y > f(x∗) is an additional boundary point. This gives half
lines on the boundary of Mf .

21.3.4 Remark. Now let x∗ be a point in the interior of the domain S of f . Denote
by Hx∗ any supporting hyperplane at (x∗, f(x∗)). Then we can write the equation
of the affine hyperplane Hx∗ as

〈a,x− x∗〉+ a0(y − f(x∗)) = 0, (21.3.5)

for suitable constants a0 and a.
A hyperplane written as in (21.3.5) is vertical if a0 = 0, where a0 is the coeffi-

cient of the coordinate corresponding to the value of the function. The hyperplane
is non-vertical otherwise.

Because x∗ is in the interior of S, we cannot have a0 = 0: otherwise there
would be points in the epigraph close to (x∗, f(x∗)) on either side of Hx∗ , con-
tradicting the fact that it is a supporting hyperplane. Dividing (21.3.5) by −a0, we
get the standard equation for the non-vertical Hx∗ :

y = f(x∗) + 〈a,x− x∗〉 = Hx∗(x). (21.3.6)

For any x1 ∈ S, Hx∗ , which is not vertical, intersects the vertical line x = x1

in a unique point with coordinates (x1, Hx∗(x
1)). Note that the convexity of Mf

implies f(x1) ≥ Hx∗(x
1) for any x1 ∈ S.

A line in Rn+1 is vertical if it is the intersection of n vertical and affinely
independent hyperplanes. The line x = x1 mentioned above is the intersection of
the vertical hyperplanes xi = x1i , 1 ≤ i ≤ n.
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21.3.7 Example. We illustrate this with the convex function f(x) = x2 + x + 2
and the point x∗ = 0. There is a unique supporting hyperplane to the epigraph of
f at 0: the tangent line to the function at x = 0, which has equation y = x+ 2. Let
x1 = −1/2, so the intersection of the vertical line through−1/2 and the supporting
hyperplane is the point (−1/2, 3/2), which indeed is below the point on the graph
at −1/2, which is (−1/2, 7/4).
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21.3.8 Lemma. Convex functions are bounded from below on any bounded set.

Proof. This follows because a convex function is bounded from below by the sup-
porting hyperplane Hx∗ , for any x∗ in the interior of its domain S.

21.3.9 Example. Consider the function f(x) = −
√
x on the interval [0,∞). A

second derivative computation shows that it is convex. Notice that as x → ∞,
f(x) → −∞, showing that a convex function can fail to be bounded below on an
unbounded set.

1 2 3 4 5
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21.3.10 Example. Continuing with the same function f(x), let

g(x) =

{
f(x), if x > 0;
1, if x = 0.
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It is easy to see that g(x) is convex (check it). Obviously g is not continuous at 0.
This can only happen because 0 is not an interior point of the domain of g(x), as
Theorem 21.2.8 shows.

21.3.11 Definition. A subgradient hyperplane at the point (x∗, f(x∗)) of the graph
of f is a non-vertical supporting hyperplane at (x∗, f(x∗)) to the epigraph of f .
We write its equation uniquely according to (21.3.6).

21.3.12 Definition. The n-vector a in the subgradient hyperplane equation (21.3.6)
is called a subgradient of the function f restricted to S at x0.

Note that the subgradient determines the subgradient hyperplane. A subgradi-
ent, since it comes from a supporting hyperplane equation for the epigraph, satisfies
the equation

f(x) ≥ f(x0) + aT (x− x0), ∀x ∈ S. (21.3.13)

This can be written more symmetrically as

〈x0,a〉 − f(x0) ≥ 〈x,a〉 − f(x), ∀x ∈ S. (21.3.14)

This formulation will be useful when we study the conjugate function f∗ of f in
§20.3:

f∗(y) = sup
x∈S

(〈x,y〉 − f(x)).

What is the value of the conjugate at a, where a is a subgradient of f at x0?
Formulation (21.3.14) makes it clear that f∗(a) = 〈x0,a〉 − f(x0).

There can be many subgradients at a point. In Example 21.2.16, where n = 1,
any a with −1 ≤ a ≤ 1 is a subgradient for f at x = 0.

21.3.15 Corollary. If f(x) is convex on the open convex set S, then the set of
subgradients at any point x ∈ S is non-empty.

Proof. The epigraph Mf , which is convex by Theorem 21.3.2, can be separated
(in the sense of §18.6) from any point (x, f(x)) on its boundary. Since x is in
the interior of S, we saw in Remark 21.3.4 that the supporting hyperplane cannot
be vertical, which just means that we can find a supporting hyperplane through
(x, f(x)) satisfying (21.3.6).

As we will see in Theorem 22.1.2, the subgradient is unique when f is C1: it is
then the gradient of f .

21.3.16 Example. Let f(x) = −
√

1− x2 on the closed interval [−1, 1]. Then f is
convex on the entire interval, but it does not have a subgradient at either end point.
This is because the tangent line to the semicircle becomes vertical as x approaches
either end point.
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21.4 Convex Function are Continuous on the Interior of
their Domain

We now prove that convex functions in several variables are continuous at interior
points of their domain, generalizing what we did in one variable (Theorem 21.2.8).
The proof proceeds in the same way. We need a preliminary result:

21.4.1 Theorem. Let x0 be a point in the interior of the domain S of the convex
function f . Then there is a neighborhood U of x0 contained in the domain of f , on
which f(x) is bounded. In other words there exist numbers m and M such for all
y ∈ U , m ≤ f(y) ≤M .

Proof. The lower bound follows from Lemma 21.3.8. A more elementary proof in
the spirit of the one variable case is given below.

Now for the upper bound. Pick a point x0 in the interior of S, pick a neigh-
borhood Nr(x0) of x0 in S, and pick a simplex V with vertices v0, v1, . . . , vn in
Nr(x0) such that x0 is the barycenter, or centroid of the simplex. See Definition
18.3.13. Thus x0 is in the interior of V .

Then any point x in the simplex can be written as a convex combination of the
vertices vi by Minkowski’s Theorem 18.7.1:

x =
n∑
i=0

λivi, with λi ≥ 0 for all i and
n∑
i=0

λi = 1.

By Jensen’s Inequality 21.1.11, we have

f(x) = f
( n∑
i=0

λivi
)
≤

n∑
i=0

λif(vi).

Let M be the largest of the n+ 1 numbers f(vi), 0 ≤ i ≤ n. Then

n∑
i=0

λif(vi) ≤
n∑
i=0

λiM = M,

so we are done.
Here is a simple method for getting a lower bound by using the upper bound.

Again we choose the simplex so x0 is its barycenter, and pick a smaller neighbor-
hood Ns(x) inside the simplex. Then any point in Ns(x) can be written x0 + tu,
where u has length s, and −1 ≤ t ≤ 1. The three points x0 − tu, x0, and x0 + tu
are aligned. Then by the argument given in the proof of Theorem 21.2.7, we see
that

f(x0 + tu) ≥ 2f(x0)−M = m.
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21.4.2 Remark. The proof shows that if M = f(x0), then m = f(x0), so the
function is constant in a neighborhood of x0. This implies that f is constant on the
interior of its domain. Thus the only convex functions with a local maximum on
the interior of their domain are constant there.

21.4.3 Theorem. A convex function f defined on an open set S is continuous.

Proof. We use the one-variable proof. Pick any point x0 in S. We prove that f
is continuous at x0. By Theorem 21.4.1 there is a closed ball B of radius r > 0
centered at x0 on which f(x) is bounded above by M . We may as well take
M > f(x0). By definition, any point on the boundary of B can be written x0 + u,
where u is an arbitrary vector of length r. We restrict f to the line parametrized by
x0 + tu, t ∈ R. Clearly any point at distance hr from x0 can be written x0 + hu.
We restrict h so that 0 < h < 1. By Definition 11.1.2, we must show that for every
ε > 0 there is a δ so that for all x0 + hu with |hr| < δ, then

|f(x0 + hu)− f(x0)| < ε.

By the proof of continuity in the one-variable case, it suffices to take

|h| < ε

M − f(x0

since the bound M we are using here is a bound on each line through x0. We are
done.

21.4.4 Corollary. If f : Rn → R is convex on an open convex set S, and continu-
ous on the closure S, then it is convex on S.

Proof. We will prove directly that the Definition 21.1.1 of a convex function is
satisfied on S. By Theorem 18.4.1, S is convex, so the first condition is satisfied.
Now take any two points a and b in S, and take the segment L ⊂ S joining them.
We can find sequences of points ai and bi in L ∩ S converging to a and b. By the
convexity of f on S, we have

f(λai + (1− λ)bi) ≤ λf(ai) + (1− λ)f(bi)

for all λ between 0 and 1. Because f is continuous, we can take the limit as i→∞,
and get, since inequalities are preserved in the limit:

f(λa + (1− λ)b) ≤ λf(a) + (1− λ)f(b)

for all λ, so f is convex on L.
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21.5 The Closure of Convex Functions

Convex functions may fail to be continuous on the boundary of their domain. So
an operation called closure was invented by Fenchel to modify the convex function
on its boundary without changing it on its interior, in such a way that it becomes as
close to continuous as possible. First we make a general definition.

21.5.1 Definition. A function f from S ⊂ Rn to R is closed if its sublevels sets
Sc are closed relative to S for all c ∈ R.

As an immediate consequence of Theorem 16.3.6, we get:

21.5.2 Theorem. If f is lower semicontinuous on S, then it is closed.

On the other hand

21.5.3 Proposition. f is closed if and only if its epigraph is a closed set relative
to S × R.

Proof. The sublevel set Sc is the set of points x in S such that f(x) ≤ c, while the
epigraph Mf is the set of points (x, y) in S × R such that f(x) ≤ y. Then Sc is
the intersection of Mf with the “horizontal” hyperplane Hc with equation y = c.
Then if Mf is relatively closed, Mf ∩ Hc is too. On the other hand the relative
closure of S−∞ implies that of Mf .

Now assume that S is a convex set, that f is convex on S, and that U is the
relative interior of S. Since S usually has dimension n, U is usually just the interior
of S.

21.5.4 Definition. We redefine f to a function f on S as follows. We call f the
lower semicontinuous extension of f . It agrees with f on U and extends to the
boundary of U as follows. Let x∗ belong to the boundary of U . Then x∗ may be in
S (for example, if S is closed), but it may not. Then

f(x∗) = lim inf
x∈U→x∗

f(x),

allowing the value∞ for f(x∗).

Because f is convex, it is continuous on U . Then by construction f is lower
semicontinuous on the closure S of S.

21.5.5 Theorem. The subset S′ of S where f takes finite values is convex, and f
is convex on S′.

The set S is a convex set , and, allowing infinite values in the definition of
convexity, f is convex and closed on S.
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Proof. Consider the closure Mf of the epigraph Mf of f on S. By Theorem
18.4.1, Mf is convex, so its intersection with any vertical line (meaning a line with
equations xi = x∗i , 1 ≤ i ≤ n, for a fixed point x∗ ∈ S) is either a closed segment
that is unbounded above, or is empty. In the case we get a segment, we define
f(x∗) to be the lower end point of the segment. If the intersection is empty, we
define f(x∗) =∞. By construction, this function f hasMf as epigraph, and since
Mf is a convex set, by Theorem 21.3.2 f is convex. This actually requires a slight
extension of Theorem 21.3.2 allowing for infinite values of f . By construction
f agrees with f on U , and since its epigraph, and therefore its sublevel sets by
Theorem 16.3.6 are closed, f is lower semicontinuous, so it is the same function
as in Definition 21.5.4.

Finally we need to show that S′ is a convex set. Just take two points x0 and x1

where f takes finite values. Since f is convex on the segment
[
x0,x1

]
, its values

there are also finite.

This method of closing convex functions allows us to define quasiconvex func-
tions in §24.1.



Lecture 22

Convex Functions and
Optimization

Continuing our study of convex functions, we prove two results that will be very
useful to us later:
• Corollary 22.1.4. It says that the graph of a differentiable convex function on

an open set S lies above its tangent plane at any point; the following Corol-
lary 22.1.6 shows that this characterizes differentiable convex functions on
open sets.
• Theorems 22.2.1 and 22.2.2 for C2 convex functions. There results show that

the correct generalization of the condition f ′′(x) ≥ 0 (resp. f ′′(x) > 0) for
a function of one variable is that the Hessian be positive semidefinite (resp.
definite) for a function of several variables.

These results allow us to prove the key theorems for unconstrained minimization
of convex functions on open convex sets: Theorem 22.4.1 and Corollary 22.4.4.
These theorems greatly simplify the search for the minimum when the objective
function is convex. You should compare Theorem 22.4.8 to the results on uncon-
strained optimization in §13.1 and §13.5, to appreciate how convexity facilitates
the search for a minimum. The results just quoted are the most important results of
this lecture.

A list of convex functions is given in §22.3. Since knowing that the objective
function is convex makes finding its minimum and minimizers much easier, these
examples should be studied carefully.

In §22.4 we also discuss minimization of convex functions on arbitrary convex
sets, using two tools:
• Reduction to dimension 1 by considering all affine lines. This works well

because the domain of the convex function is always assumed to be convex,
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so the intersection of the line with the domain is a segment. Another way of
saying this is that from any point in the domain of a convex function one can
look straight at any other point.
• The tool kit of convex sets: most importantly the separation theorems in
§18.6.

Finally, in a different vein, we show in §22.6 how convexity arguments can be
used to prove some of the key inequalities of analysis, starting with the arithmetic-
geometric mean inequality. This section will not be used later.

22.1 Differentiable Convex Functions

The most important result of this section is Corollary 22.1.4 which compares the
graph of a differentiable convex function with that of its tangent plane at any point.
First, here is the main theorem on differentiability of convex functions.

22.1.1 Theorem. If f is convex on an open convex set S, and all the partial deriva-
tives of f exist at every point of S, then f is continuously differentiable on S.

As we saw in Example 12.1.15, for an arbitrary function, the existence of par-
tial derivatives does not guarantee that the function is differentiable, much less
continuously differentiable (C1). Thus the situation for convex functions is much
better. Theorem 22.1.1 is proved at the end of this section. Before dealing with it,
we discuss the subgradients of a differentiable convex function.

22.1.2 Theorem. If the convex function f , on the convex set S, is differentiable
at the interior point x0 of S, then there is only one supporting hyperplane to its
epigraph Mf at (x0, f(x0)). It is the tangent hyperplane to the graph of f at x0,
so it has equation

y = f(x0) +∇f |x0(x− x0) (22.1.3)

Thus the only subgradient to f at x0 is the gradient1.

Proof. This is an elementary fact, because we can reduce to the one-dimensional
case. We argue by contradiction. Indeed if there were a separating hyperplane
different from the tangent hyperplace, there would be a direction v through x0

along which the tangent hyperplane and this hyperplane do not agree. So slice the
whole picture by the ordinary (meaning two-dimensional) vertical plane containing
v. This amounts to restricting f to the line through f(x0)) in direction v. The
restriction, which we call g is clearly convex, and is a function of one variable.

1 or rather, the transpose of the gradient, since the gradient is the unique vector that we always
write as a row.
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According to our claim there is a line L through x0, other than the tangent line T
to the graph of g through x0, that separates the epigraph of g from x0. It follows
from the definition of the derivative, or Taylor’s theorem (see Lecture 12) that this
is impossible: if r(x) = f(x)− f(x0)− f ′(x0)(x− x0), then limx→x0

r(x)
x−x0 = 0.

This implies that on the side of x0 where the line L is above the tangent line, the
points on the graph of f close enough to x0 on that side will be below L, so L does
not separate.

The following corollary is one of the most useful results on convex functions: it
says that at every point x where f is differentiable, the tangent plane approximation
of the function underestimates the value of the function, not only near x, but on the
whole region where f is convex.

22.1.4 Corollary. If f(x) is convex on the open convex set S, and differentiable at
x0 ∈ S, then

f(x) ≥ f(x0) +∇f |x0(x− x0), ∀x ∈ S. (22.1.5)

Proof. As noted above, the equation of the tangent hyperplane to the graph of f is

y = f(x0) +∇f |x0(x− x0).

So the right-hand side of (22.1.5) is just the y value at the point x of the separating
hyperplane of Mf at x0, so that it is less than or equal to the value of the function
f at the same point x.

The hypotheses are weak: the function f only needs to be differentiable at the
point x0.

22.1.6 Corollary. If f(x) is defined and differentiable on the open convex set S,
then f(x) is convex if and only if for each x0 ∈ S, f satisfies (22.1.5) for all x ∈ S.
Furthermore, f is strictly convex if and only if for all x0 ∈ S and all x 6= x0 ∈ S
the inequality in (22.1.5) is strict.

Proof. If f is differentiable, by Corollary 22.1.4 the tangent plane to the graph of
f at x0 is the unique candidate for a separating hyperplane for the epigraph of f
and the point x0, f(x0). If the epigraph is a convex set, it must have a supporting
hyperplane at every point of the boundary by Theorem 18.6.11, so (22.1.5) must
be satisfied at every point. The last assertion follows immediately from Definition
21.1.7

We can often reduce differentiability questions for convex functions to the one
variable case by the following device.
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22.1.7 Exercise. Given a convex function f(x), fix a point x in the interior of the
domain of f , and a vector y representing a direction at x. Show that the function
of one variable

g(t) = f(x + ty)

is convex for those values of t that correspond to points in the domain of f . Show
that this includes a small interval −a ≤ t ≤ a around the origin. We studied a
special case of this function in Exercise 21.1.8.

Hint: Pick two points t1 and t2 in the domain of g. You need to verify (21.1.2)
for these points. Write out what this says for f . Note that

f(x + (λt1 + (1− λ)t2)y) = f(λ(x + t1y) + (1− λ)(x + t2y)).

Conclude by using the convexity of f .

22.1.8 Corollary. Let f be a differentiable function on an open convex set S. Then
f is convex if and only if for any two points x1 and x2 in S,

〈∇f |x1 −∇f |x2 ,x1 − x2〉 ≥ 0; (22.1.9)

and f is strictly convex if and only if the inequality is strict for distinct points.

Proof. First assume that f is convex. Add the following two copies of (22.1.5)
evaluated at x2 and then x1:

f(x1) ≥ f(x2) +∇f |x2(x1 − x2),

f(x2) ≥ f(x1) +∇f |x1(x2 − x1),

and write the gradients as dot products to get (22.1.9).
Here is another way to derive the result by interpreting it in terms of the sin-

gle variable differentiable convex function introduced in Exercise 22.1.7: g(t) =
f(x1 + t(x2 − x1)). Compute the derivative g′(t) by the chain rule, evaluate at
t = 0 to get

g′(0) = 〈∇f |x1 ,x2 − x1〉,
and then at t = 1 to get

g′(1) = 〈∇f |x2 ,x2 − x1〉.

Since g is convex, g′(1) ≥ g′(0), which gives a second proof.
Next we show the opposite implication. Assuming (22.1.9) for all x1 and x2,

we must show that f is convex. We show it satisfies (21.1.2) for all x1 and x2.
This is equivalent to saying that the function g(t) introduced earlier in the proof is
convex, for all choices of x1 and x2, so we are done.

Finally to get strict convexity, just replace the inequalities by strict inequalities
in the proof above.
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22.1.10 Corollary. If f is a strictly convex differentiable function on an open con-
vex set S, and x1 and x2 are distinct points in S, then∇f |x1 6= ∇f |x2 .

Proof. Assume the two gradients are equal, and dot their difference with the vector
x1−x2, showing that the left-hand side of (22.1.9) is 0. This contradicts Corollary
22.1.8.

Next we determine the gradient mapping when the function fails to be strictly
convex: it is constant.

22.1.11 Corollary. Assume that the convex differentiable function f fails to be
strictly convex on the segment I = [x1,x2] in the interior of its domain. Then the
gradient∇f |x is constant along I.

Proof. By Exercise 21.1.8, the graph of f over I is a line. Once that is noted, the
result is an easy corollary of Theorem 22.1.2. Pick a point x∗ in the interior of
I. Because f is differentiable, its epigraph has a unique supporting hyperplane,
namely the tangent hyperplane to the graph of f at x∗ with equation

y = f(x∗) +∇f |x∗(x− x∗)

Because x∗ was chosen in the interior of I, its supporting hyperplane goes through
all the other points of the segment, by the same argument that proves Theorem
22.1.2, so it is a supporting hyperplane at those points too. Therefore it is the
tangent hyperplane at all x ∈ I, including the endpoints since we know that f is
C1 by Theorem 22.1.1. Thus the tangent hyperplane does not vary, which proves
the result.

Here is a converse to Theorem 22.1.2 that we will not prove.2

22.1.12 Theorem. If the convex function f on the convex set S has a unique sup-
porting hyperplane to its epigraph Mf at the interior point x0 of S, then f is
differentiable at x0 and the supporting hyperplane is the tangent hyperplane to the
graph of f at x0, so its equation is (22.1.3).

Proof of Theorem 22.1.1. By Theorem 12.1.17, it is enough to show that the partial
derivatives of f are continuous. We use the function g(t) of Exercise 22.1.7 to
apply the results of §21.2 to g(t), especially Theorems 21.2.2 and 21.2.14.

Let x be an interior point of the domain S, and let xi be a sequence of points
in S approaching x. Let y be an arbitrary vector of length 1 in Rn, representing a
direction, and λ a small positive number so that the points xi ± λy are in S. To

2For the proof, see [7] p. 106.
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prove the result, we only need the case where y is a coordinate vector ej , but it is
no harder to prove the result for any unit vector, which is what we do.

First, without making any assumption on f other than convexity, just as in the
single variable case (see Definition 21.2.13), the limit

f ′(x; y) := lim
λ↘0

f(x + λy)− f(x)

λ

exists, since in terms of the function g(t) defined above, we have written g′+(0) =

limλ↘0
g(λ)−g(0)

λ . The key point, supplied by convexity, is that the expression
inside the limit decreases to f ′(x; y).

The limit is called the one-sided directional derivative of f at x in the direction
y, and is written f ′(x; y). In the same way, we can define the one-sided directional
derivative of f at x in the direction −y. It is just g′−(0).

Because the partial derivative of f in the direction y exists by hypothesis, these
two one-sided directional derivatives are equal:

f ′(x; y) = f ′(x;−y).

Call this quantity d. Since f is continuous at on the interior of its domain by
Theorem 21.4.3, the sequence f(xi+λy) approaches f(x+λy), and the sequence
f(xi) approaches f(x).

For any ε > 0, for all small enough λ > 0, we have

d ≤ f(x + λy)− f(x)

λ
< d+ ε,

since the left-hand side is the limit of the right-hand side as λ decreases to 0. Fix a
λ > 0 so that this inequality is satisfied.

Then

22.1.13 Lemma. For i0 sufficiently large, we get the key inequality:

f(xi + λy)− f(xi)

λ
< d+ 3ε, ∀i ≥ i0.

Proof. Let

ε′ =
f(x + λy)− f(x)

λ
− d < ε

for our chosen λ, so ε′ > 0. Then choose i0 large enough so that for all i ≥ i0,

|f(x + λy)− f(xi + λy)| < ε′λ
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and
|f(x)− f(xi)| < ε′λ.

Then

|f(xi + λy)− f(xi)|
λ

≤ |f(xi + λy)− f(x + λy)|
λ

+
|f(x + λy)− f(x)|

λ

+
|f(x)− f(xi)|

λ
< ε′ + d+ ε+ ε′ ≤ d+ 3ε.

We now repeat the argument with −y. We get the parallel lemma:

22.1.14 Lemma. For i0 sufficiently large:

d− 3ε <
f(xi − λy)− f(xi)

λ
, ∀i ≥ i0.

As ε goes to 0, the left-hand and the right-hand directional derivatives of f
at xi in the direction y both converge to the directional derivative of f at x in
the direction y, showing that the directional derivatives, and therefore the partial
derivatives are continuous.

The proofs of this result in the literature (for example, [66], p. 150, [53],
p.244, and [22], pp.102) derive this result as a corollary of statements concerning
the convergence of families of convex functions. More elementary books usually
only prove the weaker result that f is differentiable: see [7] p. 99 or [52].

22.2 Twice Differentiable Convex Functions

22.2.1 Theorem. If f : Rn → R is C2 (twice continuously differentiable) on an
open convex set S, then f(x) is convex on S if and only if the Hessian matrix F (x)
is positive semidefinite for all x ∈ S.

Proof. We noted in Theorem 21.2.1 that a function is convex if and only if its
restriction to every line segment is convex. Furthermore by Definition 8.1.7 a sym-
metric matrix is positive semidefinite if and only if its restriction to any line is
non-negative. So pick any point x ∈ S, and consider the Hessian F (x) at x. Be-
cause S is open, for any non-zero vector h the line segment x+ th is in S for small
enough t. The second derivative of the composite function f(x + th) considered
as a function of t at t = 0 is easily seen by the chain rule to be hTF (x)h.
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After these preliminary remarks, we prove the theorem. First assume f is con-
vex. Then its restriction to any line is convex. Such a line is determined by a point
x ∈ S and an arbitrary direction h. By Theorem 21.2.20, convexity on a line is
determined by the non-negativity of the second derivative, which is our context is
hTF (x)h. Since this is true for all h, Definition 8.1.7 tells us that F (x) is positive
semidefinite. Since this is satisfied for all x, we get one implication of the theorem.

Now assume that the Hessian matrix F (x) is positive semidefinite for all x ∈
S. Then the function f is convex on every line by using the other implication of
Theorem 21.2.20, and therefore it is convex on the entire open set S by Theorem
21.2.1.

This theorem is useful because it reduces the determination of convexity to a
second derivative computation, just as in the one-variable case: Theorem 21.2.20.
We see that positive semi-definiteness of the Hessian is what generalizes f ′′ ≥ 0
in the one dimensional case. Positive definiteness is the generalization of f ′′ > 0,
and we have

22.2.2 Theorem. If f : Rn → R is C2 on an open convex set S, then f(x) is
strictly convex on S if the Hessian matrix F (x) is positive definite for all x ∈ S.

The proof uses the last statement of Theorem 21.2.20 and is otherwise identical
to that of Theorem 22.2.1. The converse fails, as we already know from Example
21.2.21.

22.2.3 Example (The Quadratic Function). The most general quadratic function
in Rn can be written

f(x) = xTAx + bTx + c,

where A is a symmetric n× n matrix, b a vector and c a number. Note that

∇f(x) = 2Ax

and the Hessian matrix of f is just the constant matrix 2A. So f is convex if
and only if A is positive semidefinite, and is strictly convex if and only if A is
positive definite. Thus we can check convexity by analyzing one matrix using the
techniques of §9.4.

22.2.4 Corollary. Assume f is C2 on an open convex set S, and continuous on the
closure S of S. Also assume that the Hessian of f is positive semidefinite on S.
Then f is convex on S.

22.2.5 Exercise. Prove Corollary 22.2.4, using Corollary 21.4.4 and Theorem
22.2.1.
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22.2.6 Exercise. Study the convexity of the function f(x, y) = x(x+ y2) on R2.

1. Find the biggest (convex) open set U in R2 on which f is convex.

2. Show that f is convex on the closure of U .

3. Show that this example behaves just like Peano’s Example 13.5.3 at the ori-
gin: there is a minimum on each line through the origin, but the origin is not
a local minimum for the function on R2.

22.3 Examples of Convex Functions

22.3.1 Example. The exponential function eax is convex on R for any a ∈ R.
This is established by computing the second derivative a2eax and using Theo-

rem 21.2.20.

22.3.2 Example. The logarithm lnx is concave on its domain x > 0.
Since lnx is the inverse of ex this follows from Proposition 21.2.22 and the

convexity of ex.

22.3.3 Example. Powers of x: xa is convex on x > 0 when a ≥ 1 or a ≤ 0, and
concave for 0 ≤ a ≤ 1. Furthermore |x|a, a ≥ 1 in convex on R.

The second derivative of xa is a(a−1)xa−2. So when x > 0 this is nonnegative
when a ≥ 1 or a < 0.

22.3.4 Example (The distance between two points).
We can think of the distance function d(x,y) = ‖x − y‖ on Rn as a function

from Rn×Rn to R. In other words it is a function of 2n variables: the coordinates
of x and those of y.

Then d(x,y) is a convex function.

Proof. Its domain, R2n, is convex, so we have to verify (21.1.2). Pick two pairs of
arbitrary points (x0,y0) and (x1,y1) in the domain of d. We must show that for
any λ between 0 and 1 we have

d
(
(1− λ)x0 + λx1, (1− λ)y0 + λy1

)
≤ (1− λ)d(x0,y0) + λd(x1,y1).

In terms of lengths of vectors, this says:

‖(1− λ)(x0 − y0) + λ(x1 − y1)‖ ≤ (1− λ)‖x0 − y0‖+ λ‖x1 − y1‖.

First we apply the triangle inequality (see Theorem 5.4.17) to (1−λ)(x0−y0)
and λ(x1 − y1) and their sum to get

‖(1− λ)(x0 − y0) + λ(x1 − y1)‖ ≤ ‖(1− λ)(x0 − y0)‖+ ‖λ(x1 − y1)‖.

Then we can pull out the positive scalar factors (1−λ) and λ to get the result.
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22.3.5 Example (The distance between a point and a convex set). Now let C be a
convex set in Rn, and define the distance DC(x) as

DC(x) = inf
c∈C

d(x, c).

Then DC(x) is a convex function.

Proof. In Exercise 11.1.5 we showed that this function is continuous for any set
C, not just convex sets: we will not need this result here, as we will get convexity
directly. Pick any x0 and x1 in Rn. By the definition of inf , for any ε > 0, we can
find elements c0 and c1 in C, such that

d(x0, c0) ≤ DC(x0) + ε;

d(x1, c1) ≤ DC(x1) + ε.

To prove that DC is convex, for any λ between 0 and 1, we must show

DC

(
(1− λ)x0 + λx1)

)
≤ (1− λ)DC(x0) + λDC(x0). (22.3.6)

Now

DC

(
(1− λ)x0 + λx1)

)
= inf

c∈C
d
(
(1− λ)x0 + λx1, c

)
≤ d
(
(1− λ)x0 + λx1), (1− λ)c0 + λc1

)
≤ (1− λ)d(x0, c0) + λd(x1, c1)

≤ (1− λ)DC(x0) + λDC(x1) + ε.

To get to the second line of this chain of inequalities, we use the fact that C is
convex, so (1−λ)c0 +λc1 is in C. On the next line we use the fact that d(x,y) is
a convex function, as we showed in the previous example. On the last line we use
the definition of c0 and c1, plus the obvious fact (1− λ)ε+ λε = ε.

Since this chain of inequalities is true for all ε > 0, by letting ε go to 0, it
implies (22.3.6), and we are done.

22.3.7 Example (A Thickened Convex Set). Let C ⊂ Rn be a convex set. For any
non-negative number r, let Cr = {x ∈ Rn | DC(x) ≤ r}, where DC is defined
in the previous example. So Cr is the set of points at distance at most r from C.
Then Cr is a closed convex set containing C.

Indeed, it is the sublevel set (see Theorem 21.1.15) of the convex function DC .
Note thatC0 is the closure ofC. Furthermore, ifC is bounded, thenCr is compact.
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22.3.8 Example. If f and g are convex functions, and a and b are non-negative,
then af + bg is convex.

We need to show that

af(λx1+(1−λ)x2)+bg(λx1+(1−λ)x2) ≤ aλ(f(x1)+g(x1))+bλ(f(x2)+g(x2))

This is simply the sum of the convexity inequalities for f and g multiplied by the
nonnegative constants a and b, so that the inequality is preserved.

22.3.9 Example. Composition: assume the functions h : R→ R and g : Rn → R
can be composed, with f(x) = h(g(x)). Then

• f is convex if h is convex and nondecreasing, and g is convex.

• f is convex if h is convex and nonincreasing, and g is concave.

We just sketch the first case. Since g is convex,

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2).

Apply the increasing function h to both sides, so that in direction of the inequality
is preserved,

h(g(λx1 + (1− λ)x2)) ≤ h(λg(x1) + (1− λ)g(x2)).

Using convexity of h on the right-hand side of this equation, we get the desired
conclusion.

22.3.10 Example. If f : Rm → R is a convex function, and A is a m× n matrix,
b ∈ Rm, x ∈ Rn, then f(Ax + b) is a convex function where defined. The proof
is similar to that in Example 22.3.8.

22.3.11 Example. If f and g are convex functions, then the max function h defined
by h(x) = max{f(x), g(x)} is convex.

More generally, the pointwise least upper bound (the supremum) of any (pos-
sibly infinite) family of convex functions is convex.

Let {fα} be a collection (perhaps infinite) of convex functions, all defined on
an open convex set S. The least upper bound (or supremum or sup) F of this
family is defined as follows:

F (x) = sup
α
fα(x)

Let Mα be the epigraph of fα. By Theorem 21.3.2 Mα is a convex set. The
supremum F of the fα has as its epigraph the intersection ∩αMα. As we saw in
Theorem 18.1.15, this intersection of convex sets is convex, so we use the opposite
implication of Theorem 21.3.2 to conclude.
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22.3.12 Exercise.

1. Show that the set S = {(x, y, z) | x > 0, y > 0, z > 0} in R3 is convex.

2. Show that on S, the function

f(x, y, z) =
1

xyz
+ x+ y + z

is convex by computing its Hessian and quoting a theorem.

3. In an alternate approach, establish that ln 1
xyz is convex on S, use Example

22.3.8, and Example 22.3.9, to give an alternate proof of 2.

4. Minimize the function f : show that the minimum value is 4, and determine
where it is attained.

This function is related to the Cobb-Douglas function of Example 13.4.1.

22.4 Optimization of Convex Functions

We start with the theorem that makes the minimization of convex functions so
pleasant.

22.4.1 Theorem. Let f be a convex function defined on the convex set S. Then if f
has a local minimum at a point x0, it has a global minimum there. The set of points
M ⊂ S where the global minimum of f is attained is either empty or convex. If f
is strictly convex in a neighborhood of a local minimizer x0, then x0 is the unique
global minimizer.

Proof. Assume the local minimum at x0 is not the global minimum: that means
that there is a point x1 ∈ S with f(x1) < f(x0). Consider the segment [x0,x1]
parametrized by λ: (1 − λ)x0 + λx1, with 0 ≤ λ ≤ 1. Since S is convex, this
segment is in S, and for any λ, 0 ≤ λ ≤ 1, (21.1.2) holds, so

f
(
(1− λ)x0 + λx1

)
≤ (1− λ)f(x0) + λf(x1) = f(x0) + λ

(
f(x1)− f(x0)

)
.

Because f(x1) < f(x0), the value of f at any point of the segment corresponding
to λ > 0 is less than that at x0. This contradicts the assertion that x0 is a local
minimizer, since there are points in S arbitrarily close to x0 with smaller value
than f(x0).

Next we prove that the set of minimizersM is convex or empty. IfM is empty,
there is nothing to prove. If M is non-empty, let c be the minimum value of f on
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S. Then the sublevel set Sc is the same as the level set of f at c, namely M , since
all the lower level sets are empty. By Theorem 21.1.15, Sc is convex, so we are
done.

The final assertion is left to you as an exercise.

22.4.2 Exercise. Show that if f is strictly convex in a neighborhood of a local
minimizer x0, then x0 is the unique global minimizer.

Hint: We have already shown that x0 is a global minimizer. Assume there is a
second global minimizer x1, and use the segment [x0,x1] to derive a contradiction
to strict convexity near x0.

Next an easy result improving on Theorem 13.1.1 in several ways. First, f is
not assumed to be C1; secondly, the convexity of f guarantees that the point x∗ with
the horizontal subgradient (the generalization of a critical point) is a minimum.
Because of Theorem 22.4.1, we do not need to distinguish between local and global
minimizers.

Finally note that in general there need not be a subgradient at a point x ∈ S,
since Corollary 21.3.15 only establishes the existence of subgradients for points in
the interior of S, and we are not assuming that S is open. Indeed, Examples 21.3.9
at x = 0 and 21.3.16 provide counterexamples for points on the boundary of S.

22.4.3 Theorem. Let f be a convex function defined on a convex set S. Then x∗ is a
minimizer if and only if the epigraph of f has a horizontal subgradient hyperplane
y = f(x∗) at x∗, meaning that the vector a in Definition 21.3.12 is the zero vector.

Proof. First we assume y = f(x∗) is the equation of a subgradient hyperplane.
By the definition of the subgradient hyperplane, all points of the epigraph of f are
above or on a subgradient hyperplane equation. Thus for all x ∈ S, f(x) ≥ f(x∗),
so x∗ is a minimizer.

On the other hand if x∗ is a minimizer, then by definition f(x) ≥ f(x∗) for all
f(x) ∈ S, so y = f(x∗) is the equation of a subgradient hyperplane.

For the rest of the discussion of minima, we assume that f is C1.

22.4.4 Corollary. Assume f is a C1 convex function on the convex set S ⊂ Rn. If
f is C1 in a neighborhood of x∗, then x∗ is a minimizer if and only if

〈∇f(x∗),x− x∗〉 ≥ 0, ∀x ∈ S. (22.4.5)

Proof. This follows from Corollary 22.1.4, which tells us that

f(x) ≥ f(x∗) +∇f |x∗(x− x∗), ∀x ∈ S.
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The corollary applies because we require that f be differentiable in a neighborhood
of x∗. This hypothesis is only needed when the point x∗ ∈ S is on the boundary
of S.

Here is a geometric interpretation of this result. The gradient ∇f(x∗) points
in the direction of steepest ascent of f at x∗, assuming it is non-zero. (22.4.5) says
that the angle that∇f(x∗) makes with x−x∗ is acute, so that when we are moving
from x∗ to x we are going uphill, at least initially. Since by convexity, the segment
[x,x∗] is in S, this is necessary at a minimum. Since x is arbitrary, we move uphill
in all possible directions, so we are at a minimum. We will have more to say about
this in Lecture 23.

So far we have made no assumptions (other than convexity) on the domain S.
Recall that if S is open, Corollary 21.3.15 says that subgradients exist at every
point of S. Furthermore, when f is differentiable at a point x in the interior of
S, Theorem 22.1.2 tells us that the only subgradient at x is the gradient ∇f(x∗).
On the other hand Theorem 13.1.1 tells us that for an arbitrary C1 function f , at a
minimizer x∗ in the interior of the domain, the gradient vanishes. Thus we see the
relation of Theorem 22.4.3 to our prior results.

22.4.6 Corollary. The hypotheses of Corollary 22.4.4 are still in force. Assume
that x∗ is a minimizer for f on S. Then another point x ∈ S is a minimizer if and
only if

∇f |x = ∇f |x∗ and ∇f |x∗(x− x∗) = 0. (22.4.7)

Proof. First we show that all points x satisfying the two equations are minimizers.
Then

f(x∗) ≥ f(x) +∇f |x(x∗ − x), by Corollary 22.1.4 ;

= f(x) +∇f |x∗(x∗ − x), by the first equation;

= f(x), by the second equation.

Since x∗ is a minimizer, so is x.
Finally, we show that all minimizers satisfy the two equations. The key point

is that on the segment [x∗,x], f fails to be strictly convex, so by Corollary 22.1.11,
the gradient of f is constant. Thus the gradient is constant on the entire locus of
minimizers. That shows that the first equation is satisfied.

For the second equation, note that Corollary 22.4.4 applied at x∗ shows that

〈∇f |x∗ ,x− x∗〉 ≥ 0.

Applied at x, it gives
〈∇f |x,x∗ − x〉 ≥ 0.
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Since we just showed that∇f |x∗ = ∇f |x, these two real numbers are the negative
one of the other, so they must both be 0 and we are done.

For a C1 convex function on an open set, we have the converse to Theorem
13.1.1:

22.4.8 Theorem. Let f be a C1 convex function defined on the open convex set S.
Then x∗ is a minimizer if and only if∇f(x∗) = 0.

Proof. If ∇f(x∗) = 0, then Corollary 22.1.4 says that ∀x ∈ S, f(x) ≥ f(x∗),
which proves one implication.

On the other hand, if f(x) ≥ f(x∗) for all x ∈ S, then, as already noted,
Theorem 13.1.1 gives the result, without even requiring that f be convex.

Next we consider maxima. We have a beautiful result on open sets.

22.4.9 Theorem. Let f be a convex function defined on the open convex set S.
Then f has a maximizer x∗ on S if and only if f is the constant function.

Proof. It is enough to prove the theorem for f restricted to any line L through x∗.
Because S is open, there is a closed segment [x0, x1] containing the maximizer x∗

in its interior: so x0 < x∗ < x1. Then the Three Secants Theorem 21.2.2 shows
that if x∗ is a maximizer, f(x0) = f(x∗) = f(x1). Doing this for all lines, we see
that the function is constant.

On more general S, there is no general result. In particular f might have several
local maximizers, some of which are not global maximizers, it could have several
global maximizers that are isolated from each other. Generally speaking, convexity
does not help much with locating maxima. Here is a useful special result.

22.4.10 Theorem. Let f be a continuous convex function on a bounded polyhedron
P . Then f attains its maximum at an extreme point of P .

Proof. Because f is continuous and P is compact, f attains its maximum some-
where on P by the Weierstrass Theorem 16.2.2. Call such a maximizer x∗. By
Theorem 18.7.8, P has a finite number of extreme points, its vertices, and by Min-
kowski’s Theorem 18.7.1 x∗ can be written as a convex combination of them:

x∗ =
m∑
i=1

λix
i,

∑
λi = 1; ∀i, λi ≥ 0.

Then by convexity of f , Jensen’s Inequality 21.1.11 gives

f(x∗) ≤
m∑
i=1

λif(xi).
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Since x∗ is a maximizer, f(x∗) ≥ f(xi) for all i. This, together with Jensen’s
inequality, implies that at least one of the xi is a maximizer.

22.4.11 Corollary. A linear function f restricted to a convex polyhedron attains
its maximum and minimum at extreme points.

Proof. Since linear functions are convex, this is immediate for the maximum, and
follows for the minimum since the function −f is also convex.

22.5 A Convex Minimization Example

This example was first mentioned by Fermat, although the exceptional cases were
only settled in the 19th century, when it became a textbook favorite: see the text-
books of Bertrand, Serret ([58], §154), and Goursat ([27], §62). A beautiful modern
reference with a more complete historical background is Kuhn [36].

22.5.1 Example. Given a triangle with vertices A, B and C, the problem is to find
a pointM in the plane that minimizes the sum of the distances to the three vertices.
To simplify the notation, we placeA at the origin, B at the point (c, 0) and C at the
point (a, b). We use (x, y) for the coordinates of M . The problem is to minimize

f(x, y) =
√
x2 + y2 +

√
(x− c)2 + y2 +

√
(x− a)2 + (y − b)2

The function f(x, y) is convex: Indeed, the distance of a fixed point to a variable
point is a convex function (see Example 22.3.4), and the sum of convex functions
is convex (see Example 22.3.8).

We set both partials to 0:
x√

x2 + y2
+

x− c√
(x− c)2 + y2

+
x− a√

(x− a)2 + (y − b)2
= 0; (22.5.2)

y√
x2 + y2

+
y√

(x− c)2 + y2
+

y − b√
(x− a)2 + (y − b)2

= 0.

We see a potential problem: while f is defined for all points in R2, it is not dif-
ferentiable at the vertices of the triangle. So we first attempt to find the minimum
away from the vertices of the triangle by setting the gradient to zero. By convexity
there can be at most one such solution which is the global minimum. If it is impos-
sible to solve the gradient equations, the minimum must occur at a vertex. Each
one of the six terms in (22.5.2) is the cos or the sin of three angles θ, φ, ψ, so we
have

cos θ + cosφ+ cosψ = 0;

sin θ + sinφ+ sinψ = 0.
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Move the ψ-terms to the right-hand side, square each equation and add, to get:

2 + cos θ cosφ+ sin θ sinφ = 1

Using a trigonometric addition formula, this gives

1 + 2 cos (θ − φ) = 0, so cos (θ − φ) = −1

2
,

so θ − φ measures 2π/3 radians. Now this is the angle ÂMB. Repeating this
for the other two possibilities, we see that the angles B̂MC and ĈMA also mea-
sure 2π/3 radians. Then geometrically, M can be constructed by elementary plane
geometry as follows. Let A1 (resp. B1, C1) be the third vertex of an equilateral
triangle whose other vertices are B (resp. C, A) and C (resp. A, B) on the outside
of the triangle ABC. Let CA (resp.CB , CC) be the circles of center A1 (resp. B1,
resp. C1) passing through the points B (resp. C, A) and C (resp. A, B). Then
M must be the common intersection of these circles. According to Kuhn [36], this
point, when it exists, is called the Torricelli point, in honor of the 17th century
mathematician who claimed that the intersection is the solution to Fermat’s prob-
lem. However if an angle of the original triangle is greater than 2π/3 radians the
circles do not intersect and there is no solution. In that case the solution occurs at
a vertex, indeed the vertex where the angle is at least 2π/3 radians.

If all angles in the triangle are at most 2π/3 radians, then the three circles
intersect and that it the unique minimum we are looking for. This example is also
used by Levi in [41], §1.3, where a quick physical solution using potential energy
solves the problem when the angles of the original triangle are less than 2π/3
radians. The other case is not discussed.

22.6 The Arithmetic-Geometric Mean Inequality

In this section we derive some of the most important inequalities of mathematics
from convexity results. We start with the arithmetic-geometric mean inequality
and a historical perspective: we turn to the French mathematician Augustin Louis
Cauchy (1789-1857), and his influential 1821 textbook Cours d’Analyse [15]. For
an annotated translation in English, see [11].

In the Note II at the end of [15] (page 291 of the annotated translation), Cauchy
first gives an description of inequalities of real numbers, which has became the
standard description given for ordered fields: see §14.1. Later he proves what we
know as the Cauchy-Schwarz inequality 5.4.6.

Cauchy concludes Note II with the Arithmetic-Geometric Mean Inequality (‘un
théorème digne de remarque’), a theorem due to Gauss, which we now prove:
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22.6.2. Then we extend the result using convexity to the generalized arithmetic-
geometric mean inequality. This allows us to prove some of the most famous in-
equalities in analysis: Hölder’s inequality which then yields the Cauchy-Schwarz
inequality 5.4.6.

First two definitions:

22.6.1 Definition. The geometric mean of n positive real numbers a1, . . . , an is

g = n
√
a1a2 . . . an

and the arithmetic mean is

a =
a1 + · · ·+ an

n

22.6.2 Theorem (The Arithmetic-Geometric Mean Inequality). The geometric mean
of n positive real numbers a1, . . .an is no greater that their arithmetic mean. In
other words g ≤ a, with equality if and only if all the numbers are the same.

Proof. This is Cauchy’s 1821 proof. We give a different proof using the opti-
mization techniques developed in this course in §32.3. We raise both sides of the
equation to the n-th power and prove the equivalent statement

a1a2 . . . an ≤
(a1 + · · ·+ an

n

)n
. (22.6.3)

For n = 2, writing the two numbers as a and b, obviously

ab =
(a+ b

2

)2
−
(a− b

2

)2
<
(a+ b

2

)2
,

as long as a 6= b. We continue by induction on m in order to establish the result
for any n that is of the form 2m. For example, when n = 4,

abcd <
(a+ b

2

)2(c+ d

2

)2
<
(a+ b+ c+ d

2

)4
,

where the right most inequality comes from substituting a + b for a and c + d for
b in the previous case. So the result is proved for all powers of 2.

To handle the case where n is not a power of 2, we let 2m be the smallest power
of 2 greater than n, and we extend the number of terms to 2m by letting the last
2m − n terms be equal to the same number k, where

k =
a1 + · · ·+ an

n
, (22.6.4)
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in other words, k is the arithmetic mean of the first n terms. Using the result for
2m we get

a1a2 . . . ank
2m−n <

(a1 + · · ·+ an + (2m − n)k

2m

)2m
. (22.6.5)

Then substituting in the value for k from (22.6.4), we see that the right-hand side
of (22.6.5) simplifies to k2m, so that we get

a1a2 . . . ank
2m−n < k2m.

Divide by k2
m−n to get:

a1a2 . . . an < kn,

which by (22.6.4) gives the result.

We now generalize this result by using the convexity of − ln[x].

22.6.6 Theorem. Let a and b be positive numbers with a 6= b. Then for any λ,
0 < λ < 1,

aλb1−λ < λa+ (1− λ)b. (22.6.7)

Proof. Assume a < b. Write down the definition of the convexity of − ln[x] on
the segment [a, b] and take the exponential on both sides.

Note that the case λ = 1/2 gives us a second proof of Cauchy’s Theorem
22.6.2 in the case n = 2. More generally,

22.6.8 Theorem. For any n-tuple of positive numbers a1, . . . , an, and any set of
λi, 1 ≤ i ≤ n, such that λi ≥ 0 and

∑
λi = 1,

n∏
i=1

xλii ≤
n∑
i=1

λixi. (22.6.9)

Proof. Just use Jensen’s Inequality 21.1.11.

22.6.10 Corollary. Now let λi = 1/n for all i. Then

( n∏
i=1

xi

) 1
n ≤

∑n
i=1 xi
n

,

so we have recovered the general arithmetic-geometric mean inequality for all n.

We now use (22.6.7) to prove:
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22.6.11 Theorem (Hölder inequality). For p > 1, q > 1, 1/p + 1/q = 1, and x
and y in Rn,

n∑
i=1

|xi||yi| ≤
( n∑
i=1

|xi|p
) 1

p
( n∑
i=1

|yi|q
) 1

q
. (22.6.12)

Proof. Let

a =
|xi|p

Sx
, b =

|yi|q

Sy

where

Sx =
( n∑
j=1

|xj |p
)

, Sy =
( n∑
j=1

|yj |q
)

so that the general arithmetic-geometric mean inequality (22.6.7) applied to a and
b gives ( |xi|p

Sx

) 1
p
( |yi|q
Sy

) 1
q ≤ |xi|

p

pSx
+
|yi|q

qSy
.

Then sum all the inequalities over i:

n∑
i=1

( |xi|p
Sx

) 1
p
( |yi|q
Sy

) 1
q ≤

n∑
i=1

|xi|p

pSx
+

n∑
i=1

|yi|q

qSy
=

1

p
+

1

q
= 1,

and clear the denominators to get the result.

22.6.13 Corollary. When p = q = 2, the Hölder inequality reduces to the Cauchy-
Schwarz Inequality 5.4.6.

Finally, we could use the Hölder inequality to prove another famous inequal-
ity, the Minkowski inequality. See, for example, Carothers [14], p.44, for how
these inequalities are used to provide norms on infinite dimension vector spaces of
functions.

22.6.14 Exercise. Let a and b be positive numbers with a < b. Create two infinite
sequences {an} and {gn} by letting

a1 =
a+ b

2
and g1 =

√
ab, (22.6.15)

and
an =

an−1 + gn−1
2

and gn =
√
an−1gn−1, for n ≥ 2.
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Prove by induction that

an > an+1 > · · · > gn+1 > gn, for all n.

Prove that the two sequences {an} and {gn} converge. State the theorem you
use.

Show that both sequences converge to the same value, called the arithmetic-
geometric mean of a and b.

22.6.16 Exercise. Show that the geometric mean function of x = (x1, x2, . . . , xn):

f(x) =
( n∏
i=1

xi
)1/n (22.6.17)

is concave on the open positive quadrant Rn++ by computing the Hessian matrix F
of −f (notice the minus sign) and showing it is positive semidefinite.

22.6.18 Exercise. Show that the set of points in the quadrant x1 > 0, x2 > 0 in
R2 given by x1x2 ≥ 1 is convex. Hint: this is sometimes called the “hyperbolic”
set. Why?

Generalize to Rn: show that the set of points x in the open first quadrant Rn++

such that
n∏
i=1

xi ≥ 1

is convex.
Hint: Apply the definition of convexity directly, using (22.6.7).



Lecture 23

Convex Optimization with
Differentiability

In Lecture 22, we proved some of the basic theorems for the optimization of convex
function. Here we continue this study using the techniques we introduced in the last
five chapters, namely Lagrange multipliers and Kuhn-Tucker conditions. Indeed
we show how the results obtained for general nonlinear optimization in Lectures
28, 29, 31 and 32 can be improved and simplified using convexity hypotheses.

We first define the standard problem and review the key results from Lecture
22. Then, in §23.2, we quickly cover the case where there are only equality con-
straints, and compare with the general Lagrange multiplier set-up. Then we cover
a simple but important example: convex optimization over the positive quadrant:
§23.3.

The first important new theorem of the lecture is Theorem 23.4.1, which gives
a sufficient condition for a feasible solution to be a minimizer: the KKT conditions
without any contraint qualification.

The classic example in §23.5 shows that a constraint qualification is needed
in some situations. A mild constraint Qualification, called the Slater condition
(§23.7), allows the formulation of a necessary condition in terms of Lagrange mul-
tipliers for a point x∗ to be a minimizer. We need to establish the convexity of the
value function in §23.6 to derive the necessary condition in §23.7. The lecture ends
with a geometric example: §23.8.

23.1 The Standard Problem in Convex Optimization

23.1.1 Definition. The standard convex minimization problem is
Minimize f(x), x ∈ Rn, subject to Ax = b, and gk(x) ≤ 0, 1 ≤ k ≤ p.
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Here f(x) and the gk(x) are convex functions, and A is a m × n matrix of
maximal rank m. As usual we write g(x) for the vector of gk(x).

The feasible set F is an intersection of convex sets, and is therefore convex,
unless empty. We write f∗ for the minimal value of f(x) on F . Note that we allow
the value −∞, which means that f is unbounded below on F . We write x∗ for any
feasible vector that minimizes, namely, such that f(x∗) = f∗. If f∗ = −∞, then
there is no minimizer x∗.

Recall that from Theorem 22.4.1, any local minimizer x∗ for the standard prob-
lem is a global minimizer. Now assume that f is C1. Then Corollary 22.4.4 says
that a point x∗ is a minimizer for Problem 23.1.1 if and only if

∇f(x∗)(x− x∗) ≥ 0, for all feasible x. (23.1.2)

On the left-hand side of this expression, we are multiplying the row vector∇f
with the column vector x− x∗.

Furthermore, if there is an open ball in Rn centered at x∗ contained in the
feasible set F , then x∗ is a minimizer if and only if ∇f(x∗) = 0, since then one
can move in all possible directions in Rn at x∗. This always happens if there are
no equality constraints, and if none of the inequality constraints is active at x∗. It
can happen in other situations, and when it does, we have a minimizer.

23.2 Convex Optimization with Equality Constraints Only

Assume that f is C1, and that there are no inequality constraints. So the only
constraints are the matrix constraints Ax = b. We make the harmless Rank As-
sumption 19.6.2 that the m× n matrix A has rank m, where m ≤ n.

For x∗ to be a minimizer, we need (23.1.2) to be satisfied.
Since both x and x∗ satisfy the constraintAx = b, their difference v = x−x∗

is in the nullspace N (A) of A: Av = Ax − Ax∗ = b − b = 0. Now (23.1.2)
says that∇f(x∗) ≥ 0 on the entire linear spaceN (A). But this can only happen if
∇f(x∗) = 0 on N (A), in other words ∇f(x∗) ⊥ N (A). By the Four Subspaces
Theorem 7.2.3 , this implies that∇f(x∗) is inR(AT ), which just says that∇f(x∗)
can be written as a linear combination of the rows of A, in other words:

∇f(x∗) +
n∑
i=1

λia
i = 0,

where ai denotes the i-th row of A.
Thus we have recovered a ‘convex’ version of the Lagrange Multiplier Theo-

rem 28.3.9:
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23.2.1 Theorem. Let x∗ be a minimizer for Problem 23.1.1 with only equality
constraints. There are unique numbers λ∗1, . . . , λ∗m, such that

∇f(x∗) +
n∑
i=1

λ∗i a
i = 0, (23.2.2)

where ai denotes the i-th row of A.

This theorem improves the ordinary Lagrange Theorem, because we do not
need to check a second order condition: indeeed, the objective function is convex.
We do not need to assume regularity for the constraints, because the constraints are
linear.

Furthermore, if f(x) is linear, so we write it cTx, then (23.2.2) becomes
c = ATλ∗, so we recover an analog of the Duality Theorem 25.5.1 of linear
optimization, with the λ playing the role of the dual variables y. If we add the
inequality constraints studied in the next section, we recover duality for the Asym-
metric Problem 25.1.5 of linear optimization.

23.3 Example: Convex Optimization over the Positive Quad-
rant

In this section we assume the optimization problem is

Minimize f(x) subject to x � 0. (23.3.1)

23.3.2 Theorem. A necessary condition for a feasible x∗ to be a solution to Prob-
lem 23.3.1 is that

∇f(x∗) � 0 and ∇f(x∗)x∗ = 0.

Proof. By (23.1.2), for x∗ to be a minimizer, we need

∇f(x∗)(x− x∗) ≥ 0, for all x � 0. (23.3.3)

The expression∇f(x∗)x is a linear function of x with coefficients∇f(x∗). It
goes to −∞ for suitable x � 0 unless the gradient is non-negative: ∇f(x∗) � 0.
Indeed, assume the i-th coordinate of the gradient is negative: then take x to be the
vector with zeroes in all other positions So we assume this is the case, since we
want a finite minimum.

When x = 0, (23.3.3) becomes

∇f(x∗)x∗ ≤ 0.
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Since both x∗ and ∇f(x∗) are non-negative, this can only occur if

∇f(x∗)x∗ = 0,

which is complementary slackness: for each index j: either the j-th coordinate of
∇f(x∗) or that of x∗ is 0.

Theorem 23.4.1 shows this is also a sufficient condition. This is worked out in
Example 23.4.3.

23.4 Sufficient Conditions for Minimality

We now treat Problem 23.1.1 in full generality.

23.4.1 Theorem. Sufficient conditions that a feasible x∗ be a solution to Problem
23.1.1 are that there exist a m-vector λ and a non-negative p-vector µ such that

∇f(x∗) + λTA+ µT∇g(x∗) = 0 and 〈µ,g(x∗)〉 = 0. (23.4.2)

These are the usual KKT conditions. There are no constraint qualifications.

Proof. For any feasible x we compute:

f(x)− f(x∗) ≥ 〈∇f(x∗),x− x∗〉, f convex: Corollary 22.1.4;

= 〈−λTA− µT∇g(x∗),x− x∗〉, using (23.4.2);

= −〈λTA,x− x∗〉 − 〈µT∇g(x∗),x− x∗〉, by linearity;

= −〈λ,A(x− x∗)〉 − 〈µ,∇g(x∗)(x− x∗)〉, by selfadjointness;

= −〈µ,∇g(x∗)(x− x∗)〉, x− x∗ ∈ N (A);

≥ −〈µ,g(x)− g(x∗)〉, g convex: Corollary 22.1.4;

= −〈µ,g(x)〉, by complementary slackness;

≥ 0, because µ � 0 and g(x) � 0.

Thus x∗ is a minimizer.

We will get a necessary condition in §23.7, after an example showing that a
constraint qualification is needed (§23.5), and a discussion of the value function
(§23.6), used in our proof of the necessary condition.

23.4.3 Example. We now finish the example of §23.3 using Theorem 23.4.1, by
showing that the conditions of Theorem 23.3.2 are the KKT conditions of Theorem
23.4.1. Write the n positivity constraints as gi(x) = −xi ≤ 0, to follow our
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convention. Then ∇gi = −ei, where ei is the i-th unit vector. So if we choose
µ = ∇f(x∗), from our previous work we see that µ � 0 and complementary
slackness holds. The Lagrange equations follow, because

∇f(x∗) + µT∇g(x∗) = ∇f(x∗) +∇f(x∗)∇g(x∗) = ∇f(x∗)−∇f(x∗) = 0.

Thus we have a necessary and sufficent condition for minimality.

23.5 An Example

We consider the problem in R2 with objective function f(x1, x2) = x1 and two
inequality constraints:

g1(x1, x2) = x2 − t ≤ 0 , g2(x1, x2) = x21 − x2 ≤ 0

Note the parameter t. If t is negative, then the feasible set is empty, so we assume
t ≥ 0. When t = 0, the feasible set is just one point: the point (0, 0). For each
value of t ≥ 0, we set this up as a KKT problem. A quick graph shows that the
minimum occurs at the left intersection of the two bounding curves:

x2 = t, x21 = x2, so x1 = −
√
t and x2 = t

We solve this using KKT. The Lagrangian is L(x1, x2, µ1, µ2) = x1+µ1(x2−
t) + µ2(x

2
1 − x2), so the Lagrange equations are

1 + 2µ2x1 = 0

µ1 − µ2 = 0

so µ1 = µ2 = 1
2
√
t
. Thus, if

√
t > 0, the µi are non-negative as required, and the

problem can be solved using multipliers.
Note however that when t = 0, the feasible set is reduced to one point: (0, 0),

and the method breaks down: the minimum cannot be found through the Lagrange
method.

This shows that even when one deals with a convex optimization problem, one
cannot always find the solution using Lagrange multipliers. As we will see in §23.7,
there is a constraint qualification that tells us when one can: the Slater condition.

As a final remark, note that we can compute the minimum value function w(t)
(see Definition 23.6.2) in terms of t: it is w(t) = −

√
t. It is convex as required by

Theorem 23.6.3. The difficulty of the value t = 0 is that it is not an interior point
of the domain of the value function. Thus some of the standard methods of dealing
with convex functions do not apply. If you refer back to Lecture 21, you will see
that many of the results there are only valid for points in an open set of the domain
of the convex function. This excludes the value t = 0.
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23.6 The Value Function for Convex Minimization

Now we look at the ‘perturbed’ problem, where f , g and A are as in (23.1.1),
without requiring that f and the gk be differentiable: they just need to be convex.

23.6.1 Definition (The Standard Perturbed Problem).

Minimize f(x), subject to Ax = b and g(x) � e.

where

• f(x) is a convex function of n variables;

• A is a constant m× n matrix of rank m, and b a variable m-vector;

• g(x) is a collection of p convex functions, and e a variable p-vector.

The following theorem generalizes what we did in the linear case in §25.8. It
shows the power of the convexity hypotheses. First a definition:

23.6.2 Definition. Let d be the compound (m + p)-vector (b, e). For any fixed
value of d such that the feasible set of Problem 23.6.1 is nonempty, and f has
a finite minimum, let w(d) denote that minimum value. As d varies we get a
function w(d) of d, called the minimum value function, or just the value function
for the problem.

23.6.3 Theorem. The set of vectors d such that (23.6.1) has a finite solution is
either empty or is a convex subset W of Rm+p, and in the latter case the value
function w(d) is a convex function on W .

Proof. If W is empty, there is nothing to prove. So assume it is non-empty. If it is
just one point, again there is nothing to prove. So pick any two points d0 and d1

in W . To establish the convexity of W , we need to show there is a finite solution
at every point of the segment λd0 + (1 − λ)d1, for 0 < λ < 1. Since there is a
solution at d0 =

[
b0, e0

]
, there is a minimizer x0 such that

Ax0 = b0, and g(x0) ≤ e0.

Similarly at d1 =
[
b1, e1

]
, there is a minimizer x1 such that

Ax1 = b1, and g(x1) ≤ e1.

We claim λx0 + (1− λ)x1 is feasible for the value λd0 + (1− λ)d1. First

A(λx0 + (1− λ)x1) = λAx0 + (1− λ)Ax1 = λb0 + (1− λ)b1
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by linearity. Next, by convexity of each of the gi, we get

g(λx0 + (1− λ)x1) ≤ λg(x0) + (1− λ)g(x1) ≤ λe0 + (1− λ)e1.

Putting these two results together, we see that λx0 + (1−λ)x1 is feasible, for each
value of λ. Finally we have to rule out the possibilty that f goes to −∞ along the
segment. This is ruled out by Lemma 21.3.8 applied to f restricted to the segment
[x0,x1]. This concludes the proof that W is convex.

Next we prove that the value function is convex. As required, it is defined on a
convex set, namely W . So we need to show, for any d0 and d1 in W , that

w(λd0 + (1− λ)d1) ≤ λw(d0) + (1− λ)w(d1), for 0 < λ < 1.

23.6.4 Definition. For each λ ∈ [0, 1], denote by F (λ) the set of feasible x for
d = λd0 + (1− λ)d1.

By definition of w,

w(λd0 + (1− λ)d1) = inf
x∈F (λ)

f(x) ≤ inf
x∈λF (0)+(1−λ)F (1)

f(x).

The last inequality follows because the set of x = λx0 + (1 − λ)x1, for any
x0 ∈ F (0) and x1 ∈ F (1), is feasible at λ by the convexity of W , and so is
contained in F (λ). Since f is convex:

f(λx0 + (1− λ)x1) ≤ λf(x0) + (1− λ)f(x1),

so that

inf
x∈λF (0)+(1−λ)F (1)

f(x) ≤ λ inf
x∈F (0)

f(x) + (1− λ) inf
x∈F (1)

f(x).

The right-hand side of this inequality is λw(d0) + (1 − λ)w(d1), so assembling
the chain of inequalities, we have shown that w is convex.

Finally we want to establish an Envelope Theorem, namely a theorem that
computes the gradient of w(d) when it exists. As is shown at the end of the next
section, when the minimizer can be determined using Lagrange multipliers, the
gradient of w(d) is the collection of Lagrange multipliers.
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23.7 The Slater Constraint Qualification and a Necessary
Condition for Convex Optimization

23.7.1 Definition. We say that the optimization problem 23.1.1 satisfies the Slater
condition if there is a feasible x0 such that gk(x0) < 0 for each inequality con-
straint gk, 1 ≤ k ≤ p.

Thus x0 is in the interior of the constraint set defined by inequalities. Notice
that the example in §23.5 fails this condition when t = 0: the feasible set contains
only one point, x0 = (0, 0), and g1(0, 0) = 0 and g2(0, 0) = 0.

23.7.2 Theorem. Assume that the Slater condition holds at a feasible point x∗ for
the convex optimization problem 23.1.1. Then a necessary condition for x∗ to be a
minimizer is that it satisfy the KKT conditions of Theorem 23.4.1.

Proof. For simplicity we assume there are no equality constraints. If the Slater
condition holds, we show that there are nonnegative constants µ1, . . . , µp such that
the Legrangian

L(x) = f(x) +

p∑
k=1

µkgk(x)

has a minimum at x∗, and such that complementary slackness holds at x∗: µTg(x∗) =
0. Differentiating the Lagrangian at the minimum x∗ gives the required result.

By Theorem 23.6.3 the value function w(z) is convex, and defined on a convex
set Ω in Rp. Consider its epigraph (see §21.3) in Rp+1, where the last coordinate
corresponds to the value of the function. The value z = (z1, . . . , zp) corresponds
to the feasible set given by the constraints gk(x) − zk ≤ 0. Thus the original
problem corresponds to the value z = 0. By hypothesis w(0) is defined. The
Slater condition tells us that 0 is an interior point of the domain of w(z), so that
the supporting hyperplane H to the epigraph at the point (w(0),0) in Rp+1 is not
vertical, and H not being vertical means that the coefficient of zp+1 in the equation
of H is not 0. So we can normalize it to 1, and write the equation of H as:

p∑
k=1

µizi + zp+1 = w(0) (23.7.3)

For any z in the domain of w, since w(z) is above the supporting hyperplane H
(see 23.7.3), we get

w(z) + µT z ≥ w(0). (23.7.4)

If b � c, then w(b) ≥ w(c), since the minimization at c takes place over a larger
set than at b. As we ‘relax the constraints’, taking all the zk positive, w decreases,
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so (23.7.4) tells us
µT z ≥ w(0)− w(z) ≥ 0. (23.7.5)

This forces µ � 0, since we can do this one coordinate of z at a time.
By hypothesis, x∗ is a minimizer of f at z = 0. Since g(x∗) � 0, w(g(x∗)) ≥

w(0). But then the existence of x∗ shows that w(g(x∗)) = w(0).
Now let x be any feasible vector for z = 0. Then using (23.7.4)

f(x) ≥ w(0) = w(g(x)) ≥ w(0)− µTg(x). (23.7.6)

Apply this to x = x∗ to get:

w(0) ≥ w(0)− µTg(x∗), or µTg(x∗) ≥ 0.

Since µ is a non-negative vector, and g(x) a non-positive vector, this implies com-
plementary slackness: µTg(x∗) = 0.

Then (23.7.6) implies, together with complementary slackness, that

f(x) + µTg(x) ≥ w(0) = f(x∗) = f(x∗) + µTg(x∗),

so that x∗ does minimize the Lagrangian, and we are done.

Notice how the Lagrange multipliers µ were generated from the coefficients
of the supporting hyperplane of the epigraph of the value function at the point
associated to the value 0. Also note that the Slater condition was only used once:
to show that this hyperplane is not vertical.

This establishes:

23.7.7 Theorem (Envelope Theorem). If the value function w(z) of our standard
problem 23.1.1 without equality constraints is differentiable at a point z in the
interior of its domain, then by the proof of Theorem 23.7.2, unique Lagrange mul-
tipliers µk can be found, and

∇w(z) = µ, namely
∂w

∂zk
(z) = µk.

It would be easy to add equality constraints. You should think carefully about
how this theorem generalizes Theorem 25.8.2.

23.8 A Geometric Example

In Example 18.3.24 we found the smallest ball containing a regular simplex. We
now take an arbitrary n-simplex in Rn, and ask for the ball of smallest radius
containing it.
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Let ai, 0 ≤ i ≤ n be the vertices of the simplex. They are affinely independent.
We use as variables the coordinates (x1, . . . , xn) of the center of the ball, and its
radius r. The objective function is

f(x, r) = r,

since we wish to minimize the radius. The constraints, stating that the distance of
the center to each of the n+ 1 points is bounded by the radius, are

gi(x, r) = ‖x− ai‖ − r ≤ 0, for 0 ≤ i ≤ n. (23.8.1)

By Example 22.3.4, the constraints are all convex, and the objective function is
clearly convex (see Example 22.3.3), so that we are dealing with a convex problem
(see Definition 23.1.1).

We know that a solution exists, since we can find a big disk containing all the
points. We would like to solve the problem using Kuhn-Tucker. First we check
that the Slater condition is satisfied. This is the case, since each the feasible set for
each constraint is a right ”circular cone”, which all intersect as long as the radius r
is large enough. Indeed the perturbed problem 23.6.1 with constraints gi(x, r) ≤ e
satisfies the Slater condition as long as ej > −r.

So we can solve the problem using Kuhn-Tucker: we now want to solve the
problem explicitly, which means writing x∗, r∗ and µ∗ is terms of the data, namely
the vectors a0, . . . , an. Note that by Theorem 22.4.1, once we have found one
minimizer, the minimum value of the objective function, namely the radius, is
determined: any local minimum is a global minimum.

The Lagrangian is written

L(x, r, µ) = r +

n∑
i=0

µi
(
‖x− ai‖ − r

)
We are looking for a solution (x∗, r∗, µ∗) of the system obtained by setting the

partials of L to 0:

m∑
i

µi
‖x− ai‖

(xj − aij) = 0, for the partial w.r.t. xj ; (23.8.2)

1 =

m∑
i

µi, for the partial w.r.t. r. (23.8.3)

Additionally the constraints (23.8.1) must be satisfied at the solution:

gi(x
∗, r∗) = ‖x∗ − ai‖ − r∗ ≤ 0,
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the multipliers µ∗ must be non-negative, and complementary slackness must hold:
µ∗g(x∗) = 0.

Equations 23.8.2 say, using (23.8.3):

xj =

n∑
i=0

µia
i
j , 1 ≤ j ≤ n , so x =

n∑
i=0

µia
i. (23.8.4)

Since the µ are nonnegative, x is a convex linear combination of the points ai for
which µi > 0.

We reorder the points so that the first k + 1 constraints are active.
By complementary slackness, µi is 0 unless the corresponding constraint is

active, meaning that the point ai is on the boundary of the ball: ‖x − ai‖ = r for
0 ≤ i ≤ k. Then the system of equations we need to solve is

k∑
i=0

µi = 1;

‖x− ai‖ = r, for 0 ≤ i ≤ k;

x =
k∑
i=0

µia
i.

with the remaining points feasible.

23.8.5 Lemma. At a solution (x∗, r∗, µ∗) we have

‖x∗‖2 + r∗2 =
k∑
i=0

µ∗i ‖ai‖2.

Proof. Indeed, for the active constraints, the only ones with positive µ, we have

r2 = ‖x− ai‖2 = 〈x,x〉 − 2〈x,ai〉+ 〈ai,ai〉 for the i-th constraint. (23.8.6)

Now multiply the i-th equation by µi, and sum over i using (23.8.3), to get

r2 = 〈x,x〉 − 2〈x,
m∑
i

µia
i〉+

m∑
i

µi〈ai,ai〉.

We get, using (23.8.4) to substitute out
∑m

i µia
i,

r2 = −‖x‖2 +
n∑
i=0

µi‖ai‖2,

as claimed.
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We know that there must be at least one active constraint (indeed, at least two,
as we shall see later), so k ≥ 1. By changing coordinates we place the first point
at the origin (call it a0). The remaining k points ai (numbered from 1 to k) cor-
responding to active constraints are linearly independent by Theorem 18.2.21. So
the n× k matrix whose columns are the ai:

A =
[
aij
]
, where i is the column index,

has rank k and (23.8.4) can be written

x = Aµ. (23.8.7)

The fact that the first point is the origin, and the constraint is active, says that r2 =
‖x‖2. Subtracting that equation from the other equations in (23.8.6) expressing
that the constraints are active gives

ai
T
x =

‖ai‖2

2
,

something that can be seen via elementary plane geometry. Grouping these equa-
tions all in one matrix equation we get

ATx = b, where b is the vector
(‖ai‖2

2

)
.

Replace x by its value given in (23.8.7) to get

ATAµ = b.

Because n is at least as large as k, andA has maximal rank, Proposition 13.3.3 tells
us that the k×k symmetric matrix is positive-definite and therefore invertible. This
allows us to solve for µ. Then (23.8.7) gives us the center x, and finally r2 = ‖x‖2,
so we have all the variables.

It remains to check that the remaining (non-active) points are feasible.
The weakness of this method is that we have to try various combinations of

active points to determine which one yields the solution.
This can be set up systematically in a way that resembles the construction of

regular simplices in Example 18.3.24.
For the n + 1 points ai, let dij denote the distance between ai and aj . Pick

two points for which this distance is maximum, and let c1 be the midpoint of the
segment they form. Then the ball N r1(c1), where r1 = dij/2 contains the two
points ai and aj , and the constraint is effective. If all the remaining points are in
N r1(c1), we are done. Otherwise pick a third point ak such that the distance to c1
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is maximum. By the argument given in Example 18.3.24 we can find a new center
c2 and a new radius r2 > r1 so that the three points are effective constraints for the
ball. Continuing in this way, we can arrive at the unique solution on the first try.

This also shows that any number of active constraints between 2 and n is pos-
sible.

23.8.8 Exercise. Generalize what is done, by considering m distinct points ai,
1 ≤ i ≤ m, in Rn. As before, the goal is to find the closed ball of minimum radius
containing the points.

Hint: First, you can throw out any point that is in the convex hull of the remain-
ing points: why? It is easy to reduce to the case the points generate the ambient
space, so that you can assume that the first n + 1 points are affinely independent.
Then proceed as in the previous example.



Lecture 24

Quasiconvexity and Optimization

Quasiconvex functions generalize convex function. They have a simple and nat-
ural definition (24.1.1). We study them in the same way as convex functions, by
successively adding differentiability requirements. Unlike convex functions, quasi-
convex functions need not be continuous. After an extended example §24.5 show-
ing that the internal rate of return is a quasiconcave function: Proposition 24.5.4,
we conclude in §24.6 with a short account about the minimization of quasiconvex
functions.

24.1 Quasiconvex functions

At the end of §21.1, we noted that quasiconvex functions are exactly those func-
tions whose sublevels sets are convex. This could be used as a definition. We will
take a different starting point, so that our definition is parallel with the definition for
convex functions. The characterization by sublevel sets becomes Theorem 24.1.12.

24.1.1 Definition. A function f : S ⊂ Rn → R is quasiconvex1 if

• The domain S of f is convex;

• For any two points x1 and x2 in S, and for all λ, 0 ≤ λ ≤ 1 we have:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)}. (24.1.2)

If the second property is strengthened by adding: For any two points x1 and x2 in
S with f(x1) < f(x2), and any λ, 0 < λ < 1, we have:

f(λx1 + (1− λ)x2) < f(x2), (24.1.3)
1Other references for quasiconvex function are [10] p. 95 and [5], p. 135.
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then f is strictly quasiconvex.
The function f is quasiconcave (resp. strictly quasiconcave) if−f is quasicon-

vex (resp. strictly quasiconvex).

24.1.4 Theorem. Convex functions are quasiconvex. Indeed, they are strictly qua-
siconvex.

Proof. It is enough to show that (21.1.2) implies (24.1.2) which is clear. Another
proof would be to combine Theorem 21.1.15 and Theorem 24.1.12 below. The last
statement is an exercise for the reader: look at Exercise 21.1.8.

Quasiconvexity, like convexity (see Theorem 21.2.1), can be checked on lines:

24.1.5 Theorem. A function f from the convex set S ⊂ Rn is quasiconvex if and
only if for every line L meeting S the restriction fL of f to L ∩ S is quasiconvex.

The proof is identical. In some books, the following definition is used:

24.1.6 Definition. Let f be a function defined on a convex set S ⊂ Rn. For any
line L in Rn intersecting S, let fL be the restriction of f to the interval SL = S∩L.
If SL contains two distinct points x0 and x1, we can write fL = f(x0+t(x1−x0),
for t varying on an interval I containing [0, 1]. If SL contains just one point x, then
of course fL(x) = f(x).

Then f is unimodal on S, if for any line in Rn, fL either

1. is weakly monotonic on SL, meaning that it is either weakly increasing,
so that fL(s) ≤ fL(t) for all s < t in I , or weakly decreasing, so that
fL(s) ≥ fL(t) for all s < t in I;

2. or changes direction exactly once, in the following way: there is a value t0 in
the interval such that for all t < t0, fL is weakly decreasing, so that fL(t) ≥
fL(t0), and for all t > t0, fL is weakly increasing, so that fL(t0) ≤ fL(t).

Notice that the definition does not depend on how SL is parametrized: exam-
ine what happens when you interchange x0 and x1, for instance. This definition
is somewhat unsatisfactory because it does not deal with the situation where fL
changes direction in the opposite way: starting out by weakly increasing, and then
weakly increasing. This means we do not have a name for the corresponding con-
cept for quasiconcave functions. If needed, we could call it reverse unimodal. In
any case, we have the

24.1.7 Theorem. A function f defined on a convex set S is quasiconvex if and only
if it is unimodal.
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24.1.8 Exercise. Prove this by comparing the definitions of quasiconvexity and
unimodality.

Because of this theorem, quasiconvex functions are sometimes called unimodal:
see [10], p. 95. This makes it easy to show that quasiconvex functions need not be
continuous.

24.1.9 Example. The function f on the interval [−1, 2] given by

f(x) =


1, if −1 ≤ x < 0;
0, if 0 ≤ x < 1;
1, if 1 ≤ x ≤ 2.

is obvious unimodal and therefore quasiconvex. Yet it is not continuous, so it is not
convex

24.1.10 Exercise. Establish which step functions are unimodal.

If Item (2) in Definition 24.1.1 never occurs, then the function f is said to be
quasilinear or quasimonotone. Obviously such a function is both quasiconvex and
quasiconcave. Indeed, the only functions that are both quasiconvex and quasicon-
cave are quasilinear, just as the only functions that are both convex and concave
are linear.

Quasiconvex function can have inflection points, as shown in Example 24.1.11.
This makes the analysis of its critical points more difficult than those of convex
functions.

24.1.11 Example (A quasiconvex functions with an inflection point). .
Let f(x) = x3 − 3x2 + 4x. Its first derivative has no real roots, so f ′(x)

increases on R. Its second derivative 6x− 6 is zero at x = 1, where it passes from
negative to positive, so f(x) is concave on (∞, 1) and convex on (1,∞). However
since it is unimodal it is quasiconvex.

-1 1 2 3

-5

5

10
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The argument shows that any cubic whose derivative has no real roots is quasi-
convex (and quasiconcave, too). It also applies to cubics where the first derivative
has a double root.

24.1.12 Theorem. A function f : S ⊂ Rn → R is quasiconvex if and only if its
sublevel sets Sc are convex for all c ∈ R.

Proof. First assume f is quasiconvex. Take two points x1 and x2 in Sc, so that
f(x1) ≤ c and f(x2) ≤ c. Then by (24.1.2) any point λx1+(1−λ)x2, 0 ≤ λ ≤ 1,
on the segment [x1,x2] satisfies

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2} ≤ c,

so it is in Sc as required.
Now assume all the sublevel sets Sc are convex. Take any two points x1 and

x2 in S, and let c be the bigger of f(x1) and f(x2). Then any point on the segment
[x1,x2] joining x1 and x2 is in Sc by convexity of Sc, so (24.1.2) is satisfied.

Here are some additional properties of quasiconvex functions that extend some
of the examples of convex functions given in §22.3.

24.1.13 Theorem. Composition: assume the functions h : R → R and g : Rn →
R can be composed, with f(x) = h(g(x)). Then f is quasiconvex if h is nonde-
creasing and g is quasiconvex.

Let {fα} be a collection (perhaps infinite) of convex functions, all defined on
an open convex set S. Then F (x) = supα fα(x) is quasiconvex.

Proof. The first statement follows immediately from Definition 24.1.1. For the
second statement, let Sαc be the sublevel set of level c for the function fα. Then the
sublevel set Sc of level c of F is

Sc =
⋂
α

Sαc .

As the intersection of convex sets, by Theorem 18.1.15 it is convex, so F is quasi-
convex by Theorem 24.1.12.

24.1.14 Example. Consider the function f(x1, x2) = −x1x2 restricted to the pos-
itive quadrant x1 ≥ 0 and x2 ≥ 0. Then the sublevel set Sc is given by −x1x2 ≤ c
in the positive quadrant, or x1x2 ≥ −c. So Sc is the entire quadrant when c ≥ 0.
When c < 0, it is the set above a branch of the hyperbola x2 = −c/x1, which is
convex as we saw in Exercise 22.6.18. Theorem 24.1.12 says f(x) is quasiconvex.
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Yet it is not convex: For example it fails the second derivative test for convexity.
Its Hessian is the constant matrix [

0 −1
−1 0

]
so its characteristic polynomial is λ2−1. Thus it has one positive and one negative
eigenvalue.

In the next three sections, we make increasingly stringent regularity require-
ments on f : first we assume that it is continuous, then that it is C1 and finally that it
is C2. In each case we replace f by its restriction to a line segment, and use single
variable calculus to get the desired result. We use the following notation:

24.1.15 Notation. Here is how we reduce to the single variable case. We already
used something similar in Definition 24.1.6. Given two points x0 and x1 in the
convex domain S of f , we restrict to the line segment Σ joining the two points.
Write v = x1 − x0. We parametrize Σ by

xt = (1− t)x0 + tx1 = x0 + tv for 0 ≤ t ≤ 1.

The parametrization is set up so that the notation xt is consistent at the end points
t = 0 and t = 1 and each point in the segment is expressed as a convex combination
of x0 and x1. Then let the function g of a single variable t ∈ R be:

g(t) = f(x0 + tv) = f(xt), 0 ≤ t ≤ 1.

We write gx0x1 if we need to emphasize the segment it comes from. Usually we do
not.

If f(x) is C1, then by the chain rule:

g′(t) = 〈∇f(x0 + tv),v〉 = 〈∇f(xt),v〉;
g′(0) = 〈∇f(x0),v〉;
g′(1) = 〈∇f(x1),v〉.

and if f(x) is C2, writing F (x) for the Hessian of f at x:

g′′(t) = vTF (x0 + tv)v = vTF (xt)v;

g′′(0) = vTF (x0)v;

g′′(1) = vTF (x1)v.
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24.2 Continuous Quasiconvex Functions

If the function f is continuous, we can slightly weaken Condition 24.1.2 needed
for quasiconvexity. This technical result can be skipped.

24.2.1 Theorem. A continuous function f(x) is quasiconvex on S if and only if for
x0 and x1 in S, with f(x0) < f(x1), we have

f(λx1 + (1− λ)x0) ≤ f(x1). (24.2.2)

Proof. The condition is necessary, since by hypothesis max{f(x0), f(x1)} =
f(x1). To show sufficiency, we need to consider the case f(x1) = f(x0) and
establish (24.2.2) in that case. We reduce to a single-variable calculus lemma.

24.2.3 Lemma. Let g(t) be a continuous function on the closed interval [0, 1] ⊂
R, such that g(0) = g(1) = c. Assume that for all r and s in [0, 1] such that
g(r) < g(s), then g(t) ≤ g(s) for all t in the segment bounded by r and s. The
lemma applies when r < s and when s < r.

Then for any t ∈ [0, 1], g(t) ≤ c.

Proof. Suppose not. Then there is a s ∈ (0, 1) with g(s) = d > c. Since g is
continuous, by the intermediate value theorem g takes on all values between c and
d on the interval (s, 1), (and on the interval (0, s), though we do not use that fact.).
So pick a r ∈ (s, 1) with g(r) = e, c < e < d. Then since g(0) = c, g(s) = d,
g(r) = e and 0 < s < r, the hypothesis is violated.

The theorem follows from the lemma by restricting to the segment [x0,x1]
using the usual function g(t) = f(x0 + t(x1 − x0)). The lemma shows that
whenever f(x0) = f(x1) = c, f only takes on values ≤ c at points between x0

and x1, which is exactly what we had to prove.

24.3 Continuously Differentiable Quasiconvex Functions

Assume f is C1. Then we have the following result2

24.3.1 Theorem. A continuously differentiable function f(x) is quasiconvex if and
only if for all x0 and x1 in S with f(x0) ≤ f(x1) we have

〈∇f(x1),x1 − x0〉 ≥ 0. (24.3.2)

2Due to Arrow and Enthoven ([2]), and occasionally called the fundamental theorem of quasi-
convex functions: [1], p. 446.
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In terms of the function g = gx0x1 of 24.1.15, the expression in (24.3.2) is
g′(1).

Proof. First we assume f is quasiconvex. If ∇f(x1) = 0, there is nothing to
prove: we have equality in (24.3.2). At a point where ∇f(x1) is not the zero vec-
tor,∇f(x1) is the normal vector to the level set of f of level c = f(x1) at x1. Thus
the hyperplane passing through x1 with normal vector∇f(x1) is a supporting hy-
perplane to the convex sublevel set Sc. By Theorem 16.3.6, since f is continuous,
Sc is closed. Now x0 is in Sc. Thus Corollary 18.6.4 applies: in fact it shows we
have strict inequality in (24.3.2), so we are done.

Next we show that (24.3.2) is a sufficient condition for quasiconvexity. Assume
that for any pair of points x0 and x1 in S with f(x0) ≤ f(x1), (24.3.2) is satisfied.
The C1 function g(t) from 24.1.15 on the segment [x0,x1] has a maximizer t∗, 0 <
t∗ < 1, by the Weierstrass theorem, and g′(t∗) = 0. To show that f is quasiconvex,
we must show that g(t∗) ≤ g(1) = f(x1). Assume not. Then g(t∗) > g(1).
Since g is continuous, the mean value theorem gives a t1, t∗ < t1 < 1, and
g′(t1) < 0. Then (24.3.2) fails on the segment [x0,x0 + t1v], since the derivative
computations at the end of 24.1.15 show that the expression on the left-hand side
of (24.3.2) is g′(t1). Obviously t1 can also be chosen so that g(t1) > g(1), so that
f(x0) ≤ f(x0 + t1v), so we have our contradiction.

The first part of the proof shows:

24.3.3 Corollary. Let f(x) be a differentiable function on an open set S. Assume
f is quasiconvex. Then for all x0 and x1 in S such that f(x0) ≤ f(x1) and such
that ∇f(x1) 6= 0, we have

〈∇f(x1),x1 − x0〉 > 0.

24.4 C2 Quasiconvex Functions

Finally we assume that f is twice continuously differentiable. We write F (x) for
the Hessian of f at x.

24.4.1 Theorem. Assume f(x) is a C2 function on the open convex set S.

• The Necessary Condition. Assume f(x) is quasiconvex. Then for all x ∈ S,
and all vectors v ∈ Rn such that 〈v,∇f(x)〉 = 0, vTF (x)v ≥ 0.

• The Sufficient Condition. Assume that for all x ∈ S, and all vectors v 6=
0 ∈ Rn such that 〈v,∇f(x)〉 = 0 , vTF (x)v > 0. Then f is quasiconvex.
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Proof. As usual, we reduce to the one-variable case. We fix a point x ∈ S and a
non-zero direction v at x. Then we get a line x + tv, as t varies in R, and this
line intersects S in an open interval I that contains t = 0, since x ∈ S and S is
open and convex. All line segments in S can be obtained in this way. By scaling v
we may assume that x + v is in S. We will use this later. Consider the restriction
f(x + tv) of f to the interval I , for x ∈ S. To show that f is quasiconvex is to
show that for each choice of x ∈ S and v the function f(x + tv) is quasiconvex,
as noted in Theorem 24.1.5.

First we establish the necessary condition. For the composite function g(t) =
f(x+tv) of one variable t, the hypotheses say that when g′(t) = 0, then g′′(t) ≥ 0.
Indeed, if g′′(t) < 0, then g has a strict local maximum at x, and this contradicts
Theorem 24.1.7.

Now on to the sufficient condition. It implies that if g′(t) = 0, then g′′(t) > 0,
showing that g has a strict minimum at t. Thus all critical points are strict minima,
so the restriction of f to the line is unimodal and therefore quasiconvex. Thus f
itself is quasiconvex.

As already noted, a quasiconvex function can have inflection points. Take one
that has an inflection point at a critical point. Such a function will not satisfy
the sufficient condition. A simple example is f(x) = x3. It is unimodal so it is
quasiconvex, and yet it fails the sufficient condition at x = 0. On the other hand
the function f(x) = −x4 satisfies the necessary condition, since the only time the
hypothesis is met is when x = 0, in which case the second derivative is 0. And yet
f(x) = −x4 is obviously not quasiconvex on any interval containing the origin.

Here is a variant of the sufficient condition in this theorem: it eliminates the
strict inequality when f has no critical points. This result is due to Otani [49]. It
gives a beautiful variant for quasiconvex function of Theorem 22.2.1.

24.4.2 Theorem. Assume that f is defined on an open convex set S, and that the
gradient ∇f(x) of f is non-zero at every point x ∈ S. Then for every x ∈ S, the
(n − 1) × (n − 1) symmetric submatrix F⊥(x) of the Hessian F restricted to the
orthogonal complement of ∇f(x) exists. Then F⊥(x) is positive semidefinite for
all x ∈ S if and only if the function f is quasiconvex.

Proof. We introduced F⊥(x) in (17.7.2). The necessity of the condition for qua-
siconvexity is the necessary condition of Theorem 24.4.1, so there is nothing to
prove.

To establish the sufficient condition, we show that any sublevel set Sc of f
is convex. By Theorem 21.1.15 this establishes that f is quasiconvex. Since the
gradient of f is never 0, we can apply the results of §17.7 at any point x∗ ∈ S.
Assume f(x∗) = c. Then in a small enough neighborhood of x∗, by the implicit
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function theorem the level set can be written xb = g(xf ). Here the xf are the n−1
free variables, and xb is the remaining variable: the bound variable.

The tangent space Tx∗ to f(x) = c at the point x∗ is given by
n∑
i=1

∂f

∂xi
(x∗)(x− x∗) = 0.

as we learned in §17.3. This expresses it as the orthogonal complement of the
gradient ∇f(x∗) at x∗. Thus in our usual notation for hyperplanes (see Example
18.1.7), Tx∗ is written H∇f(x∗),c.

We will show that Tx is a supporting hyperplane to Sc at x. Then Corollary
18.6.12 tells us that Sc is convex.

Pick a point x∗ with f(x∗) = c.

24.4.3 Lemma. As long as the parametrization of the level set by the function
g(xf ) remains valid in a neighborhood of x∗, the graph of g, for values of the free
variables close to xf , lies in the negative half-space H−∇f(x),c.

Proof. We use (17.7.2), and the interpretation of F⊥ as the restriction of F to the
tangent space, so that by hypothesis F⊥ is positive semidefinite along the graph of
g. Thus if we orient the x1 axis so that ∇f(x∗) has positive coordinates in that
direction, then the graph of g is concave and therefore lies below Tx∗ - meaning on
the opposite side of∇f(x∗).

To finish the proof, we show that the sublevel set Sc is the intersection over
all x in S satisfying f(x) = c of the half-spaces H−∇f(x),c. This will show Sc is
convex.

So suppose not: pick any point x0 in Sc, and assume that x0 lies in the positive
half-space H+

∇f(x1),c
for some x1. As usual form the function g(t) (nothing to

do with the implicit function) equal to f(x0 + t(x1 − x0)). It clearly reaches a
maximum strictly greater than c at a point t0 ∈ (0, 1). At that point, the level curve
must be tangent to the line x0 + t(x1− x0). A moment’s thought will tell you that
the sublevel set cannot be convex there: in fact it is concave locally.

We conclude with a theorem of Arrow-Enthoven (Theorem 4 of [2]), originally
proved many years before the previous theorem from which it now follows.

24.4.4 Corollary. Assume f(x, y) is C2 and defined on the positive quadrant. Also
assume that the partial derivatives fx and fy are both positive at every point
(x0, y0) in the first quadrant. Consider the expression

f2xfyy − 2fxfyfxy + f2y fxx. (24.4.5)
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The function f is quasiconcave if and only if this expression is everywhere non-
positive.

Proof. Because the partials are not zero, f has no critical points and Theorem
24.4.2 applies. The expression in (24.4.5) divided by f2x is the Hessian of f re-
stricted to the tangent lines of the critical points, as we saw in (17.5.9).

Since f2x > 0, the assumption that (24.4.5) is positive is equivalent to the
Hessian being positive. So simply multiplying f by −f we can apply the theorem,
so −f is quasiconvex and f is quasiconcave. This is the bordered Hessian.

24.4.6 Remark. This corollary has an interesting economic interpretation. We
think of f as the utility function of a consumer, where x and y represent the quan-
tities of two goods between which the consumer can choose. Then the level curves
of f(x, y) are the indifference curves of the consumer.

24.5 Example: the Internal Rate of Return

The internal rate of return will provide us with an example of a quasiconcave func-
tion f , so a function such that −f is quasiconvex. Thus f : S ⊂ Rn → R
is quasiconcave if and only if its domain S is convex and if the superlevel sets
Sc = {s ∈ S | f(x) ≥ c} are convex for all c ∈ R.

Let x = (x0, x1, . . . , xn) denote the cash flow in dollars of an investor over
n equally spaced time intervals. By convention xi positive means the investor
receives money, negative means the investor dispenses money. We assume that x0
is negative. The interest rate r over the entire period is assumed to be positive and
constant. At time 0, when the investor invests x0 dollars, the present value of the
cash flow is, by definition:

PV (x, r) = x0 +
n∑
i=1

xi
(1 + r)i

. (24.5.1)

We assume:

x0 < 0, as already mentioned, and
n∑
i=0

xi > 0. (24.5.2)

Each inequality delimits an open half-space, so that the intersection C of these two
half-spaces in Rn+1 is convex by Theorem 18.1.15.

In terms of the function PV , (24.5.2) says that PV (x, 0) =
∑n

i=0 xi > 0,
and for large enough r, PV (x, r) < 0, since the limit of PV (x, r) as r → ∞
is x0. Since the function PV (x, r) is continuous as a function of r alone (just
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check (24.5.1)), this means, by the intermediate value theorem, that for each fixed
x ∈ Rn+1, there is a positive interest rate r that yields PV (x, r) = 0.

There might be several such r, since our hypotheses given by (24.5.2) do not
guarantee that for all x the function PV (x, r) is a decreasing function of r.

24.5.3 Example. Assume that n is odd, and let y = 1/(1 + r), so that (24.5.1)
becomes a polynomial of degree n in y:

P (y) =
n∑
i=0

xiy
i.

We can let y vary from 0 (corresponding to an infinite interest rate r) to 1, corre-
sponding to r = 0. We can easily arrange for P (y) to have several roots between
0 and 1. Take n− 1 numbers ti, 0 < t1 < t2 < · · · < tn−1 < 1 and set

P (y) = (y − t1)(y − t2) . . . (y − tn−2)(y − tn−1)2,

so this polynomial has all its roots real, between 0 and 1, and exactly one double
root tn−1. We let xi be the coefficient of degree i of P (y). Then P (0) = x0
is negative because n is odd, and P (1), the sum of the coefficients, is positive,
because all the roots are smaller than 1. So this polynomial, for any choice of the
ti as above, meets the requirements (24.5.2), and yet PV (x, r) is not a decreasing
function of r.

For each x denote by IRR(x) the smallest positive interest rate that makes
PV (x, r) = 0. Thus IRR is a function of the cash flow x, given implicitly, called
the internal rate of return of the cash flow x. Is r(x1, . . . , xn) locally a differ-
entiable function of x? We could hope to prove this using the Implicit Function
Theorem 17.6.6. Example 24.5.3 shows that this will not work in general. Indeed,
because of the double root corresponding to IRR(x), the partial derivative with
respect to r at this x is 0.

Thus the IRR is a value function: For each cash flow x, it is an optimum value
for the remaining variable r. Thus we are not too surprised to find:

24.5.4 Proposition. The internal rate of return IRR(x) is a quasiconcave function
on C.

Proof. Fix a real number c. Then notice:

IRR(x) ≥ c ⇐⇒ PV (x, r) > 0, for all r such that 0 ≤ r < c. (24.5.5)

This gives a description of the superlevel set Sc of IRR(x) that we now exploit.
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For a fixed number r, the set Vr = {x ∈ Rn+1 | PV (x, r) < 0} is an
open half-space: indeed (24.5.1) is linear in the xi. Recall that open half-spaces
are convex. Now take the intersection of all the Vr for 0 ≤ r < c. This is a
(uncountably infinite) intersection of half-spaces. Such an intersection is convex
by Theorem 18.1.15. Then intersect with the convex set C: this is convex. This
intersection is the set of x ∈ C satisfying the right-hand side of (24.5.5), so it is
the superlevel set Sc of the function IRR. The convexity of all the Sc says that
IRR is quasiconcave.

24.6 The Optimization of Quasiconvex Functions

Quasiconvex functions form a broader class of functions than convex functions so
they are harder to minimize. We record just two results. First, much of Theorem
22.4.1 remains, since it relies only on the convexity of the sublevel sets, which
is still true for quasiconvex functions. The proof is the same as in the convex
case. Note that a quasiconvex function could have a local minimum that is not a
global minimum: for instance a step function. However if you require that the local
minimum be strict, this cannot happen.

24.6.1 Theorem. Let f be a quasiconvex function defined on the open convex set
S. Then if f has a strict local minimum at x1, it has a global minimum there. The
set of points M ⊂ S where the global minimum of f is attained is either empty or
convex.

As already noted, the analog of Theorem 22.4.8 is false for quasiconvex func-
tions.

Now a second result for C1 quasiconvex functions. Note that this result only
applies when the minimizer is not in the interior of S, because in the interior, a
necessary condition to be a minimizer in that ∇f(x0) = 0, which cannot happen
in the theorem below.

24.6.2 Theorem. A sufficient condition for x0 to be a global minimizer of the
quasiconvex C1 function f on the feasible set S is that

〈∇f(x0),x1 − x0〉 > 0, ∀x1 ∈ S,x1 6= x0. (24.6.3)

Proof. Once again we reduce to a segment by the methods of Notation 24.1.15. So
we write v = x1−x0, g(t) = f(x0+ tv). Then the expression in (24.6.3) is g′(0),
as we have already noted.

Compare this to Corollary 22.4.4, which treats the analogous question when
f is convex. Our hypothesis here is stronger, since we require strict inequality,
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and we only have a sufficient condition, not a necessary condition. The issue once
again is that f might have inflection points, which need to be excluded.

24.6.4 Exercise. Let P be a polytope in Rn, and let f(x) be a continuous quasi-
convex function on P . By the Weierstrass Theorem 16.2.2 f(x) has a maximum
on P . Show that it has a maximum at an extreme point of P , namely a vertex of
the polytope in a minimal representation.

Hint: Let c be the maximum value of f at the extreme points of P . Determine
Sc using the fact that it is convex.
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Linear Optimization



Lecture 25

Linear Optimization and Duality

In linear optimization both the objective function and the constraints are linear.
The previous lecture allowed us to describe the feasible set of any linear optimiza-
tion problem. Using those results, we show that a minimizer, if one exists, to the
most important linear optimization problems occurs at one of the finite number of
extreme points of the convex feasible set. This reduces the problem to the exami-
nation of the values of objective function at a finite number of points—finite, but
potentially very large, so a systematic way of testing the extreme points is needed.
That is the simplex method, to be studied in Lecture 27.

Here we focus on the Duality Theorem 25.5.1, which associates to any linear
optimization problem a second apparently unrelated problem. In reality the two
problems are closely connected, and are generally solved in tandem. After the du-
ality theorem we deal with the Equilibrium Theorem 25.6.1, which introduces the
notion of complementary slackness. §25.7 shows how the duality theorem and the
equilibrium theorem show the path to the simplex method, to be studied in Lec-
ture 27. Next we show how these two results allow us to find a simple expression
for the “shadow price”.

25.1 The Problem

We start by defining a linear optimization problem. As usual we only deal with
minimization.

First, the objective function f is linear. We work in Rn, and write

f(x) = c1x1 + · · ·+ cnxn = cTx, (25.1.1)

for a n-vector c of constants and a n-vector of variables x = (xj), 1 ≤ j ≤ n,
always pairing the running index j with n.
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Next, all the constraints are affine, so each one describes either an affine hy-
perplane

a1x1 + · · ·+ ajxj + · · ·+ anxn = b, (25.1.2)

or an affine half-space

a1x1 + · · ·+ ajxj + · · ·+ anxn ≥ b (25.1.3)

The number of constraints is denotedm. The running index iwill be associated
with m. We denote the subset of (1, . . . , i, . . . ,m) of indices i where we have an
inequality in the constraint by I.

Finally, some (usually all) of the variables xj are constrained to be non-negative.
We denote the subset of (1, . . . , j, . . . , n) of indices j where xj is constrained to
be non-negative by J . So

xj ≥ 0, for j ∈ J . (25.1.4)

We could absorb these constraints into the inequality constraints (25.1.3), but it is
usually better to handle them separately, as they indicate that the corresponding
variables only make sense when they are nonnegative.

We allow a mixture of equality and inequality constraints. By adding slack
variables, as we saw in §19.7 , one can always reduce an inequality constraint to an
equality constraint. For simplicity we will usually only consider the situation where
there are either only equality constraints (other than the positivity constraints), or
only inequality constraints, and leave it to you to see that any linear optimization
problem can be reduced to one of these.

Thus we have several different kinds of linear optimization problems, depend-
ing on the structure of the constraint set. We studied all possible constraint sets in
§19.6, 19.7 , and 19.8.

We give names to the two most important linear minimization problems, the
ones with constraint set studied in §19.6 and 19.7.

First we list the problem one always reduces to in order to do computations.

25.1.5 Definition. The asymmetric, or canonical1 minimization problem is:
Minimize cTx subject to the constraints Ax = b and x � 0.

Secondly, the problem that is the most pleasant to handle theoretically, because
its associated dual has the same form as itself, as we will see in Definition 25.3.9.

25.1.6 Definition. The symmetric or standard2 minimization problem is:
Minimize cTx subject to the constraints Ax � b and x � 0.

1Called standard in [42] and [10], p. 146; but canonical in [24], p. 75, [23] p. 14,[22], p. 61, and
[7], p.144. The name canonical seems more traditional, so we will stick with it.

2Called canonical in [42]; inequality form in [10], p. 146; and standard in in [24], p.74, [23] p.
12, [22], p. 61, and [7], p.140.
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It is enough to understand the symmetric (standard) and asymmetric (canoni-
cal) problems to gain full understanding of the material.

In both cases A is an m × n matrix [aij ] of constants, and b an m-vector
of constants, called the constraint vector. The vector c is usually called the cost
vector and the goal is to minimize cost. Strict inequalities are never allowed in the
constraint set, because we want them to be closed sets. In these notes we require
that all the inequalities go in the ‘≥’ direction. This can always be achieved by
multiplying by −1 the inequalities that go in the other direction.

Since ai denotes the i-th row of A, we will also write ai · x = bi or ai · x ≥ bi
for the i-th constraint.

Here is the general case, building on the notation of Definition 19.8.1.

25.1.7 Definition. The linear minimization problem associated to the objective
function cTx, to the m × n matrix A = [aij ] and to the m-vector of constants b,
and to the indexing sets (I,J ) is

Minimize cTx subject to the constraints

• xj ≥ 0 when j ∈ J ,

• ai · x ≥ bi when i ∈ I,

• ai · x = bi when i /∈ I.

Thus in both the symmetric and asymmetric minimization problems J =
(1, . . . , n), while in the symmetric problem I = (1, . . . ,m), and in the asym-
metric problem I is empty.

The constraints define the feasible set F of the problem.

25.1.8 Proposition. The feasible set for any linear optimization problem (in par-
ticular for 25.1.5 and 25.1.6), if non-empty, is closed and convex.

Proof. Each one of the inequalities describes a closed half-space, and each equality
constraint describes a linear subspace . A closed half-space is both closed and
convex, as is a linear subspace. The set where all the inequalities are satisfied the
intersection of these closed and convex spaces, and therefore is either empty or
both closed and convex: see Theorem 18.1.15.

Does a linear optimization problem always have a solution? No. First of all,
the feasible set F might be empty. Even if the F is non-empty, the set of values
f(x) = cTx, for x ∈ F , could be unbounded negatively, so there is no minimum
value.

Here is a case where the answer is yes.
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25.1.9 Theorem. If the set F defined by the constraints in 25.1.7 is non-empty and
bounded, then any linear optimization problem with feasible set F has a solution.

Proof. The objective function is continuous, and it is defined on a closed set F .
Since F is bounded, it is compact, so by the Weierstrass Theorem 16.2.2 there is a
point x∗ ∈ F that is a minimizer for the objective function c · x.

Note that a linear optimization problem may have a solution even if the feasible
set is unbounded: e.g. Example 1.3.1.

In conclusion, we have established:

25.1.10 Theorem. A linear optimization problem falls into one of the following
three categories:

(e) its feasible set F is empty.
(u) F is non-empty but the objective function is unbounded on F , which itself

must be unbounded.
(f) F is non-empty and the objective function has a finite optimum value. This

is always the case if F is a non-empty and bounded set.

Next a general result building on convexity. The objective function, since lin-
ear, is a convex function, and we are studying it on a convex set F . Thus Theorem
22.4.1 holds. We use P to denote the feasible set of the problem. P is a polyhedron
in the affine space given by the equality constraints.

25.1.11 Theorem. Consider the objective function f(x) = 〈c,x〉 on P . Assume
f(x) attains its minimum value e on P , so that we are in case (f) of Theorem
25.1.10. Let Pe be the intersection of P with the affine hyperplane Hc,e, namely,
the locus of points x such that f(x) = e. Then

1. Hc,e is a supporting hyperplane3 for the convex set P , with P in the positive
half-space H+

c,e associated to the hyperplane.

2. Pe is convex and closed. It is the locus of minimizers for the optimization
problem.

3. Any extreme point of Pe is an extreme point of P ;

4. If Pe is compact, then it has extreme points by Minkowski’s Theorem 18.7.1.
Pick such an extreme point, call it x∗. Then x∗ is an extreme point of P , so
that f(x) has a minimizer x∗ that is an extreme point for the polyhedron P .

5. If Pe is a single point x∗, then x∗ is an extreme point of P .
3See Definition 18.6.10.
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We do not claim that Pe has extreme points. Indeed, by Exercise 18.7.10, this
will not be true without extra hypotheses. However for both the standard and the
canonical problems, we saw in Theorem 19.6.13 and Proposition 19.7.5 that there
are always extreme points.

Proof. For Item (1), note that for any ‘cost’ e, the intersection of the hyperplane
Hc,e with the feasible set P is the set of feasible points where the objective function
takes the value e. Hc,e divides Rn into two half-spaces. The normal vector c of
Hc,e points in the direction of increasing cost, and determines the positive half-
space H+

c,e.
The key point is that minimality of the objective function at x0 means that the

hyperplane Hc,e is a supporting hyperplane for the convex set F at x0, and F is
in the half-space H+

e . Indeed, to be a supporting hyperplane at x0 means that the
hyperplane passes through x0, so that the cost at x0 is e, and the fact that P lies in
H+
e means that the cost at any point of P is at least e.

Item (2): Because Pe is the intersection of the two closed and convex subspaces
P and Hc,e, it is closed and convex.

Item (3): To show that any extreme point of Pe is an extreme point of P use
Theorem 18.7.3. If p is extreme for Pe, there are n − 1 linearly independent
constraint hyperplanes hk in Hc,e, all active at p. These hyperplanes are the in-
tersection with Hc,e of constraint hyperplanes Hk in Rn, which are active at p.
Hc,e is another active constraint hyperplane, clearly linearly independent from the
previous ones, so we have n independent linearly independent active constraints to
P at p, showing that p is extreme for P .

Item (4) is an immediate consequence of Minkowski’s Theorem 18.7.1, and
item (5) is a special case of (4).

This theorem does not help us find the solution of a linear optimization prob-
lem. It just tells us what the set of all solutions looks like, assuming there is one
solution: it is a closed convex set, a fact that already follows from Theorem 22.4.1.

25.2 Basic Solutions

25.2.1 Remark. In this section we treat the asymmetric (canonical) problem 25.1.5.
We imagine that the problem comes from the symmetric problem 25.1.6 by adding
a slack variable 19.7.2 to each of the m constraint equation, so we denote the total
number of variables by n+m (called n previously). SoA is anm×(n+m) matrix
of rank m. The slack variables that were called zi are now noted xn+i, 1 ≤ i ≤ m.

First we analyze the relationship between the symmetric and the associated
asymmetric problems.
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We start with the symmetric linear optimization problem 25.1.6: Minimize
cTx subject to the constraints Ax ≥ b and x ≥ 0, where x is the n-vector of
unknowns, A is a given m × n matrix with m < n of rank m, and c and b are
vectors of length n and m respectively, as forced by the other dimensions.

We pass to the asymmetric problem given in Proposition 19.7.5, so we write,
in block notation (see §6.10), A′ = [A,−I], where I is the m×m identity matrix,
x′ = [x, z], so that x′ is an n + m vector with x′j = xj for 1 ≤ j ≤ n, and
x′n+i = zi, for 1 ≤ i ≤ m. We also write c′ for the n+m vector with c′i = ci for
1 ≤ i ≤ n and all the other entries 0. So we have a second minimization problem:

Minimize c′Tx′ subject to the constraints A′x′ = b and x′ ≥ 0.
The original problem and this problem are equivalent, in the following sense:

25.2.2 Theorem.

• The projection from Rn+m to Rn obtained by omitting the lastm coordinates
is a one-to-one map of the feasible sets, from the feasible set of the equality
problem to the feasible set of the inequality problem.

• The two problems are of the same type in the sense of Theorem 25.1.10.

• If they both have a finite minimum, then the minimum value is the same.
Furthermore a minimizer for the inequality problem is the projection of a
minimizer of the equality problem.

Proof. The first point is established in Proposition 19.7.5. The rest follows easily
from the fact that the cost c′n+i associated to each slack variable x′n+i is zero.

25.2.3 Example. We go back to Example 19.6.14, this time starting from the sym-
metric problem:

Minimize c1x1 + c2x2 subject to −x1 − 2x2 ≥ −6 and x � 0.
We multiplied the constraint by −1 to get the inequality in the right direction.

Our recipe for getting an asymmetric problem is to add a slack variable x3 ≥ 0,
make the constraint −x1 − 2x2 − x3 = −6, and keep the same objective function.
Thus in R3, if we think of the x3-axis as the vertical direction, the level sets of the
objective function are vertical planes. Thus we see geometrically why Theorem
25.2.2 is true in this case: the vertical lines of projection are contained in the level
sets of the objective function. Finally note that there are many asymmetric prob-
lems associated to a given symmetric problem: in this example we could make the
constraint −x1 − 2x2 − px3 = −6, for any positive number p.

So for the rest of this section we forget the symmetric problem, and focus on
the asymmetric problem, which we write as in Remark 25.2.1. Note that the rank
of A is m.
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By Theorem 19.6.13, if the feasible set F is non-empty, then a basic solution4

exists. By reordering the variables, we can assume that the m columns where the
basic solution is non-zero are the first ones, which allows us to write a vector of
variables x as a block vector (xB,xN ), where xB is an m-vector and xN an n-
vector. If x is basic, then it is written (xB,0), so in block multiplication notation

Ax = [AB, AN ]

[
xB
0

]
= ABxB = b (25.2.4)

Recall from Definition 18.3.17 that a positivity constraint xj ≥ 0, or an in-
equality constraint ai · x ≥ bi, is active at a point x∗ if the inequality becomes an
equality at x∗, so that x∗j = 0 or ai · x∗ = bi. Otherwise it is slack.

Here is a summary of what we know about the asymmetric problem:

25.2.5 Theorem. Consider the asymmetric problem 25.1.5.

1. Its feasible set F is non-empty if and only if b is in the cone CA generated by
the columns of A. If F is non-empty, F has extreme points, which are finite
in number. The basic solutions of Ax = b and x � 0 are the extreme points
of F .

2. If Problem 25.1.5 has a solution, namely a vector x0 in F such that cTx0 is
minimal for all x ∈ F , then there is a solution x1 that is basic.

Proof. The statement about the non-emptiness of F is immediate from Defini-
tion 19.3.1 of the finite cone CA. The equivalence of basic solutions and extreme
points is Theorem 19.6.13, and the existence of basic solutions comes from The-
orem 19.4.1, which says that a finite cone is the union of its basic subcones. The
finiteness of the extreme points follows from Corollary 18.7.5.

Item (2) follows from Theorem 25.1.11 and Theorem 19.6.13. From Theorem
25.1.11, item (1), we see that the objective function 〈c,x〉 assumes its minimum
value e at a point x0 at which Hc,e is a supporting hyperplane for the convex set
F .

We need to find a basic solution on the hyperplane Hc,e, meaning a solution
with at most m non-zero coordinates. We get a new minimization problem by
adding the (equality) constraint corresponding to Hc,e. There are now m+ 1 con-
straints (unless the new constraint is a linear combination of the previous ones, in
which case no further work is necessary) and the cost function is constant on the
entire feasible set F1 = F∩Hc,e of the new problem. So we do not need to consider
the cost function, and simply apply Theorem 19.4.1 to find a basic element.

4See Definition 19.6.11.
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This theorem reduces the computation of the minimum of the cost function
on the feasible set to a search through the finite number of extreme points of the
feasible set F . However, since a system corresponding to a matrix of size m ×
n could have as many as

(
m+n
m

)
extreme points, this is not an efficient search

technique even for reasonably small numbers. The great discovery that made the
search for the optimum solution efficient is the Simplex Method, which is covered
in Lecture 27.

25.2.6 Example. We continue with Example 25.2.3 considered as a asymmetric
problem. There are three extreme points for the feasible set, since in the constraint
x1 + 2x2 + x3 = 6 the coefficients of all the xj are non-zero. Indeed, as we noted
in the closely related Example 19.6.10, the extreme points are the three points
(6, 0, 0), (0, 3, 0) and (0, 0, 6). If the objective function is c1x1 +c2x2 +c3x3, then
the minimum is the smallest of the three values 6c1, 3c2, 6c3.

25.2.7 Example. We transform Example 1.3.1, a symmetric minimization problem
into the associated asymmetric problem, for which the matrix of constraints is

A =

[
1 2 −1 0
2 1 0 −1

]
and b =

[
4
5

]
.

The cost is cT = (1, 1, 0, 0).
We want to find the extreme points of the feasible set. There are potentially

as many as 6 such, since we choose 2 out of 4 columns. However since there are
exactly as many extreme points as for the associated symmetric problem, where
there are only 3 extreme points, most of the potential candidates are not extreme
points. Why not? Because they are not feasible, meaning that they are not in the
first octant. For example, the last two columns of A form a basic submatrix. The
basic solution associated to this submatrix is (0, 0,−4,−5) which is not feasible.
In the same way, columns 1 and 3 form a basic submatrix. The associated basic
solution is (5/2, 0,−3/2, 0), which again is not feasible.

The minimum occurs at the vertex (2, 1) of the feasible region, and is equal to
3.

We will consider more complicated examples later. See Example 25.6.7.

25.3 A Necessary and Sufficient Condition for a Minimum

In this section we consider linear optimization problems where all the constraints
are inequalities. This includes the symmetric problem 25.1.6. If you want, just



25.3. A NECESSARY AND SUFFICIENT CONDITION FOR A MINIMUM 382

imagine that we are dealing with that case. The techniques used apply to the gen-
eral problem, as Theorem 25.3.17 shows. We use Corollary 19.5.3 of the Farkas
Theorem to give a necessary and sufficient condition for a feasible point x∗ to be
a minimum. The key ideas of linear optimization appear in this section, which
should be studied carefully.

Thus we consider the optimization problem:

Minimize cTx subject to the constraints Ax � b, (25.3.1)

for a m × n matrix A, with no additional positivity constraints. These con-
straints defines the feasible set F . If the problem is the Symmetric Problem 25.1.6,
then the matrix A contains the n× n identity matrix as a submatrix of rows.

25.3.2 Definition. Given a point x∗ in F , let I(x∗) be the collection of indices of
constraints i, 1 ≤ i ≤ m, that are active at x∗, so that 〈ai,x∗〉 = bi for i ∈ I(x∗).

25.3.3 Theorem. Let x∗ be a feasible point for (25.3.2). Then x∗ is a minimizer
for the objective function cTx on F if and only if there is a y∗ � 0 in Rm, with
y∗i = 0 for all i /∈ I(x∗), and y∗TA = cT .

25.3.4 Example. This example illustrates Lemma 25.3.5 below. We are in R2,
with three constraints x1 ≥ 0, x2 ≥ 0 and x1 + 2x2 ≤ 1. So the three constraint
vectors, the rows of A, are a1 = (1, 0), a2 = (0, 1), and a3 = (−1,−2), and b =
(0, 0,−1). The minus signs in the last constraint occur because we are required
to write the constraints with a ‘≥’ sign, so we multiply the constraint by −1. The
first two constraints are active at the origin, our x∗. The objective function is c · x,
where we leave c unspecified. For an arbitrary vector z ∈ R2, write x∗ + εz. We
ask for which z is x∗ + εz feasible for small enough ε > 0. Evaluating on the first
constraint gives 〈a1, εz〉 = εz1 ≥ 0, so z1 ≥ 0, and on the second constraint gives
z2 ≥ 0. Evaluating on the third constraint gives εz1 + εz2 ≤ 1, and by taking ε
small enough, no condition is imposed on z. Thus x∗ + εz is feasible precisely
when z � 0.

Now if x∗ is a minimizer, then evaluating the objective function on any feasible
point should give a value greater than or equal to the value of the objective function
at x∗, which in this example is 0. Evaluate the objective function at x∗+ εz, where
z � 0, so that the point is feasible. We get εc · z. The question is: when is this
expression positive for all possible choices of non-negative z1 and z2? Clearly it is
necessary and sufficient that both c1 and c2 be non-negative. Thus the origin is a
minimizer on the first quadrant for c ·x if and only if the level lines of the objective
function have negative slope.
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Proof. Let q be the number of elements in I(x∗). Note that q is positive, since
otherwise x∗ is an interior point of the feasible set. An interior point cannot be a
minimizer of a linear function `, since ` has no critical points (unless it is constant).

We prove the theorem in two steps. First the =⇒ implication. We assume x∗

is a minimizer. We write an expression for all the feasible points near x∗. As usual
ai denotes the i-th row of A.

25.3.5 Lemma. The vector x∗ + εz is feasible, for a small enough positive ε, if
and only if z · ai ≥ 0 for all i ∈ I(x∗).

Proof. Take the dot product of x∗ + εz with ai. If the i-th constraint is not active
at x∗, by choosing ε small enough we can satisfy the i-th inequality for any z. If
the i-th constraint is active, the non-negativity of 〈ai, z〉 is necessary and sufficient
to satisfy the i-th constraint .

By hypothesis x∗ is a minimizer, so the value of the objective function at any
nearby feasible point x∗ + εz must be at least as large as the value at x∗, so

〈c,x∗ + εz〉 ≥ 〈c,x∗〉, which implies 〈c, z〉 ≥ 0.

Therefore by Lemma 25.3.5:

〈ai, z〉 ≥ 0, for all i ∈ I(x∗) implies 〈c, z〉 ≥ 0.

Now we get to the key idea of the proof. Let AI be the submatrix of A formed
by the rows of A with index i ∈ I(x∗), in other words, the active constraints.

Then we see:

For all z such that 〈z,ai〉 ≥ 0 for i ∈ I(x∗), then 〈z, c〉 ≥ 0. (25.3.6)

By Corollary 19.5.3 of the Farkas alternative applied to the transpose of AI ,
where z plays the role of y and c the role of b, the implication of (25.3.6) is
equivalent to the statement that there exist non-negative numbers yi, i ∈ I(x∗)
such that

c =
∑

i∈I(x∗)

yia
i.

Now let yi = 0, if i /∈ I(x∗). So we have an m-vector y � 0 with y∗TA = cT ,
and we are done.5

⇐= Now we prove the other (easier) implication. We are given a feasible x∗,
its collection I(x∗) of active constraints, and a y∗ � 0 in Rm with y∗i = 0 for all

5We will meet the condition y∗i = 0 if i /∈ I(x∗) again later in this chapter: it goes by the name
complementary slackness.
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i /∈ I(x∗) and y∗TA = cT . Our goal is to show x∗ is a minimizer. Let x be any
feasible vector, and let z = x− x∗.

For any i ∈ I(x∗), so that 〈ai,x∗〉 = bi, we have

〈ai, z〉 = 〈ai,x〉 − 〈ai,x∗〉 ≥ bi − bi = 0.

so in particular, since y∗i ≥ 0, y∗i 〈ai, z〉 ≥ 0.
For i /∈ I(x∗), we cannot control the sign of 〈ai, z〉. But since by hypothesis

the i-th coordinate of y∗ is 0, we have y∗i 〈ai, z〉 = 0.
Thus altogether,

cT z = y∗TAz ≥ 0

which in turn implies that cTx = cT z + cTx∗ ≥ cTx∗, so that x∗ is a minimizer
as required.

Thus the existence of a finite solution to any linear minimization problem with-
out equalities is equivalent to the non-emptiness of a set that looks like that the
feasible set of another optimization problem. Indeed, since y∗ is non-negative, the
equation ATy∗ = c in the theorem says that c is in the cone C generated by the
rows of A, so our conclusion is that C is non-empty.

Which optimization problem? The following corollary of Theorem 25.3.3 will
help us decide.

25.3.7 Corollary. With the notation of the theorem, we have

y∗Tb = y∗TAx∗ = cTx∗. (25.3.8)

Proof. By putting the constraints that are active at x∗ first, we can decompose A
and y∗ into two block submatrices of compatible size for multiplication (see §6.10),

A =

[
AI
AN

]
and y∗ =

[
y∗I
0

]
corresponding to the active constraints and the non-active constraints at x∗. We do
block multiplication y∗TA. Because of the zeroes in y∗, we get y∗TA = y∗I

TAI ,
and since AI corresponds to the active constraints at x∗, multiplying by x∗, we get
AIx

∗ = b. This gets us the left-hand equality in 25.3.8. Theorem 25.3.3 tells us
that y∗TA = cT , so multiplying by x on the right and using the first conclusion,
we get y∗Tb = y∗TAx∗ = cTx∗ as required,

Notice the symmetry. It suggests that the dual objective function is y · b. We
have two collections of non-negative variables x and y linked by the matrix A.
If we take the transpose of 25.3.8, the relationship is preserved. In the course of
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taking the transpose the roles of x and y are exchanged, as are those of b and c.
This suggests that there is a linear optimization problem in Rm to which Theorem
25.3.3 applies, and that yields our original problem back. This is indeed the case,
and this is the theory of duality of linear optimization, which we will study further
in §25.4 and §25.5 . Duality associates to any linear optimization problem (called
the primal) a second linear optimization problem called the dual. Then the dual of
the dual gives back the primal. The importance of the dual is that the solutions of
the dual give information about the original problem. The dual problem often has
a meaningful interpretation that sheds light on the original problem. We will see
this in the applications in Lecture 26.

For time being, let us just write down the dual problem in the special case of the
symmetric problem, so thatA contains the n×n identity matrix with corresponding
entries of b equal to 0. We revert to our old notation, so the identity matrix has
been removed from A.

25.3.9 Definition. The dual of the symmetric minimization problem 25.1.6 is the
symmetric minimization problem:

Minimize − yTb subject to −ATy � −c, and y � 0, (25.3.10)

or, which is equivalent (this is the form we will use most often):

Maximize yTb subject to yTA � cT , and y � 0. (25.3.11)

25.3.12 Remark. Note that the point y∗ in the statement of Theorem 25.3.3 sat-
isfies the constraints of the feasible set of the dual. This shows that if the primal
problem has a finite minimum, then the feasible set of the dual problem is non-
empty.

25.3.13 Exercise. Apply Theorem 25.3.3 to the symmetric dual problem 25.3.9,
and show that you get Problem 25.1.6 back.

This exercise explains why this is called duality: if you apply it twice, you
get the original problem back. Finally, this explains why we have called problem
25.1.6 the symmetric problem: Its dual is of the same form as itself.

25.3.14 Algorithm. Here is the algorithm for passing from the primal to the dual,
or from the dual to the primal in the case of the symmetric minimization problem.

• Replace a minimization problem by a maximization problem, and vice-versa;

• Act on the constraint matrix A by left multiplication (yTA) instead of right
multiplication (Ax), and vice-versa. This interchanges n and m. Another
way of saying this is: replace A by AT .
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• Make the optimization vector c the constraint vector b, and vice-versa.

• Reversal the direction of the inequality in the constraint equation: the ‘≥’ in
Ax ≥ b replaced by ‘≤’ in yTA ≤ cT .

25.3.15 Exercise. In R2, solve the optimization problem: maximize the function
f(y1, y2) = y2, subject to y � 0 and y1 + y2 ≤ 3. Formulate and solve the
associated primal problem (which is the dual of the dual).

25.3.16 Exercise. Write down the algorithm for passing to the dual when it is
written as (25.3.10).

Consider the following generalization of Theorem 25.3.3, keeping the same
notation as before, but adding a r × n matrix B and a r-vector d of equality con-
straints.

25.3.17 Theorem. Let x∗ be a feasible point for the problem:
Minimize cTx subject to Ax � b and Bx = d.

Then x∗ is a minimizer for the problem if and only if there is a
y∗ � 0 in Rm with y∗i = 0 for all i /∈ I(x∗),
w∗ in Rr,

such that y∗TA+ w∗TB = cT .

Note that there is no positivity constraint on w.

25.3.18 Exercise. Prove this theorem.

We also have the analog of Corollary 25.3.7.

25.3.19 Corollary. With the notation of the theorem, we have, using block matrix
notation: [

y∗T w∗T
] [b

d

]
=
[
y∗T w∗T

] [A
B

]
x∗ = cTx∗. (25.3.20)

25.3.21 Exercise. Prove this corollary.

25.4 The Duality Principle

We have already examined duality for the symmetric problem. Here we look at it
for the asymmetric problem and then we write down the general duality, and finally
we explain why these problems are paired. We also extend Corollary 25.3.19 to the
weak duality theorem below.
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25.4.1 Example (Dual of the Asymmetric Minimization Problem). We call prob-
lem 25.1.5 the primal. Its dual is

Maximize yTb subject to yTA ≤ cT (25.4.2)

There is no positivity constraint on the m-vector y.

25.4.3 Remark. As in the case of the symmetric optimization problem (see Re-
mark 25.3.12), in the case of the asymmetric problem them-vector w∗ in the state-
ment of Theorem 25.3.17 satisfies the constraints of the feasible set of its dual. The
matrix B and the vector d in the statement of Theorem 25.3.17 correspond to A
and b in (25.4.2). As in the symmetric case, this shows that if the primal problem
has a finite minimum, then the feasible set of the dual problem is non-empty.

Next we write down the dual problem for the general minimization problem
25.1.7, after writing down the algorithm used to get it.

25.4.4 Algorithm. For the general algorithm we modify Algorithm 25.3.14 by
adding two items and by modifying the last item.

• Interchange the indexing sets I and J .

• Require that yi ≥ 0 for i ∈ I.

• Reversal the direction of the inequality in the constraint equations: the ‘≥’
in
∑n

j=1 aijxj ≥ bi, for i ∈ I is replaced by ‘≤’ in
∑m

i=1 yiaij ≤ cj , for
j ∈ J .

25.4.5 Definition. The dual of Problem 25.1.7 is
Maximize yTb subject to the constraints

• yi ≥ 0 when i ∈ I,

•
∑
yiaij ≤ cj when j ∈ J ,

•
∑
yiaij = cj when j /∈ J .

25.4.6 Exercise. For the general linear optimization problem, show that Theorem
25.3.17 proves that there is a vector satisfying the constraints of the dual problem
if the primal problem has a finite minimum.

25.4.7 Remark. Why are the primal and dual paired? The duality is suggested by
the theorems and corollaries of §25.3. Then there is the statement, now checked
in all cases, that if the primal has a finite minimum (so that we are in case (f) of
Theorem 25.1.10), then the feasible set of the dual in non-empty (so that the dual
is not in case (e)). The next step is given by the following theorem.
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25.4.8 Theorem (Weak Duality). Assume that the feasible set Fp of the primal
minimization problem and the feasible set Fd of the dual maximization problem
are non-empty. Pick any x ∈ Fp and y ∈ Fd. Then

yTb ≤ cTx. (25.4.9)

Thus the minimum of the primal is bounded by the maximum of the dual, namely

max
y∈Fd

yTb ≤ min
x∈Fp

cTx (25.4.10)

In particular if one can find feasible x and y such that yTb = cTx, then x is a
minimizer and y a maximizer for their respective problems, and the minimum of
the primal is the maximum of the dual.

Proof. We write yTAx in two different ways. First as

yTAx = yT (Ax) =
m∑
i=1

yi
( n∑
j=1

aijxj
)

When i ∈ I, yi ≥ 0 and
∑n

j=1 aijxj ≥ bi, so yi
(∑n

j=1 aijxj
)
≥ yibi.

When i /∈ I,
∑n

j=1 aijxj = bi, so yi
(∑n

j=1 aijxj
)

= yibi.
Putting both cases together, we get

yTAx ≥ yTb. (25.4.11)

Now perform the matrix multiplications is the opposite order:

yTAx = (yTA)x =

n∑
j=1

( m∑
i=1

yiaij
)
xj

When j ∈ J , xj ≥ 0 and
∑m

i=1 yiaij ≤ cj , so
(∑m

i=1 yiaij
)
xj ≤ cjxj . When

j /∈ J ,
∑m

i=1 yiaij = cj , so
(∑m

i=1 yiaij
)
xj = cjxj . Putting both cases together,

we get
yTAx ≤ cTx. (25.4.12)

Combining (25.4.11) and (25.4.12) gives the desired conclusion.

25.4.13 Corollary. Combining Weak Duality with Remark 25.4.7, we see that if
the primal has a finite minimum (so we are in case (f)), then the dual has a finite
maximum. Furthermore the point in the dual feasible set found in Theorem 25.3.3
and Theorem 25.3.17 is a maximizer for the dual problem.



25.5. THE DUALITY THEOREM 389

Proof. The first statement is immediate, since weak duality says that the maxi-
mum of the dual is less than the minimum of the primal. The second follows from
the computation in Corollary 25.3.19, which is just a special case of weak duality
applied to the minimizer of the primal and a point in the dual that satisfies comple-
mentary slackness: see §25.6.

25.5 The Duality Theorem

We defined the notation of the primal problem and its dual problem in §25.4. Using
the notation of Theorem 25.1.10, we denote the possible outcomes for the primal
(ep), (up), (fp), and for the dual (ed), (ud), (fd).

For two unrelated problems there are 9 possibles outcomes. But for the primal-
dual pair there are only 4 outcomes, as the duality theorem states.

25.5.1 Theorem (The Duality Theorem). We assume that the primal problem is
the general problem 25.1.7, and its dual is therefore 25.4.5. Then we are in one of
four possible cases

1. If the primal or the dual problem has a bounded solution, then so does the
other one. If x∗ denotes a minimizer of the primal and y∗ a maximizer of the
dual, then

(y∗)Tb = (y∗)TAx∗ = cTx∗ (25.5.2)

so the minimum of cTx is equal to the maximum of yTb, as x and y range
over the feasible sets of the primal and the dual, respectively. This says that
outcome (fp, fd) can occur and that (fp, ed), (fp, ud), (ep, fd) and (up, fd)
cannot occur.

2. The feasible sets for both problems are empty. This is outcome (ep, ed).

3. The feasible set for the primal is empty, and the feasible set of the dual is
unbounded and allows for arbitrary large values of the objective function of
the dual, so that there is no finite maximum. This is outcome (ep, ud).

4. The feasible set for the dual is empty, and the feasible set of the primal is
unbounded and allows for arbitrary small values of the objective function of
the primal, so that there is no finite minimum. This is oucome (up, ed).

Note that cases (3) and (4) rule out outcome (up, ud), so all possible outcomes are
accounted for.

Case (1) is the only case with a solution for both the primal and dual, and in
actual problems one arrives there.
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25.5.3 Example. We minimize 3x1 +5x2, subject to the constraints x � 0 and the
constraint 2x1 + x2 ≥ 4. Thus n = 2 and m = 1. A quick sketch will convince
you that the minimum occurs at xT = (2, 0), so that the minimum value cTx is
6. What is the dual problem? A is the 1 × 2 matrix (2, 1), b is the number 4, y is
a number too, and cT = (3, 5). So the dual problem is to maximize 4y subject to
the constraint (2y, y) ≤ (3, 5). Only the first of these two constraints is active, and
the maximum occurs when 2y = 3, so that the maximal cost in the dual problem is
4 · 32 = 6, confirming the duality theorem in this case.

Proof of the duality theorem. If the feasible sets of both primal and dual are empty
(case 2), nothing more need be said. This case can occur.

Next suppose that the objective function of the primal problem takes values
cTx that get arbitrarily negative. Then weak duality says that the dual objective
function’s values yTb are smaller than any of the primal values, so there cannot be
any: thus the feasible set of the dual problem must be empty. We are in case (4) of
the duality theorem.

Reversing the roles of the primal and the dual, we see by a similar argument that
if the objective function of the dual problem takes values yTb that get arbitrarily
large, the feasible set of the primal is empty: we are in case (3).

Next we assume that both feasible sets are non-empty. By weak duality, if one
of the two problems has a finite optimum, then so does the other.

So all that is left to prove the full duality theorem is that y∗ · b ≥ c · x∗, the
reverse inequality to the one in the weak duality theorem. We have already done
this in Corollaries 25.3.7 and 25.3.19, since we have found a point y∗ in the dual
feasible set whose objective value y∗ · b is equal to the minimum value of the
primal objective function. Indeed, starting at a minimizer x∗ for the primal, we
found a feasible y∗ for the dual with y∗ · b = c · x∗.

We can say more for a basic minimizer x of the Asymmetric Problem (25.1.5).
Permute the columns of the matrix A so that the columns corresponding to the
basic variables come first. Then A is written in block matrix notation as [B,N ],
where B is invertible, and x is written as (xB,0). Let cB be the part of c matching
the columns of B. Then Ax = BxB , so (25.5.2) becomes

(y0)Tb = (y0)TBxB = cTBxB (25.5.4)

where y0 is a maximizer for the dual.

25.5.5 Example. We continue with Example 1.3.1, a symmetric minimization
problem with

A =

[
1 2
2 1

]
and b =

[
4
5

]
.
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We write the dual problem when the cost is cT = (1, 1). The minimum for the
primal problem in this case occurs at the vertex (2, 1) of the feasible region, and is
equal to 3.

The dual problem is to maximize 4y1+5y2, subject to y ≥ 0 and yTA ≤ (1, 1).
The three vertices of the feasible set of the dual are (0, 12), (13 ,

1
3), and (12 , 0). Check

the value of 4y1 + 5y2 at each vertex, we get 2.5, 3 and 2, so that the maximizer is
(13 ,

1
3) and the optimal values for the primal problem and the dual problem agree.

25.6 The Equilibrium Theorem

We give two versions of the Equilibrium Theorem: first for the symmetric problem,
and then for the asymmetric problem. It introduces the notion of complementary
slackness, which is very useful for non-linear optimization, where it is also known
as the Kuhn-Tucker condition, as we shall learn in Lecture 31.

We assume that both the primal and dual problems have finite solutions, so we
are in case (1) of the duality theorem.

The idea of the Equilibrium Theorem is easy to state informally: if x is a min-
imum for the primal problem, then there exists a maximum for the dual problem
satisfying complementary slackness, meaning that for any inequality constraint of
the primal (resp. dual) that is slack, the corresponding inequality constraint for the
dual (resp. primal) is active. In fact, the theorems of §25.3 start us off by construct-
ing for each minimizer a dual maximizer satisfying complementary slackness.

For the symmetric problem, this gives:

25.6.1 Theorem (The Equilibrium Theorem in the symmetric case). Let x be a
minimizer in the feasible set of the symmetric primal problem 25.1.6. Then any
maximizer y in the feasible set of the symmetric dual problem 25.3.11, satisfies
both pairs of complementary slackness conditions:
For any i, 1 ≤ i ≤ m,

• If (Ax)i > bi, then yi = 0.

• If yi > 0, then (Ax)i = bi.

For any j, 1 ≤ j ≤ n,

• If (yTA)j < cj , then xj = 0.

• If xj > 0, then (yTA)j = cj .

Conversely, if x and y satisfy these conditions, they are both optimizers.
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Proof. By the Duality Theorem, we know that x and y are both optimizers if and
only if

yTb = yTAx = cTx

For arbitrary feasible x and y we have

yTb ≤ yTAx ≤ cTx (25.6.2)

Writing this out in coordinates, the left-hand inequality gives
m∑
i=1

yibi ≤
m∑
i=1

yi(Ax)i,

where (Ax)i means the i-th row of the matrix product Ax. This can be rewritten
m∑
i=1

yi
(
(Ax)i − bi

)
≥ 0 (25.6.3)

Our constraints say that yi ≥ 0 and that (Ax)i − bi ≥ 0, so that (25.6.3) is the
sum of a product of non-negative numbers. Thus for the sum to be zero each term
in the sum must be zero. If bi < (Ax)i, the only way this strict inequality can be
transformed into an equality after multiplication by the vector y with non-negative
coordinates, is if the corresponding coordinate of y is 0, namely yi = 0. Going the
other way, if yi > 0 for some i, then the nonnegative quantity (Ax)i − bi must be
0. So the complementary slackness equations must be satisfied.

Similarly, transforming the right-hand inequality in (25.6.2), we get
n∑
j=1

(
cj − (yTA)j

)
xj ≥ 0

with all terms non-negative. If (yTA)j < cj , we only get equality after multipli-
cation by x if xj = 0 and conversely. So again, complementary slackness must be
satisfied.

25.6.4 Example. We illustrate the theorem by Example 25.5.3. There we found
that xT = (2, 0) is the unique minimum for the primal, and y = 3/2 the unique
maximum of the dual. The complementary slackness conditions must be satisfied.
Since m = 1, the only value for i is 1, and (Ax)1 = b1, since A = (2, 1) and
b = 4. Nothing to verify on this side. Since n = 2, there are two indices to check
on the other side, and when j = 2 we see that (yTA)2 = 3/2 < c2 = 5, which,
according to the Equilibrium Theorem implies x2 = 0, which is indeed the case.
Next, at the minimum x1 > 0, so we must have (yTA)1 = c1, or 2y = 3, as is the
case.
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25.6.5 Example. We continue with Example 25.5.5, setting the cost vector to cT =
(3, 1), and keeping A and b as before. The primal feasible region has the vertices
(0, 5), (2, 1), (4, 0), so, checking the cost at the three vertices, we see that the
minimum cost occurs at (0, 5) and is 5.

The dual problem is to maximize 4y1+5y2 on the set y ≥ 0, with y1+2y2 ≤ 3,
2y1 + y2 ≤ 1. In the first quadrant the second constraint is always more stringent
than the first (check this), and the vertices of the dual feasible set are (0.5, 0) and
(0, 1). The maximum occurs at (0, 1) and is 5. Thus the duality theorem is satisfied.

We check that complementary slackness holds. On the primal, the condition
given by the first row x1+2x2 ≥ 4 ofAx = b is slack, so complementary slackness
says that the solution for the dual must have its first coordinate y1 = 0, which is
indeed the case. x2 > 0 is slack, so we must have 2y1 + y2 = 1, as is the case.
Going in the other direction, we see that the condition on the dual problem given
by the first column of A is slack at the maximum (in fact, it is slack everywhere),
so that on the solution for the primal problem we must have x1 = 0. Again, we see
that this is the case.

25.6.6 Example. Continuing with Example 25.6.5, we now let the cost vector be
cT = (1, 4). The minimum for the primal problem occurs at x = (4, 0) and it is 4.
The constraints for the dual problem are y1+2y2 ≤ 1 and 2y1+y2 ≤ 4. The second
condition is always slack in the first quadrant, and the vertices of the feasible set are
(1, 0) and (0, 1/2). Since the objective function for the dual problem is b = (4, 5),
the maximum occurs at y = (1, 0) and is also 4, as per the duality theorem. The
second condition 2x1 + x2 ≤ 5 of the primal is slack at the minimum x = (4, 0),
so by complementary slackness we must have y2 = 0 at the maximum of the dual,
and indeed we do. The second condition 2y1 + y2 ≥ 4 is slack everywhere in the
first quadrant, so it is certainly slack at the maximum for the dual problem, so by
complementary slackness we must have x2 = 0 at the minimum for the primal,
and indeed we do. Next the first positivity constraint x1 > 0 is slack, so we must
have (yTA)1 = y1 + 2y2 = c1 = 1 at the maximum, and we do.

25.6.7 Example. We now work out a more complicated example. We take

A =

1 1 1
1 2 2
2 2 4

 and b =

 5
6
11


We first study the feasible set for x � 0, Ax � b. It is the intersection of the three
half-spaces given by Ax � b with the first quadrant. Thus we have 6 boundary
hyperplanes, of which we need to choose 3 to get a vertex. We could, in the worst
situation, get

(
6
3

)
, namely 20, vertices.
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How many vertices do we actually have? If we label the condition given by
setting (Ax)i = bi by (i), and the condition given by setting xj = 0 by [j], the 20
potential vertices can be written

(123)

(1)[12] (1)[13] (1)[23]

(2)[12] (2)[13] (2)[23]

(3)[12] (3)[13] (3)[23]

[1](12) [1](13) [1](23)

[2](12) [2](13) [2](23)

[3](12) [3](13) [3](23)

[123]

We first find the point where the three hyperplanes (Ax)i = bi, 1 ≤ i ≤ 3 in-
tersect. It is the potential vertex written (123) above. A linear algebra computation
shows it is the point with coordinates

(4, 1/2, 1/2)

which is in the first quadrant, so it satisfies all the other constraints and is feasible.
Next we intersect a fixed hyperplane (Ax)i = bi with any two of the boundary
hyperplanes of the first quadrant xj = 0. There are three ways of doing this for a
fixed i, so we get 9 potential vertices. For i = 1 we get the three potential vertices

(5, 0, 0), (0, 5, 0), (0, 0, 5).

To be feasible, they must satisfy the inequalities given by the second and the third
rows of Ax � b. The first two fail, but the last one is feasible and therefore a
vertex. For i = 2 we get the three potential vertices

(6, 0, 0), (0, 3, 0), (0, 0, 3).

The first one is feasible, and the last two are not. Finally for i = 3 we get the three
potential vertices

(5.5, 0, 0), (0, 5.5, 0), (0, 0, 2.75).

Here the second one only is feasible. The pattern here is that we have three points
on each coordinate axis, and only the one with largest non-zero coordinate is fea-
sible. In terms of our notation these are (1)[12], (2)[23] and (3)[13].

Next we turn to vertices that are the intersection of one equation xj = 0 with
two equations (Ax)i = bi. For each choice of j we get one new vertex. They
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are (5, 1/2, 0), (4, 0, 1) and (0, 4.5, 0.5), as you should check. These are [3](23),
[2](12) and [1](13).

The last potential vertex is the intersection of all the positivity constraints,
namely the origin. It clearly is not feasible so we have found all seven extreme
points of the polyhedron.

Given an objective function, say x1 + x2 + x3, so c = (1, 1, 1), we find the
minimum by just testing the function on all seven vertices. The minimum value
is 5, and it is attained at three vertices: (0, 0, 5), (4, 0, 1) and (0, 4.5, 0.5), namely
(1)[12], [2](12) and [1](13).

Given this objective function we can write the dual problem, and in particular
the dual feasible set, given in R3 with coordinates y1, y2, y3 by the positivity con-
ditions yi ≥ 0 and the constraints yTA � (1, 1, 1). The dual feasible polyhedron is
very simple: it has just four vertices: (0, 0, 0), (1, 0, 0), (0, 1/2, 0), and (0, 0, 1/4),
as an analysis similar to (but much easier than) the one above shows. It is compact
and the dual objective function 5y1 + 6y2 + 11y3 assumes its maximum 5 at the
vertex (1, 0, 0). The only slack equation for (1, 0, 0) is the constraint y1 ≥ 0: the
remaining five constraints are active. The constraint of the primal corresponding to
this slack constraint for the dual is x1+x2+x3 ≥ 5. As required by complementary
slackness, it is active for the three basic solutions of the primal.

25.6.8 Remark. In order to preserve geometric intuition in Example 25.6.7, we
did not pass to the associated asymmetric problem by adding three slack variables
and therefore transforming the constraint matrix A into a matrix A′ with 3 rows
and 6 columns:

A′ =

1 1 1 −1 0 0
1 2 2 0 −1 0
2 2 4 0 0 −1


Let’s connect the new (1)[23] notation used above into the language of basic

submatrices of A′, for any symmetric problem with n variables and m constraints.
To specify an extreme point, we need n linear equations. A certain number k ≤
m of them assert that k of the constraints ai · x ≥ bi are equalities, so that the
associated slack variables zi are 0; The remaining n − k of them assert that non-
negativity equations xj ≥ 0 are equalities, so k of the xj are 0. Thus in general
the notation (i1 . . . ik)[j1 . . . jn−k] gives first the indices of the slack variables zi
that are 0, followed by the indices of the original variable xj that are 0. Thus
the indices of the basic submatrix corresponding to this extreme point are all the
indices that do not appear on the list: as required there are m of them. Returning
to our example, the notation (1)[23] means that the first slack variable is 0, and x2
and x3 are 0. Thus the basic submatrix associated to this extreme point consists of
colums 1, 5 and 6.
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To summarize: in this example, we studied extreme points by studying the n
equations that vanish there, which in the method of basic submatrices we consider
the m variables that do not vanish. The remark shows how one passes from one
point of view to the other.

25.6.9 Exercise. In Example 25.6.7, modify c = (1, 1, 1) slightly so that the pri-
mal problem has only only one basic solution. Then find all the vertices of the dual
feasible set, and the maximizer dual vertex. Check complementary slackness.

25.6.10 Exercise. If all the entries of A, b and c are positive in the symmetric pri-
mal problem, prove that both the primal and the dual problems have finite optimal
solutions.

Hint: By the duality theorem, all you need to do is show that the feasible set of
the primal is non-empty and that the objective function is bounded on it.

Finally we turn to the asymmetric form of the equilibrium theorem.

25.6.11 Theorem (The Equilibrium Theorem in the asymmetric case). Let x be a
minimizer in the feasible set of the asymmetric primal problem 25.4.1. Then there
exists a y in the feasible set of the asymmetric dual problem 25.4.1, satisfying both
pairs of complementary slackness conditions:

For any j, 1 ≤ j ≤ n,

• If (yTA)j < cj , then xj = 0.

• If xj > 0, then (yTA)j = cj .

y is then a maximizer for the dual problem. Conversely, if x and y satisfy these
conditions, they are both optimizers.

Since there are fewer inequalities, there are fewer equations in complementary
slackness.

Proof. By the duality theorem, since the primal problem has a solution, the dual
does too, so that there is a y in the feasible set yTA ≤ cT that maximizes yTb.
Furthermore, by duality we have cTx = yTAx = yTb as before. So

0 = cTx− yTAx =

n∑
j=1

(
cj −

m∑
i=1

yiaij
)
xj (25.6.12)

Since y is feasible, yTA ≤ cT . This, written out in equations, is just

cj −
m∑
i=1

yiaij ≥ 0 for all j, 1 ≤ j ≤ n (25.6.13)
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The xj are all non-negative, so each term in the sum of the right-hand of (25.6.12)
is non-negative. But it sums to 0, so each term individually must be 0, so that for
each j, either xj = 0 or cj −

∑m
i=1 yiaij = 0.

25.7 Another Look at the Equilibrium Theorem

Here we see how the Duality Theorem and the Equilibrium Theorem guide us in
computing the solution of a linear optimization problem. As always when one
computes, we restrict to the asymmetric problem 25.1.5. We assume that A is a
m× n matrix of maximal rank m.

Pick any basic submatrix B of A. Thus B is an invertible m ×m matrix. For
convenience in explaining what follows, we permute the columns of A so that A
can be written in block notation as [B,N ], where N is a m × (n − m) matrix.
Also write c = (cB, cN ) and x = (xB,xN ), so the index B denotes the first m
coordinates, and the index N the last n−m coordinates, of each vector.

Define the equilibrium point x associated to B by

xB = B−1b , and xN = 0n−m. (25.7.1)

ThenAx = [B,N ](xB,xN ) = BB−1b+N0n−m = b, and c ·x = cB ·xB . Thus
x satisfies the equality constraints, and it is basic, in the sense that it has n − m
coordinates that are zero, but it is not necessarily feasible, which would require that
xB � 0.

Define the dual equilibrium point y associated to B by

yT = cTBB
−1. (25.7.2)

The vector y is not necessarily feasible for the dual problem, which requires that
yTA � cT . We have, computing with block matrices again,

yTA = cTBB
−1A = cTBB

−1[B,N ] = cTB[I,B−1N ] = (cTB, c
T
BB
−1N)

Thus for feasibility we need (cTB, c
T
BB
−1N) � cT . This is satisfied on the first m

coordinates, namely the coordinates corresponding to B (indeed, those constraints
are active at y), but not necessarily for the last n−m coordinates, where we need
cTBB

−1N � cN .

25.7.3 Exercise. Check that cTBB
−1N is a (n−m)-vector.

The following theorem now follows easily.
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25.7.4 Theorem. For the x and yT defined as above, we have

cTx = yTb (25.7.5)

If x is feasible for the primal, and yT is feasible for the dual problem, then by the
duality theorem both x and y are optimal.

Proof. Clearly Ax = BxB . Multiply (25.7.1) on the left by cTB:

cTBxB = cTBB
−1b

and (25.7.2) on the right by b:

yTb = cTBB
−1b

We get the same value, so if the equilibrium x and y are both feasible, the value of
the primal objective function at x is equal to that of the dual objective function at
y, so they are both optimal by the duality theorem.

Now we connect to the Equilibrium Theorem 25.6.11. The j-th inequality
constraint xj ≥ 0 of the primal is active at x for m + 1 ≤ j ≤ n. The j-th
inequality constraint y · aj ≤ cj is active for 1 ≤ j ≤ m. So complementary
slackness will necessarily be satisfied - as expected.

This suggests the outline of an algorithm for finding the minimizer of this op-
timization problem. Recall the classification of all linear optimization problems
given in Theorem 25.1.10.

25.7.6 Algorithm.

Step 1. Pick an m ×m submatrix B of A that is invertible. This means picking
m columns from n columns, so there are

(
n
m

)
ways of doing this. Since we

have assumed that A has rank m, we know we will be successful.

Step 2. Compute the equilibirum point x using (25.7.1). If it is feasible, so that
xB � 0, then go to Step 3. Otherwise go back back to Step 1, selecting a
new B that has not be tested yet. This could fail for all B, meaning that the
feasible set is empty. If it fails, we are done: we are in Case (e) of Theorem
25.1.10.

Step 3. We reach Step 3 when we have a basic submatrix B and its associated
equilibrium x that is feasible. Then compute y as in (25.7.2). If the dual
equilibrium y is not feasible for the dual problem, meaning that cTBB

−1N �
cN , then select a newB that has not be tested yet, one where the equilibrium
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x is feasible. This step could fail for all B. This means that the primal
function does not achieve a minimum on the feasible set, so that we are in
Case (u). If it succeeds, so we have a feasible dual equilibrium y, then for
that B, x is feasible for the primal and y is feasible for the dual, so Theorem
25.7.4 tells us that x is a minimizer for the primal and y is a maximizer for
the dual, and we are done. We are in Case (f).

What is missing in this outline is the order in which we choose the basic sub-
matrices. We want to choose them systematically in order to minimize the number
of basic submatrices we test. Since one of the most expensive (computationally)
parts of the algorithm is the inversion of B needed to compute x, we want the next
submatrix B′ we consider after B to have a determinant that is easy to compute
given that of B.

This suggests the fundamental step of the simplex algorithm. Assume we have
reached a submatrix B that consists of the columns aj1 , . . . ajm of A. The next
submatrix B′ we consider should have all the same columns as B, save one, which
should be new. Thus one column leaves B and one enters. Given this strategy, the
whole art of the simplex algorithm is in deciding which column enters and which
column leaves. Gaussian elimination makes it easy to compute the detB′ from the
computation of detB.

Here is an example with 2 rows and three columns, so that there at most three
basic submatrices to consider.

25.7.7 Example. Consider the feasible set:(
1 2 3
2 3 5

)
x =

(
5
7

)
, x ≥ 0

We wish to minimize 2x1 + x2 + x3 subject to these constraints. Find all the basic
feasible solutions to this problem.

Note that all three 2× 2 submatrices of A, which is

A =

[
1 2 3
2 3 5

]
have non-zero determinant, so they are basic.

For example, if we choose the last two columns we get

B =

[
2 3
3 5

]
and detB = 1.

Since

B−1 =

[
5 −3
−3 2

]
,
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we get

xB =

[
5 −3
−3 2

] [
5
7

]
= (4,−1)

so x = (0, 4,−1) and x is not feasible.
So we need to take another basic submatrix and repeat the computation.
It is left to you to check that the remaining two computations of x also give a

xB that is not positive, so that the feasible set of the primal is empty.

Now we modify this example by changing the bottom right entry of A, and
keeping everything else the same.

25.7.8 Exercise. The feasible set satisfies:[
1 2 3
2 3 4

]
x =

[
5
7

]
, and x � 0.

The goal is minimize the same objective function 2x1 + x2 + x3 on this feasible
set. Find all the basic feasible vectors. Graph the constraint hyperplanes and the
feasible vectors, and then determine the minimizer. Find the optimal dual vector
(y1, y2) and verify the complementary slackness conditions.

Partial Solution As in the previous example, we pick columns two and three:
We set up the usual notation:

B =

[
2 3
3 4

]
, detB = −1, and therefore B−1 =

[
−4 3
3 −2

]
In particular B is a basic submatrix. The solution of[

2 3
3 4

] [
x2
x3

]
=

[
5
7

]
is xB = (1, 1), so x = (0, 1, 1), which is feasible.

In this example, b = (5, 7) and c = (2, 1, 1), so cB = (1, 1) . So

yT = cTBB
−1 = (1, 1)

[
−4 3
3 −2

]
= (−1, 1)

Is this feasible? Yes, because as we saw above, the only constraint to check is

cTBB
−1N ≤ cN .

Now N is the unused column of A, so it is the vector (1, 2), and cN is the first
entry of c, which is 2. The left-hand side is therefore (−1, 1) · (1, 2) = 1, so the
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inequality is satisfied and y is feasible. Thus Theorem 25.7.4 tells us both x and
y are optimal. We check the symbolic computation that both sides of (25.7.5) are
equal:

2x1 + x2 + x3 = 5y1 + 7y2 = 2.

You should now check what happens for the remaining two basic submatrices.
Before doing the computation, you should ask yourself what the feasible set is. We
know it is non-empty, and it is the intersection of a line in R3 with the first quad-
rant. Show that the intersection is a segment, so its two end points are its extreme
points. The computation above shows that x = (0, 1, 1) is the end point where the
minimum occurs. Your computation for the remaining two basic submatrices will
show that one of the other x you find is the other end point, while the remaining
one will not be feasible.

25.8 Perturbations of b and Shadow Prices

In the asymmetric problem (see (25.4.1)), we let the constraint vector b vary. Just
as in §25.2, we call the number of variables n+m, so A is a m× (n+m) matrix.
We write Fb for the set of x � 0 such that Ax = b. Thus for each choice of b, Fb
is the feasible set for the associated problem.

Restrict to the subset V = {b ∈ Rm | Fb 6= ∅}: the b such that the Fb is
non-empty.

As b varies in V , and A and c remain fixed, we get a function v(b) of b,
called the minimum value function, or just the value function, for the problem. For
values of b ∈ V for which the objective function is bounded below, and therefore
the minimization problem has a bounded solution, let v(b) be the minimum of f
on Fb. For values of b ∈ V for which the objective function can take arbitrarily
negative values, we set v(b) = −∞. Let V0 ⊂ V be the locus of points where the
value function takes on finite values. We want to understand V0.

No matter what value is given to b, the feasible set Fd of the dual problem
remains the same. Indeed, Fd = {y ∈ Rm | yTA � c}.

25.8.1 Theorem. The set V0 is empty when Fd is empty. It is the closed convex
cone CA ⊂ Rm when Fd is non-empty. In the latter case the value function v(b)
is a convex function on CA. Indeed, it is the maximum of a finite number of affine
functions, so it is piecewise linear.

Proof. The Duality Theorem 25.5.1 tells us that the primal problem has a finite
solution only when the dual problem does. In particular the feasible set Fd of
the dual problem must be non-empty, which we now assume. Next we write the
condition that says that the feasible set of the primal is non-empty. By Definition
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19.3.1 of the finite cone CA, it is precisely that b ∈ CA. This is a closed and
convex set by Proposition 19.3.4 and Corollary 19.4.5. The Duality Theorem says
that when both the feasible sets of the primal and the dual are non-empty, both
optimization problems have finite solutions, so we are done.

Next we prove that the value function v(b) is convex on CA. Pick a b ∈ CA.
By the Duality Theorem, the dual linear problem at b has a finite solution on Fd,
which is the polyhedron of y ∈ Rm such that ATy � c. This polyhedron has
a finite number N of extreme points yk, 1 ≤ k ≤ N . The maximum value of
the dual program, which is attained at an extreme point, is therefore maxk yk · b.
For each k, the function yk · b is linear in the variables b, so that the maximum
value of the dual program is the maximum of a finite number of linear functions.
Each linear function is convex, so by Example 22.3.11, the maximum function is
convex. In fact it is piecewise linear, which just means that it is the maximum of
a finite number of linear functions. By the Duality Theorem, the maximum of the
dual function is the minimum of the primal function, so that v(b) is convex and
piecewise linear.

We generalize this to arbitrary convex minimization in Theorem 23.6.3.
Because v(b) is a convex function, it is continuous. It is differentiable precisely

at the points b where the maximum of the yk·b is attained for only one yk, meaning
that the minimizer is unique. We can compute this derivative.

25.8.2 Theorem (Envelope Theorem). Assume the point b is chosen so that the
value function v(b) is differentiable at b, meaning that the minimum cost is only
attained for one extreme point yk. Then

∂v

∂bi
(b) = yki for 1 ≤ i ≤ m,

where yki is the i-th coordinate of yk, or, equivalently

∇v(b) = yk.

We generalize this result to the general convex minimization problem in Theo-
rem 23.7.7.

Thus the maximizer yk for the dual problem at b is the gradient of the mini-
mum cost as a function of the constraint vector b. For this reason the dual variable
yki is called either the marginal cost or the shadow price of bi.

25.8.3 Example. We continue with Example 25.5.5, where the value of b is (4, 5).
We now vary b.
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We add the slack variables x3 and x4 to get the problem is asymmetric form.
The extended 2× 4 matrix A′ is

A′ =

[
1 2 −1 0
2 1 0 −1

]
The cone CA is generated by the four vectors a1 = (1,−2), a2 = (2,−1), a3 =
(−1, 0), and a4 = (0,−1). It is not hard to see that CA is all of R2. Furthermore
the feasible set of the dual is non-empty by Example 25.5.5, so that the problem
will have a finite minimum for all choices of b. You should be able to see this
directly by looking at the graphs in Exercise 1.3.1. Note that b0 = 2a1 + a2.
When b0, we saw that the minimizer x∗ is (2, 1, 0, 0)

By Theorem 25.3.9, the dual problem is to maximize b1y1 + b2y2 subject to
yTA ≤ (1, 1, 0, 0), or

y1 + 2y2 ≤ 1

2y1 + y2 ≤ 1

y1 ≥ 0

y2 ≥ 0

This polyhedron has four vertices: (0, 0), (1/2, 0), (0, 1/2), and (1/3, 1/3) as we
saw in Example 25.5.5. So for a given b, the answer to the maximization problem
is the maximum of the function evaluated at the four vertices, in other words the
maximum of the four values 0, b1/2, b2/2, b1/3 + b2/3. As we saw in Example
25.5.5, the maximum when b = (4, 5) is b1/3 + b2/3 = 3. It is now easy to draw
the regions where each maximum occurs.

We can go through the same analysis for the symmetric form of linear opti-
mization.

More interestingly, let us hold A and b fixed in the symmetric minimization
problem, and let c vary. We can write the dual of the symmetric problem as:

Minimize −bTy subject to −ATy ≥ −c and y ≥ 0.
Thus c has become the constraint vector, so we can apply Theorem 25.8.1 to

this minimization problem to conclude that its value function w(c) is convex. But
because of the introduction of minus signs, this is minus the value function we are
really interested in, and that function is concave. Thus we have shown:

25.8.4 Theorem. The set of vectors c such that Problem (25.4.1) has a finite solu-
tion is empty when the feasible set Fd of the dual problem is empty. It is a closed
convex cone when the feasible set of the dual is non-empty. In the latter case, the
value function v(c) is a concave function. Indeed, it is piecewise linear.
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One could of course prove this directly. First notice that at a point where the
minimizer x∗ is unique, in a neighborhood of the minimizer the minimum c · x∗
is a linear function with coefficients x∗ of the variable c. At a point where there
are several minimizers x1, . . . , xN , since one is looking to minimize cost, in a
neighborhood one chooses the minimum of the functions c · xk, 1 ≤ k ≤ N . The
linear functions c · xk of c are concave and their minimum is concave, so we are
done.

25.8.5 Exercise. Let

A =

[
1 2
3 1

]
and let b and c be positive 2-vectors that are allowed to vary. For each fixed value
of b write the minimum of the symmetric minimization problem for the cost vector
c.

We will revisit these issues later in the course.



Lecture 26

Applications of Linear
Programming

We start by discussing the two applications of linear optimization that were intro-
duced in the first chapter: the diet problem and the transportation problem. Then
we cover two applications of the Farkas Alternative: one to probability matrices,
and the other to positive matrices. We mention Brouwer’s Theorem, an impor-
tant result in topology that is much used in economics. Finally we discuss matrix
games, another application of linear programming.

26.1 The Diet Problem

We continue the discussion of the Diet Problem, started in §1.3, in light of what we
learned about linear optimization in Lecture 25. In the terminology of that lecture,
we are dealing with the Symmetric Problem 25.1.6, as we now see. We use the
same variable names as before.

26.1.1 Example (The Diet Problem).
The indices j, 1 ≤ j ≤ n represent n different foods.
The indices i, 1 ≤ i ≤ m represent m different nutrients.
The constant cj is the cost of one unit of the j-th food.
The constant aij is the amount of the i-th nutrient in one unit of the j-th food.
So if a person eats x = (x1, . . . , xn) units of the different foods, then

ai1x1 + · · ·+ aijxj + · · ·+ ainxn

units of the i-th nutrient are consumed at cost

cTx = c1x1 + · · ·+ cjxj + · · ·+ cnxn
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We assume that n ≥ m, so there are at least as many foods as nutrients. Finally
we introduce additional constraints: every day, the consumer wants to consume
at least bi units of nutrient i. We refer to bi as the minimum daily requirement
of nutrient i. So we have m constraints that we write as Ax � b, and n further
non-negativity constraints x � 0.

The goal is to minimize the cost, subject to the minimum daily requirement
constraints and non-negativity of the xj .

We will assume that the bi and cj are all positive: both perfectly reasonable
assumptions. We are guaranteed that all the aij are non-negative, but we cannot
say more than that. Still, by a generalization of Exercise 25.6.10, the feasible set
F is non-empty, and the minimum cost always exists.

Next we add m slack variables to the constraint equations, in order to have the
asymmetric problem for computations. Then the vector x has n + m coordinates,
the first n of which are the original x, and the remaining ones the slack variables,
which also must be non-negative. The matrix A gets replaced by the compound
matrix

[
A− I

]
and the vector c by

[
c 0

]
where there are m trailing zeroes.

First let us consider the special case where the minimum cost hyperplaneHc,e0

in Rn+m meets the feasible set F at just one point. Then the minimization problem
has just one minimizer x∗. This solution is basic, so it has at most m non-zero
coordinates. We let B be the corresponding m×m submatrix of A. As always, it
picks outm columns ofA, and the corresponding indices j we call basic. The non-
basic coordinates of x∗ are zero, so the positivity constraints are active there. If the
solution is non-degenerate (see Assumption 27.1.1), then the positivity constraints
are not active for any of the basic coordinates. If we go back to considering the
problem as the symmetric problem, when are the other constraints active? Only if
all the basic coordinates correspond to food variables (and none to slack variables).

Let n0 be the number of basic coordinates of x∗ corresponding to foods, and
m− n0 be the number of coordinates of x∗ corresponding to slack variables, Thus
n0 ≤ m. Not only the consumer need not eat more different foods than the num-
ber of nutrients, but in fact, to achieve minimality, cannot eat more than m foods
(because we assumed the solution was unique).

In some circumstances, the minimum price hyperplane will meet the feasible
set in more than a point, so that the consumers has options in choosing their mini-
mum cost diet.

Next the dual problem: Maximize yTb subject to yTA � c and y � 0.
How can we interpret this? The m-vector y is indexed by the nutrients, and

it gets compared via the dimensional-less matrix A to prices of food. Therefore it
can only be the price of nutrients. The vector b is the daily minimum requirement
for nutrients, so yTb is the price of the daily minimum requirement of nutrients,
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and so the problem is to maximize price.
Therefore this problem is being looked at from the point of view of a store

owner who sells the nutrients individually, and whose goal is to maximize sales.
The constraint y � 0 just says that the prices must be non-negative. The constraint
yTA � c is more interesting. A unit of the j-th food contains aij units of the j-th
nutrient, at cost cj . The equivalent cost for this amount of nutrients at the store is∑m

i yiaij . The constraint says that the prices for the nutrients needed to supply the
nutrient-equivalent of one unit of food j cannot be more that the cost of one unit
of food j. Otherwise it would be cheaper for the consumer to buy the food directly
rather than buy the nutrients.

So what do our duality results tell us? The first good news is that the ‘dimen-
sion’ of yTb and cTx are the same: they are both currencies, let us say dollars.

Then weak duality theorem tells us that yTb ≤ cTx, meaning that the store
owner cannot sell the nutrients needed to supplied the daily minimum requirement
at a price higher than that of any basket of foods supplying the minimum daily
requirement. If you go back and reread what the constraints on the dual problem
say, this is not surprising.

More surprisingly, duality tells us that the store owner can price the nutrients
so that the total price for the nutrients supplying the daily minimum requirement is
the best allowed by the weak duality theorem: equality can be achieved.

Next let us think about complementary slackness. We return to the original
symmetric problem, so that all the variables x correspond to foods. Assume we
have located a minimum x∗ for the primal and a maximum y∗ for the dual. First
we ask what complementary slackness tells us when x∗j > 0: the dual equation
must be an equality y∗ · aj = cj , which, since the column vector aj and the price
cj are known, gives us one condition on y∗. On the other hand, if ai · x∗ > bi,
which means that the basket of food producing the minimum cost produces more
than enough of nutrient i, then the store owner cannot charge anything for that
nutrient: y∗i = 0.

On the other hand, looking at it from the dual end: if y∗i > 0, then ai · x∗ = bi,
so that the minimum cost diet produces exactly the right amount of nutrient i.
Finally, if y∗ · aj < cj , meaning that the unit price charged for nutrients at the
maximizer y∗ is strictly less than the price of one unit of food j, the x∗j = 0, so
food j does not appear in the minimum diet.

Notice that if there are several minima for the primal problem, then every max-
imum of the dual must satisfy complementary slackness with all the minimal. You
should check what this means on an example.

26.1.2 Example. Go back to Example 25.5.5, where we now change c. Take
c = (1, 2), so that the minimum cost level line goes through two vertices of the
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feasible polyhedron of the primal problem: (2, 1) and (4, 0). The minimal cost is
4.

Once again let us place ourselves at a minimizer x∗ for the primal, and ask
for the number n0 of foods that are consumed. We have already seen that no
more than m foods need be consumed. Can anything more be said? One cannot
have n0 = 0, which would mean the consumer eats nothing. Other than that, all
other possibilities occur, assuming that there is at least one food containing all the
nutrients: a perfect food. Indeed, if the cost of all the other foods is much higher
than that of the perfect food, the minimum daily requirement can be fulfilled at
minimum cost just by eating the perfect food. You should check that all other
possibilities for n0 can occur, depending on the relative prices of the foods. A food
gets eliminated from the diet if its price is too high relative to the other prices.

Finally we consider our perturbation results from §25.8. We start at a collection
of prices c, where the diet problem admits a unique minimizer x∗. Now we assume
that the price of each food is changed by a small amount - small enough so that the
minimum cost hyperplane for the problem still intersects the feasible set in just one
point: the same vertex as before.

We write the new cost vector cn as the old cost vector c plus a small change
vector ∆c:

cn = c + ∆c

Remember that ∆c is small enough so that the vertex where the unique minimizer
occurs does not change. As the prices change by ∆c, the minimum cost changes
by ∆c · x.

The results of §25.8 also tell us what happens when we perturb b.

26.1.3 Exercise. In example 1.3.1, choose prices for the two foods so that the
minimum occurs at the center vertex, meaning that the consumer is able to consume
the minimum amount of the two nutrients. Determine how much you can let the
prices vary before the minimum jumps to another vertex, and see how much the
total cost changes.

26.1.4 Exercise. Now construct a diet example with 3 foods and 2 nutrients, such
that the entries of the 2× 3 matrix A are all positive and A has rank 2. Choose b in
the cone generated by the columns ofA. As we noted earlier, the feasible set of this
problem could have as many as

(
5
3

)
= 10 extreme points. Construct an example

with as large a number of extreme points as possible.
Hint: make sure the two constraint hyperplanes each intersect the coordinate

axes on their positive part. In other words, let (ax, ay, az) be the coordinate of
the intersection of the first constraint hyperplane with the x, y and z axes, and
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similarly let (bx, by, bz) be those of the second constraint hyperplane. Assume
ax < bx, ay < by, az > bz . Note the reversal of direction in the last inequality.

Draw this, draw the feasible set, and count the number of extreme points.

See Strang, [67], §8.3 p.412, Lax [39], p.175-6, and Luenberger [42], Example
1 p. 81 for other presentations of the dual problem to the diet problem.

26.2 The Transportation Problem

We first prove the following theorem: see Exercise 1.4.13

26.2.1 Theorem. The (m + n) × mn matrix A giving the m-supply equations
and the n-demand equations of the canonical transportation problem has rank
m+ n− 1.

26.3 An Application of the Farkas Alternative to Proba-
bility Matrices

In §18.8 we looked at doubly stochastic matrices. Here we consider the bigger set
of probability matrices, where we only require that the column sums be 1. Here is
the definition:

26.3.1 Definition. A square n× n matrix P = (pij) is called a probability matrix
(or a stochastic matrix) if

1. pij ≥ 0 for all i, j.

2. The sum of the elements of each column of P is equal to 1:

n∑
i=1

pij = 1 for all j, 1 ≤ j ≤ n.

26.3.2 Example. Any permutation matrix (see Definition 6.5.1 is a probability
matrix.

26.3.3 Definition. A n-vector x = (xi) is a probability vector if

1. xi ≥ 0 for all i.

2. The sum of the entries is equal to 1:
∑n

i=1 xi = 1.
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26.3.4 Proposition. If P is a n × n probability matrix, and x an n-probability
vector, then y = Px is a probability vector.

Proof. Since yi =
∑n

j=1 pijxj , and all the terms in the sum are ≥ 0, it is clear that
yi ≥ 0.

Furthermore

n∑
i=1

yi =

n∑
i=1

n∑
j=1

pijxj =

n∑
j=1

xj

n∑
i=1

pij =

n∑
j=1

xj = 1

Thus multiplication by a probability matrix transforms a probability vector into
another probability vector.

26.3.5 Definition. Given a probability matrix P , a probability vector x is a steady
state for P if Px = x.

So a steady state is a non-negative eigenvector of P with eigenvalue 1. Does
every probability matrix have a steady state? If P is symmetric, the answer is easily
seen to be yes: just take x = (1/n, 1/n, . . . , 1/n). Since P is symmetric, its row
sums are one, so that Px = x. If P is not symmetric, the answer is still yes, as we
now see

26.3.6 Theorem. Every probability matrix P has a steady state x.

Proof. A matrix with column sums all equal to 1 has an eigenvalue λ = 1. Indeed
the n × n matrix P − I has all column sums equal to zero, so it is singular. If
x is a non-zero element in the nullspace of P − I , then x is an eigenvector with
eigenvalue 1. It is not clear that the associated eigenvector is real. If it is, by scaling
its length, we can guarantee that the sum of its entries is 1, but it is harder to see
why the entries should all be positive. We get this as a corollary of the Farkas
Alternative.

To apply the Farkas theorem we need a matrix A and a vector b. We choose
for A the (n + 1) × n matrix whose top n × n part is P − I , and whose bottom
row is the unit vector uT = (1, 1, . . . , 1). We write this in block form as

A =

[
P − I
uT

]
For b we take the (n+ 1)-vector with b1 = b2 = · · · = bn = 0 and bn+1 = 1.
The Farkas alternative says that
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• either there is a solution x ≥ 0 to the equation Ax = b. This says that
Px = x and

∑n
i=1 xi = 1. This is exactly what we want.

• or (the alternative) there is an (n+ 1)-vector y with yTA ≥ 0 and yTb < 0.

We must show that the alternative is impossible. Write the coordinates of y as
yi = zi, 1 ≤ i ≤ n, and yn+1 = −c. Since the only non-zero entry of b is
bn+1 = 1, yTb < 0 forces c > 0. In block form, letting z be the n-vector with
coordinates zi:

y =

[
z
−c

]
Then the alternative gives the two equations (carry out the block multiplication

of matrices):
zT (P − I) ≥ cuT , and c > 0. (26.3.7)

We need to show that these inequalities do not have a solution. The first is
actually a collection of n inequalities, one for each j:

n∑
i=1

zipij − zj ≥ c > 0, (26.3.8)

where the rightmost inequality follows from the second inequality in 26.3.7. As-
sume there is a solution in z and c, and let zm = maxi zi. Then we have, for each
j: ∑

i

zipij ≤
∑
i

(max
i
zi)pij since pij ≥ 0

= zm
∑
i

pij

= zm since
∑
i

pij = 1

Writing this in the case j = m, we get
∑

i zipim ≤ zm. But this contradicts
(26.3.8) in the case j = m, since c > 0. So the alternative cannot occur, and we
are done.

This theorem also follows from more general theorems in linear algebra con-
cerning positive matrices, namely square matrices P with all entries pij > 0, and
non-negative matrices, square matrices P with all entries pij ≥ 0 . Probability
matrices are special cases of non-negative matrices. A good reference for this ma-
terial is Lax [39], Chapter 16. Comprehensive results are given in Gantmacher
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[25], Volume II, chapter XIII, §2. The result needed here is Frobenius’s Theorem
26.4.3.

Not surprisingly, this theorem is of interest in probability theory, where it
makes its appearance in the theory of Markov chains. See for example [65], §9.4
and [46], §1.7. In both these texts a probability matrix has row sums (rather than
column sums) equal to 1, and what we call a steady state is called a stationary or
invariant solution.

26.4 Positive Matrices

And now for a different interpretation of these results.

26.4.1 Definition. The unit simplex in Rn is the n− 1 dimensional (see Definition
18.2.24) simplex in the non-negative quadrant with vertices the n unit coordinate
vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

Thus it is the intersection of the hyperplane
∑n

i=1 xi = 1 with the non-negative
orthant. In particular probability vectors are just elements of the unit simplex, and
Proposition 26.3.4 says that a probability matrix maps the unit simplex to the unit
simplex.

Theorem 26.3.6 says that the linear transformation from Rn to Rn given by a
probability matrix has a fixed point on the unit simplex.

This is a special case of an important theorem in topology with many applica-
tions in economics: Brouwer’s Theorem 26.7.1 that we prove later.

Returning to the linear algebra setup, assume that the n × n matrix A has all
entries positive and consider the map f :

x 7−→
∑n

j=1 aijxj∑n
k=1

(∑n
l=1 aklxl

)
It is well defined at all points of Rn except the origin, as you should check. In
particular it is well defined on the unit simplex. Note that it is a homogeneous
function of degree 0, meaning that if you replace the variables x by tx, for any non
zero real number, the value of the map does not change.

26.4.2 Exercise. Show that f maps the unit simplex to the unit simplex.

Thus by Brouwer’s theorem, f has a fixed point x∗ on the unit simplex. Writing
λ =

∑n
k=1(

∑
l=1 naklx

∗
l ), we see that Ax∗ = λx∗, so that λ is an eigenvalue and

x∗ the corresponding eigenvector of A. By construction λ is real and positive, and
x∗ is non-negative.

This exercise also follows from Frobenius’s theorem in linear algebra:
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26.4.3 Theorem (Frobenius). Every non-negative l × l matrix A, not equal to 0,
has an eigenvalue, denoted λ, called the dominant eigenvalue, with the following
properties:

1. λ is real and non-negative and its associated eigenvector h is real and non-
negative.

2. Every other eigenvalue κ of A (which need not be real) satisfies |κ| ≤ λ.

3. If |κ| = λ, then κ is of the form e2πik/mλ, where k and m are positive
integers, m ≤ l.

This is proved for example in Lax [39], chapter 16.

26.5 Matrix Games

The results of Lecture 25 have a beautiful application to two-person games.
There are two players R (the row player) and C( the column player). R has m

possible moves, labeled from 1 to m, and C has n possible moves labeled from
1 to n. R and C each choose a move simultaneously without knowledge of the
other player’s move. That is known as a play. The payout to R when she plays i
and C plays j is aij , which can be positive or negative (which means the money
actually goes to C), so the m× n matrix A = [aij ] now represents the payouts for
all possible plays (i, j). The is a zero-sum game, so the payout to C is −aij .

26.5.1 Example (Football: pass and run). This example comes from Strang, Ex-
ercise 8.5.14 page 441. R represents the offense of a football team and C the
opposing team’s defense. R can choose to run or to pass, and C can choose to de-
fend against the run or against the pass. The payoff matrix represents the number
of yards gained by R, so for example if R passes and C has set up to defend against
the run, R gains 8 yards; while if C has set up to defend against the pass, R loses 6
yards: quarterback sack, for example. defend run defend pass

run 2 6
pass 8 −6


26.5.2 Example (Rock, Paper, Scissors). This is a well-known children’s game.
R and C extend their hand simultaneously, displaying a closed fist (rock), an open
hand (paper) or two fingers (scissors). If the children show the same thing, the
payout is zero. Otherwise, paper covers rock, scissors cut paper, and rock breaks
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scissors, and the winner gets 1 cent. Thus the payout matrix, from R’s point of
view, is the 3× 3 matrix with labels:

paper rock scissors
paper 0 1 −1
rock −1 0 1

scissors 1 −1 0



Now back to the general case. We assume the game is played many times.
Each player plays randomly, but with given probability for each move. This means
that player R has picked a probability vector1

q = [q1, . . . , qm]

and player C a probability vector

p = [p1, . . . , pn]

Each vector is called the mixed strategy of the corresponding player. If the strategy
has a 1 in one position, and zeroes everwhere else, it is called a pure strategy.

26.5.3 Definition. The game with these rules is called the matrix game associated
to the matrix A.

Thus R plays move i with probability qi, and C plays move j with probability
pj . Play (i, j) therefore occurs with probability qipj , since we are assuming the
probabilites are independent.. So the expected payout (over the long run) for the
game is

m∑
i=1

n∑
j=1

qipjaij

which is just the matrix product qTAp.2 Thus, if we let f(p,q) = qTAp, then f
is linear separately in p and in q, and its domain is restricted on each side to the
compact set of probability vectors.

R wants to maximize the payout f(p,q), while C wants to minimize it. We
will prove that there are mixed strategies p0 for C and q0 for R such that if either
player changes mixed strategy their expected payout decreases. We call such a pair
of strategies optimal. More formally

1Probability vectors are defined in 26.3.1.
2This is a result from probability theory. You can just take this as the definition of the expected

payout if you want.
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26.5.4 Definition. A pair of strategies p0 and q0 is optimal if for all strategies p
and q

qTAp0 ≤ (q0)TAp0 ≤ (q0)TAp (26.5.5)

Here is our main theorem.

26.5.6 Theorem. Every matrix game A has an optimal strategy.

Before proving this, here are two examples.

26.5.7 Example (Rock, Paper, Scissors, continued). It is reasonable to guess p =
(13 ,

1
3 ,

1
3) is the optimal strategy for each player. Let us check this.

Ap = (0, 0, 0)

so no matter what strategy q player R uses, the expected payout is 0. In the same
way, if R uses this strategy p, no matter what strategy C uses the expected payout
is 0. Thus the guess is correct.

26.5.8 Example. In a related3 example let

A =

[
0 1
−1 0

]
Can you guess the optimal strategies?

Next we introduce a device to reduce a general matrix game to one whose
matrix A has only positive entries.

26.5.9 Definition. E denotes the m× n matrix with all entries equal to 1.

For any probability vectors p and q,

qTE = 1Tn and Ep = 1m,

where 1m (resp. 1n) is the m-vector (resp. n-vector) with all entries 1.

26.5.10 Proposition. Consider two matrix games, the first given by A and the
second by A + kE, where k is any real number. Then a pair of strategies that are
optimal for one of these games is optimal for all of them.

3Related because the matrix A is also skew-symmetric, meaning AT = −A: see Definition
26.5.18
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Proof. Indeed. for any mixed strategies p and q, and for any k, we have

qT (A+ kE)p = qTAp + k (26.5.11)

so that the change in the expected payout for any pair of strategies (p,q) is the
constant k, so (26.5.5) is preserved when A is replaced by A+ kE.

This proposition allows us to restrict our attention to games where the matrix
A has only positive entries, which we do from now on.

Consider the standard inequality problem 25.1.6, where b = 1m and c = 1n.
Thus the primal problem is to minimize

∑n
j=1 xj subject to Ax � 1m and x � 0,

and the dual is to maximize
∑m

i=1 yi subject to yTA � 1n and y � 0.
Because A is positive, the feasible sets of both the primal and the dual are non-

empty, as you should check. By the Duality Theorem 25.5.1, both optimization
problems have (not necessarily unique) solutions that we write x0 and y0, and the
values of the optima are the same:

cTx0 = (y0)TAx0 = y0Tb, (26.5.12)

so
n∑
j

x0i =
m∑
i

y0i .

Call this common value w. Clearly w > 0, and we have:

26.5.13 Lemma. p0 = x0

w and q0 = y0

w are probability vectors, and

(q0)TAp0 =
1

w
(26.5.14)

Proof. All the entries of x0 are non-negative, and the entries of c and b are all
ones, so all the entries of p0 are non-negative and their sum is 1. Similarly for q0.
(26.5.14) follows by dividing (26.5.12) by w2.

Since x0 is feasible,
Ax0 ≥ 1m

Multiply on the left by any probability m-vector q, and divide by w:

qTAp0 ≥ 1

w

Similarly, since y0 is feasible,

(y0)TA ≤ 1n
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Multiply on the right by any probability n-vector p, and divide by w:

(q0)TAp ≤ 1

w

Thus the pair of strategies (p0,q0) constructed above is optimal for the matrix
game A. This concludes the proof of the main theorem of this section, John von
Neumann’s minimax theorem for matrix games. It is a consequence of the duality
theorem for linear programming, as we have seen.

26.5.15 Definition. The number v = (q0)TAp0 = 1
w is called the value of the

game. If it is zero, the game is fair.

In terms of the definitions in §33.1, v is the saddle value, and (p0,q0) the
saddle point.

26.5.16 Proposition. For any game A with value v, the equivalent game A − vE
is fair.

This is a trivial consequence of (26.5.11).

26.5.17 Example (Football: pass and run). We use these results to determine the
optimal strategies in Example 26.5.1. To make the matrix A positive we add 6E to
it. By drawing the graphs and solving the systems, it is easy to see that the solution
of the primal problem with b = c = 1 is

x =
( 1

14
,

1

28

)
and that of the dual is

y =
( 1

12
,

1

42

)
To check the computation, we compute the sum of the coordinates on both sides.

1

14
+

1

28
=

1

12
+

1

42
=

3

28

They are equal, confirming the computation. This is w, so the value v of the game
A+ 6E is 28

3 , so by (26.5.11) the value of A is 28
3 − 6 = 10

3 . This means that one
expects the offense to gain 3 and a third yards per play on average. The optimal
strategy for the offense C is

q0 =
28

3

( 1

12
,

1

42

)
=
(7

9
,
2

9

)
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and for the defense R is

p0 =
28

3

( 1

14
,

1

28

)
=
(2

3
,
1

3

)
so, in words, the optimum mixed strategy for the offense C is to run seven times
out of nine, while the defense should defend again the run two thirds of the time,
namely a slightly smaller percentage of the time.

26.5.18 Definition. A game is symmetric if the matrixA is skew-symmetric, mean-
ing that it is square and AT = −A.

Note that it the game is symmetric, the payoff matrix is the same from R and
C’s point of view.

Here is a general result about symmetric games.

26.5.19 Proposition (Symmetric Games). If A is a symmetric game, its value is 0
and any strategy that is optimal for R is optimal for C, and vice-versa.

The proof is an amusing exercise using matrix transposition. See Franklin,
[23], p.119 for details if needed.

26.5.20 Remark. Franklin [23] p.112 , Strang [67] p.437, and Lax[39] p.177 have
presentations of this material at about the same level as here. Berkowitz [7] p.126
deduces it from a more comprehensive statement of the minimax theorem for those
who have had more analysis.

26.6 Sperner’s Lemma

We start with a n-simplex S in Rn. Fix n+ 1 affinely independent points ai in Rn.
Then, as we learned in Definition 18.3.10, we can write the points of the simplex
S spanned by the ai as

{
n∑
i=0

λia
i | λi ≥ 0 ,

n∑
i=0

λi = 1}.

The λi are the barycentric coordinates of the corresponding point, and are
uniquely determined, as we noted in Definition 18.3.13.

Since for what we do here, we only need to work for one simplex, we may as
well choose the regular simplex of Definition 18.3.23: we can take the barycenter
c to be the origin, and vertices ai of the simplex are all at the same distance from
the origin, which we can take to be 1.
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The simplex S has n + 1 faces of dimension n-1: they are the affine span of
any subcollection of n of the (n + 1) vertices intersected with S. More generally,
for any collection of m + 1 vertices of S, S has a m-facet: the intersection of the
m-dimensional affine space spanned by m+ 1 vertices of S with S. Clearly S has(
n+1
m+1

)
facets of dimensionm. The edges of the simplex are the facets of dimension

1. S has (n + 1)n/2 edges. If S is a regular simplex, all the edges have the same
length, and all the m-facets have the same m-volume.

Now for each integer N we subdivide S into a collection of smaller subsim-
plices, called cells, by allowing as possible vertices of subsimplices, points with
coordinates of the form

1

N
(k0, k1, . . . , kn) , all ki ∈ Z , ki ≥ 0,

n∑
i=0

ki = N. (26.6.1)

and by allowing as faces hyperplanes that are parallel to the faces of the original
simplex S and that go through collections of n of the new vertices 26.6.1.

26.6.2 Example. If S is a regular simplex, then each cell in the N -th subdivision
of S is a regular simplex with edge length equal to 1/N the edge length of S.

26.6.3 Theorem. For each one of the n+1 possible directions for the hyperplanes,
there are n + 1 different hyperplanes that intersect S. If all these hyperplanes
are removed from S, there are Nn disjoint open cells left. If V denotes the n-
dimensional volume of S, then each of the N -cells has n-volume V/Nn.

26.6.4 Theorem. The number of vertices in the N -th subdivision in dimension n
is
(
n+N
n

)
.

Proof. We need to count the number of vertices given by (26.6.1). This is easy.
Take n + N symbols all representing the number 1. Lay them out on a line. Any
time you pick n of them, imagine the choice as dividing the 1’s into n+ 1 groups,
corresponding to k0, k1, . . . , kn.

With the combinatorics of these subdivisions out of the way, we can describe
the key tool of the proof of Brouwer’s theorem: the Sperner labeling of the vertices
of the N -subdivision.

26.6.5 Definition. On the N -th subdivision of the n-simplex, we label the vertices
of the cells using the numbers 0, 1, . . . , n with the following restriction:

On the vertices of the facet spanned by the vertices of S with labels l0, l1, . . . ,
lm, only the labels l0, l1, . . . , and lm are allowed. In particular, on the edge with
labels 0, 1, you can only use 0 and 1; on the edge with labels 1, 2, you can only use
1 and 2, etc.
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Note that there are no restrictions on the vertices that are not on the boundary
of the simplex S.

26.6.6 Definition. A cell of the N -th subdivision of the n-simplex has a complete
labeling if one of its vertices has label i, for each integer i, 0 ≤ i ≤ n.

In particular all of its vertices have distinct labels.
Our main result is

26.6.7 Lemma (Sperner’s Lemma). Label the vertices of the N -th subdivision of
the n-simplex according to Definition 26.6.5. Then there are an odd number of
cells with complete labels. In particular there is at least one cell with complete
labels.

Proof. For such a Sperner labeling, for k = 0, . . . , n, let Fk(i0, i1, . . . , ik) be the
numbers of elements of dimension k in the N -th subdivision, where the k + 1
vertices have labels i0, i1, . . . , ik.

For example, when k = 0, since there are
(
n+N
n

)
vertices altogether, we have

n∑
i=0

F0(i) =

(
n+N

n

)
.

When k = n, we are counting the number of cells, and we know that there are
Nn of them, so ∑

i0≤i1≤···≤in

Fn(i0, i1, . . . , in) = Nn.

Our goal is to show that Fn(0, 1, 2, . . . , n) is odd, and therefore nonzero.
The proof is by induction on n. We start with n = 1. The simplex is then

just a line segment divided into N subsegments. The Sperber labeling requirement
is simply that at one end the vertex is labeled 0, and at the other end, the vertex
is labeled one. The labeling of the subsegments are arbitrary. The question is:
how many cells (little segments) are labeled [0, 1] (which we count as the same as
[1, 0]): in other words, what is F1(0, 1)?

Cut open the simplex at all the vertices of the N -th subdivision to produce N
small simplices. How many vertices labeled 1 are there? Each simplex labeled
[0, 0] contributes 2 vertices while a simplex labeled [0, 1] contributes 1. So alto-
gether we get 2F1(0, 0) + F1(0, 1) vertices. Now because of our Sperner labeling
rule, only one of the vertices corresponds to an outside vertex. All the others are
inside vertices, therefore counted twice. So we have shown when dimension n = 1:

2F1(0, 0) + F1(0, 1) = 2Fint(0) + 1.
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This shows that F1(0, 1) is odd, the desired result.
Now assume that by induction we have shown that in dimension n− 1,

Fn−1(0, 1, 2, . . . , n− 1) is odd.

Next we work in dimension n. Cut open the simplex into the Nn cells of the N -th
subdivision. Consider all the cells that have a n−1- face with labels (0, 1, 2, . . . , n−
1). It is either a cell where one of the labels 0, 1, . . . , n − 2, or n − 1 is repeated,
and such a cell has two such faces, or it is a cell with complete labels, and such a
cell has exactly one such face.

So the number

2

n−1∑
m=0

Fn(0, 1, 2, . . . , n− 1,m) + Fn(0, 1, 2, . . . , n− 1, n)

represents the total number of faces of dimension n−1 with labels (0, 1, 2, . . . , n−
1) of the cut-up simplex.

As before we let Fint(0, 1, 2, . . . , n − 1) be the number of interior faces. We
now let Fbound(0, 1, 2, . . . , n − 1) be the number of boundary faces. Because we
are dealing with a Sperner labeling, all these faces can only occur on the face
with labels (0, 1, 2, . . . , n − 1) of the original simplex. Therefore by induction
Fbound(0, 1, 2, . . . , n− 1) is odd.

So we have shown that

2

n−1∑
m=0

Fn(0, 1, 2, . . . , n− 1,m) + Fn(0, 1, 2, . . . , n− 1, n)

= 2Fint(0, 1, 2, . . . , n− 1) + Fbound(0, 1, 2, . . . , n− 1), (26.6.8)

and since the last term is odd, Fn(0, 1, 2, . . . , n− 1, n) is odd, as required.

26.7 Brouwer’s Fixed Point Theorem

We will now use Sperner’s Lemma to prove the following important fixed point
theorem.

26.7.1 Theorem (Brouwer’s Theorem). Let f be a continuous map of a simplex
into itself. Then f has a fixed point, meaning a point x∗ in the simplex such that
x∗ = f(x∗).
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Proof. Here is the proof strategy: we assume by contradiction that there is a con-
tinuous map f of the n-dimensional simplex S that does not have a fixed point.
Then for every integer N we use the lack of fixed point to construct a Sperner
labeling 26.6.5 of the vertices of the N -th subdivision of S.

Here is the key idea of the proof.

26.7.2 Remark. Let (λ0, λ1, . . . , λn) be the barycentric coordinates of an arbi-
trary point x of S, so that all the λi are non-negative, and

∑n
i=0 λi = 1, Let

(µ0, µ1, . . . , µn) be the barycentric coordinates of the image f(x). All the µi are
non-negative, and

∑n
i=0 µi = 1 Since x is not a fixed point of f , not all the µi are

equal to the λi. This allows us to build a Sperner labeling.

26.7.3 Definition. Let the Sperner labeling of x associated to f be the smallest
index i such that λi > µi.

Because
∑n

i=0 λi =
∑n

i=0 µi, such a smallest index exists. The next lemma
shows that this labeling is indeed a Sperner labeling.

26.7.4 Lemma. If x belongs to the m-facet spanned by ai0 , ai1 , . . . , aim , then the
label of x is one of the indices i0, i1, . . . , im.

Proof. By definition, if x belongs to the given m-facet, its only non-zero barycen-
tric coordinates are among the λi0 , λi1 , . . . , λim . Therefore these are the only ones
that can be strictly greater than the corresponding barycentric coordinate for f(x),
which is non-negative.

26.7.5 Corollary. Assuming that f has no fixed points, the labeling of Definition
26.7.3 is a Sperner labeling of the vertices of the N -th subdivision of S. Therefore
for any N we can find a cell cN in the N -th subdivision with a complete labeling:
we can number the n+ 1 vertices of the cell as x0, x1, . . . , xn, so that the label of
xi is i.

By Definition 26.7.3, if (λij), 0 ≤ j ≤ n are the barycentric coordinates of xi,
and (µij), 0 ≤ j ≤ n those of f(xi), then λii > µii.

Now we can prove the theorem. To each N , we pick a cell cN in the N -th
subdivision with a complete labeling. If the diameter of S is d, then the diameter
of cN is d/N , so as N →∞, the distance between the vertices of cN goes to 0.

By choosing a subsequence Nk of the N , using sequential compactness and
the fact that the diameter of a cell in the N -th subdivision goes to 0, we see that the
vertices xi(Nk) all converge to a point x∗ in S. This gives convergent sequences
in Nk of inequalities

λii(Nk) > µii(Nk) , 0 ≤ j ≤ n, (26.7.6)
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which in the limit give inequalities for the barycentric coordinates of x∗ and f(x∗):

λ∗i ≥ µ∗i , 0 ≤ j ≤ n. (26.7.7)

But since these are barycentric coordinates, Remark 26.7.2 shows that these in-
equalities imply equalities, so λ∗i ≥ µ∗i , 0 ≤ j ≤ n. We have found a fixed
point.

It is easy to improve the theorem by making the following definition:

26.7.8 Definition. Two closed regionsX and Y in Rn are topologically equivalent
if there is a continuous map y = T (x) from X to Y , with continuous inverse T−1

from Y back to X . T is what topologists call a homeomorphism.

26.7.9 Theorem. If the Brouwer theorem is true for X , it is true for Y .

Proof. Let f(y) be a continuous map from Y to itself. We want to show it has a
fixed point. Consider the function g(x) = T−1(f(T(x))) fromX toX . As a com-
posite of continuous functions, it is continuous. Note that f(y) = T(g(T−1(y))).
Since the Brouwer theorem is true for X , there is a fixed point x∗:

g(x∗) = x∗.

Let y∗ = T(x∗), so x∗ = T−1(y∗). Then

y∗ = T(x∗) = T(g(x∗)) = T(g(T−1(y∗))) = f(y∗)

so we have found our fixed point.

Recall Definition 18.4.11. Then

26.7.10 Theorem. Let C be a convex body in Rn. Then C is topologically equiv-
alent to the unit ball in Rn.

Proof. Let c be the barycenter of C. Since C has dimension n, a small neighbor-
hood of c is contained in C. By the construction of Exercise 18.4.11, we can show
that every unit length ray r in Rn starting at c meets the boundary of C in point at
distance λ(r) > 0 from c. Then the map that sends r to r

λ(r) maps the boundary of
the unit ball to the boundary of C, and can be easily filled into a bicontinuous map
from C to the unit ball.
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26.8 Kakutani’s Fixed Point Theorem

In this section, for the first and only time in this course we will work with a corre-
spondance: a mapping F that associates to each point x in a subset X of Rn a set
F (x) ⊂ Rn.

The graph of the correspondance F is the set {(x,y) ∈ R2n | y ∈ F (x)}.

26.8.1 Definition. The graph of F is closed if any time xn, n ∈ N, is a converging
sequence of points in X , with limit x∗, and yn, n ∈ N, is a sequence in F (xn)
with limit y∗ in Rn, then y∗ is in F (x∗).

26.8.2 Theorem (Kakutani’s Theorem). LetX be a compact convex set in Rn. For
each x ∈ X , let F (x) be a non-empty convex Y ⊂ X . Assume that the graph of F
is closed. Then some point x∗ lies in F (x∗).

Proof.

26.9 Nash Equilibrium

We apply Kakutani’s fixed point theorem to derive Nash’s famous equilibrium the-
orem for n-person games. For simplicity, we only deal with the case of three
players. Thus the situation is very similar to that of §26.5. Here we have three
players A, B, and C. A has m possible moves, labeled from 1 to m; B has n possi-
ble moves, labeled from 1 to n; finally C has p possible moves, labeled from 1 to
p.

As in §26.5 each player uses a mixed strategy: A plays i with probability pi; B
plays j with probability qj ; and C plays k with probability pk. Of course

pi ≥ 0 and
m∑
i=1

pi = 1;

qj ≥ 0 and
n∑
j=1

qj = 1;

rk ≥ 0 and
p∑

k=1

rk = 1.

Our next assumption is if the three players play mixed strategies p, q, r, the
payoff to A is the expected value

a(p,q, r) =
∑
i,j,k

aijkpiqjrk
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where a is a three-dimensional matrix with pqr constant terms aijk. Similarly, the
payoff to B is the expected value

b(p,q, r) =
∑
i,j,k

bijkpiqjrk

and that to C is
c(p,q, r) =

∑
i,j,k

cijkpiqjrk

We assume that each player knows the probabilities that the other two players
will play their moves. In particular A knows q and r, and therefore wants to chose
p to maximize a(p,q, r) over all probability vectors p.

This defines a set of mixed strategies p ∈ P (q, r), namely: given mixed strate-
gies q and r for B and C, the set of mixed strategies in P (q, r) are optimal for A.

When q and r are given, the payoff for A can be written
∑

i aipi, where

ai =
∑
j,k

aijkqjrk.

26.9.1 Lemma. Let a = maxiai. To maximize
∑

i aipi, choose those probability
vectors p with pi = 0 if ai < a. This set P of probability vectors is closed bounded
and convex.

This is A’s optimal payoff P (q, r).
In the same way B chooses his mixed strategy in the compact convex set of

optimal mixed strategies Q(p, r), and C chooses his in the compact convex set of
optimal mixed strategies R(p,q).



Lecture 27

The Simplex Method

The simplex method is the key tool for solving linear optimization problems. It
is fair to say that its discovery by Dantzig in 1949 revolutionized the study of
optimization. For that reason, even though these lectures do not much concern
themselves with numerical methods, it is imperative to give an overview of the
method in the simplest case: We take the equality (asymmetric, standard) form of
the linear optimization problem:

Minimize cTx subject to the constraints Ax = b and x � 0.
Recall that A is a m × n matrix of maximal rank m. We explain the simplex

algorithm in this case, focusing on the interesting mathematics it uses, and just
touching on the computational methodology.

27.1 Introduction

In this section we motivate our approach to the simplex method. We develop an
algorithm from the outline 25.7.6 given in §25.7. We use the terminology of that
section. The computation divides into two phases with similar methodology.

In Phase 1, starting from a basic submatrix B of A, we either find by iteration
a new basic submatrix such that its equilibrium x given by (25.7.1) is feasible, or
we determine that the feasible set is empty.

In Phase 2, starting from a basic submatrix whose equilibrium x is feasible, we
either find iteratively a new basic submatrix for which both x and the dual equi-
librium y are feasible, or we determine that the objective function is unbounded
negatively on the feasible set.

Then Theorem 25.7.4 tells us that x is a minimizer for our problem, and that y
is a maximizer for the dual problem.
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27.1.1 Non-degeneracy

The algorithm simplifies if the system satisfies the following condition.

27.1.1 Assumption (Non-degeneracy Assumption). The system of equationsAx =
b is nondegenerate if the vector b cannot be written as a linear combination of
fewer than m columns of A.

SinceA has rankm, its column rank ism, so it hasm columns that are linearly
independent. so any vector in Rm, in particular the vector b, can be written as
a linear combination of those m columns. If the non-degeneracy assumption is
satisfied, then b cannot be written as a linear combination of fewer than m of the
columns of A. Thus any vector x that satisfies Ax = b must have m non-zero
coordinates. In particular, assuming a basic submatrix B has been selected, the
vector x = (xB,0) of (25.7.1) associated to it must have m non-zero coordinates,
so that all the coordinates of xB must be positive.

27.1.2 Example. Assume that the b vector in Example 1.3.1 is (1, 2) so b = a1,
and the non-degeneracy assumption fails. Take the 2 × 2 basic submatrix cor-
responding to the original matrix A, so that the two slack variables are 0. The
constraints are therefore

x1+2x2 = 1

2x1+ x2 = 2

which implies that x1 = 1 and x2 = 0. So three of the constraints are active:
indeed, 3 of the 4 constraint hyperplanes meet at the point (1, 0, 0, 0). You should
draw the picture. Also show that by perturbing b by an arbitrarily small amount,
you can get rid of degeneracy.

27.1.3 Exercise. In R2 consider the locus x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 6. Draw
the feasible set, and find all its extreme points . Now add a second constraint
x1 + 3x2 ≥ 12. Add it to your picture, and find all the extreme points in the
feasible set. Add slack variables x3 and x4 to make this an asymmetric problem
in R4. Is this problem non-degenerate? How many basic submatrices are there?
Compute the equilibrium x for each basic submatrix, and indicate which ones are
feasible. Indicate the projection of each one of the equilibrium points on your
graph in R2.

Here is a useful result concerning non-degeneracy.

27.1.4 Lemma. Assume the problem is non-degenerate, and let x be in the feasible
set. Then x is basic if and only if x has exactly n−m coordinates equal to 0.
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Proof. First we assume that x is basic, so that it has at least n − m coordinates
equal to 0. We need to eliminate the possibility that more than n−m coordinates
of x are equal to 0. If that were the case, the equation Ax = b, which, written in
terms of the columns of A, says after reindexing:

x1a1 + x2a2 + . . . xmam = b. (27.1.5)

would express b as the sum of fewer than m columns of A, contradicting non-
degeneracy.

For the other implication, assume that x has exactly n −m coordinates equal
to 0. By reindexing as before, (27.1.5) is satisfied with all the xi > 0. We need to
show that the columns a1, . . . , am are linearly independent, which then mplies x
is basic. Suppose they are not. Then there is an equation of linear dependence that
can be written

d1a1 + d2a2 + . . . dmam = 0, (27.1.6)

where not all the real numbers di are zero. Subtract t times (27.1.6) from (27.1.5)
to get

(x1 − td1)a1 + (x2 − td2)a2 + . . . (xm − tdm)am = b.

By choosing t so that one of the coefficients cancels, we get a representation of b
as a sum of a smaller number of columns of A, a contradiction.

27.1.7 Remark. Here is what non-degeneracy means in terms of cones. By defi-
nition, the feasible set is non-empty if and only if b ∈ CA, the cone on A defined
in §19.3. CA has dimension m, and any basic subcone of CA also has dimension
m. By Theorem 19.4.1 CA is a union of its basic subcones, so that b is in a basic
subcone. These subcones may overlap, so b may belong to several of these sub-
cones. Non-degeneracy means that b is not in the boundary of any basic cone. So
when A is fixed, the set of degenerate b is a set of smaller dimension than CA, so
“most” b are nondegenerate. By moving by an arbitrarily small distance from a
degenerate b, one finds a nondegenerate b′, as long as the direction one moves in
is not contained in the boundary on a basic cone.

27.2 Phase 2 of the Simplex Algorithm

It is easiest to start with the second phase of the algorithm, since the first phase will
turn out to be a special case of the second. Thus we assume we have found a basic
submatrix B such that the associated equilibrium x is feasible. We will show how
to improve the choice of B. We assume the system is nondegenerate.

Associated toB we have our equilibrium x given by (25.7.1). By assumption it
is feasible, so all its coordinates are non-negative. Furthermore the non-degeneracy
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hypothesis means that all the coordinates of xB are positive. We also have the dual
equilibrium y defined by (25.7.2).

By Theorem 25.7.4, if y is feasible for the dual problem, x is a minimizer for
the primal, and we are done. So we may assume that y is not feasible. Thus for
some non-basic column as,

y · as > cs. (27.2.1)

We will use the column as to build a new basic submatrix on which the cost
decreases. There may be several s for which (27.2.1) is satisfied, and we do not
indicate yet how to choose one.

27.2.2 Theorem. There is a column ak in the basic submatrix B such that the
submatrix B′ formed by the column as and the columns of B other than ak is
basic. Furthermore the equilibrium x′ associated to B′ is feasible, and the cost
evaluated at x′ is less than the cost evaluated at the equilibrium point x associated
to B.

Proof. The entering column as can be written as a linear combination of the basic
columns, so

as =
∑
B

tjaj (27.2.3)

Here
∑

B means to sum over the basic columns only. If we write tB for the m-
vector with coordinates tj , then as = BtB . Let y be the dual equilibrium point for
B. Since yT = cTBB

−1 by (25.7.2), combining with (27.2.3) gives

yTas = cTBB
−1BtB = cTBtB.

Thus we can rewrite (27.2.1), the equation that tells us that feasibility fails on the
column as as

cs < cTBtB. (27.2.4)

This allows us to formulate our first rule:

27.2.5 Algorithm (Rule 1). Pick as the entering column any non-basic as satisfy-
ing (27.2.4). In words, pick a non-basic column as at which the cost cs is less than
the cost associated to the linear combination

∑
B tjaj expressing as in terms of

the basic columns. If there is no such as, the algorithm terminates because we are
at a minimizer.

If we denote by zs the number cTBtB appearing on the right-hand side of
(27.2.4), we get

cs < zs. (27.2.6)
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Multiply (27.2.3) by a positive factor λ, and add it to the equation BxB = b
expressing the fact that the equilibrium x satisfies the equality constraints. We get

λas +
∑
B

(xj − λtj)aj = b. (27.2.7)

Because the problem is nondegenerate, all the xj are positive. So, by taking λ
sufficiently small and positive, we can guarantee that all the coefficients in (27.2.7)
are positive, so that they correspond to a point p(λ) in the feasible set.

The cost at p(λ) is
λcs +

∑
B

(xj − λtj)cj

while the cost at the original x is of course
∑

B xjcj . Thus the increment in the
cost is

λ(cs −
∑
B

tjcj) = λ(cs − cTBtB = λ(cs − zs). (27.2.8)

according to the definition of zs. The cost decreases if this number is negative, so if
cs− zs < 0. Now (27.2.6) tells us that this is the case, so p(λ) is not only feasible,
but the cost at p(λ) is less than the cost at the equilibrium x.

It remains to find a new basic submatrix. We let λ increase from 0 in (27.2.7).
If all the tj are negative, λ can increase to infinity while we still stay in the feasible
set, since all the coefficients in (27.2.7) remain positive. As λ increases, the cost
goes to −∞ by (27.2.8), so we are done: there is no finite solution. On the other
hand, if at least one of the tj is positive, then there is a value λ0 for which all the
coefficients in (27.2.7) are non-negative, and at least one is 0. Indeed, consider all
the basic indices j such that tj > 0. Among those, pick any index j such that the
xj/tj is minimum. That is a suitable k. Then λ0 = xk/tk.

Our leaving rule is:

27.2.9 Algorithm (Rule 2). Given the entering column as =
∑

B tjaj , for leaving
column choose any basic column ak such that tk > 0 and

xk/tk = min
(xj
tj
| tj > 0

)
.

If all the tj ≤ 0, then the objective function takes arbitrarily negative values on the
feasible set.

Actually then by the non-degeneracy assumption this determines k uniquely. If
there were more than one basic index j such that λ0 = xj/tj , then (27.2.7) would
give a way of writing b as a sum of fewer than m columns, a contradiction. Thus
(27.2.7) expresses b as a linear combination of m columns, so we have the required
new basic submatrix B′ of A, with its feasible equilibrium point p(λ0).



27.2. PHASE 2 OF THE SIMPLEX ALGORITHM 431

The proof suggests an algorithm for choosing the entering index s. Indeed,
by (27.2.8) , for the indices l failing the dual constraint y · al ≤ cl, the positive
decrease in cost from the original equilibrium x to the one associated to the new
basic submatrix is given by

λl(y
Tal − cl), (27.2.10)

where λl stands for the value λ0 in the proof that brings us to the equilibrium value
for the new basis. So a good choice for s might be any index l for which (27.2.10)
is maximal. A simpler choice would be to take an l for which the factor yTal − cl
is maximal. This is a good surrogate for the maximal decrease in cost. It might
still be necessary to break ties in indices with the same decrease in cost.

The proof shows that under the non-degeneracy assumption, the leaving col-
umn is unique.

27.2.11 Example. Here is a simple example where n = 4 and m = 2. The con-
straint equation Ax = b is

[
1 0 3 4
0 1 1 3

]
x1
x2
x3
x4

 =

[
2
1

]

When there are two equations, non-degeneracy means that b is not a multiple of a
column. In this example it is not. Let the cost vector be c = (1, 2, 3, 3). Take as
basic submatrix B the first two columns of A. B is the identity matrix, therefore
B−1 is also, and our formulas simplify a great deal. The equilibrium x for B is
(2, 1, 0, 0), which is feasible. The cost at x is c · x = 4 The dual equilibrium
point for B is y = (1, 2) by (25.7.2), since cB = (1, 2). The feasibility test is
yTN � cTB , which would say that

[
1 2

] [3 4
1 3

]
�
[
3 3

]
, or

[
5 10

]
�
[
3 3

]
.

which is false, so y is not feasible. In fact the test fails on both coordinates, so
we can pick either a3 or a4 as the entering column. The failure is worse on the a4

column, so we will chose it to enter the basis. It is written a4 = 4a1 + 3a2, , so
t1 = 4 and t2 = 3. They are both positive, so we compare the two expressions
x1/t1 = 1/2 and x2/t2 = 1/3, so the leaving column is a2. Our new basic B′ is[

1 4
0 3

]
,
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its inverse is [
1 −4/3
0 1/3

]
,

and its feasible equilibrium x′ is (2/3, 0, 0, 1/3). The cost there is 5/3, so it has
gone down from the first feasible point. Now

yT =
[
1 3

] [1 −4/3
0 1/3

]
=
[
1 −1/3

]
,

and the feasibility test is

[
1 −1/3

] [0 3
1 1

]
�
[
1 3

]
, or

[
−1/3 8/3

]
�
[
3 3

]
.

which is true, so we have achieved our goal: .

27.2.12 Exercise. In the example above, use as basic columns a3 and a4. Deter-
mine if the associated equilibrium x is feasible, and if so, compute the cost at that
vertex. Finally, how many vertices does the feasible set have? We know that there
are a maximum of

(
4
2

)
= 6. Is the feasible set bounded?

This theorem and the example exhibits the fundamental strategy of the simplex
method. We move from one basic submatrix to a new one where the associated x
is feasible and the cost is lower. Because there are only a finite number of subma-
trices, and because each one is visited at most once since the cost decreases, this
algorithm terminates in a finite number of steps. We either learn that the solution
is unbounded negatively, or we arrive at a minimizer.

It is worth asking what can happens when the system is degenerate. If the dual
equilibrium is not feasible, we can still find an index s where (27.2.1) holds, so we
choose as as the entering column. Because we no longer have the non-degeneracy
hypothesis, it could happen that one of the coordinates of xB , say xk is 0. In that
case the biggest λ one can take in the proof above is λ = 0, in which case the
cost on the new basic submatrix does not decrease. Thus it is possible that the
algorithm could revisit certain extreme points repeatedly and not terminate. There
are more refined algorithms that prevent this phenomenon, called cycling. The
simplest is perhaps the one due to Bland: see [8]. Another interesting approach
is to use Remark 27.1.7 in the following way: solve the optimization problem by
perturbing b slightly so that it is not in the boundary of a basic cone. This is due to
Charnes [17].
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27.3 Phase 1 of the Simplex Algorithm

Finally we deal with the issue of finding a basic submatrix B with a feasible equi-
librium x. First we rewrite our system of equations Ax = b by multiplying any
row where bi is negative by −1. The new constraint matrix is obviously equivalent
to the old one. Thus we may assume that all the bi are non-negative.

The standard method for accomplishing Phase 1 is to setting up an auxiliary
asymmetric optimization problem to be solved by the method of Phase 2.

27.3.1 The Auxiliary Problem

Starting from our original constraint set Ax = b, we add m new variables zi, 1 ≤
i ≤ m constrained to be non-negative to our set of n variables xj , still constrained
to be non-negative. We form the m× (n+m) matrix written in block notation as[
A I

]
and replace the original constraints by the m constraints

[
A I

] [x
z

]
= b

Thus the i-th constraint is written
n∑
j=1

aijxj + zi = bi.

The auxiliary problem is to minimize
∑
zi subject to these constraints. Thus

the cost vector has coordinates 0 for all the x variables, and 1 for all the z variables.
We assume the problem is non-degenerate.

The key remark is that any feasible point x∗ for our original problem produces
a feasible point [x∗,0] for the auxiliary problem, at which the cost is 0. Thus
unless the feasible set of our problem is empty, the minimum cost for the auxiliary
problem is at most 0.

There is an obvious basic submatrix B to start with: the m columns corre-
sponding to the zi. It is the identity matrix, so it has maximum rank as required.
Thus we have a basic solution given by setting all the xj to zero, and zi = bi for
all i. It is feasible because all the bi are non-negative. Furthermore since we are
assume the problem is non-degenerate, all the bi are positive. So we can proceed
with the Phase 2, using the submatrix B to start.

Next notice that the minimum cost of the auxiliary problem is bounded below
by 0, since it is

∑
zi, and all the zi are non-negative. Thus we know in advance

that the Phase 2 algorithm will produce a basic solution.
There are two possible outcomes: either the minimal cost is 0 or not.
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Assume the minimal cost is 0. Since the cost associated to each of the zi is
one, and the feasible zi are non-negative, this shows that all the zi are 0 in the
solution of our auxiliary problem. Thus the xj appearing in the solution of the
auxiliary problem satisfy Ax = b, so we have found a point in the feasible set of
the original problem and we are done.

The only other possibility is that the minimal cost
∑
zi is positive. As noticed

in the key remark, this shows that the feasible set of our problem is empty.

27.4 Phase 2 in the Degenerate Case

In this section we present Bland’s method for preventing cycling in the degenerate
case.

First we replace the original asymmetric problem by an new problem, much in
the spirit of the auxiliary problem for the first phase of the simplex method. This
replacement is interesting in its own right.

27.4.1 Definition. Given our asymmetric minimization problem with n variables
and m equalities constraints Ax = b, and objective function c1x1 + · · · + cnxn,
we define a new minimization problem, called the associated problem as follows.
Add a coordinate x0 to the vector x, and one new constraint

x0 − c1x1 − · · · − cnxn = 0.

The objective function is the function x0. So the constraint matrix A′ is now a
(m+ 1)× (n+ 1) matrix, with the new equation as its 0-th row, so b0 = 0. All the
constraints are equality constraints.

This is not quite an asymmetric problem because we do not require the x0
variable to be non-negative.

27.4.2 Example. Example 27.2.11 has the associated problem: minimize x0 sub-
ject to 1 −1 −2 −3 −3

0 1 0 3 4
0 0 1 1 3



x0
x1
x2
x3
x4

 =

0
2
1


and xj ≥ 0 for 1 ≤ j ≤ n.

The following theorem is an analog of Theorem 25.2.2.
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27.4.3 Theorem. . The associated problem and the original problem are equiva-
lent, in the following sense:

1. There is a one-to-one mapping π between the feasible sets. If

x′ = (x0, x1, . . . , xn) ∈ Rn+1

is in the feasible set F ′ of the associated problem, then its projection

π(x′) = (x1, . . . , xn) ∈ Rn

is in the feasible set F of the original problem. Conversely, if (x1, . . . , xn) ∈
F , then (c1x1 + · · ·+ cnxn, x1, . . . , xn) ∈ F ′. Thus F is empty if and only
if F ′ is.

2. The mapping π and its inverse π−1 map the extreme point of F ′ to the ex-
treme points of F , and conversely.

3. Assume that one of the two problems has a finite minimum. Then the other
one does: indeed the minimizers are related as follows: If the minimum of the
original problem is attained at x∗ ∈ Rn, then the minimum of the associated
problem is attained at x′ = π−1(x∗), which in block notation is written[
c · x∗ x∗

]
. The minimum value is the same for both problems. The same

relationship holds for all the extreme points.

4. If the feasible set for the dual problem is Fd ⊂ Rm+1, and the feasible set of
the dual of the the associated problem is F ′d ⊂ Rm, then the projection map
πd that omits the 0-th coordinate gives a one-to-one map from F ′d to Fd. The
inverse map π−1d takes (y1, . . . , ym) to (1, y1, . . . , ym). The value of the dual
objective function y · b is equal to the value of the dual objection function
for the associated problem at π−1d (y) As a special case, the maximum of the
associated problem is attained at y′ = (1,y∗), where y∗) is a maximizer for
the dual of the original problem.

Proof. The proof is similar to proofs we have seen before, except for the last item.
Since it gives us the opportunity to compute the dual of a problem that is neither in
asymmetric or symmetric form, it is worth writing down.

The associated problem, is in the form 25.1.7, so its dual is in form 25.4.5.
Referring back to the notation in these problems, in our case I is empty, J is the
set {1, . . . ,m}, so its complement is just the index 0.

Write the dual variable as (y0,y), where y is an m-vector with indices running
from 1 to m. Thus the dual problem is to maximize

b0y0 + b1y1 + · · ·+ bmym = b · y,
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since b0 = 0. The constraints are as follows. Write a′j for the j-th column of
A′. Then by Definition 25.4.5, the constraints are, recalling that the vector c′ is
(1, 0, . . . , 0),

(y0,y) · a′0 = 1, and (y0,y) · a′s ≤ 0, for s ≥ 1.

Since a′0 = (1, 0, . . . , 0), this forces y0 = 1. Then the remaining m equations
simplify to

−cs + y · as ≤ 0, for s ≥ 1.

These are the same constraints as those for the dual feasible set of the original
problem by the Duality Theorem 25.6.11, proving the result.

The question is: why introduce the associated problem at all? The reason is
simply that the constants c1, . . . cn get absorbed into the matrix A, making it easier
to formulated and prove theorems.

So now we forget about the original problem and study the the associated prob-
lem, which we write in the form:

Minimize x0 subject to Ax = b and xj ≥ 0 for j ≥ 1, where A is a m +
1 × n + 1 matrix and x = (x0, x1, . . . , xn), b = (b0, b1, . . . , bm). As always we
assume that A has maximal rank. We assume that the feasible set of this problem
is non-empty, so that we can reduce to the case where

A =
[
Im+1N

]
, and bi ≥ 0 for 1 ≤ i ≤ m.

We no longer assume that the problem is nondegenerate. The goal is to produce
an algorithm that solves the problem in a finite number of steps.

We first need to reexamine Rules 1 and 2 concerning the selection of the enter-
ing variable and the leaving variable for this problem, where we use as our basic
submatrix the submatrix B formed by the first m + 1 columns of A, namely the
identity matrix.

Because B is the identity matrix, for a non-basic column as we have

as = a0sa0 + a1sa1 + · · ·+ amsam,

so that what we were calling tj in §27.2 (see (27.2.3)) is now ajs. If all the dual
constraints are satisfied, the dual equilibrium vector is feasible and we are done. So
assume the dual constraint for the non-basic column as is violated, so 0 < y · as.
The 0 on the right-hand side comes from the fact that the cost vector is (1, 0, . . . , 0).
This equation is the translation of (27.2.4) in our current notation. Then the column
as can enter the basis.

Next we turn to the leaving basic variable j . As before we require ajs 6= 0,
so that the new set of basic variables still forms a basis. Because some of the
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coefficents xk in (27.2.7) could be negative, the best we can do is to take λ = 0, so
the cost at the new basic submatrix has not changed.

As we repeat this process we could get stuck without ever decreasing the cost,
so the algorithm could cycle without terminating.

27.4.4 Example. This example, the simplest I know of, comes from [29], §2. We
rewrite it as a standard symmetric minimization problem with n = 4,m = 2. Then
c = (−2.3,−2.15, 13.55, 0.4), b = (0, 0) and

A =

[
−0.4 −0.2 1.4 0.2
7.8 1.4 −7.8 −1.4

]
so as always we are minimizing c · x subject to Ax � 0 and x � 0. We add
two slack variables x5 and x6, and get the asymmetric minimization problem with
matrix (which we still call A)[

−0.4 −0.2 1.4 0.2 −1 0
7.8 1.4 −7.8 −1.4 0 −1

]
and c = (−2.3,−2.15, 13.55, 0.4, 0, 0). It is worth thinking about the cone CA in
the plane associated to A. It has four generators and a4 = −a2.

Then x = 0 is feasible for the constraints, with cost 0. We use as basic sub-
matrix columns 5 and 6. The first column a1 = 0.4a1 − 7.8a2. Since c1 = −2.3,
(27.2.4) is satisfied, so the first column can be used as the entering column.

The equilibrium x for our current basis in the origin, so the problem is degen-
erate. Note that B = −I2, and that cB = (0, 0), so that the dual equilibrium y
is (0, 0) by (25.7.2). So we choose a5 as the leaving column, since there is no
apparent difference between a5 and a6: neither decreases cost.

You should enter this example into the simplex tool at

http://www.zweigmedia.com/RealWorld/simplex.html

Enter

Minimize p = -2.3 u -2.15 v + 13.55 w + 0.4 x subject to
-0.4 u -0.2v + 1.4w + 0.2 x >= 0
7.8 u + 1.4v -7.8w -1.4 x >= 0

The tool understands that all the variables are constrained to be non-negative with-
out having to enter the constraints. The tool first adds slack variables, just as we
have done. It will tell you that no optimal solution exists: indeed, the objective
function goes to −∞ on the feasible set. Once you have studied the anti-cycling
algorithm below, you should compare

We now describe Bland’s refinement of the simplex algorithm, designed to
prevent cycling.
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Nonlinear Optimization



Lecture 28

Equality Constrained
Optimization and Lagrange
Multipliers

We consider the problem of equality-constrained optimization in Rn. We have a
non-linear objective function f(x1, x2, . . . , xn) which we want to minimize subject
to the equality constraints 28.3.2.

Using Lagrange multipliers, we prove the Lagrange Multiplier Theorem (28.3.9),
the famous first-order necessary condition for this problem to have a solution at a
point x∗ that is regular (28.3.3).

We start with a simple special case in §28.1. The main theorem is stated in
§28.3 and some examples given in §28.4. First we discuss the technical condition
called constraint qualification, imposed by regularity, which we will meet again
in other optimization problems. This condition is needed to apply the Implicit
Function Theorem.

Finally the theorem is proved in §28.6. A second proof, useful for the next
lecture, is given in §28.5.

The proof of the Lagrange Multiplier Theorem uses two tools:

1. The chain rule in several variables. This is covered in §12.2. You can also
consult Stewart [63], §14.5, for example.

2. The Implicit Function Theorem (IFT) in §17.6. In a neighborhood of a reg-
ular point where the Lagrange condition holds, it allows us to transform the
constrained problem to an unconstrained problem (studied in §13.1) that we
know how to solve, at least in principle.
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28.1 Lagrange Multipliers: the Simplest Case

In this section, we give the statement and the proof of the Lagrange Multiplier
Theorem in a simple case: three variables and one constraint:

Minimize the C1 function f(x, y, z) subject to the C1 constraint h(x, y, z) = 0.
Pick a feasible point p = (x∗, y∗, z∗), so that

h(x∗, y∗, z∗) = 0. (28.1.1)

We assume that∇h(p) is not the zero vector, so that one of the three partial deriva-
tives of h at the point p is not zero. We assume without loss of generality that
∂h/∂x(p) 6= 0. Our fundamental tool, the implicit function theorem, then tells us
that we can write x as a C1 function g(y, z) in a small enough neighborhood of p .

With these hypotheses, the Lagrange multiplier theorem says that a necessary
condition for p to be a (local) minimizer for the constrained optimization problem
is that there exist a number λ, called the Lagrange multiplier, such that

∇f(p) + λ∇h(p) = 0. (28.1.2)

Furthermore the Lagrange multiplier is unique. This gives a system of four equa-
tions in four variables x, y, z and λ : the equation 28.1.1 saying that the point is on
the constraint set and the three scalar Lagrange equations (28.1.2).

Here is the proof. On a small neighborhood of p in the feasible set, we can
write the objective function as the composite function F (y, z) = f(g(y, z), y, z).
The constraint has disappeared, so that we are dealing with an unconstrained opti-
mization problem.
Step 1. By our IFT construction, the function h(g(y, z), y, z) is identically zero,
so its gradient is identically 0. We compute it via the chain rule and get(∂h

∂x

∂g

∂y
+
∂h

∂y
,
∂h

∂x

∂g

∂z
+
∂h

∂z

)
= 0,

where we can evaluate the partials at any point on the constraint set close to p. In
particular, we can evaluate at p = (x∗, y∗, z∗), getting(∂h

∂x
(p)

∂g

∂y
(y∗, z∗) +

∂h

∂y
(p),

∂h

∂x
(p)

∂g

∂z
(y∗, z∗) +

∂h

∂z
(p)
)

= 0

Step 2. The composite F (y, z) has an extremum at (y∗, z∗), so we compute its
gradient at (y∗, z∗) using the chain rule. We get, completely analogously,(∂f

∂x
(p)

∂g

∂y
(y∗, z∗) +

∂f

∂y
(p),

∂f

∂x
(p)

∂g

∂z
(y∗, z∗) +

∂f

∂z
(p)
)

= 0
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Step 3. To simplify the notation, let

f1 =
∂f

∂x
(p), f2 =

∂f

∂y
(p), f3 =

∂f

∂z
(p),

h1 =
∂h

∂x
(p), h2 =

∂h

∂y
(p), h3 =

∂h

∂z
(p),

g2 =
∂g

∂y
(p), g3 =

∂g

∂z
(p).

Then the equations from steps 1 and 2 become:

h1g2 + h2 = 0, h1g3 + h3 = 0,

f1g2 + f2 = 0, f1g3 + f3 = 0.

Since h1 6= 0 by hypothesis, divide the first line by h1 in order to solve for g2 and
g3:

g2 = −h2/h1, g3 = −h3/h1.

Inserting these values into the second line, get:

f1h2 = f2h1, f1h3 = f3h1.

Thus the vectors (f1, f2, f3) and (h1, h2, h3) are proportional with proportionality
factor f1/h1. Then λ = −f1/h1 is the Lagrange multiplier. Thus we have estab-
lished, in this simple case, that the Lagrange equations (28.1.2) hold at a critical
point p, if the gradient to the constraint set at p is not the zero vector.

28.1.3 Example. Let f(x, y, z) = x2 + y2 + z2 be the objective function, and let
the constraint be z−x2− y2− 2 = 0. Here the level sets of f are spheres centered
at the origin, and we are looking for the level sphere of smallest radius meeting the
constraint set, which is a paraboloid of rotation around the z axis. By drawing the
graph, it is easy to see what the answer is, but let us proceed by a general argument.
In the feasible set, z is obviously a function of x and y, and we can substitute it
into f(x, y, z), getting a new function:

F (x, y) = f(x, y, x2 + y2 + 2) = x2 + y2 +
(
x2 + y2 + 2

)2
.

This is an unconstrained minimization problem, so we simply set the gradient of F
to zero to find the critical points. We get

2x+ 2(x2 + y2 + 2)2x = 2x
(
1 + 2(x2 + y2 + 2)

)
= 0,

2y + 2(x2 + y2 + 2)2y = 2y
(
1 + 2(x2 + y2 + 2)

)
= 0.
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and these only vanish when x = y = 0. Then z = 2. So as expected, the
minimizer is at the bottom-most point of the paraboloid of revolution, which is the
closest point on the constraint set to the origin.

Because we were able to solve for z explicitly in terms of x and y - which
usually does not happen - we did not have to introduce Lagrange multipliers. You
should work through the argument again, as in the proof, to see how the partials all
appear.

The proof in the general case is more involved for two reasons. The first is the
book-keeping necessary in keeping track of a larger number of variables and equa-
tions. More importantly, regularity (the condition that replaces the non-vanishing
of the gradient in the case of one constraint) is more complicated and harder to
work with when there is more than one constraint. We study the constraint qualifi-
cation of regularity first.

28.2 Constraint Qualification

28.2.1 Definition. Let x∗ be a feasible point for an optimization problem involving
a C1 function f(x). Assume that x∗ is a local solution to the optimization problem.
Then a constraint qualification on the constraints at x∗ is

a sufficient condition on the constraints at x∗ for x∗ to be a solution of
the appropriate Lagrange equations.

In today’s lecture, the constraint qualification is that x∗ be regular for the con-
straints, as per Definition 17.1.4, which we restate in our current context in Defi-
nition 28.3.3. Then, assuming x∗ is regular for the constraints, we establish that a
necessary condition for the objective function f to have a critical point at x∗ is that
x∗ be a solution of the Lagrange equations.

In subsequent lectures we discuss other constraint qualifications which allow
us to establish similar first-order necessary conditions: see Definitions 31.2.1 and
23.7.2.

First an example satisfying regularity.

28.2.2 Example. Let f(x, y) = x2 + y2, with the linear constraint ax+ by + c =
0. So we want to minimize this simple quadratic function on the affine line L
given by the constraint. If the line goes through the origin (so c = 0), then the
minimum occurs at the origin, the minimizer of the unconstrained function. So
assume L does not do through the origin. Let’s think about how L meets the level
curves of f , which are circles through the origin. The minimum will occur on
the level curve meeting L corresponding to the smallest value of f , meaning the
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circle with the smallest radius. The line could meet such a level curve in two
points, but then it would meet a level curve of smaller radius. So L must meet
the smallest level circle in just one point, so it must be tangent to the level circle
at that point. Now the gradient (2x, 2y) of f is perpendicular to the level curves,
and the fixed vector (a, b) is perpendicular to the line. To say the line L is tangent,
is to say that (2x, 2y) points along the same line at (a, b): in other words, they
are proportional with coefficient of proportionality we call λ. So we must have
the vector equation (2x, 2y) = λ(a, b) satisfied at the minimum, so x = λa/2 and
y = λb/2. Furthermore the minimizer must be on the constraint set, so substituting
these values into the equation of L, we get

λa2

2
+
λb2

2
+ c = 0

which allows us to solve for λ:

λ =
−2c

a2 + b2

so x = −ac/(a2 + b2) and y = −bc/(a2 + b2).
Let us check this computation on a simple line, say the vertical line x+ 1 = 0,

so a = 1, b = 0, c = 1. Then the minimizer is at (−1, 0), and the line is indeed
tangent to the level curve x2 + y2 = 1 at the left-most point on the circle.

Note that we found the equation of the tangent line to the unit circle, which
corresponds to taking c = 1 above, in Example 17.3.5.

Now an example in two variables where constraint qualification fails.

28.2.3 Example (The cuspidal cubic curve). Let f(x, y) = y, so the objective
is to make the y variable as small as possible. The unconstrained problem has
no solution, so we introduce the constraint: h(x, y) = x2 − y3 = 0. Graph the
solution set of the constraint h(x) = 0 in the plane. This curve C is called the
cuspidal cubic. Because y3 = x2 ≥ 0 on C, the minimizer is a point with y = 0,
and there is only one such point on C, the origin, which is therefore the minimizer.
At the origin the gradient ∇h = (2x,−3y2) vanishes, so that the origin is not
regular for the constraints. We will see later (Example 28.4.3) that this lack of
regularity, prevents us some solving this problem using Lagrange multipliers.

28.3 The First-Order Necessary Conditions: Statement

First we set up our notation. Our problem is:
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28.3.1 Definition (Equality Constrained Minimization). Minimize f(x), x ∈ Rn,
subject to

h1(x) = h2(x) = · · · = hm(x) = 0, (28.3.2)

where f and all the hi are C1 functions. We assume m < n.

Recall the vector notation (17.1.2) for the constraints, and the notation (17.1.3)
for the vector gradient of the constraints. We write S for the set where the functions
f and all the hi are defined. We usually only consider interior points of S.

We now restate Definition 17.1.4 in the optimization context.

28.3.3 Definition. We say that the point x∗ is regular for the constraints 28.3.2 if
the matrix ∇h(x∗) has maximal rank m. This is the same thing as saying that the
vectors∇hi(x∗), 1 ≤ i ≤ m, are linearly independent in Rn.

28.3.4 Definition (Lagrange Multipliers). To each constraint hi we attach a vari-
able λi, 1 ≤ i ≤ m, called a Lagrange multiplier. Then the Lagrangian L(x, λ)
associated to the problem 28.3.1 is the function

L(x, λ1, . . . , λm) = f(x) + λ1h1(x) + λ2h2(x) + · · ·+ λmhm(x) (28.3.5)

= f(x) + λTh(x).

where h is the m-column vector of constraints, and λ is the m-column vector of
Lagrange multipliers (λi), so λTh(x) denotes matrix multiplication.

28.3.6 Definition (Lagrange Equations). The Lagrange equations are the n equa-
tions obtained by setting the gradient with respect to the x variables of the La-
grangian 28.3.5 equal to 0:

∇f(x) +
m∑
i=1

λi∇hi(x) = 0. (28.3.7)

Individually, the j-th equation, the partial with respect to xj , is

∂f

∂xj
(x) + λ1

∂h1
∂xj

(x) + · · ·+ λm
∂hm
∂xj

(x) = 0. (28.3.8)

28.3.9 Theorem (The Lagrange Multiplier Theorem). Let x∗ be an extremum for
the constrained minimization problem 28.3.1. Assume that x∗ is regular for the
constraints. Then there are unique numbers λ∗1, . . . , λ∗m, such that the Lagrange
equations (28.3.7) are satisfied at x∗ and λ∗:

∇xL(x∗, λ∗) = ∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) = 0, for 1 ≤ j ≤ n.
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The theorem says that∇f(x∗) is a linear combination of them vectors∇hi(x∗).
Note that we have a system of n+m equations:

• the m constraints ( 28.3.2);

• and the n Lagrangian equations (28.3.7).

in the n+m variables

• x1, . . . , xn;

• λ1, . . .λm.

Since we have the same number of equations as we have variables, we can hope to
have a finite number of solutions in x and in λ.

Also notice that
∂L
∂λj

= hj ,

so that setting the partials of the Lagrangian L with respect to the multipliers λj
equal to 0 yields the constraints.

28.3.10 Corollary. Assume x∗ is regular for the constraints. If x∗ is an extremum
for Problem 28.3.1, it is a critical point of the Lagrangian with respect to all its
variables x and λ.

The Lagrange multiplier theorem is proved in §28.5. The same result applies
without change if one starts from a local maximum, since all the theorem allows
us to do is identify the critical points

28.4 Examples

The goal of these exercises and examples is to show you how to solve minimization
problems using Lagrange multipliers. Try out:

28.4.1 Exercise. 1

Minimize f(x1, x2, x3) = x31 + x32 + x33,

subject to h1(x1, x2, x3) = x21 + x22 + x23 − 4 = 0

Then add the constraint h2(x1, x2, x3) = x1 + x2 + x3 − 1 = 0.

1Examples 3.5 and 3.6 in [50], p.70.
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28.4.2 Remark. One way of doing the last part of this exercise uses the following
interesting idea. Assume n = m + 1, so that the number of constraints is one
less than the number of variables. Since the Lagrange Theorem says that the n-
vectors ∇f , ∇h1, . . .∇hm are linearly dependent, the n × n matrix whose rows
are these vectors has determinant 0. Call this determinant D(x). Note that it does
not involve the λ.

If we replace the n Lagrange equation by the equation D(x) = 0, we have
replaced the system of n + m equations in n + m variables by a system of 1 +
m = n equations in n variables x. A moment’s thought will convince you that
you get all the solutions of the original Lagrange equations by this trick. The
determinant equation is of very high degree, so it is not clear that this is worthwhile,
except when the determinant, like the Vandermonde, which appears in Exercise
28.4.1 is known to factor. For more on the Vandermonde determinant see Lax [39],
Appendix 1.

28.4.3 Example. We now go back to Example 28.2.3. The two Lagrange equation
are

0− 2λx = 0;

1 + 3λy2 = 0.

Obvious either λ = 0 or x = 0 is imposed by the first equation. But λ = 0
is impossible for the second equation, and x = 0 forces y = 0 because of the
constraint equation, and we again have impossibilty. So we find no solution using
Lagrange multipliers, even though the minimizer for the problem is clearly at the
point (0, 0), as we already noted. What went wrong? The point (0, 0) is not regular.
It is called a cusp.

Our curve, the cuspidal cubic, can be parametrized by x(t) = t3 and y = t2.
It passes through the point of interest (0, 0) at t = 0. Now h(x(t), y(t)) = 0, so
our problem is to minimize f(x, y) = y subject to x(t) = t3 and y = t2, so we get
the unconstrained problem: minimize F (t) = t2. So the answer is 0, and in this
simple case we can bypass the Lagrange multipliers method.

28.4.4 Exercise. A more complicated example of a constraint set failing regularity
at a point is given by the intersection of two spheres

h1(x1, x2, x3) = x21 + x22 + x23 = 1;

h2(x1, x2, x3) = (x1 + 1)2 + x22 + x23 = 4.

Determine the feasible set using elementary algebra. Write down∇h and compute
its rank at all points of intersection. What is wrong? The intersection of the two
spheres has smaller dimension than expected.
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28.4.5 Remark. A word of warning. Regularity depends on how the constraint lo-
cus is described. Here is a simple example. The unit circle is given by h(x1, x2) =
x21 + x22 − 1 = 0. With this description, every point on the circle is regular, be-
cause one of the two partials is nonzero. The unit circle can also be described by
h(x1, x2)

2 = 0, since an equation vanishes if and only if its square vanishes. Now
the gradient of h(x1, x2)

2 vanishes as every point where h(x1, x2) vanishes, by the
product rule for differentiation.

28.4.6 Exercise. For any set of real constants a1, . . . , an minimize

f(x) =
n∑
j=1

x2j subject to a1x1 + a2x2 + · · ·+ anxn = 0.

28.4.7 Exercise (MacLaurin). For any positive integer k minimize

xk1 + xk2 + · · ·+ xkn subject to x1 + x2 + · · ·+ xn = a,

for any real number a. According to Hancock [30], p. 22, this example is due to
MacLaurin. Hint: Notice the symmetry when you interchange the indices.

28.5 The Proof of the Lagrange Multiplier Theorem

We prove the main theorem. A second, shorter proof is given in the next section,
but this one shows explicitly how the IFT works, and generalizes to the second-
order Lagrange Theorems treated in Lecture 29.

28.5.1 Notation. To simplify the notation, we write xb of the first m coordinates
of x, and xf for the remaining ones, so

xb = (x1, . . . , xm) , xf = (xm+1, . . . , xn) and x = [xb,xf ]

We write∇bf for them-vector of partials of f with respect to the firstm variables,
and ∇ff for the (n − m)-vector of partials of f with respect to the remaining
variables. Thus

∇f = [∇bf,∇ff ] .

We let ∇bh be the square submatrix of ∇h(x) formed by the first m columns,
namely

∇bh =


∂h1
∂x1

(x) . . . ∂h1
∂xm

(x)
...

...
...

∂hm
∂x1

(x) . . . ∂hm
∂xm

(x)

 (28.5.2)
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We often write∇bh∗ for the evaluation of∇bh at x∗

We now prove the general case of the theorem. Regularity at x∗ means that
the matrix ∇h(x∗) has maximal rank m, so that by reordering the variables xj ,
we may assume that the first m columns of ∇h(x∗) are linearly independent. So
∇bh∗ is invertible.

According to the implicit function theorem, the regularity at x∗ using the first
m columns of the m constraints means that x1 through xm can be written as C1

functions g1 through gm of the remaining variables xm+1 . . . xn, in a sufficiently
small neighborhood of x∗.

28.5.3 Definition. In order to use the chain rule computation from Theorem 12.2.3,
we will extend the collection of implicit functions gi, 1 ≤ i ≤ m, by defining
functions gm+i(xf ) = xm+i, for 1 ≤ i ≤ n−m. So

xj = gj(xf ) for 1 ≤ j ≤ n, or x = g(xf ) (28.5.4)

where g is now the n-vector of functions (g1, . . . , gn).

Step 1.
With this notation, for each i, 1 ≤ i ≤ m, we consider the composite functions

ψi(xf ) = hi(g(xf ) = 0 (28.5.5)

By the IFT there are values (x∗m+1, . . . , x
∗
n) such that

x∗j = gj(x
∗
m+1, . . . , x

∗
n) for 1 ≤ j ≤ n, or x∗ = g(x∗f ).

We take the gradient of the composite function ψi (28.5.5) with respect to xf , using
the chain rule ( 12.2.3), and get

∇ψi(xf ) = ∇hi(g(xf ))∇g(xf ) = 0. (28.5.6)

28.5.7 Remark. If we write ğ for the vector function formed by the first m of the
gi, namely the ones that really come from the implicit function theorem, and also
noting that the gradient of the remaining gi, m+ 1 ≤ i ≤ n is the identity matrix,
we get

(∇bh)(∇ğ) +∇fh,

so we have recovered the derivative computation in the Implicit Function Theorem,
which says that this matrix is 0. Thus we could have completed Step 1 without
computation by appealing to the IFT.
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Step 2.
Now we turn to the objective function. We define a new function ϕ of the

(n−m) variables xf by
ϕ(xf ) = f(g(xf )).

ϕ(xf ) has an unconstrained minimum at the value x∗f , since f has a minimum at

x∗ = g(x∗f ). (28.5.8)

We have used the implicit function g to eliminate the variables xb from f . Then
by Theorem 13.1.1 on unconstrained optimization, a necessary condition for an
unconstrained extremum is that the partials with respect to the remaining variables
(in our case xf ) vanish.

By the chain rule, just as in (28.5.6), we have

∇ϕ(xf ) = ∇f(g(xf ))∇g(xf ) = 0. (28.5.9)

Step 3.
Add to (28.5.9) the sum over i, 1 ≤ i ≤ m, of the i-th equation in (28.5.6)

multiplied by the variable λi. Since all these equations are equal to 0, the sum is
too:

∇f(g(xf ))∇g(xf ) +

m∑
i=1

λi∇hi(g(xf ))∇g(xf ) = 0.

This factors as(
∇f(g(xf )) +

m∑
i=1

λi∇hi(g(xf )
)
∇g(xf ) = 0.

Finally we evaluate at x∗, using (28.5.8)

(
∇f(x∗) +

m∑
i=1

λi∇hi(x∗)
)
∇g(x∗f ) = 0. (28.5.10)

This is true for any choice of λ. We will now see that we can choose a unique
set of λi in order to satisfy the theorem. Consider the terms inside the big paren-
theses of (28.5.10), but only including the derivatives with respect to xb.

∇bf(x∗) +

m∑
i=1

λi∇bhi(x∗) = ∇bf(x∗) + λT∇bh(x∗)

by definition of the m×m matrix ∇bh(x∗): see (28.5.2).
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Consider the equation

∇bf(x∗) + λT∇bh(x∗) = 0. (28.5.11)

This is a system of m linear equations in the m variables λ. The matrix of coeffi-
cients of the variables is ∇bh(x∗), and it is invertible by the regularity hypothesis,
Therefore there is a unique solution λ∗ to the linear system (28.5.11):

∇bf(x∗) + λT∇bh(x∗) = 0, (28.5.12)

namely λ∗T = −∇bf(x∗)(∇bh(x∗))−1.
With this value for λ∗, (28.5.10) reduces to(

∇ff(x∗) +
m∑
i=1

λ∗i∇fhi(x∗)
)
∇fg(x∗f ) = 0

By construction (see Definition 28.5.3)∇fg(x∗f ) is the identity matrix, so

∇ff(x∗) +

m∑
i=1

λ∗i∇fhi(x∗) = 0. (28.5.13)

Now (28.5.12) and (28.5.13) show that all the partials of the Lagrangian vanish
at λ∗, concluding the proof of the theorem.

28.6 A Second Proof of the Lagrange Multiplier Theorem

This second proof applies the implicit function theorem to a basis of the tangent
space of the feasible set at the minimizer x∗, one basis vector at a time.

28.6.1 Notation. We write A for the m × n matrix ∇h(x∗) and b for the row
vector ∇f(x∗). By Corollary 17.9.2 of the implicit function theorem applied to
the constraint equations h(x) = 0 at the point x∗, for any non-zero vector v in
the tangent space of the constraints at x∗, there is a curve x(t) in the feasible set
that passes through x∗ at t = 0, such that ẋ(0) = v. The dot in ẋ(t) denotes
differentiation with respect to t.

Step 1.
By the choice of v, we have

Av = 0. (28.6.2)

Since v is in the tangent space of the feasible set at x∗, this follows from Definition
17.3.1.
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Step 2.
On the other hand, since the constrained function f(x) has an extremum at x∗,

the composite function ϕ(t) = f(x(t)) has an extremum at t = 0. Thus ϕ̇(0), its
derivative at 0, vanishes. The chain rule gives

ϕ̇(0) =
n∑
j=1

∂f

∂xj
(x(0))ẋj(0) = 0,

or, in vector notation,
∇f(x∗)ẋ(0) = 0.

In Notation 28.6.1 this can be written via vector multiplication (since b, a
gradient, is a row vector) as:

bv = 0 (28.6.3)

Step 3.
The regularity of x∗ for the constraints means that the matrix A has maxi-

mum rank m. Now we use the Four Subspaces Theorem 7.2.3 applied to A. The
nullspace N (A) of the linear map Ax : Rn → Rm has dimension n−m, since A
has rank m. This nullspace is the tangent space to the feasible set at x∗. By Corol-
lary 17.9.2 of the implicit function theorem, we repeat the construction above to
n−m tangent vectors v1, . . . ,vn−m forming a basis for N (A).

So (28.6.2) and (28.6.3) hold for all vi, 1 ≤ i ≤ n−m.
By the Four Subspaces Theorem,R(AT ) is the orthogonal of N (A).
The row spaceR(AT ) of the linear transformation TAT , associated to the trans-

pose AT of A, has as basis the columns of AT , therefore the rows of A. By the
Four Subspaces Theorem, it consists in the linear space of vectors perpendicular
to N (A). Step 2 says that b is in R(AT ), so it can be written uniquely as a linear
combination of the basis ofR(AT ) formed by the rows of A: thus we have unique
λ∗i , 1 ≤ i ≤ m, such that λ = (λ1, . . . , λm) satisfies

b = −λ∗TA.

Using the definitions of b and A from Notation 28.6.1, this gives

∇f(x∗) + λ∗T∇h(x∗) = 0, (28.6.4)

which is the content of the Lagrange multiplier theorem, so we are done.



Lecture 29

Second Order Lagrangian
Conditions

We continue to consider the problem of minimization of f(x) in Rn subject to
equality constraints 28.3.2. Using Lagrange multipliers, we develop the usual nec-
essary and sufficient second-order conditions for the standard problem to have a
strict minimum and just a minimum at a point x∗ that is regular. The approach
is the same as in Lecture 28: use the implicit function theorem to reduce the con-
strained problem to an unconstrained problem. The other main tool is the same,
too: the chain rule 12.2.9. A good understanding of the tangent space of the con-
straint set at a regular point is required: this is covered in §17.3, and in Remark
17.6.13.

Both second-order theorems require that a certain Hessian be positive semidef-
inite or positive definite: this is the Hessian of the objective function restricted to
the tangent space of the feasible set at the minimizer x∗. It is difficult to determine
this directly. The second part of this lecture deals with the algebra necessary to es-
tablish an easier test of positive definiteness. The key tool is the bordered Hessian.
We give three different ways of determining positive semidefiniteness, of which
the easiest to use in the bordered Hessian criterion 29.6.6. A different criterion is
given in Theorem 29.8.4.

29.1 An Expression for the Hessian

Today we assume that the objective function f and the m constraints h are C2,
since we need second derivatives in the key Theorems 29.3.2 and 29.4.1.

We work at a regular point x∗ for the constraints h(x) = 0, so by Definition
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(28.3.3) the rank of the matrix

A = ∇h(x∗) (29.1.1)

is m. By changing the order of the variables, we will assume that the first m
columns of A form a m × m matrix Ab of rank b. and write A in block form as[
Ab Af

]
. We write F for the Hessian of the objective function f evaluated at x∗,

and Hi for the Hessian of the i-th constraint hi evaluated at x∗.
We gave two proofs of the Lagrange Multiplier Theorem 28.3.9. In §28.5, we

gave a proof of this theorem that reduces the problem to an unconstrained opti-
mization problem. We continue in the same vein today.

Let g denotes the extended implicit function given by Definition 28.5.3 for the
constraints at x∗. So g is a function of the n − m variables collectively denoted
xf , and has n coordinates. The last n − m coordinate functions are the identity
function:

gm+i(xf ) = xm+i for 1 ≤ i ≤ n−m

so that when we take the gradient of g, that part of the matrix is the (n − m) ×
(n−m) identity matrix. Recall (28.5.8)

x∗ = g(x∗f ).

By the Implicit Function Theorem (see Remark 17.6.13),

∇g(x∗f ) =

[
−A−1b Af
In−m

]
(29.1.2)

The matrixA and its submatricesAb andAf are defined in (29.1.1) The right-hand
side of (29.1.2) is written as two blocks: the top block −A−1b Af is a m× (n−m)
matrix, and the bottom block is the identity matrix of size (n−m).

In Lecture 12, Theorem 12.2.9 we computed the Hessian Φ of any composite
of the form ϕ(xf ) = f(g(xf )) at x∗, and found that

Φ = ∇g(x∗f )TF∇g(x∗f ) +

n∑
j=1

∂f

∂xj
(x∗)Gj (29.1.3)

where F is the n× n Hessian matrix of f at x∗ and Gj is the p× p Hessian of gj
at x∗.

The same computation works for each of the hi. Write

ψi(xf ) = hi(g(xf )) = 0 (29.1.4)

so ψi(xf ) is the composite for the i-th constraint,
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Then if Ψi is the Hessian matrix of ψi(xf ) evaluated at x∗f , we have

Ψi = ∇g(x∗f )THi∇g(x∗f ) +
n∑
j=1

∂hi
∂xj

(x∗)Gj = 0 (29.1.5)

where Hi is the Hessian of hi at x∗.

29.2 The Hessian at a Critical Point

Next we rewrite the Hessian at a critical point of the Lagrangian.

29.2.1 Theorem. Let f be our objective function, g the function given by Definition
28.5.3, and ϕ(xf ) the composite f(g(xf )). At a regular point x∗ satisfying the
Lagrange equation 28.3.6

∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) = 0

for a unique collection of Lagrange multipliers λ∗i , the Hessian Φ of ϕ(xf ) at x∗f
can be written

Φ = MT
(
F +

m∑
i=1

λ∗iHi

)
M = MT

(
F + λ∗TH

)
M,

where M is the n × (n −m) matrix ∇g(x∗f ) whose columns form a basis for the
tangent space of the constraint set at x∗.

Proof. We computed the Hessian of ϕ(xf ) at x∗ in (29.1.3). We add to it the
following linear combination, which does not change its value since all terms Ψi

are 0 by (29.1.5):
m∑
i=1

λ∗iΨi = 0

This gives a new expression for the Hessian of ϕ:

∇g(x∗f )T
(
F +

m∑
i=1

λ∗iHi

)
∇g(x∗f )

+
n∑
j=1

( ∂f
∂xj

(x∗) +
m∑
i=1

λ∗i
∂hi
∂xj

(x∗)
)
Gj(x

∗
f ) (29.2.2)
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Consider the expressions indexed by j, 1 ≤ j ≤ n, in the last sum in (29.2.2):

∂f

∂xj
(x∗) +

m∑
i=1

λ∗i
∂hi
∂xj

(x∗).

They all vanish because the Lagrange equations (28.3.6) are satisfied.
This shows that the Hessian of ϕ(xf ) is

∇g(x∗f )T
(
F +

m∑
i=1

λ∗iHi

)
∇g(x∗f ) (29.2.3)

Note that F +
∑m

i=1 λ
∗
iHi is a sum of symmetric n × n matrices, and so is itself

a symmetric n × n matrix. The matrix ∇g(x∗f ) is an n × (n −m) matrix, so the
matrix appearing in (29.2.3) is a symmetric (n−m)×(n−m) matrix, a reasonable
candidate for the Hessian of an unconstrained function in n−m variables xf . The
effect of the multiplication by the matrix∇g(x∗f ) and its transpose is to restrict the
Hessian to the tangent space M at x∗ of the constraints, since for each constraint
hi

∇hi(x∗)∇g(x∗f ) = 0.

This equation is just Corollary 17.6.8: remember that the last n−m coordinates of
g give the corresponding variable, so their gradients form the identity matrix: see
Definition 28.5.3. Compare with Definition 17.3.1.

Now just use the IFT (see (29.1.2)) to transform the expression (29.2.3) for the
Hessian of ϕ(xf ) to

[
−(A−1b Af )T In−m

] (
F +

m∑
i=1

λ∗iHi

)[−A−1b Af
In−m

]
. (29.2.4)

29.3 The Necessary Second Order Condition for a Mini-
mum

If the point x∗ is regular for the constraints, the results of Lecture 28 have reduced
the problem of showing that x∗ is a local minimum for the constrained problem to
that of showing that x∗f is a local minimum for the unconstrained function φ(xf ) =
f(g(xf )), as we have already noted.

The results of §13.1 give the results for unconstrained optimization: the neces-
sary conditions for φ(xf ) to have a minimum at x∗f are

1. its gradient at x∗f must be 0;
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2. its Hessian Φ at x∗f must be positive semidefinite. See Theorem 13.1.1.

We just apply this to the current situation. Write

L = F +
m∑
i=1

λ∗iHi, (29.3.1)

where F and Hi are the Hessians of f and hi respectively, and the λi are the
Lagrange multipliers. So L is a symmetric n× n matrix.

29.3.2 Theorem. Suppose that the feasible vector x∗ is a local minimizer of f(x)
subject to m constraints h(x) = 0, and that x∗ is regular for the constraints. Then
there is a m-vector λ∗ of Lagrange multipliers satisfying the Lagrange equations

∇f(x∗) + λ∗∇h(x∗) = 0

and the matrix [
−(A−1b Af )T In−m

]
L

[
−A−1b Af
In−m

]
(29.3.3)

is positive semidefinite.

Proof. We know that the Hessian for the unconstrained problem must be positive
semidefinite by Theorem 13.1.2. Theorem 29.2.1 and (29.2.4) show that the Hes-
sian for the unconstrained problem is (29.3.3), as claimed.

To repeat, the matrix in (29.3.3) is the restriction of the Hessian of f to the
tangent space of the constraints at x∗.

29.3.4 Remark. It is worth noting that if L is positive semidefinite on all Rn, then
its restriction to any linear subspace is still positive semidefinite. So it is always
worth checking if this is the case. On the other hand, L could have negative eigen-
values on Rn, while its restriction to a subspace has only non-negative eigenvalues.
So in some cases we will need to compute the matrix in (29.3.3).

29.4 The Sufficient Second Order Condition for a Mini-
mum

For unconstrained optimization, a sufficient condition for having a minimum is, be-
sides the usual condition on the gradient, that the Hessian of the objective function
be positive definite. See Theorem 13.1.2. Here is how this translates.
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29.4.1 Theorem. Suppose that x∗ is regular for the constraints and that there is a
m-vector λ∗ of Lagrange multipliers satisfying the Lagrange equations

∇f(x∗) + λ∗∇h(x∗) = 0

Then if the matrix (29.3.3) is positive definite, x∗ is a strict local minimizer for f
constrained to h = 0.

Proof. This follows in exactly the same way as the previous theorem from the
results of §13.1 on unconstrained minima. See Theorem 13.1.3.

29.5 Examples

Here are two examples from economics that use the second order sufficient condi-
tion, as well as the implicit function theorem and the characterization of quasicon-
vex functions we give in Theorem 24.4.1.

29.5.1 Cost Minimization

The objective function is linear in n variables xj , 1 ≤ j ≤ n. We write it

f(x) =
n∑
j=1

pjxj .

The feasible set S is the open first quadrant: xj > 0. We have one constraint (so
m = 1), which we write

z − g(x) = 0, (29.5.1)

where z is a positive constant. We assume g is C2.
Here is how we interpret this. An industrial producer is making one product

(the output) using n inputs labeled by j, 1 ≤ j ≤ n. The unit price of the j-th
input is pj , another constant. We assume pj > 0.

The function g(x) describes how much output the producer can make from
inputs x. The constraint therefore fixes the output level at z, and the problem is to
minimize the cost of producing z units of output.

Assume x∗ ∈ S is a minimizer for the problem. In order to use Lagrange
multipliers, we assume that the constraint is regular at x∗, namely ∇g(x∗) 6= 0.In
economics these partials are called the marginal productivities.

The Lagrangian is L =
∑n

j=1 pjxj +λ(z− g(x)), and the Lagrange equations
are therefore the constraint (29.5.1) and the n partial derivatives of the Lagrangian
with respect to the xj :

pj − λ
∂g

∂xj
(x∗) = 0.
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The Lagrange Theorem 28.3.9 tells us that at a minimizer x∗, there is a unique λ∗

solving these equations. Solving for λ∗, assuming that all the marginal productivi-
ties are non-zero, we get

pi
pj

=
∂g/∂xi(x

∗)

∂g/∂xj(x∗)
,

so the ratios of the marginal productivities are equal to the ratios of the unit price
of the corresponding inputs.

Next we write down a second-order condition that guarantees that we are at a
strict minimum. We want to use Theorem 29.4.1, so we assume that the Hessian of
the constraint is positive definite at x∗ when restricted to the tangent space of the
constraint: the set of v such that 〈v,∇g(x∗)〉 = 0.

The sufficient condition of Theorem 24.4.1 tells us that −g is quasiconvex, so
that g is quasiconcave. As we will see in Theorem 29.6.6, this implies that the
(n+ 1)× (n+ 1) bordered Hessian matrix, where G is the Hessian of g,[

0 −∇g(x∗)
−∇g(x∗)T −G(x∗)

]
(29.5.2)

has non-zero determinant.
Because g is quasiconcave, its superlevel sets Sc are convex. Our constraint

says that we are working on the level set of g of level z, and x∗ is a point of the
boundary of Sz . Since S is open, we have a non-vertical supporting hyperplane at
this point, and because g is C2, this hyperplane is given by the gradient of g at x∗,
as we saw in Theorem 22.1.2.

Now we allow the pj and z to vary, so that the n + 1 Lagrange equations are
a system of equations not only in the n + 1 variables xj and λ, but also in the
additional n+ 1 variables pj and z. Matrix (29.5.2) is the matrix of partials of the
Lagrange equations with respect to the variables λ, x1, . . . , xn, in that order, as you
can easily check. The fact that its determinant is non-zero allows us to apply the
implicit function theorem: In a small enough neighborhood of the original point
p, z, the coordinate functions of the unique minimum are C1 functions λ(p, z) and
xj(p, z). The objective function f evaluated at this family of unique minima is
called the value function. We write it

v(p, z) =
n∑
j=1

pjxj(p, z) = 〈p,x(p, z)〉,

a function of the n + 1 variables p and z in a neighborhood of our starting point.
The functions λ(p, z) and xi(p, z) are only known implicitly but we do know their
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partials at the start point. So we can compute the partials of v using the chain rule.
In particular, the partial with respect to z is

∂v

∂z
=

n∑
j=1

pj
∂xj
∂z

(p, z).

In particular, the partial derivative of the cost function with respect to z is λ, and
the gradient of the cost function with respect to p is x(p, y). This result is known
as Shephard’s lemma.

The implicit function theorem only guarantees that this is true is a small neigh-
borhood of our start point of price and output. Because g is quasiconcave, if we
make the assumptions above for all p and all output z, we get a result over the
entire first quadrant.

29.5.2 Utility Maximization

Exceptionally in this example we write the objective function as u(x1, . . . , xn),
where u measures the utility of a basket of n goods for a household. There is one
linear constraint

r −
n∑
i=1

pixi = 0,

where r is a parameter measuring the income of the household, and the vector p
gives the unit prices of the n goods. The problem is to maximize u subject to
this constraint. Because the constraint is linear, all points are regular. So by the
Lagrange multiplier theorem, if x∗ is a local maximum, there exists a unique λ∗

such that the Lagrange equations

∂u

∂xi
(x∗)− λ∗pi = 0, 1 ≤ i ≤ n,

have a solution. As in the previous example, we assume that the Lagrangian

L = u(x) + λ(r −
n∑
i=1

pixi)

is negative definite when restricted to the tangent space of the constraint space: the
set of v such that 〈v,p〉 = 0. This means that the bordered Hessian[

0 −p
−pT U(x∗)

]
(29.5.3)
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has non-zero determinant. Here U is the Hessian of u. The invertibility of this
matrix means that the Implicit Function Theorem can be used to write λ and xi as
C1 functions of the parameters p and r, on a sufficiently small neighborhood of the
point we started from.

The composite function v(p, r) = u(x1(p, r), . . . , xn(p, r)) is called the value
function. Then ∂v/∂r(p, r) = λ.

29.6 Bordered Hessians: an Elementary Approach

For the rest of this lecture, we do some algebra. F stands for the Hessian of the
function of interest at x∗. In applications this is usually the Hessian of the La-
grangian. In any case it is a symmetric n × n matrix. A is the matrix of gradients
of the constraints at x∗, so it is an m× n matrix, m < n.

Goal : To develop a criterion for recognizing when the symmetric matrix F
is positive definite (or positive semidefinite) when restricted to the linear subspace
Ax = 0.

As usual we assume that A has maximum rank m, so that we may assume that
the square matrix consisting of the first m columns of A is invertible. We usually
call this matrix Ab, where b stands for bound, but occasionally we write it Am to
denote its size. For r > m we write the submatrix of the first r columns of A as
Ar, and the leading principal submatrix of F of size r as Fr.

So we forget about the optimization problem, and solve this linear algebra
problem. First the direct approach.

Let D be the following n× n matrix, written in blocks:

D =

[
A−1b −A−1b Af

0 In−m

]
. (29.6.1)

Then

D−1 =

[
Ab Af
0 In−m

]
.

Note that A−1b is a m ×m matrix, and −A−1b Af a m × n matrix: D is invertible
with determinant detA−1b , so it can be used as a change of basis matrix as in §8.3.

By design, we get

AD =
[
Ab Af

] [A−1b −A−1b Af
0 In−m

]
=
[
Im 0m,n−m

]
so that the equations Ax = 0 become

z1 = z2 = · · · = zm = 0 (29.6.2)
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if we define z by z = D−1x.
In this new coordinate system, the Hessian F is written DTFD. Call this

Hessian FD. Then the restriction of F to the subspace Ax = 0 is simply the
bottom right square submatrix of FD of size n−m. Call this matrix Ff .

So we just need to determine when Ff is positive definite or positive semidefi-
nite. For that we have the tests of §9.4 and §9.5. Problem solved.

Why do anything more than that? If there are many bound variables, meaning
that there are many equations, it can be annoying to compute D because it is nec-
essary to invert Ab. Everything that follows is done to avoid that computation. As
you will see, the only computations done below are row and column operations,
until we get to the test itself, which involves determining the sign of the determi-
nant of matrices. Note that when there are many equations, so m is large, there are
few minors to consider: only n−m. So the bordered Hessian test is easiest when
the direct approach is hardest.

So first a definition.

29.6.3 Definition. Given a symmetric n × n symmetric matrix F , and a m × n
matrix A of rank m, m < n, the associated bordered Hessian matrix of size (n +
m)× (n+m) is the matrix

C =

[
0m×m A
AT F

]
where 0m×m is the zero matrix of size m×m. Since F is symmetric, so is C.

29.6.4 Remark. As we noticed in Corollary 28.3.10 for the gradient, this is the
Hessian of the Lagrangian with respect to λ and x.

By definition, we denote the leading principal submatrix of size m+ r of C by
Cr (notice the shift in indexing), so:

Cr =

[
0m×m Ar
ATr Fr

]
(29.6.5)

Because of the submatrix of zeros in the upper left-hand corner of C, it is
obvious that detCr = 0 when r < m. When r = m, so Cm is a 2m × 2m
matrix, the A-block that appears in detCm is Am, a square matrix, and an easy
computation shows that detCm = (−1)m(detAm)2. We will establish this in the
course of the proof of our main theorem:
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29.6.6 Theorem (Bordered Hessian Test). For the symmetric matrix F to be posi-
tive definite when restricted to the subspace Ax = 0, it is necessary and sufficient
that

(−1)m detCr > 0 for m+ 1 ≤ r ≤ n

In other words, we are testing the leading principal minors of C of size 2m + 1,
2m+ 2, . . . , m+ n.

Proof. As in §8.3 we make a linear change of basis in Rn, using an n×n invertible
matrix D giving the change of basis x = Dz. Then the linear equations, in the z-
coordinate system become

ADz = 0,

and the matrix F becomes
zTDTFDz.

So let’s define
AD = AD and FD = DTFD.

AD has rank m, just like A, since D is invertible. FD is symmetric, and is congru-
ent (see Definition 8.4.1) to F In the z-basis, the bordered Hessian is written:

CD =

[
0m×m AD
ATD FD

]
For details on this change of basis process, see §8.3.

Let S be the (n+m)× (n+m) matrix

S =

[
Im 0m×n

0n×m D

]
and let Sr be the leading principal matrix of size m + r of S, so that the indexing
is the same as that for C. Let Dr be the leading principal matrix of size r of D.
Then we have:

Sr =

[
Im 0
0 Dr

]
S and Sr are invertible because D, and therefore Dr, is.

Here is the key step of the proof of the theorem.

29.6.7 Proposition. The matrix S transforms the bordered Hessian in the x-basis
into the bordered Hessian in the z-basis, as follows:

STCS = CD and STr CrSr = (CD)r

The sign of detCD is the same as that of detC, and the sign of det (CD)r is the
same as that of detCr.



29.6. BORDERED HESSIANS 463

Proof. We first multiply out STCS in blocks:

STCS =

[
Im 0
0 DT

] [
0 A
AT F

] [
Im 0
0 D

]
=

[
Im 0
0 DT

] [
0 AD
AT FD

]
=

[
0 AD

DTAT DTFD

]
=

[
0 AD

(AD)T FD

]
= CD

as required. The same proof works for the leading principal submatrices. This
establishes that C and CD are congruent, so by the Law of Inertia 8.5.5, the sign of
their determinants are the same. We can also see this directly since detSTCS =
(detS)2 detC. Cr and (CD)r are also congruent, so the same argument holds.

The Proposition shows that to prove Theorem 29.6.6 it is enough to prove it
in one convenient basis for F , in other words, for one choice of change of basis
matrix D. Of course we use the D from (29.6.1), for the reasons described there.
Thus, for the new coordinate system we have

CD =

0m×m Im 0
Im Fb Fbf
0 F Tbf Ff

 (29.6.8)

where FD is partitioned into the four blocks that appear in the matrix: Fb is the
leading m×m matrix, Ff the lowest diagonal (n−m)× (n−m) block, etc. By
choice of D, we see that the restriction of the Hessian F to the subspace Ax = 0
is Ff . This is the matrix of interest.

By symmetric row and column operations on CD (as in §8.6), we can reduce
the bordered Hessian (29.6.8) to 0m×m Im 0n−m×n−m

Im 0 0
0n−m×n−m 0 Ff

 . (29.6.9)

The key point is that these row and column operations do not affect the bottom
right corner, so we still have Ff there. These operations do not affect the sign of
the determinant of the matrix or its leading principal minors, by Sylvester’s Law
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of Inertia 8.5.5: indeed, the matrix C and the matrix in (29.6.9) are congruent.
Finally, by m row exchanges we can transform the matrix in Theorem 29.6.9 to:Im 0m×m 0

0 Im 0
0 0 Ff

 (29.6.10)

Each row exchange multiplies the determinant by −1 (see Corollary 6.6.11),
so m rows exchanges multiply the determinant by (−1)m. The determinant of
the matrix (29.6.10) is clearly detFf , so the determinant of the matrix (29.6.9) is
(−1)m detFf . Working backwards, this shows that the determinant of C has the
sign of (−1)m detFf .

We want Ff to be positive definite, so by the leading principal minor test of
Theorem 9.4.1 its determinant and all its leading principal minors must be positive.
For this to be true, we see that C and its leading principal minors must have sign
(−1)m, which is what the theorem says.

29.7 A Generalization of the Rayleigh Quotient

In this section and the next, we take a different approach to the bordered Hessian.
Indeed, we get an intermediate result that is of interest. Furthermore the proof uses
both the Weierstrass Theorem 16.2.2 and a generalization of the Rayleigh Quotient
9.1.1.

Recall that the ordinary Rayleigh quotient associated to F is

R(x) =
〈x, Fx〉
〈x,x〉

as we learned in §9.1. We replace it by a generalized Rayleigh quotient:

S(x) = − 〈x, Fx〉
〈Ax, Ax〉

(29.7.1)

The ordinary Rayleigh quotient corresponds to the case where A is the identity
matrix, with the minus sign removed. Note that S is not well-defined on the linear
subspace Ax = 0, but like the Rayleigh quotient is constant on rays through the
origin where it is defined, because it too is homogenous of degree 0. Thus it takes
all its values on the unit sphere U , just like the ordinary Rayleigh quotient. We
view S as a function on all of U by assigning to it the value −∞ at all points of
M = (Ax = 0) ∩ U .

29.7.2 Theorem (Debreu [19]). Assume that xTFx > 0 for all x ∈ M . Then S
attains its maximum value s∗ on U at a point x∗ not in M .
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Proof. Because xTFx > 0 for all x ∈ M , it is easy to see that S is ‘continuous’
in the sense that for any sequence of points {xk} in U approaching M ,

lim
k→∞

S(xk) = −∞

Thus by an extension of the Maximum Theorem 16.2.2, S(x) attains its maximum
s∗ at a point x∗ which is not in M .

So s∗ = S(x∗) ≥ S(x) for all x ∈ U . Clearing the denominator of S in
(29.7.1), and rearranging, we get

〈x, Fx〉+ s∗〈Ax, Ax〉 ≥ 0 for all x ∈ U (29.7.3)

Now 〈Ax, Ax〉 = xTATAx, where the matrix ATA is an n× n symmetric matrix.
Consider the family of n × n symmetric matrices F + s(ATA) parametrized by
the variable s, and evaluate at an arbitrary x:

xT (F + s(ATA))x = xTFx + sxTATAx (29.7.4)

The term xTATAx is non-negative, since it is the square of the length of a
vector. When s = s∗ in (29.7.4), you get an equality in (29.7.3) when x = x∗.
When s > s∗, the expression on the left in (29.7.3) is strictly positive, so we have
proved:

29.7.5 Corollary. For s > s∗ the symmetric matrix F+s(ATA) is positive definite.

29.7.6 Corollary. The following two statements are equivalent:

• For all nonzero x satisfying Ax = 0, xTFx is positive.

• There exists a s ∈ R such that F + s(ATA) is a positive definite matrix.

Proof. First we assume that we have found a s such that F + s(ATA) is positive
definite. Then by definition, for all non-zero x we have

xT (F + s(ATA))x = xTFx + sxTATAx > 0

For x satisfying Ax = 0, the second term vanishes, so xTFx > 0, and we have
proved the⇐ implication.

Now we turn to the⇒ implication. If xTFx > 0 for all non-zero x such that
Ax = 0, the hypothesis of Theorem 29.7.2 is satisfied, so Corollary 29.7.5 applies
and we are done. Any s greater that s∗ works.
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29.8 A Criterion for Positive Definiteness on a Subspace

We establish a new criterion 29.8.5 for positiveness definiteness, and then, using
Lemma 29.8.6 we get a second proof of the bordered Hessian test.

We apply the results of the previous section to Ar, the matrix formed by the
first r columns ofA, and Fr, the leading principal submatrix of size r of F , for any
r between m and n. Recall our assumption that the matrix formed by the first m
columns of A is invertible, so each Ar has rank m in the range of r indicated.

The linear transformation TAr associated to Ar, studied in §7.2, goes from the
subspace Rr formed by the first r coordinates of Rn to Rm. The nullspace N (Ar)
of TAr has dimension r −m, and it is the subspace of elements of N (Ar+1) with
last entry equal to 0. So Fr is positive definite on N (Ar) if F is positive definite
on N (A).

Thus by Corollary 29.7.6, for s sufficiently large, Fr + sATr Ar is positive def-
inite on Rr.

Note the identity[
−Im Ar
sATr Fr

] [
Im Ar
0rm Ir

]
=

[
−Im 0
−sATr Fr + sATr Ar

]
(29.8.1)

29.8.2 Lemma. Assume that Fr is positive definite on Arx = 0. For s sufficient
large, the sign of the determinant of the matrix in (29.8.1):[

−Im Ar
sATr Fr

]
(29.8.3)

is (−1)m.

Proof. This is simply because the determinant of the middle matrix in (29.8.1) is
1 and the right-hand matrix has determinant of the same sign as

(−1)m(detFr + sATr Ar) = (−1)m

since Fr + sATr Ar is positive definite by Corollary 29.7.6.

Now we want an implication in the other direction, in order to establish a crite-
rion for F to be positive definite on Ax = 0. The following theorem follows from
the leading principal minor test for positive definiteness (9.4.1):

29.8.4 Theorem. For an arbitrary n×n symmetric matrix F and anm×n matrix
A such that Am has rank m, assume that there is a s∗ such that for all s > s∗,
Fr + sATr Ar has positive determinant for r = m + 1, . . . , n. Then F is positive
definite on the locus M given by Ax = 0.
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Thus we get the

29.8.5 Corollary. F is positive definite on Ax = 0 if and only if the sign of the
determinant of the matrix in (29.8.3)) is (−1)m, for r = m + 1, . . . , n and s
sufficiently large.

The test for positive definiteness of F on Ax = 0 given by Corollary 29.8.5,
while beautiful, is not immediately useful because the matrix is complicated and
involves a parameter s. We now replace it by a simpler matrix, the bordered Hes-
sian: see Definition 29.6.3

29.8.6 Lemma. The sign of the determinant of the matrix in (29.8.3), namely

Dr(s) =

[
−Im Ar
sATr Fr

]
is for large enough s, the same as the sign of the determinant of Cr.

Proof. detDr(s) is a polynomial in s of degree at most m, since ATr has m
columns. For s large enough, the sign of the determinant is determined by the
sign of the coefficient of sm, unless it happens to be 0. The key remark is that the
determinant of the matrix

Er(s) =

[
0mm Ar
sATr Fr

]
(29.8.7)

has the same leading coefficient as a polynomial in s. Finally, the determinant of
Cr is the leading coefficient of this polynomial, which finishes the proof.

Corollary 29.8.5 combined with this lemma give us a second proof of the bor-
dered Hessian Test 29.6.6.



Lecture 30

Quadratic Optimization

By quadratic optimization we mean an optimization problem where the objective
function is a quadratic polynomial in the variables and the constraints are all linear
functions, which here we will take to be equality constraints. This means that
these notes cover a special case of nonlinear optimization started in Lecture 28
and 29. This case is worth doing because the hypotheses mean that all points
on the constraint set are regular, and because the implicit function given by the
implicit function theorem can be found explicitly. In consequence, the standard
problem in quadratic optimization can be solved explicitly using linear algebra. A
key tool is block matrix multiplication. We cover two aspects of the solution for
quadratic optimization today: unconstrained optimization, and constrained with
equality constraints. Subsequently we will look at constrained optimization with
both equality and inequality constraints.

30.1 Unconstrained Quadratic Optimization

We have already studied linear optimization, namely optimization problems where
both the objective function and the constraints are linear. These involve different
tools from ones we are currently using, because the extremum always occur on the
boundary, since linear functions have no critical points. The next simplest case,
where results still follow explicitly using linear algebra techniques, occurs when
the objective function is a second degree polynomial. Here is the standard set up.

30.1.1 Definition. The standard objective function in quadratic optimization is
written:

f(x) =
xTQx

2
+ pTx (30.1.2)
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where Q is a symmetric n× n matrix of real numbers, p an n-vector of real num-
bers, and x a vector in Rn.

As always we focus on minimization.
In this section we analyze the case where there are no constraints. We have

already studied all this in a more general context. The point in doing it again is
to get explicit formulas involving matrices when the objective function has this
simple form.

To find a minimum or a maximum, we set the gradient at x to zero:

∇f |x = xTQ+ pT = 0 (30.1.3)

or transposing, using the fact that Q is symmetric, we get:

Qx + p = 0 (30.1.4)

If Q is invertible, we can solve for x:

x∗ = −Q−1p (30.1.5)

so there is a unique candidate x∗ for a solution.
Then, as we have learned from our study of unconstrained optimization: The-

orem 13.1.3, we have:

30.1.6 Theorem. Assuming that Q is invertible, we have three cases at the x∗

given by (30.1.5):

• If Q is positive definite, then x∗ is the unique global minimum for f .

• If Q is negative definite, then x∗ is the unique global maximum for f .

• If Q is neither, so it has both positive and negative eigenvalues, then x∗ is a
saddle point for f .

Let us now focus on the case where Q is not invertible. We view Q as giving
a linear map: Rn → Rn by right multiplication: the linear map (which we call Q)
sends x to Qx. If the matrix Q is not invertible, then the range of the linear map Q
is not all of Rn and there are non-zero vectors n in its nullspace N (Q). There are
two cases to consider:

1. Assume p is not in the range of Q. Then (30.1.4) has no solution, since as
x varies Qx describes the range of Q. Therefore the minimization has no
solution. Let us now examine why. Since p is not in the column space of
Q, by symmetry of Q it is not in the row space of Q. Add p as an extra row
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to Q, getting a new matrix Q̃. By construction the rank of Q̃ is greater than
that of Q, so we can find a n in the nullspace of Q and not in that of Q̃. This
means that p ·n 6= 0. Evaluate f on cn, c ∈ R 6= 0: f(cn) = cpTn 6= 0. By
choosing c very large, either positively or negatively depending on the sign
of pTn, we can make f go to −∞, showing there is no minimum.

2. Assume p is in the range of f , so we can write p = Qq for a suitable q.
Then (30.1.4) can be written Qx +Qq = 0. So any x such that x + q is in
the nullspace of Q is a solution.

• If Q is positive semidefinite, then any solution is a global minimum;

• if Q is negative semidefinite, then any solution is a global maximum;

• if if Q is neither, so it has both positive and negative eigenvalues, any
solutiion is a saddle point;

Thus we have the following theorems, special cases of theorems we have seen
before:

30.1.7 Theorem. The function f(x) given by (30.1.2) has a strict minimum if and
only if the matrix Q is positive definite, and the unique minimizer x∗ is then given
by (30.1.5).

30.1.8 Theorem. The function f(x) given by (30.1.2) has a minimum if and only
if the matrix Q is positive semidefinite and p is in the range of the linear map
L : Rn → Rn given by L(x) = Qx, in which case the function is minimized at
any x ∈ L−1(p). Then the set of minimizers is a linear space of dimension equal
to that of the nullspace of L.

30.1.9 Exercise. Let n = 3, and

Q =

1 1 0
1 2 1
0 1 1


We will select p later.

Show that Q is positive semidefinite, with nullspace of dimension 1 generated
by the vector n = (1,−1, 1). Show that the other eigenvalues are 1 and 3, with
associated eigenvectors (1, 0,−1) and (1, 2, 1). As expected, the eigenvectors are
orthogonal.

1. Let p = (1, 0,−1). Show that p is in the range of Q. Indeed, show that
p = Qq, where q = (1, 0,−1). Solve the minimization problem 30.1.2. by
writing

Qx + p = 0 (30.1.10)
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so
Q(x + q) = 0

which implies that x = −q + tn, where t is an arbitrary real number, and n
is the chosen generator of the nullspace. Show the minimizer is

x∗ = −

 1
0
−1

+ t

 1
−1
1

 =

−1 + t
−t

1 + t


Check that this x satisfies (30.1.10) and check that f(x∗) = 0.

2. Let p = (2,−1, 0). Show that p is not in the range of Q. Compute f(tn),
for the generator n of the nullspace. You should get f(tn) = 3t, so by letting
t→ −∞ we can make this arbitrarily negative, so there is no minimum.

30.2 Equality Constrained Quadratic Minimization

Next we consider the case where our objective function is the same as before
(30.1.2), and we add linear equality constraints:

Ax = b (30.2.1)

where A is a m × n matrix, with m < n, of maximal rank m.1 This gives m
constraints, one for each row of A, written:

n∑
j=1

aijxj = bi for1 ≤ i ≤ m

We will typically think of the bi as parameters.

30.2.2 Definition. The Standard Problem is:

Minimize
xTQx

2
+ pTx subject to Ax = b (30.2.3)

The Lagrangian function for this problem can be written:

L(x, µ) =
xTQx

2
+ pTx+ µT (Ax− b) (30.2.4)

1If the rank of A is less than m we remove all the dependent constraints until we get to maximal
rank.
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where µ = −λ, the usual m-vector of Lagrange multipliers, with µi = −λi asso-
ciated to the i-th constraint (thus the i-th row of A).2

We apply our first-order conditions to find the extrema for our optimization
problem. Any solution we find will be regular, because the constraint equations are
linear and linearly independent. So a minimum x∗ is one of the solutions (x∗, µ∗)
to the usual system of n+m equations in our n+m variables x1, . . . , xn, µ1, . . . , µm:

Ax = b (30.2.5)

∇L = xTQ+ pT + µTA = 0 (30.2.6)

where ∇ denotes the gradient with respect to the x-variables.3 The ∇L equations
(30.2.6) form a row of equations. We transpose them to get a column of equations,
remembering that QT = Q:

Qx + p +ATµ = 0 (30.2.7)

If we let ∇µ,x be the gradient with respect to the m + n variables µ and x,
(30.2.5) and (30.2.6) can be subsumed into one equation:

∇µ,xL(µ,x) = 0

In block matrix notation this is[
0 A
AT Q

] [
µ
x

]
=

[
b
−p

]
(30.2.8)

The matrix on the left is symmetric, since Q is. It is to get symmetry here and later
that we changed the sign in the Lagrangian.

Next we establish a necessary and sufficient second order condition for the
Standard Problem 30.2.3 to have a strict minimum, and also to have a minimum.

The Hessian of the objective function with respect to the x variables is just Q,
so it is a matrix of constants, which is what makes this case so pleasant to analyze.
Furthermore the constraint locus is an intersection of hyperplanes, so that to get
all tangent directions one can take lines, a fact we exploit in the proof of the next
theorem.

30.2.9 Definition. The linear space M = {x | Ax = 0} of dimension n −m is
the tangent space to the affine feasible set {x | Ax = b}.

2Replacing λ by µ = −λ, improves some formulas: see (30.2.8)
3It is a good exercise to check that the derivative computation is correct.
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Here is why it is called the tangent space. If x0 is a fixed feasible point, and
x + x0 a point in the feasible set, we have

b = A(x + x0) = Ax +Ax0 = Ax + b

so Ax = 0. This is a derivative computation: write x =
∑n

i=1 αit for a fixed
vector α = (a1, . . . , αn). Then

lim
t→0

A(x + x0)−A(x0)

t
= Aα

so that the linear map A : x→ Ax is the derivative of the feasible set at x0, and at
all other points of the feasible set, for that matter.

30.2.10 Theorem (Condition for a strict minimum when the objective function
is quadratic and the constraint equations are linear). A necessary and sufficient
condition for the Standard Problem 30.2.3 to have a strict minimum x∗ is that
the Hessian Q be positive definite when restricted to the linear subspace M of
Definition 30.2.9.

Proof. Let x(t) be a line in the feasible setAx = b, parametrized by t and passing
through the point x∗ at time t = 0. We write it

xj(t) = αjt+ x∗j , 1 ≤ j ≤ n

where α is not the zero vector.

30.2.11 Proposition. The line x(t) lies in the feasible set {x|Ax = b} iff x∗ is in
the feasible set and Aα = 0, so that α ∈M .

If x∗ is a strict minimum of the objective function, then the objective function
restricted to the curve (x(t), f(x(t))), has a strict minimum at t = 0. Since f(x(t))
is a degree 2 polynomial in t, this will happen if and only if the second derivative
of f(x(t)) with respect to t is positive at t = 0. Let us compute it.

We denote the derivative of x(t) with respect to t by ẋ. Note that ẋ = α in our
notation above. By the chain rule,

d

dt
f(x(t)) =

n∑
j=1

∂f

∂xj
ẋj

Rewriting this in matrix notation, we get

d

dt
f(x(t)) = xTQẋ + pT ẋ
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Differentiating with respect to t a second time, since ẍ = 0, we get4

d2

dt2
f(x(t)) = ẋTQẋ = αTQα (30.2.12)

If Q is positive definite on M this is strictly positive, since α 6= 0.
As we noted in Proposition 30.2.11, we may choose the line x(t) so that its

tangent vector ẋ(0) = α is an arbitrary non-zero element of M . Thus (30.2.12)
says that Q is positive definite on all of M , so this is, as claimed, a necessary and
sufficient condition.

Next we solve the Standard Problem (30.2.3) with the hypothesis from The-
orem 30.2.10 that Q restricted to the constraint set is positive definite. Since the
m×n matrix A is assumed to have rank m, we can assume that its leading subma-
trix of size m×m has rank m , and is therefore invertible. We can achieve this by
reordering the variables xi. Thus we rewrite the constraint matrix in block matrix
form as [

Ax Ay
]

with Ax an invertible m ×m matrix, and Ay a m × (n −m) matrix. We rename
the last n−m variables:

yi = xi+m for 0 < i ≤ n−m

so we can write the constraints in block matrix form[
Ax Ay

] [x
y

]
= b.

Multiply by A−1x on the left:

[
I A−1x Ay

] [x
y

]
= A−1x b (30.2.13)

For convenience we write
A = A−1x Ay

not to be confused with the full constraint matrix, called A. Our new A is a m ×
(n−m) matrix. Also note that x is now a m-vector, and y a (n−m)-vector.

Multiplying out (30.2.13) gives:

x = −Ay +A−1x b (30.2.14)

4The terms xtQẍ + ptẍ that would usually appear vanish.
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so that the matrix of partials of the functions x with respect to the variables y is

∇yx = −A. (30.2.15)

This allows us to eliminate the x explicitly without appealing to the implicit func-
tion theorem.

Indeed, the composite function is

g(y) = f(−Ay +A−1x b), (30.2.16)

which we could write out explicitly using the expression for f . By the chain rule

∂g

∂yk
=

m∑
i=1

∂f

∂xi

∂xi
∂yk

+
∂f

∂yk
, for 1 ≤ k ≤ n−m,

which can be written

∇yg = ∇x,yf
[
−A
In−m

]
. (30.2.17)

Here In−m is the (n−m)× (n−m) identity matrix.
We write this out in block matrix notation. First write Q as

Q =

[
Q1 Q12

QT12 Q2

]
(30.2.18)

where Q1 is a symmetric m ×m matrix, Q2 is a symmetric (n −m) × (n −m)
matrix, and Q12 is m× (n−m). Then

∇x,yf =
[
xT yT

] [Q1 Q12

QT12 Q2

]
+ pT .

Substitute this into ((30.2.17):

∇yg =
[
xT yT

] [Q1 Q12

QT12 Q2

] [
−A
In−m

]
+ pT

[
−A
In−m

]
or

∇yg = −xTQ1A− yTQT12A + xTQ12 + yTQ2 + pT
[
−A
In−m

]
(30.2.19)

We differentiate a second time with respect to y to get the Hessian G of g. Using
(30.2.15), we get

G = ATQ1A−QT12A−ATQ12 +Q2 (30.2.20)

We have established the following variant of Theorem 30.2.10.
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30.2.21 Theorem. A necessary and sufficient condition for the Standard Problem
30.2.3 to have a strict minimum x∗ is that the Hessian G be positive definite, so
that

G = ATQ1A−QT12A−ATQ12 +Q2

is positive definite, or, equivalently, substituting A−1x Ay in for A

G = ATy (A−1x )TQ1A
−1
x Ay −QT12A−1x Ay −ATy (A−1x )TQ12 +Q2

is positive definite.

Proof. Indeed, by solving for the x using the y we have transformed our con-
strained minimization problem to an unconstrained one, so we just apply Theorem
30.1.7.

Now that we have established explicitly the necessary and sufficient condi-
tion for having a strict minimum, we want to find that minimum. We go back to
(30.2.19), and substitute in the value of xT computed from (30.2.13) to get

∇yg =− bT (A−1x )T (Q1A−Q12) (30.2.22)

+ yT (ATQ1A−QT12A−ATQ12 +Q2) + pT
[
−A
In−m

]
Now at a minimum this gradient must be zero. Notice that the matrix that

multiplies yT on the right is the Hessian G appearing in Theorem 30.2.21, which
by assumption is positive definite and therefore invertible. It is a symmetric matrix
of size (n−m)× (n−m).

So, rearranging (30.2.22), we get

yTG = bT (A−1x )T (Q1A−Q12)− pT
[
−A
In−m

]
(30.2.23)

Since G is invertible, we can solve for y by multiplying on the right by G−1:

yT = bT (A−1x )T (Q1A−Q12)G
−1 − pT

[
−A
In−m

]
G−1 (30.2.24)

Using Equation (30.2.14) and plugging in the value of y from (30.2.24), we get

xT = bT (A−1x )T (I − (Q1A−Q12)G
−1AT ) + pT

[
−A
In−m

]
G−1AT (30.2.25)

and we have our explicit and unique solution x∗. While this looks formidable, let
us now see what happens in a numerical example.
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30.2.26 Exercise. Use the positive semidefinite matrix Q of Exercise 30.1.9, and
adjoin the constraint x1 − x2 + x3 = b, so m = 1 and the new matrix A is
(−1, 1). Write y1 and y2 for x2 and x3, and write the objective function f(x)
(given by (30.1.2)) as a function g(y) ((30.2.16)). Compute the Hessian G of g:
see (30.2.15). You should get

G =

[
−1
1

] [
−1 1

]
−
[
1
0

] [
−1 1

]
−
[
−1
1

] [
1 0

]
+

[
2 1
1 1

]
=

[
5 −1
−1 2

]
Show that it is positive definite.

Compute the minimizer y. (30.2.13) tells you that

x = b+ y1 − y2 (30.2.27)

and (30.2.23) that

yTG =
[
−2b− p1 − p2 b+ p1 − p3

]
To compute this you need the inverse of the Hessian G. Show that

G−1 =
1

9

[
2 1
1 5

]
Solve for y[

y∗1 y∗2
]

=
1

9

[
−2b− p1 − p2 b+ p1 − p2

] [2 1
1 5

]
=

1

9

[
−3b− p1 − 2p2 − p3 3b+ 4p1 − p2 − 5p3

]
Finally substitute the value for y∗ into (30.2.27) to get

x∗ = b+
1

9
(−6b− 5p1 − p2 + 4p3)

Check that the triple (x∗, y∗1, y
∗
2) is correct by checking it satisfies the constraint

and by substituting it into the gradient of the Lagrangian, and seeing that we get 0
for suitable choice of the Lagrange multiplier µ:(

x∗ y∗1 y∗2
)
Q+

(
p1 p2 p3

)
+ µ

(
1 −1 1

)
= 0

An easy computation shows that µ = −1/3 does the trick.
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30.3 Simplifications if Q is Invertible

It is sometimes known in advance that Q is positive definite on the whole space,
and this assumption simplifies the computations. Q is positive definite in Examples
30.4.1 and 30.4.4, for instance.

With this assumption, we can solve for x in (30.2.7) and get

x = −Q−1(ATµ+ p) (30.3.1)

30.3.2 Proposition. If Q is a positive definite n×n matrix, and A is a rectangular
(m× n) matrix with independent rows, then AQ−1AT is positive definite.

Proof. We need to show that for all non-zero vectors x,

xTAQ−1ATx > 0

If ATx 6= 0, this follows since Q is positive definite. On the other hand, if ATx =
0, since AT has independent columns, then x = 0.

WritingQA for the positive definitem×mmatrixAQ−1AT , we substitute the
value of x found in (30.3.1)) into Ax = b,

Ax = −AQ−1ATµ−AQ−1p = −QAµ−AQ−1p = b

Since QA is invertible, we can solve for µ:

µ∗ = −Q−1A b−QAAQ−1p (30.3.3)

and get the unique solution µ∗ for µ. Substituting this into (30.3.1), we get

x∗ = Q−1ATQ−1A b +Q−1ATQAAQ
−1p−Q−1p (30.3.4)

(30.3.3) and (30.3.4) give an explicit solution (x∗, µ∗) in terms of b and p, using
only matrix algebra. Because QA is positive definite, the second-order test for un-
constrained optimization (Theorem 13.1.3) insures that we are at a strict minimum.

Next we compute the value function f∗(b) of the parameter b. For each value
of the parameter b near 0, the value function picks out the minimum value of
the function f . In Lecture 29 we could only do this implicitly using the implicit
function theorem (see §29.5). Here we can do it explicitly. This is

(x∗)TQx∗

2
+ pTx∗
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We substitute for x∗ the value found in (30.3.1), getting

f∗(b) =
pt + µTA)Q−1QQ−1(ATµ+ p)

2
− pTQ−1(ATµ+ p)

which simplifies to

f∗(b) =
(−pT + µTA)Q−1(ATµ+ p)

2

and then to

f∗(b) =
−pTQ−1p

2
+
µTAQ−1ATµ

2

remembering that µ stands for the µ∗(b) found in 30.3.3. Recall that QA =
AQ−1AT . Since the only dependence on b is through µ, the Hessian of f∗(b)
is

Q−1A AQ−1ATQ−1A = Q−1A .

By Proposition 30.3.2 we know that the symmetric matrix QA is positive defi-
nite: thus its inverse is too. Thus we have established directly in this case that the
value function is convex: a special case of Theorem 23.6.3 that we will come to
later.

Next we compute∇bf∗ using the chain rule.

∇bf∗ = −µTAQ−1ATQ−1A = −µTQAQ−1A = −µT = λT .

This establishes the Envelope Theorem 23.7.7 in this special case.

30.4 Exercises

30.4.1 Exercise. Let n = 2, m = 1, Ax = x1 + 2x2, and

Q =

[
2 1
1 3

]
Show Q is positive definite.

We leave b and p as parameters. Then show that

L(x, µ) = x21 + x1x2 +
3

2
x22 + p1x1 + p2x2 + µ(x1 + 2x2 − b)

∇L(x, µ) = (2x1 + x2, x1 + 3x2) + (p1, p2) + µ(1, 2)

=
(
x1 x2

)(2 1
1 3

)
+ (p1, p2) + µ

(
1 2

)
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in agreement with our general formula. The version of (30.2.8) for this example is2 1 1
1 3 2
1 2 0

x1x2
µ

 =

−p1−p2
b

 (30.4.2)

Show the 3 × 3 matrix in (30.4.2) is invertible, and compute its inverse (given
below), which allows you to solve for x1, x2 and µ in terms of b:x1x2

µ

 =
1

7

 4 −2 1
−2 1 3
1 3 −5

−p1−p2
b

 =
1

7

−4p1 + 2p2 + b
2p1 − p2 + 3b
−p1 − 3p2 − 5b


30.4.3 Exercise (Exercise 30.4.1 continued, with p = 0). You should get the three
equations in x1, x1, µ and the parameter b:

x1 + 2x2 = b

2x1 + x2 + µ = 0

x1 + 3x2 + 2µ = 0

Show the inverse of the matrix Q is

1

5

[
3 −1
−1 2

]
so [

x1
x2

]
=

1

5

[
3 −1
−1 2

] [
−µ
−2µ

]
=

1

5

[
−1
−3

]
µ

Plug these values of x into the constraint equation. You should get b = −7µ/5,
so µ = −5b/7, and [

x1
x2

]
=

1

7

[
1
3

]
b

The quadratic form associated to the value function is

1

2 · 72
[
1 3

] [2 1
1 3

] [
1
3

]
=

5

2 · 7

so the value function itself is f∗(b) = 5
2·7b

2, its derivative df∗/db is 5
7b = −µ as

expected. Note that the last computation from Example 30.4.1 is confirmed.
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30.4.4 Exercise. Let n = 3, m = 2,

Ax =

[
1 2 0
1 1 1

]x1x2
x3

 =

[
b1
b2

]
(30.4.5)

and

Q =

2 1 0
1 3 1
0 1 4

 (30.4.6)

Show Q is positive definite.
As in Exercise 30.4.1, we leave b and p as parameters. Then

L(x, µ) =x21 + x1x2 +
3

2
x22 + x2x3 + 2x23 + p1x1 + p2x2 + p3x3

+ µ1(x1 + 2x2 − b1) + µ2(x1 + x2 + x3 − b2)
∇L(x, µ) =(2x1 + x2, x1 + 3x2 + x3, x2 + 4x3) + (p1, p2, p3)

+ µ1(1, 2, 0) + µ2(1, 1, 1)

=
[
x1 x2 x3

] 2 1 0
1 3 1
0 1 4

+ (p1, p2, p3)

+
[
µ1 µ2

] [1 2 0
1 1 1

]
=xtQ+ µtA

Show the version of 30.2.8 for this example is
2 1 0 1 1
1 3 1 2 1
0 1 4 0 1
1 2 0 0 0
1 1 1 0 0



x1
x2
x3
µ1
µ2

 =


−p1
−p2
−p3
b1
b2

 (30.4.7)

Show the 5 × 5 matrix in (30.4.7) is invertible, so solve for x and µ in terms of
b by inverting it, or, if you prefer (this is computationally preferable) by Gaussian
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elimination: 
x1
x2
x3
µ1
µ2

 =
1

13


4 −2 2 −3 10
−2 1 1 8 −5
−2 1 1 −5 8
−3 8 −5 −14 12
10 −5 8 12 −27



−p1
−p2
−p3
b1
b2



=
1

13


−4p1 + 2p2 − 2p3 − 3b1 + 10b2

2p1 − p2 − p3 + 8b1 − 5b2
2p1 − p2 − p3 − 5b1 + 8b2

3p1 − 8p2 + 5p3 − 14b1 + 12b2
−10p1 + 5p2 − 8p3 + 12b1 − 27b2


This is the only candidate for a solution. It remains to check that it is a strict

minimum.

30.4.8 Exercise (Exercise 30.4.4 continued, with p = 0). Carry out the general
computations in this special case. Mathematica code for doing this is in the ap-
pendix.

Q−1 =
1

18

11 −4 1
−4 8 −2
1 −2 5


QA =

1

18

[
27 12
12 14

]
Q−1A =

1

13

[
14 −12
−12 27

]
Using (30.3.3) you will get

µ =
−1

13

[
14 −12
−12 27

] [
b1
b2

]
(30.4.9)

So using (30.3.4)) you will get

x =
1

13

−3 10
8 −5
−5 8

[b1
b2

]
(30.4.10)

Check the computation by multiplying (30.4.10) on the left by A: you should get
the identity b = b. Show the quadratic form associated to the value function f∗(b)
is

1

2 · 132

[
−3 8 −5
10 −5 8

]2 1 0
1 3 1
0 1 4

−3 10
8 −5
−5 8


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and this multiplies out the the matrix in (30.4.9), as expected. Note that the matrix
inversion computation from Example 30.4.4 is confirmed. You can decide how you
prefer to carry out the computation. Since Q is positive definite, use the second-
order test to show that this is a minimum.

30.4.11 Exercise (Exercise 30.4.8 continued). Compute the vectors ẋ for this ex-
ample. Since the feasible set is the line given by the two equations (30.4.5), ẋ
satisfies the equations

Aẋ =

[
1 2 0
1 1 1

]ẋ1ẋ2
ẋ3

 =

[
0
0

]
you can solve for ẋ2 and ẋ1 in terms of ẋ3:

ẋ1 = −2ẋ3 and ẋ2 = ẋ3

Use these values to evaluate (30.2.12).

x21 + x1x2 +
3

2
x22 + x2x3 + 2x23

and get the quadratic form in one variable 13
2 x

2
3 which is the restriction of the

quadratic form to the line, and positive definite.

We now illustrate this approach.

30.4.12 Exercise (Exercise 30.4.11 continued). Compute the matrix

ATQ1A−QT12A−ATQ12 +Q2

from 30.2.20) to check that it is positive definite. Because m = n − 1, it is just
a number, and we need to show it is positive. The original A is given by (30.4.5),
and our new A is A−1x Ay. Finally Q is given by (30.4.6). From these you can read
off the submatrices needed, and carry out the simple matrix multiplication, ending
up with the 1 × 1 matrix (13) , which indeed is positive. Find y using (30.2.24).
You should get

yT =
1

13

[
b1 b2

] [−1 1
2 −1

]([
2 1
1 3

] [
2
−1

]
−
[
0
1

])

=
1

13

[
b1 b2

] [−5
8

]
=

1

13
(−5b1 + 8b2)
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Finally, (30.2.13)) gives

xT =
1

13

[
b1 b2

](
13

[
−1 1
2 −1

]
−
[
−5
8

] [
2 −1

])

=
1

13

[
b1 b2

] [−3 8
10 −5

]
and you are done. Note that you get the same result as in (30.4.10).

30.5 Appendix

Mathematica code for the matrix computations in Example 30.4.8

Q = {{2, 1, 0}, {1, 3, 1}, {0, 1, 4}} input Q

Qinv = Inverse[Q] compute Q−1

A = {{1, 2, 0}, {1, 1, 1}} input A

At = Transpose[A] compute At

QA = A.(Qinv.At) compute QA
QAinv = Inverse[QA] compute (QA)−1

TripProd = Qinv.(At.QAinv) compute Q−1At(QA)−1

A.TripProd check: identity matrix?

xx = TripProd.bb answer

Simplify[A.xx] check:b?



Lecture 31

The Karush-Kuhn-Tucker
Conditions

This chapter studies constrained optimization with both equality and inequality
constraints. We prove that the famous first-order conditions, called the Kuhn-
Tucker or Karush-Kuhn-Tucker conditions, are necessary for a point x∗ to be a
minimizer of the objective function, subject as usual to some form of constraint
qualification. We will look at several. The easiest one, called regularity, is a gen-
eralization of the regularity constraint we used in the Lagrange Theorem. It is too
restrictive for many problems, so we also introduce a more flexible constraint qual-
ification called CQ, and then an even more flexible tangential constraints: Defini-
tions 31.2.3 and 31.2.7. We also examine what needs to be changed in our theorem
to get a condition for x∗ to be a local maximizer: only the sign of the Lagrange
multipliers associated to the inequalities need to be reversed: they go from non-
negative to non-positive.

In the next lecture we prove the usual second-order necessary and sufficient
conditions.

Two simple examples in the plane are worked out.

31.1 The Standard Problem

We always assume that our problem is in the following form.

31.1.1 Definition (Inequality Constrained Minimization). Minimize f(x), x ∈
Rn, subject to

hi(x) = 0 , 1 ≤ i ≤ m and gk(x) ≤ 0, 1 ≤ k ≤ p, (31.1.2)

where f , hi and gk are C1 functions.
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It is essential that the inequalities be written with the inequality sign as stated:
gk(x) ≤ 0.

We write h(x) for the vector function of constraints from Rn → Rm whose
coordinate functions are the hi, and g(x) for the vector function of constraints from
Rn → Rp whose coordinate functions are the gk. Then, as usual,

∇h is the m× n matrix
[
∂hi
∂xj

]
and∇g is the p× n matrix

[
∂gk
∂xj

]
.

We generalize the Lagrange multipliers of Definition 28.3.4 to our new situa-
tion.

31.1.3 Definition. The Lagrangian L(x, λ, µ) is the function

L(x, λ1, . . . , λm, µ1, . . . µp) = f(x) +
m∑
i=1

λihi +

p∑
k=1

µkgk (31.1.4)

= f(x) + λTh(x) + µTg(x)

where the λi and the µk are real variables known as the Lagrange multipliers.
Furthermore the µk are non-negative. Write λ is the m-vector (λi), µ is the p-
vector (µk). λ and µ are column vectors.

Let x∗ be a point in the feasible set, so hi(x∗) = 0 and gk(x∗) ≤ 0 for all
indices i and k.

31.1.5 Definition. If gk(x∗) = 0, then gk is an active constraint at x∗. Let K be
the set of indices corresponding to active constraints at x∗. We write gK(x∗), or
just gK , for the collection of all active constraints at x∗. Let pa be the number of
active constraints at x∗, so 0 ≤ pa ≤ p.

The important necessary conditions for x∗ to be a local minimizer are:

31.1.6 Definition (The KKT conditions). These are the following three conditions
pertaining to the Lagrangian 31.1.4.

1. There exist numbers λ∗1, . . . , λ∗m and µ∗1, . . . , µ∗p such that for each j, 1 ≤
j ≤ n,

∂f

∂xj
(x∗) +

m∑
i=1

λ∗i
∂hi
∂xj

(x∗) +

m∑
k=1

µ∗k
∂gk
∂xj

(x∗) = 0. (31.1.7)

We could rewrite this as one equation of column vectors:

∇f(x∗) +
m∑
i=1

λ∗i∇hi(x∗) +
m∑
k=1

µ∗k∇gk(x∗) = 0,
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or even
∇f(x∗) + λ∗T∇h(x∗) + µ∗T∇g(x∗) = 0,

where, for example, µ∗T∇g(x∗) denotes matrix multiplication of the p-row
vector µ∗T by the p× n matrix∇g(x∗).

2. All the µk are non negative:

µk ≥ 0, for 1 ≤ k ≤ p. (31.1.8)

3. Complementary slackness holds, meaning that

µTg(x∗) =

p∑
k=1

µkgk(x
∗) = 0. (31.1.9)

We could also write down a similar statement for a local maximizer are easy to
write down, just by replacing the function f by −f , and rewriting the conditions
above above. We see that the one change necessary is to replace 31.1.8 by µk ≤
0, for 1 ≤ k ≤ p.

Equation 31.1.9 is called complementary slackness , just as in the linear case:
see the Equilbrium Theorem 25.6.1. Because µk ≥ 0 by (31.1.8), and gk ≤ 0
on the feasible set by (31.1.2), we have µkgk(x∗) ≤ 0 for each k. Thus for the
sum in (31.1.9) to be 0, each term must be 0, so either the multiplier µk is 0 or the
constraint gk is active at x∗.

The goal of this lecture is to find first-order necessary conditions for x∗ to
be a local minimizer for the function f . Let’s look at some simple cases first.
If ∇f(x∗) = 0, then x∗ satisfies the necessary condition for the unconstrained
problem, so there is nothing more to do. So we will focus on the points x∗ where
the gradient of f is not zero. Next, if the inequality constraints are all inactive at x∗,
we can ignore them, and solve the problem using ordinary Lagrangian multipliers.
We will focus on the inequality constraints.

31.1.10 Example. Let f(x, y) = x − y2 and assume there is only one constraint
g(x, y) = (x−1)2+y2−1 ≤ 0. So the feasible set is just the closed disk of radius 1
centered at (1, 0). Let the point of interest x∗ be the origin. Then ∇f(0) = (1, 0).
The origin is on the boundary of the constraint set, and ∇g(0) = (−2, 0), so that
(as we will see later) x∗ is regular for the constraint. Then the necessary condition
of this lecture says that we can find a number µ ≥ 0 such that∇f(0) +µ∇g(0) =
0. Here µ = 1/2 works. On the boundary of the constraint, namely the circle of
radius 1 given by (x − 1)2 + y2 = 1, we can solve for y2 and then put that value
into the function f = x− y2. Then f takes on the value x2− x, so for small x, the
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circle is below the level curve x− y2 = 0, showing that 0 is not a local minimum.
We can see this on the graph below, where the three level curves for values −1, 0,
and 1 are shown, and the feasible set is shaded. We will come back to this example
later in this lecture: Example 31.4.1.

x - y2
� 0

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

On the other hand, if we make constraint region a smaller disk, the origin be-
comes the local minimum. In fact, if you experiment with the disk (x− r)2 + y2−
r2 ≤ 0, you will see that the switch occurs when r = 1/2. Here is the graph:

x - y2
� 1

x - y2
� 0

Hx - 0.5L2
+ y2

� 0.25

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

This example illustrates the subtlety of optimization with inequalities.
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31.2 Constraint Qualification

First, we extend the definition of regularity given in 28.3.3.

31.2.1 Definition. The point x∗ is regular for the constraints 31.1.2 if the (m+pa)
rows of the matrices ∇h(x∗) and ∇gK(x∗) are linearly independent in Rn. Thus
we are considering the equality constraints and the active inequality constraints at
x∗.

If we replace the minimization problem 31.1.1 by the equality constrained
problem with the same objective function, the same equality constraints and the ac-
tive inequality constraints ∇gK ≤ 0 replaced by the equality constraints ∇gK =
0, then a x∗ that is regular for Problem 31.1.1 is still regular for the equality con-
straint problem. To apply the methods we developed for equality constraints, we
need to assume m+ pa < n, which limits the number of inequality constraints.

31.2.2 Example. In Example 28.2.3, the cuspidal cubic, replace the equality con-
straint by the inequality constraint g(x1, x2) ≤ 0. Then the point (0, 0), for which
the constraint is active, is not regular for the constraint according to this definition.

As in the Lagrange Theorem 28.3.9, the Kuhn-Tucker Theorem 31.3.1 says:

If x∗ is a solution to the minimization problem 31.1.1, then a sufficient
condition for there to be a solution to the KKT conditions 31.1.6 is that
x∗ be regular.

In many situations, regularity 31.2.1 is too restrictive: we need a weaker con-
dition that we now define.

31.2.3 Definition. The constraints (31.1.2) satisfy the qualification CQ at a point
x∗ in the feasible set if

• The m rows of the matrices∇h(x∗) are linearly independent.

• The system of equations in the variable z ∈ Rn:

∇h(x∗)z = 0, ∇gK(x∗)z ≺ 0,

has a non-zero solution. Here, as in Definition 31.1.5, gK denotes the con-
straints that are active at x∗.

31.2.4 Example. Here is an example where regularity fails, but CQ works. Take a
minimization problem in the plane where the constraints are x ≤ 0 and y ≤ 0. The
origin, where both constraints are active, is not regular for the constraints, simply
because we require that m < n. On the other hand, CQ is satisfied. The gradients
of the two inequality constraints evaluated at (0, 0) are (1, 0) and (0, 1), so we need
to find a (z1, z2) with z1 < 0, and z2 < 0. This can obviously be done.
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Thus, all standard and canonical linear optimization problems fail regularity,
but satisfy CQ.

The following proposition shows that CQ is less restrictive than regularity.

31.2.5 Proposition. If the constraints (31.1.2) are regular at x∗, they satisfy CQ.

Proof. See 31.2.1 for the notation. The easy proof is left to you.

31.2.6 Example. Now for an example where CQ fails. Again, we are in the plane.
We have two constraints x2 − y ≤ 0, and y − 2x2 ≤ 0. The origin is feasible, but
notice that the gradients of the two constraints are (0,−1) and (0, 1). We obviously
cannot find a z with z2 < 0 and z2 > 0. Note the similarity with Peano’s example
13.5.3: there is no line segment in the feasible set starting at the origin.

Now we turn to a third constraint qualification with an even weaker hypothesis.
First a condition on vectors z at x∗.

31.2.7 Definition. The non-zero vector z ∈ Rn satisfies tangential constraints at
the feasible point x∗ for the constraints (31.1.2) if

∇h(x∗)z = 0, and ∇gK(x∗)z � 0

where gK denotes the effective inequality constraints at x∗. We partition the active
constraints K into two subsets:

• K1 such that∇gK1(x∗)z = 0;

• K2 such that∇gK2(x∗)z ≺ 0.

Note that the set of active constraints K depends on x∗ and then K1 and K2

depend also on z. Let p1 be the number of constraints in K1, and p2 be the number
of constraints in K2, so p1 + p2 = pa. Assuming that the equality constraints and
the inequality constraints inK1 are linearly independent, linear algebra tells us that
for a non-zero z to satisfy tangential constraints at x∗, we must have m+ p1 < n,
since the associated matrix must have a non-trivial nullspace.

31.2.8 Definition. The constraints (31.1.2) satisfy tangential constraints at the fea-
sible point x∗ if there is a non-zero vector z satisfying tangential constraints at x∗

with associated active constraints K1 and K2, such that the m rows of the matrix
∇h(x∗) and the p1 rows of the matrix ∇gK1(x∗) are linearly independent. In
particular, m+ p1 < n.

Even if m+ p1 is less than n, Example 31.2.6 shows that it may be impossible
to find a vector satisfying tangential constraints. Still, we have the easy
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31.2.9 Proposition. If the constraints satisfy CQ at x∗, then they satisfy tangential
constraints at x∗.

Proof. CQ is just the case where K1 is empty, so we are done.

We now apply Corollaries 17.9.2 and 17.9.4 to get:

31.2.10 Proposition. If z satisfies the tangential constraints at x∗, there is a curve
x(t) defined on a small enough open interval I ⊂ R containing 0 such that, if X
denotes the set where all equality constraints mentioned are satisfied, then

1. x(0) = x∗.

2. ẋ(0) = z, where ẋ denotes the derivative with respect to t.

3. x(t) is C1.

4. x(t) ∈ X , for all t ∈ I . In other words, h(x(t)) = 0 and gK1(x(t)) = 0.

5. gK2(x(t)) ≺ 0, so that when t ≥ 0 in I , x(t) is feasible.

Proof. The Implicit Function Theorem applies to the set given by the equality con-
straints and the constraints gK1(x) = 0 in a neighborhood of x∗. Then Corollary
17.9.4 gives the result.

31.3 The Karush-Kuhn-Tucker Multiplier Theorem

We state and prove the main theorem of this lecture for Tangential Constraints
31.2.7. Thus the theorem is proved for regularity constraints and CQ, since they
are stronger by Propositions 31.2.5 and 31.2.9. We first give the proof for regu-
larity constraints, since it is conceptually simpler, and shows what we need for the
general case.

31.3.1 Theorem. Let x∗ be a local minimizer for the standard inequality con-
strained minimization problem 31.1.1. Then if x∗ is regular for the constraints,
there are unique numbers λ∗1, . . . , λ∗m and µ∗1, . . . , µ∗p such that the KKT conditions
31.1.6 hold.

Before proving the theorem, let’s consider what it says when there are no equal-
ity constraints:

1) if none on the inequality constraints are active, then we deal with the problem
as an unconstrained problem, so all the µk are 0.

2) the KKT equation 31.1.7 says −∇f(x∗) = µT∇g(x∗). Since the µk are
non-negative, −∇f(x∗) is in the finite cone C generated by the∇gk(x∗). Assume
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that∇f(x∗) 6= 0. Consider the hyperplane H given by∇f(x∗)(x− x∗) = 0, and
its two halfspaces H+, where ∇f(x∗) lies, and H−. Then C lies in H−. Thus H
is a supporting hyperplane for the cone C.

Proof. Consider the equality minimization problem where we keep the same m
equality constraints, and we replace the pa active inequality constraints by the cor-
responding equality constraints. By hypothesis, the point x∗ is regular for these
equality constraints, so we can apply the Lagrange Multiplier Theorem 28.3.9,
which tells us that we can find uniquely determined Lagrange multipliers λ∗i and
µ∗k, for the active constraints at x∗. For the inactive constraints, take µ to be 0.
Note that complementary slackness holds. To finish the proof we need to show that
µ∗k ≥ 0 for each active constraint gk. This follows from a chain rule computation,
as we now see. Assume by contradiction that there is a k such that µ∗k < 0

Since the vectors ∇hi(x∗), 1 ≤ i ≤ m, and ∇gk(x∗), 1 ≤ k ≤ pa, are
linearly independent, for any given k0, 1 ≤ k0 ≤ pa, there is a vector v starting
at x∗ whose dot product with all these vectors except ∇gk0(x∗) is 0. In addition
choose v so that its dot product with ∇gk0(x∗) is negative. Then v points into the
feasible set. By Corollary 17.9.2 of the implicit function theorem, there is a curve
x(t) parametrized by the real variable t, such that x(0) = x∗, and the derivative
dx
dt (0) = v. The composite function gk0(x(t)) must have a non-positive derivative
at t = 0, since for feasible x we have g(x) ≤ 0. Thus the composite must not be
increasing at t = 0. Compute the derivative of the composite via the chain rule, to
get

∇gk0(x∗)v ≤ 0. (31.3.2)

On the other hand, the composite f(x(t)) must have a non-negative derivative at
x∗, since x∗ is a local minimum, so by the chain rule again:

∇f(x∗)v ≥ 0. (31.3.3)

Now dot (31.1.7) with v to get

∇f(x∗)v + µ∗k0∇gk0(x∗)v = 0.

Equations (31.3.2) and (31.3.3) imply µ∗k0 ≥ 0. If ∇f(x∗)v > 0, then µ∗k0 > 0,
which is allowable for complementary slackness since the constraint is active.

To show the non-negativity of the µ, we needed a large enough supply of vec-
tors v at x∗ pointing into the feasible set.

31.3.4 Theorem. Let x∗ be a local minimum for the standard inequality con-
strained minimization problem 31.1.1. Then if the constraints satisfy CQ at x∗,
there are numbers λ1, . . . , λm and µ1, . . . , µp such that the KKT conditions 31.1.6
hold.
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31.3.5 Example. Let us examine the asymmetric linear optimization problem 25.1.5
in this context. So the objective function is f(x) = c ·x, them equality constraints
areAx−b = 0, for am×nmatrixA and am-vector b. We also have n inequality
constraints that we now write −x ≤ 0, to be consistent with the current notation.

Then the Lagrangian for the problem is

L(x, λ1, . . . , λm, µ1, . . . µn) = c · x− λTAx− µTx (31.3.6)

Note that the minus sign in front of µT is forced on us, since the sign of µ
is important, but that in front of λT is just to make the notation agree with past
notation.

The KKT conditions say

1. There exist numbers λ1, . . . , λm and µ1, . . . , µm such that

c− λTA− µT = 0,

2. where all the µk are non negative:

µk ≥ 0 for 1 ≤ k ≤ n,

3. and complementary slackness holds:

µ · x∗ = 0.

The first equation says that λTA � c by positivity of the µk, so that the λ play the
role of the dual variables y, and the constraint is that the dual variable satisfy the
constraint for the feasible set of the dual. The third equation says that for each j,
either µj = 0 or x∗j = 0. If µj = 0, then the j-th line of the first equation says that

cj −
m∑
i=1

λiaij = 0 or (λTA)j = cj

so we recover complementary slackness in the sense of Lecture 25. Finally we
should check the constraint qualification condition. We have m equality con-
straints, and n inequality constraints. We work at a point x∗ in the feasible set.
Then the system satisfies CQ (see Definition 31.2.3) at x∗ because the condition
reduces to finding a solution z of Az = 0 and zj > 0 for the constraints that are
active at x∗.
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31.4 Examples

It is important to understand how to use Theorem 31.3.1 to find the minima. So
let’s work some examples.

31.4.1 Example. We solve Example 31.1.10. Since the Lagrangian is L = x −
y2 + µ(x2 − 2x+ y2), the KKT equations are

1 + 2µ(x− 1) = 0,

2y(µ− 1) = 0.

and complementary slackness must be satisfied: µ((x − 1)2 + y2 − 1) = 0. We
want to solve this system for µ ≥ 0.

The second KKT equation gives two possibilities: either µ = 1 or y = 0. The
second case leads to the solution we already found. Our graph shows that it is not
a local minimum, so our necessary condition was not sufficient. The case µ = 1,
then gives x = 1/2 and y2 = 3/4. The value of f at the two points satisfying
this is −1/4, and these are local minimizers and as the following graph shows, the
global minimizers, too. The level curve of f for −1/4 and 0 are drawn, as is the
line given both by the gradient of f and that of g at the point (1/2,

√
3/2).

x - y2
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Now assume we want to find the maximizer. Then we study the same KKT
equations, but this time for µ ≤ 0. Then we must have y = 0. An examination of
the graph and the level curves shows that x = 2 and µ = −1/2.

31.4.2 Example. Minimize 2x2 + 2xy + y2 − 10x− 10y subject to

x2 + y2 − 5 ≤ 0 and 3x+ y − 6 ≤ 0
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The set determined by the first constraint is the disk of radius
√

5 centered at the
origin, and the set determined by the second constraint is one of the half-spaces
bounded by a line which intersects the circle bounding the ball in two points P1

and P2. These are the only points where both constraints are active.
We know, since the constraint set is compact, and the object function continu-

ous, that there is a minimum, so the issue is just to find it.
Let’s check all possible combinations of active constraints. Later we will see

that one could avoid a lot of this work. Still, let us enumerate all the configuration
of constraints:

1. No active constraints. We forget the constraints - assuming that neither one
is active - and just consider the unconstrained minimization problem, as the
theorem directs us to do. So we just set the partials of f to 0 and solve: we
get

4x+ 2y = 10,

2x+ 2y = 10.

so x = 0 and y = 5. This point is not in the feasible set, so we discard this
solution.

2. Only the first constraint active: we only need to introduce the multiplier µ1
and we get the system:

4x+ 2y + 2µ1x = 10,

2x+ 2y + 2µ1y = 10,

x2 + y2 = 5.

It is elementary but painful to solve this system: fortunately by inspection
we notice the solution x = 1, y = 2 and µ1 = 1. µ1 has the right sign, so
the last thing we have to do is check that this solution is feasible. We plug it
into the second constraint 3x+ y − 6 ≤ 0 and get 3 + 2− 6 ≤ 0, so we get
a critical point and therefore, perhaps, a minimum, at P3 = (1, 2). Note that
f(1, 2) = 2 + 4 + 4− 10− 20 = −20.

3. Only the second constraint active. Thus we only need to introduce the mul-
tiplier µ2 and we get the system:

4x+ 2y + 3µ2 = 10,

2x+ 2y + µ2 = 10,

3x+ y = 6.
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Subtracting the second equation from the first, we get x = −µ2. Then
the third equation gives y = 6 + 3µ2, so substituting these values into the
second equation, we get µ2 = −2

5 . So µ2 is negative, and we can discard
this solution.

4. Both constraints active: we find the coordinates of P1 and P2, to see if we
have local minima there. A gradient computation shows that the answer is
no.

Most of this analysis is unnecessary, as we will see in Lecture 23: the objective
function is convex and the feasible set is convex, so that as soon as you find the
first potential solution, you can stop looking.

31.4.3 Example. Given a constant vector a = (a1, a2) ∈ R2, minimize
f(x) = x21 + x22 − 〈a,x〉, subject to x21 + x22 ≤ 1.
Since the feasible set is compact (it is the unit disk centered at the origin),

we know there will be a finite minimum. We write the lone constraint as g(x) =
x21 + x22 − 1 ≤ 0, to have the problem in standard form. The constraint will be
regular at x∗ unless∇g(x∗) is the 0 vector, which only happens if x∗ is the origin,
where f takes the value 0. If x∗ is not the origin, we write the Lagrangian as
f(x) + µg(x), so that the KKT conditions are

2x1 − a1 + 2µx1 = 0

2x2 − a2 + 2µx2 = 0

µ ≥ 0

µ(x21 + x22 − 1) = 0

The first two equations imply that xi = ai
2(1+µ) . Using the last (complementary

slackness) equation, we need to check two cases.
On one hand, if µ = 0, we have xi = ai/2. The point (a1/2, a2/2) is feasible,

if and only if a21 + a22 ≤ 4, in which case f(a1/2, a2/2) = −(a21 + a22)/4.
On the other hand, if x21 + x22 = 1, we can combine this equation with the first

two equations, and solve. We get µ =
√
a21 + a22/2 − 1. Since µ is non-negative,

this forces a21 + a22 ≥ 4. Then we have xi = ai√
a21+a

2
2

and we are on the circle of

radius 1 where the constraint is active, as required. The value of f as this point is
1−

√
a21 + a22.

In both cases the value that we have found is less than the value of f at 0, so
we have the unique minimizer. Finally note that the case where µ = 0 and that
where x21 + x22 = 1 only overlap when a21 + a22 = 4, and that the answer we have
found is the same.
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We can now let a vary, and think of the unique minimizer x as a function of a.
We get the answer

x(a) =

(a1/2, a2/2) if a21 + a22 ≤ 4;(
a1√
a21+a

2
2

, a2√
a21+a

2
2

)
, if a21 + a22 > 4.

Notice that x(a) is a continuous function.
Finally, we computed the ‘value function’ v(a1, a2), which associates to each

a the minimum value of f for that choice of a. We obtained:

v(a1, a2) =

{
−(a21 + a22)/4, if a21 + a22 ≤ 4;
1−

√
a21 + a22, if a21 + a22 > 4.

(31.4.4)

31.4.5 Example. A small modification of Example 31.4.3 provides the compu-
tation of the conjugate of f(x) = x21 + x22 restricted to the closed unit disk D,
promised in Example 20.3.8. The conjugate of this f is, by definition:

f∗(x) = max
y∈D

(
〈y,x〉 − y21 − y22)

So we are maximizing the function h(y) = 〈y,x〉−y21−y22 , where x is a parameter,
on the unit disk centered at the origin. This is the same as minimizing −h =
y21 + y22 − 〈y,x〉, which we just did in Example 31.4.3: just replace the names a
by x, and x by y.

Translate (31.4.4) into this notation, and multiply by −1. We get the conjugate
function

f∗(x1, x2) =

{
(x21 + x22)/4, if x21 + x22 ≤ 4;√
x21 + x22 − 1, if x21 + x22 > 4.

From Example 22.3.11 we know that this is a convex function, the conjugate of the
function x21 + x22, restricted to x21 + x22 ≤ 1. Indeed, it is easy to see this in polar
coordinates: write x1 = r cos θ, x2 = r sin θ. Then the conjugate function only
depends of r:

f∗(r, θ) =

{
r2/4, if r ≤ 2;
r − 1, if r > 2.

so unsurprisingly we get a result similar to Example 20.3.7.



Lecture 32

The Second Order KKT
conditions

We continue the study of the KKT conditions by looking at the degree 2 neces-
sary and sufficient conditions. For the time being we only look at the case where
the constraints satisfy regularity, the most restrictive of the constraint qualification
conditions. We work out some more examples. In particular in §32.3 we show how
the arithmetic-geometry mean inequality can be proved by solving a KKT problem.

32.1 The Second Order Necessary Condition

We continue working with the standard problem 31.1.1, and form the Lagrangian
31.1.4. We now suppose all the functions are C2.

32.1.1 Theorem. Assume that x∗ is regular for the constraints that are active at x∗.
If the feasible point x∗ is a local minimum for our problem, then by the first-order
theorem 31.3.1, there exist λ, µ satisfying the Lagrange equations (31.1.7) , where
the µ are non-negative and complementary slackness holds. Then the Hessian L of
the Lagrangian evaluated at x∗ and at the λ and µ:

L = F + λTH + µTG (32.1.2)

is positive semidefinite on the tangent subspace of the active constraints at x∗.

This follows immediately from Theorem 29.3.2 of Lecture 29. Indeed, that
theorem tells us that (32.1.2) is a necessary condition for the minimization problem
where all the active inequalities are replaced by equalities. A fortiori, it is necessary
for the problem we are considering, since the feasible set is larger.
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Let us check what happens in Example 31.4.2. The Hessian of f is constant
and equal to [

4 2
2 2

]
This is positive definite on the whole space, which explains why the level sets are
ellipses, as the graph shows. Thus it is obviously positive definite when restricted
to the tangent space of the circle at (1, 2), namely the line x+ 2y = 0, so we have
a minimum.

32.1.3 Example. We continue Example 31.4.1, putting a parameter r > 0 for
the radius into the constraint equation, so we can vary the equation of the circle:
g = x2 − 2rx + y2. The gradient of f(x, y) = x − y2 is ∇f = (1,−2y) and the
gradient of g is (2x−2r, 2y). Since the Lagrangian isL = x−y2+µ(x2−2rx+y2),
the KKT equations are

1 + 2µ(x− r) = 0,

2y(µ− 1) = 0.

and complementary slackness must be satisfied: µ(x2 − 2rx+ y2) = 0. We want
to solve this system for µ ≥ 0.

The second KKT equation gives two possibilities: either µ = 1 or y = 0.

1. Assume y = 0. Then µx(x − 2r), so three possibilities: µ = 0 or x = 0 or
x = 2r. We treat them each in turn.

(a) µ = 0. The first KKT equation makes this impossible.

(b) x = 0. Then 1 − 2µr = 0, so µ = 1/(2r) > 0, so this is a possible
solution.

(c) x = 2r. This leads to a negative value of µ: this give the maximum, as
we already noted.

So this case leads to one solution x = 0, y = 0, µ = 1/(2r).

2. The case µ = 1, then gives x = r − 1/2 and y2 = r2 − 1/4. For there to be
a solution, we must have r ≥ 1/2.

So when r < 1/2, we have found only one solution x = 0, y = 0, µ = 1/(2r).
When r ≥ 1/2, there are two solutions: the one already found and the pair of
solutions x = r − 1/2, y = ±

√
r2 − 1/4. µ = 1.

The Hessian of f and g are

F =

[
0 0
0 −2

]
and G =

[
2 0
0 2

]
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The Hessian of the Lagrangian at the first solution x = 0, y = 0, µ = 1/(2r)
is therefore

L1 =

[
1/r 0
0 1/r − 2

]
The tangent line to the constraint locus is the y-axis, so the restriction of the Hes-
sian is just the number 1/r − 2. This is positive semidefinite when this number is
non-negative, so r ≤ 1/2. It is positive definite when r < 1/2.

The Hessian of the Lagrangian at the second solution

x = r − 1/2, y = ±
√
r2 − 1/4, µ = 1,

which only exists when r ≥ 1/2, is

L2 =

[
2 0
0 0

]
which is positive semidefinite. Furthermore it is positive definite when restricted to
any line except a vertical line. So in our case, the restriction will always be positive
definite, and the sufficient condition of the next section will be satisfied.

Finally, we can compute the value function v(r) in terms of r, meaning, as
usual, that for each r we compute the minimum value of the objective function:

v(r) =

{
0, if r ≤ 1/2;
−r2 + r − 1/4, if r > 1/2;

Let’s see if this makes sense. As r increases, the constraint set gets larger, so the
minimum value must decrease (weakly). Since the maximum value of the quadratic
−r2 + r − 1/4 is attained at r = 1/2, this is indeed the case. Finally, notice that
the value function is concave - in particular it is continuous. As we will see in
Lecture 23, this follows from Theorem 23.6.3, since the feasible set in convex and
the objective function f is concave.

32.2 The Second Order Sufficient Condition

Here the theorem is almost parallel toTheorem 29.4.1 for equality constrained op-
timization, but not quite:

32.2.1 Theorem. Now suppose all the functions are C2. Assume that x∗ is regular
for the constraints that are active at x∗, and that there are λ, µ satisfying the first
order theorem at x∗, so that the µ are non-negative and complementary slackness
holds. Then if the Hessians evaluated at x∗:

L = F + λTH + µTG
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is positive definite on the tangent subspace of the active constraints at x∗ for which
the multiplier µ is strictly positive, then the function has a strict minimum at x∗.

This theorem does not follow immediately from the corresponding Theorem
29.4.1 of Lecture 29. The proof of this theorem is not yet given in these notes.

This raises an interesting point. There can be active constraints at a point x∗ for
which the corresponding multipliers are 0. Such a constraint is called degenerate.

A simple modification of Example 31.4.2 gives a degenerate constraint:

32.2.2 Example. Minimize 2x2 + 2xy + y2 − 10x− 10y subject to

x2 + y2 − 5 ≤ 0 and 2x+ y − 4 ≤ 0

The objective function and the first constraint have not changed. The equation
of the constraint line has been changed so that it goes through the minimizing
point (1, 2). Clearly the critical point found does not change. You should compute
the Lagrange multipliers at (1, 2) to show that the multiplier corresponding to the
linear constraint is 0, even though it is active.

32.3 Application: The Arithmetic-Geometry Mean Inequal-
ity

In §22.6, we proved the arithmetic-geometric mean inequality, and then deduced
many famous inequalities from it. Here we prove it using the optimization tech-
niques we just learned.

Here is what the inequality says, in slightly different notation that suits our
purpose now. Start with a collection of n positive real numbers xi, 1 ≤ i ≤ n. The
arithmetic mean of the x is

A(x) =
1

n

n∑
i=1

xi

and their geometric mean is

G(x) =
( n∏
i=1

xi

) 1
n

The arithmetic-geometry mean inequality says that for all such x:

G(x) ≤ A(x) (32.3.1)

Here we give another proof of this result by solving a KKT problem.
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32.3.2 Theorem. Consider the minimization problem
Minimize f(y) =

∑n
i=1 yi subject to the equality constraint

∏n
i=1 yi = 1, and

inequality constraints yi ≥ 0, for 1 ≤ i ≤ n.
This problem has a unique minimizer yi = 1, for all i, so that the minimum

value f(y) = n.

Proof. None of the positivity constraints can be active, since that would cause the
equality constraint

∏n
i=1 yi = 1 to fail. Thus by complementary slackness we can

assume that all the µ are zero, so the Lagrangian is

n∑
i=1

yi + λ(
n∏
i=1

yi − 1)

and so the i-th Lagrange equation, multiplied by yi is

yi + λ(
n∏
i=1

yi) = yi + λ = 0.

To get the last equation we substituted in the equality constraint. So yi + λ = 0.
Putting this into the positivity constraint, we get (−λ)n = 1. The only value that
satisfies the positivity constraints is then λ = −1 and all yi = 1.

We use this optimization result to establish the arithmetic-geometry mean in-
equality (32.3.1). Let p =

∏n
i=1 xi, where the xi are all positive. Let q = p

1
n

and
yi =

xi
q
. (32.3.3)

Then the yi are positive and
∏n
i=1 yi = 1, so they satisify the constraints of Theo-

rem 32.3.2. The unique minimizer is y∗, with y∗i = 1, for all i. Since f(y∗) = n,
for any y satisfying the constraint, we have n ≤

∑n
i=1 yi. Use (32.3.3) to eliminate

the yi in favor of the xi:

n ≤
n∑
i=1

xi
q
.

Multiply by the denominator q and divide by n:

q ≤
∑n

i=1 xi
n

.

This is the same as (32.3.1) so the arithmetic-geometric mean inequality is proved.
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Lecture 33

Convex Optimization without
Differentiability

In this lecture we consider a convex optimization problem where the objective
function f and the inequality constraints gi are convex but not necessarily differ-
entiable. The equality constraints hk are affine, as before.

33.1 Introduction

Here is an important example of duality in optimization.
Let k(x, y) : : A × B → R be a function from any sets A and B to the real

numbers extended by −∞ and∞. So x ∈ A and y ∈ B.
So we have the functions fb(x) = k(x, b), for each b ∈ B, and ga(y) = k(a, y),

for each a ∈ A, as above. We now define

f(x) = sup
b∈B

fb(x).

In other words, for each value x, we consider all the values fb(x), ∀b ∈ B.
If this collection is bounded, we let f(x) be the least upper bound (see Definition
14.2.3); if the collection is unbounded, we let f(x) be∞. Also see Remark 14.2.4.

We also define
g(y) = inf

a∈A
ga(y).

For each value y, we consider all the values ga(y), ∀a ∈ A. If this collection
is bounded, we let g(y) be the greatest lower bound (see Definition 14.2.3); if the
collection is unbounded, we let g(y) be −∞.
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Then consider the two optimization problems: minimize f(x) over A, and
maximize g(y) over B. We say these optimization problems are dual.

The key remark is that

g(y) ≤ k(x, y) ≤ f(x), ∀x ∈ A, y ∈ B. (33.1.1)

This follows from elementary logic: let’s just treat the right hand side k(x, y) ≤
f(x). The value x is held fixed. Write out the definition of f(x) to get: k(x, y) ≤
supb∈B k(x, b). Since y is one of the possible values for b, this is clear.

Then, in complete generality, we get a result known as the Weak Minimax
Theorem:

sup
y∈B

inf
x∈A

k(x, y) := sup
y∈B

g(y) ≤ inf
x∈A

f(x) := inf
x∈A

sup
y∈B

k(x, y) (33.1.2)

Now assume that equality holds in (33.1.2): the common value is called the
saddle value k∗. Furthermore, assume that there is a point (x∗, y∗) where the
saddle value is achieved: k(x∗, y∗) = k∗. Such a point is called a saddle point. As
we will see later in these lectures, even if there is a saddle value, there need not be
a saddle point.

If (x∗, y∗) is a saddle point, then

k(x∗, y) ≤ k(x∗, y∗) ≤ k(x, y∗), ∀x ∈ A, y ∈ B. (33.1.3)

Conversely, if this equation is satisfied, then (x∗, y∗) is a saddle point.

33.1.4 Theorem. A point (x∗, y∗) is a saddle point for k(x, y) if and only if x∗ is
a minimizer for f(x) over A and y∗ is a maximizer for g(y) over B and the saddle
value k∗ exists.

Since (33.1.3) can be written f(x∗) = k(x∗, y∗) = g(y∗), this is clear.
Thus the key issue is to find saddle points. They do not exist in full generality,

but in some important contexts they do. For example, see Theorem 26.5.6 in the
context of linear optimization and the more general Theorem 33.4.2 in the context
of convex optimization.

33.1.5 Example. The prototypical example is the function k(x, y) = x2 − y2,
for x ∈ R and y ∈ R. Then fb(x) = x2 − b2, so that the supremum over b is
f(x) = x2. In the same way, ga(y) = a2 − y2, so that the infimum over a is
g(x) = −y2. Thus the saddle value is 0, and there is a unique saddle point (0, 0).

Saddle points will arise in the following way. We will start with, say, a mini-
mization problem concerning a function f(x) : A → R. Then we will construct a
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space B and a function k(x, y) : A × B → R so that the original function f(x) is
supb∈B k(x, b). Then if we can find a saddle value and a saddle point for k(x, y),
we not only get a solution for our original minimization problem, but we also get a
solution for the dual problem of maximizing the dual function g(y).

This works best if the function f(x) is convex, as we will see in Lecture 33.
There we discuss the existence of saddle points in the context of the Lagrangian of
f : compare Definition 33.2.2 to (33.1.3).

33.1.6 Example. The following modification of Example 33.1.5 shows that (33.1.1)
can be satisfied, without there being a saddle point. Let k(x, y) = −x2 + y2. Then
fb(x) = −x2 + b2 so that the supremum over b is the function identically equal to
∞. Similarly ga(y) = −a2 + y2, so that the infimum over a is g(x) = −∞.

This example also shows why we need to consider functions to the extended
real numbers R, rather than ordinary real-valued functions.

33.1.7 Exercise. Graph the function k(x, y) of Example 33.1.5 on the unit disk in
R2. What are the functions fb(x) = x2 − b2 on this graph? What are the functions
ga(y)? Now graph the level curves k(x, y) = c for various constants c ∈ R. Next
confirm Theorem 33.1.4.

Finally do the same thing for Example 33.1.6.

33.2 Saddle Points

Before defining saddle points, consider the following problem:

Minimize f(x) subject to h(x) = 0 and g(x) � 0. (33.2.1)

where we make no convexity or even continuity hypotheses of the objective func-
tion f(x) and the constraints h(x) and g(x).

Write the usual Lagrangian

L(x, λ, µ) = f(x) +
m∑
i=1

λihk(x) +

p∑
k=1

µkgk(x

for this problem, where µ � 0.

33.2.2 Definition. A saddle point for L(x, µ) is a point (x∗, λ∗, µ∗) in Rn×Rm×
Rp�0 such that for all (x, λ, µ) in the same space,

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗) (33.2.3)
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33.2.4 Theorem. If (x∗, λ∗, µ∗) is a saddle point for L(x, λ, µ), then x∗ is a solu-
tion of Problem 33.2.1, and f(x∗) = L(x∗, λ∗, µ∗). Conversely, if (x∗, λ∗, µ∗) is a
triple in Rn ×Rm ×Rp�0 such that the right-hand inequality of (33.2.3) holds, x∗

is feasible for the constraints of Problem (33.2.1), and complementary slackness
holds, then (x∗, λ∗, µ∗) is a saddle point.

Proof. By subtraction, the left side inequality in (33.2.3) implies

〈λ− λ∗,h(x∗)〉+ 〈µ− µ∗,g(x∗)〉 ≤ 0. (33.2.5)

Assume h(x∗) 6= 0, so that a coordinate, say the i-th coordinate hi of h is non-
zero at x∗. Then by choosing λi either very large or very small, depending on the
sign of hi(x∗), we can contradict the saddle point inequality (33.2.5). In a similar
way, if gk(x∗) > 0, by making µk very large we can contradict (33.2.5). Thus
hi(x

∗) = 0 for all i and gk(x∗) ≤ 0 for all k, which shows that x∗ is feasible for
Problem (33.2.1).

Now choose µ = 0 in (33.2.5). We get 〈µ∗,g(x∗)〉 ≥ 0. Since we have
just established that 〈µ∗,g(x∗)〉 ≤ 0, we have 〈µ∗,g(x∗)〉 = 0, complementary
slackness. This shows that f(x∗) = L(x∗, λ∗, µ∗), the last claim of the theorem.

We now use the right-hand inequality and complementary slackness to get

f(x∗) ≤ f(x) + 〈λ∗,h(x)〉+ 〈µ∗,g(x)〉.

Now assume that x is feasible. Then h(x) = 0, so

f(x∗) ≤ f(x) + 〈µ∗,g(x)〉,

and since g(x) � 0 and µ � 0, we get f(x∗) ≤ f(x) for all feasible x, as
required.

33.2.6 Remark. The general definition of a saddle point is given in §33.1. We
already encountered a saddle-point result when we looked at matrix games in §26.5.
We started with a m×n matrix A, and we looked at the values qTAp where p and
q are probability vectors of the length n and m respectively. . We called a pair of
probability vectors p0 and q0 optimal, if, for all p and q,

(q0)TAp ≤ (q0)TAp0 ≤ qTAp0

and we proved that an optimal pair exists for each matrix A: Theorem 26.5.6. Thus
q0 is a probability vector that minimizes qTAp0 and p0 a probability vector that
maximizes (q0)TAp.



33.3. IMPLICATIONS OF THE EXISTENCE OF SADDLE POINTS 508

33.3 Implications of the Existence of Saddle Points

33.3.1 Theorem. If f(x) is C1 at x∗, and if (x∗, λ∗, µ∗) is a saddle point for the
Lagrangian L(x, λ, µ) of f , then f satisfies the KKY conditions at (x∗, λ∗, µ∗).

Proof. The right-hand inequality of (33.2.3) says that x∗ is an unconstrained mini-
mizer of the function L(x, λ∗, µ∗), so its gradient vanishes there. Since we already
have positivity of µ∗ by hypothesis, and since we have established complemen-
tary slackness even without the differentiability hypothesis, we have all the KKT
conditions.

33.3.2 Theorem. If f(x) is C2 at x∗, and if (x∗, λ∗, µ∗) is a saddle point for the
Lagrangian L(x, λ, µ) of f , then the Hessian of L(x, λ∗, µ∗) is positive semidefi-
nite.

Proof. Again, the right-hand inequality of (33.2.3) says that x∗ is an unconstrained
minimizer of the functionL(x, λ∗, µ∗), so the Hessian of the Lagrangian is positive
semidefinite by Theorem 13.1.2.

33.3.3 Example. We minimize f(x, y) = xy with the single constraint x+ y = 2.
The Lagrange equations are y + λ = 0 and x + λ = 0, so we get the triple
(x∗, y∗, λ∗) = (1, 1,−1) as the unique solution to the first order equations. The
Hessian of the Lagrangian at this point is[

0 1
1 0

]
,

which is not positive definite: the eigenvalues are ±1 and the eigenvectors (1, 1)
and (1,−1). Thus the constraint restricts us to the line spanned by the +1 eigenvec-
tor, so the Hessian is positive definite there, and we have a strict minimum. There
are many other ways we could have seen this of course, most easily by graphing
the level curves , the constraint line, and the gradient of the objective function at
the minimizer.
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xy � 1

x + y � 2
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So this is as simple and well-behaved minimization problem as can be imag-
ined, and yet the point (x∗, y∗, λ∗) = (1, 1,−1) is not a saddle point, because it
fails the right-hand inequality in the saddle point definition:

1 ≤ xy − (x+ y − 2)

for all x and y. Indeed, just let y = −x, and let x get very large.

If f is a convex function, this kind of example cannot occur, because the Hes-
sian of a convex function is positive semidefinite. Thus the notion of saddle point
is only useful when one is dealing with convex optimization, of which linear opti-
mization is a special case.

33.4 The Basic Theorem

We keep the same set-up as in Lecture 23, in particular the standard problem is
the same, except that the differentiability requirements are weakened: all we know
about f and the gk is that they are convex, and therefore (by Theorem 21.4.3)
continuous. Here it is:

33.4.1 Definition. Minimize f(x), x ∈ Rn, subject to

Ax = b and gk(x) ≤ 0 , 1 ≤ k ≤ p ,

where f(x) and the gk(x) are convex functions, andA is am×nmatrix of maximal
rank m.
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As usual we write the Lagrangian for this problem:

L(x, λ, µ) = f(x) +

m∑
i=1

λi(Ax− b) +

p∑
k=1

µkgk(x)

We need the Slater condition (see Definition 23.7.1). Note the strict inequality
in the inequality constraints of the Slater condition, so that we are postulating the
existence of a special kind of feasible vector.

33.4.2 Theorem. Assume that Problem 33.4.1 satisfies the Slater condition. Then
a necessary condition for a feasible point x∗ to be a minimizer for Problem 33.4.1
is that there exist a µ∗ � 0 ∈ Rp such that 〈µ∗,g(x∗)〉 = 0 and a λ∗ ∈ Rm such
that (x∗, λ∗, µ∗) is a saddle point for the Lagrangian of f .

Proof. The proof of Theorem 23.7.2 shows that there are λ∗ and µ∗ ≥ 0 such that
complementary slackness holds: 〈µ∗,g(x∗)〉 = 0, and such that L(x, λ∗, µ∗) is
minimized at x∗. Then we just apply Theorem 33.2.4: the converse statement.



Lecture 34

Nonlinear Duality

For convex minimization problem (so f and the gi are convex, and the hk are
affine), there is a theory of duality that is a beautiful generalization of the duality
we have already studied in the linear case. These notes define the new notion and
show how it generalizes linear duality. We also show what happens in the quadratic
case.

34.1 The Dual Function

We start with the same minimization problem as in Lecture 31: Minimize f(x),
x ∈ Rn, subject to

hi(x) = 0 , 1 ≤ i ≤ m and gk(x) ≤ 0 , 1 ≤ k ≤ p (34.1.1)

Let F be the feasible set for this problem, and let f∗ be the minimum value of f(x)
on F . We allow the value −∞ if f is unbounded below on F . To this problem we
associate the Lagrangian:

L(x, λ, µ) = f(x) +

m∑
i=1

λihi +

p∑
k=1

µkgk (34.1.2)

= f(x) + λTh(x) + µTg(x)

defined for all λ, and for all µ � 0.

34.1.3 Definition. The dual function φ(λ, µ) to f(x), with its constraints g(x) and
h(x), is the function

φ(λ, µ) = inf
x∈F
L(x, λ, µ)
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We write ‘inf’ rather that ‘min’ because the value might be−∞ at some points.

34.1.4 Remark. Because φ(λ, µ) is the inf of a collection of linear and therefore
concave functions, by the results of §22.3, φ is a concave function. Indeed, in
Example 22.3.11, we showed that the sup of an arbitrary collection of convex
functions is convex, so here we just multiply by −1 to get the result.

34.1.5 Theorem. For all λ, and for all µ ≥ 0,

φ(λ, µ) ≤ f∗, (34.1.6)

where f∗ is the minimum value of f on F . If there are Lagrange multipliers λ∗,
and µ∗ � 0, associated to the minimizer x∗, so that complementary slackness is
satisfied:

〈µ∗,g(x∗)〉 = 0

then
φ(λ∗, µ∗) = f∗.

This occurs in the convex case when the Slater condition is satisfied: see Theorem
23.7.2.

Proof. At a feasible point x, for any λ, and for any µ � 0, we have

λTh(x) + µTg(x) = µTg(x) ≤ 0,

since µ � 0 and g(x) � 0. So

L(x, λ, µ) ≤ f(x) (34.1.7)

Now we take the infimum with respect to x of both sides, getting φ(λ, µ) ≤ f∗.
This establishes the first claim. If complementary slackness is achieved at µ∗ and
x∗, then (34.1.7) becomes an equality and the second part of the theorem is proved.

This shows that once the dual function φ(λ, µ) is defined, we should maximize
it in order to approximate as closely as possible the minimum value of the original
(primal) function f . Thus dually, the problem of minimizing f becomes that of
maximizing φ(λ, µ).
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34.2 Example: The Linear Case

34.2.1 Example. We first compute the dual function for the problem:

Minimize cTx subject to Ax = b and x ≥ 0

The Lagrangian is

L(x, λ, µ) = cTx + λT (b−Ax)− µTx,

which we can rewrite, grouping the terms involving x:

L(x, λ, µ) = λTb + (c−ATλ− µ)Tx,

so the dual function can be written:

φ(λ, µ) = λTb + inf
x

(c−ATλ− µ)Tx.

As soon as a coefficient of x is non-zero, a suitable value of x can drive the
dual function to −∞, so we get the result:

34.2.2 Theorem. With the constraints c − ATλ � 0, µ = c − ATλ, the dual
function φ(λ, µ) = λTb. When these constraints are not satisfied, φ(λ, µ) = −∞.

Thus the dual problem to the standard linear optimization problem, asymmetric
form (25.1.5), is maximize λT b with the constraints c − ATλ ≥ 0. Note that the
dual variables here are the λ and the µ. The µ do not play an important role, so we
are left with the λ. These variables were called y in Lecture 25.

As noted in the previous section, to understand the primal function we want to
maximize the dual, so we want to

Maximize λTb subject to λTA ≤ c (34.2.3)

Compare to Example 25.4.1.

34.2.4 Example. Next we compute the dual function for the symmetric linear op-
timization problem:

Minimize cTx subject to Ax ≥ b and x ≥ 0.

There are no equality constraints, and two sets of inequality constraints. We
use the dual variables µ and ν for them, so they must both be non-negative. The
Lagrangian is

L(x, µ, ν) = cTx + νT (b−Ax)− µTx
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which we can rewrite, grouping the terms involving x:

L(x, µ, ν) = νTb + (c−AT ν − µ)Tx

so the dual function

φ(µ, ν) = νTb + inf
x

(c−AT ν − µ)Tx

As before, as soon as a coefficient of x is different from 0, a suitable value of
x can drive the dual function to −∞, so we get the result:

34.2.5 Theorem. With the constraints c − AT ν ≥ 0, µ = c − AT ν, the dual
function φ(µ, ν) = νTb. When these constraints are not satisfied, φ(µ, ν) = −∞.

In this case the dual variable ν must be nonnegative. Again, we have recovered
the same dual function found in Lecture 25:

Maximize νTb subject to νTA ≤ c and ν ≥ 0.

See 25.3.11.

34.3 Example: The Quadratic Case

34.3.1 Example. We now consider the quadratic problem

Minimize
1

2
xTQx + cTx subject to Ax ≤ b

where we assume that Q is symmetric and positive semidefinite.
The Lagrangian is

L(x, µ) =
1

2
xTQx + cTx + µT (Ax− b)

so the dual function is

φ(µ) = −µTb + inf
x

(1

2
xTQx + cTx + µTAx

)
for µ ≥ 0.

We minimize 1
2xTQx + cTx +µTAx for a fixed value of µ. This is an uncon-

strainted convex minimization problem. A necessary and sufficient condition for it
to have a minimum at x∗ is that the gradient with respect to x vanish there:

x∗TQ+ cT + µTA = 0 (34.3.2)
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Because we are not assuming that Q is invertible, we cannot solve for x∗. Instead
we multiply by x∗ on the right, getting

x∗TQx∗ + cTx∗ + µTAx∗ = 0

Substituting this into the dual function we get

φ(µ) = −µTb− 1

2
x∗TQx∗ (34.3.3)

where x∗ depends on µ through (34.3.2).
If Q is positive definite, then we can solve for x in (34.3.2), getting

x∗ = −Q−1
(
ATµ+ c

)
(34.3.4)

We substitute this into (34.3.3), writing R = Q−1, to R is also symmetric, to get:

φ(µ) = −µTb− 1

2

(
µTA+ cT

)
RTQR

(
ATµ+ c

)
(34.3.5)

= −µTb− 1

2

(
µTA+ cT

)
R
(
ATµ+ c

)
(34.3.6)

= −µTb− 1

2

(
µTAQ−1ATµ

)
− 1

2

(
cTQ−1c

)
− cTQ−1ATµ (34.3.7)

This is a quadratic polynomial in µ, with quadratic part −AQ−1AT and linear
part −(cTQ−1AT + b)µ. If A has rank m ≤ n, then, as we saw in Proposition
30.3.2, −AQ−1AT is a m×m negative definite matrix.

If c is the zero vector, this simplifies to

φ(µ) = −µTb− 1

2

(
µTAQ−1ATµ

)
The key question is: what kind of matrix is −AQ−1AT in general?

34.3.8 Proposition. Assume the nullspace ofAT has dimension k. Then the quadratic
form −AQ−1AT is negative semidefinite, with a 0-part of dimension k, and a neg-
ative part of dimension m− k.

When we are dealing with inequalities, we could have m > n, in which case
−AQ−1AT will have rank at most n.

Here is an example.

34.3.9 Example. Minimize

f(x) = 3x21 + 2x22 − 2x1x2 − 3x1 − 4x2
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subject to
2x1 + 3x2 ≤ 6 , − x1 + 2x2 ≤ 2 , x ≥ 0 .

so

Q = 2

[
3 −1
−1 2

]
, c =

[
−3
−4

]
, A =


2 3
−1 2
−1 0
0 −1

 , b =


6
2
0
0


Notice that Q is positive definite, and that the last two constraints, positivity

constraints for the variables, have to be multiplied by −1 so the inequalities go in
the right direction.

We want to write x∗ as a function of µ. We need

Q−1 =
1

10

[
2 1
1 3

]
so, using this in (34.3.4)

x∗ = − 1

10

[
2 1
1 3

] [
2µ1 − µ2 − µ3 − 3
3µ1 + 2µ2 − µ4 − 4

]
= − 1

10

[
7µ1 − 2µ3 − µ4 − 10

11µ1 + 5µ2 − µ3 − 3µ4 − 15

]
Now we plug this into (34.3.3):it is clear we get a quadratic polynomial in the µ.
The purely quadratic part is given by AQ−1AT which we now compute:

AQ−1AT =
1

10


2 3
−1 2
−1 0
0 −1

[2 1
1 3

] [
2 −1 −1 0
3 2 0 −1

]
=

1

10


47 15 −7 −11
15 10 0 −5
−7 0 −12 1
−11 −5 1 3


How to solve the primal problem? As always with KKT, one means to guess

which constraints are active. It is worth determining the minimum for the uncon-
strained problem given by f(x). A little gradient computation shows that it occurs
at (1, 32). This is not in the feasible set of the constrainted problem, so it is not our
answer.

It is worth graphing the feasible set. You get a polygonal region whose vertices,
going counterclockwise, are (0, 0),(3, 0), (67 ,

10
7 ),(0, 1).

Since the level sets of f are ellipses centered at (1, 32), it is clear that the only
active constraints are going to be µ1 and perhaps µ1. So we try with just µ1, which
we call µ.

We solve the two gradient equations with the first constraint active equation:
2x1 + 3x2 = 6. This is a system of three linear equations, with a unique solution
with a positive µ = 5

47 and feasible (x1, x2), so we are done.
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34.4 The Duality Theorem for Convex Minimization

This simply reiterates some results mentioned in the first section. Keeping the same
notation, we now let φ∗ stand for maxλ,µ φ(λ, µ) just as f∗ stands for minx f(x).

34.4.1 Definition. Weak duality is the assertion that

φ∗ ≤ f∗

We saw in the first section that it always holds.

34.4.2 Definition. Strong duality is the assertion that

φ∗ = f∗

in which case the pair (λ∗, µ∗) that achieves the maximum for φ are the Lagrange
multipliers associated to the minimizer for the primal problem.

34.4.3 Theorem. Strong duality holds for the convex minimization problem when
the Slater condition is satisfied.

This was already mentioned in Theorem 34.1.5. For more general optimization
problems it may fail, in which case the difference f∗−φ∗ is called the duality gap.
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Appendix A

Symbols and Notational
Conventions

A.1 Logic

We will use the universal quantifier ∀ for all and the existential qualifier ∃ there
exists. See §2.1.1 for details.

If S is a set, and R ⊂ S a subset of S, then S r R denotes the elements of S
that are not in R.

We will occasionally use the ‘exclusive’ or: if P and R are two statements,
in ordinary mathematics P or R means that at least one of the two statements is
true. P ‘exclusive’ or R means that exactly one of the two statements is true. See
Corollary 7.2.4 for an example.

A.2 Number Systems

N denotes the natural numbers, namely the positive integers.
Z denotes the integers.
Q denotes the rational numbers.
R denotes the real numbers.
R is R extended by −∞ and∞.
[a, b] = {x ∈ R | a ≤ x ≤ b}.
(a, b) = {x ∈ R | a < x < b}.
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A.3 Real Vector Spaces

The n-th cartesian product of the real numbers R is written Rn. Lower-case bold
letters such as x and a denote vectors in Rn, each with coordinates represented by
non-bold letters (x1, . . . , xn) and (a1, . . . , an), respectively. We typically use x
(and y, z, etc.) for variables and a (and b, c, etc.) for constants.

Vectors are also called points, depending on the context. When the direction is
being emphasized, it is called a vector.
With the exception of gradients, vectors are always column matrices.
In the body of the text, an expression such as [a1, a2, . . . , an] denotes a column
vector while (a1, a2, . . . , an) denotes a row vector.
The length of a vector v is written ‖v‖, and the inner product of v and w is 〈v,w〉,
or, more rarely, v ·w.
The partial order in Rn leads to the following notation:

x ≺ y means that xi < yi for all 1 ≤ i ≤ n
x � y means that xi ≤ yi for all 1 ≤ i ≤ n
x 4 y means that xi ≤ yi for all 1 ≤ i ≤ n and xj < yj for some j

and therefore

Rn� = {x | x � 0}
Rn� = {x | x � 0}
Rn< = {x | x < 0}

The open ball of radius r centered at the point p ∈ Rn is written

Nr(p) = {x | ‖x− p‖ < r}

and the closed ball
N r(p) = {x | ‖x− p‖ ≤ r}

The tangent space of Rn at a point p is written TRn,p or simply Tp. See §17.2. If
M is a submanifold of Rn, its tangent space at p is written TM,p. See §17.3.

A.4 Analysis

A function is C1 if it is continuously differentiable, and Cn if it is is n-times differ-
entiable, and its n-th derivative is continuous. This, both for functions of a single
variable and of several variables.
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We use the Lagrange notation f ′(x), f ′′(x), . . . , f (n) for the successive deriva-
tives of a function of one variable. On the other hand we use the Leibniz notation
∂f
∂x for the partial derivative of f with respect to x. On occasion we will use the
Cauchy notation Dxf for the same partial to simplify the notation.

For a differentiable real valued function f : Rn → R, we write ∇f(x) for its
gradient vector evaluated at x.

∇f(x) =
( ∂f
∂x1

(x1, . . . , xn), . . . ,
∂f

∂xn
(x1, . . . , xn)

)
and if f is twice differentiable, F (x) for its n× n Hessian matrix at x:

F (x) =


∂2f
∂x21

(x) . . . ∂2f
∂x1∂xn

(x)

. . . . . . . . .
∂2f

∂xn∂x1
(x) . . . ∂2f

∂x2n
(x)

 (A.4.1)

A.5 Linear Algebra

Matrices are written with square brackets as in (A.4.1). Matrices are denoted by
capital roman letters such as A, and have as entries the corresponding lower case
letter. So A = [aij ]. A is an m × n matrix if it has m rows and n columns, so
1 ≤ i ≤ m and 1 ≤ j ≤ n. We write the columns of A as aj and the rows as ai.
AT is the transpose of the matrix A.
D(d1, d2, . . . , dn) is the n× n diagonal matrix

d1 0 0 . . . 0
0 d2 0 . . . 0
...

...
... . . . 0

0 0 0 . . . dn


In or just I stands for the n× n identity matrix D(1, 1, . . . , 1).

If A is an m × n matrix, TA is the linear transformation from Rm to Rn given by
TA(x) = Ax, the matrix product of A by the n-column vector x. The nullspace of
TA is written N (A), and its rangeR(A).
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A.6 Affine Geometry

The affine hyperplane {x | 〈a,x〉 = c} in Rn is written Ha,c. It separates Rn into
two closed halfspaces

H+
a,c = {x | 〈a,x〉 ≥ c}

H−a,c = {x | 〈a,x〉 ≤ c}

A.7 Convexity

CoS is the convex hull of S. See Definition 18.1.17. KS is the set of convex
combinations of S. See Definition 18.1.25.

P (A,b) is the polyhedron {x ∈ Rn | Ax ≤ b}, where A is an m × n matrix
and b an m-vector. See Definition 18.3.16.

P̂ (A,b) satisfies the additional positivity condition x ≥ 0. See Definition
19.2.8.

CA denotes the cone defined in Definition 19.3.1. C∗ is the dual cone defined
in Theorem 20.4.8.

A.8 Optimization

The objective function is always f , and typically f : Rn → R.
To the extent possible, the equality constraints are written h(x) : Rn → Rm, and
the i-th equality constraint refers to the function hi(x) : Rn → R whose scalar
output is the i-th coordinate of h(x).
Similarly the inequality constraints are written g(x) : Rn → Rp, and the j-th
inequality constraint refers to the function gj(x) : Rn → R whose scalar output is
the j-th coordinate of g(x).
The feasible set is usually written D. It is usually the intersection of the domain of
f with the set h(x) = 0 and the set g(x) ≤ 0.
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Paris, 1821. ↑342

[16] , Résumé des Leçons Données à l’École Royale Polytechnique, Debure frères, Paris,
1823. ↑34, 152

[17] A. Charnes, Optimality and Degeneracy in Linear Programming, Econometrica 20 (1952), 160-
170. ↑432



[18] Edwin K. P. Chong and Stanislaw H. Zak, An Introduction to Optimization, Second Edition,
Wiley-Interscience, New York, 2001. ↑4

[19] Gerard Debreu, Definite and Semidefinite Quadratic Forms, Econometrica 20 (1952), no. 2,
295-300. ↑464
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affine, 449
affine combination, 138
affine combinations theorem, 138
affine hull, 139, 141, 146, 150
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affine independence, 139
arithmetic mean, 201
arithmetic-geometric mean, 203
arithmetic-geometric mean inequality, 200
Arrow-Enthoven, 412

ball, 133
center, 31
closed, 31, 40, 137
open, 31, 377
radius, 31

barycenter, 144
barycentric coordinates, 144
basis, 478
between, 131
bipolar set, 421
block matrix decomposition, 66
block matrix form, 347
body

convex, 153
bordered Hessian test, 334
bound

greatest lower, 29, 157
least upper, 29, 157
lower, 28
upper, 28

boundary, 33, 137
boundary point, 157
bounded, 28, 40, 44, 51, 178, 458, 472

above, 28
below, 28

Brouwer’s Theorem, 275

Carathéodory’s theorem, 153, 154
Cauchy-Schwarz inequality, 200, 203, 465
cell, 40, 133
centroid, 144
chain rule, 99, 312, 324, 348, 509
characteristic polynomial, 100, 106, 491,

492
Clairault’s theorem, 506
Cobb-Douglas, 118, 195
column

entering, 283
leaving, 285

complementary dimensions, 480
complementary slackness, 237, 243, 360,

393, 398
completeness, 28, 29
completing the square, 7, 86
component of a vector, 468
concavity

function, 166
of the dual, 398
strict, 167

cone, 208, 234
basic, 211
dimension, 210



finite, 210
generator, 210
polyhedral, 209

conjugate function, 423
constraint, 145

active, 145, 236, 359
constraint set, see feasible set
continuity, 2, 50, 51, 95, 98, 171, 439,

443, 453, 473
and convex functions, 181

contrapositive, 19
convergence, 94, 470
convex combination, 133, 153, 167
convex combinations theorem, 134, 167
convex hull, 133, 135, 158, 162
convex independence, 142
convex optimization

complementary slackness, 396
equality-constrained, 377
feasible set, 377
local minimizer, 377
necessary condition, 383, 396
standard problem, with differentia-

bility, 376
sufficient conditions, inequality-constrained,

379
value function, 381

convexity
function, 165, 192
strict, 166, 186

coordinates, 478
correspondence, 20
cost function, 2
cost minimization, 330
critical point, 112, 318, 442
crosspolytope, 145, 145, 147
cube, 145, 147
cuspidal cubic, 316, 319, 362
cycle, 291

D, 2
Debreu, 337
Descartes

folium, 113
determinant, 339, 482, 488

expansion, 483
of inverse, 484

Diet Problem, 8, 259
differentiability, 172, 185, 443
differentiable, 440

continuously, 445, 453
dimension, 478

affine set, 141
convex set, 141

discriminant, 100
distance, 93, 155, 192, 193, 467, 474
distance function, 466
divergence, 470
dot product, 93, 480
doubling time, 459
dual, 400

nonlinear, 397
duality

linear, 399
quadratic, 400

duality gap, 403
duality theorem, 243

edge, 144
eigenvalue, 83, 100, 105, 109, 492
eigenvector, 83, 101, 492

orthonormal, 102
ellipsoid, 124, 136
envelope theorem, 256, 352, 382, 384
epigraph, 176
equality-constrained optimization

h(x), 317
regularity, 317, 324, 329
second-order necessary condition, 328
second-order sufficient condition, 329



standard problem, 317
equilibrium x, 251
equilibrium y, 251
equilibrium point, 251, 281, 282

dual, 251
equilibrium theorem, 245, 250
equivalence relation, 21
Euclidean space, 468
Euler’s formula, 512
Euler’s theorem, 512
extreme point, 132, 133, 158, 159, 161,

163, 220

f, 2
Fan’s theorem, 96
Farkas alternative, 215
feasible set, 2
Fenchel transform, 417
f (k), 453
folium of Descartes, 113
four subspaces theorem, 480
Frobenius, 75
Frobenius’s Theorem, 267
function, 20

approximation of, 453
coordinate, 475
cost, 2
distance, 48, 466, 473
domain, 2
homogeneous, 266, 512
objective, 2
range, 2
rational, 475
real-valued, 2

geometric mean, 201
geometric mean function, 204
geometry

conical, 137, 208

gradient, 98, 112, 296, 328, 342, 503,
509

Gram-Schmidt, 64

half-space, 131, 156, 157
Hankel form, 75, 108
Heine-Borel Theorem, 39
Hessian, 70, 95, 112, 113, 325, 346, 371,

506, 508, 510
bordered, 333, 340

Hölder inequality, 203
hyperbolic set, 204
hypercube, 36, 43
hyperplane, 132, 155–157

normal, 131, 232
supporting, 157, 177, 384

hypersurface, 131

implicit function theorem, 299, 302, 312
proof of, 320, 323

indefinite, 72
indicator function, 426
inequality-constrained optimization

active constraint, 359
complementary slackness, 360, 373
first-order necessary condition, 364
Lagrange multiplier, 359
Lagrangian, 359, 364
regularity, 362
second-order necessary condition, 371
second-order sufficient condition, 373
standard problem, 358
tangent space, 371

inertia, 80
inf, 29
infimum, 29
inflection point, 449
inner product, 464
interior, 150

relative, 150



interior point, 150
intermediate value theorem, 451
internal rate of return, 413
intersection, 34

of convex sets, 133

Jacobi, 110
Jensen’s inequality, 167, 198

K(S), 134
Kakutani’s Theorem, 278
Karush-Kuhn-Tucker multiplier theorem,

364
KKT conditions, 359

L’Hospital’s rule, 462
Lagrange multiplier, 327, 384
Lagrange multiplier theorem, 317, 326
Lagrange multipliers, 317
Lagrangian, 317, 327, 396, 397

quadratic optimization, 344
Law of Inertia, see Sylvester’s Law of

Inertia
least squares method, 115
Legendre transform, 417, 424
length, see norm
level set, 124
limit point, 32
linear dependence, 139
linear independence, 478
linear optimization, 482

active constraint, 234
asymmetric problem, 229
basic solutions, 232
complementary slackness, 245, 250
feasible set, 230
non-degeneracy assumption, 234, 281
perturbations of b, 255
rank assumption, 217
slack constraint, 234
standard problem, 228

symmetric problem, 229
linear programming, 449
linear transformation, 339

four subspaces associated to, 479
range, 479

Lipschitz continuous, 171

MacLaurin, 320
marginal cost, 256
marginal productivity, 330
Markov chain, 266
Mathematica, 357
matrix

block diagonal, 68
block form, 67
congruence class, 78
congruency, 78
determinant, 340
diagonality, 77, 80, 100, 436
doubly stochastic, 162
equivalence, 58, 78
equivalence class, 59
Gram, 123
identity, 436
nullspace, 479, 492
of eigenvectors, 102
orthogonal, 493
orthogonality, 102
permutation, 163, 487, 494
positive, 265
probability, 263
rank, 217, 324, 479
rotation, 494
similarity, 58, 59
square, 68
stochastic, 263
submatrix, 223
symmetric, 479
symmetry, 100, 107, 338
trace, 94, 491



transpose, 478, 480
matrix game, 267, 268

fairness, 271
Football, 267, 271
mixed strategy, 270
Rock, Paper, Scissors, 267, 269
symmetry, 272
value, 271

maximizer, 4
maximum, 4

global, 50
maximum theorem, 52, 98
mean value theorem, 443, 444

Cauchy, 444, 462
generalized, 456, 514

metric space, 466
minimizer, 4

global, 448
local, 5

minimum, 4
global, 50

Minkowski Sum, 136
Minkowski’s theorem, 158
minor, 482

leading principal, 85, 105, 496
principal, 106, 109

mixed partials commute, 506

negative definite, 72, 113, 342
negative semidefinite, 72, 343, 401
neighborhood, 32, 95
nonlinear programming, 450
norm, 93, 465
Nr(p), see ball
nullspace, 324

objective function, 2, 112
optimization, 2
ordering, 22
orthogonality, 480

Otani, 411

parallelepiped, 485
Parallelogram Law, 468
parametrized curve, 510
partition, 21
Peano, 121, 192
permutation, 106, 486

cycle, 490
sign, 488
transposition, 486

piecewise linear, 256
pivot, 109, 496
point

extreme, 163
polar set, 420
polyhedron, 145, 145
polytope, 144
positive definite, 72, 94, 95, 105, 106,

112, 191, 329, 330, 339, 342,
343, 346, 349

positive semidefinite, 72, 109, 112, 190,
329, 343, 371

positively homogeneous function, 418
principal axis, 126
probability theory, 266
product rule, 511
projection, 233, 281, 289

central, 213
orthogonal, 65

Pythagorean Theorem, 468

quadratic form, 71, 97, 104, 109, 191
degeneracy, 80
singularity, 80

quadratic formula, 100
quadratic optimization

equality-constrained, 344
necessary and sufficient condition,

346, 349



standard problem, equality-constrained,
344

standard problem, unconstrained, 341
tangent space, 345
unconstrained, 341
when Q is invertible, 351

quasiconvex, 404
strictly, 405

quotient rule, 99

rank, 317
rational numbers

dense, 30
ray, 98, 153, 208, 420, 431

extreme, 208
Rayleigh quotient, 97, 101, 113

generalization of, 337
regular point, 294
Rn, 463
Rolle’s theorem, 443, 455, 456

saddle point, 73, 342, 343, 390, 393
scalar multiplication, 464
separation, 155

strict, 155
sequence, 469

convergence, 33, 44
decreasing, 472
increasing, 472
infinite, 469
limit, 470
monotonic, 472
nested, 35
subsequence, 44, 157

series, 94
set

affine, 137
boundary, 177
boundary point, 33
closed, 32, 51, 156, 214, 472

closure, 149
compact, 40, 44, 50, 157, 162
complement, 33, 156, 157
convex, 131, 156, 158, 162
disjoint convex, 157
feasible, 2
interior point, 33, 317
limit point, 40
open, 32, 95
separation, 157, 177
strict separation, 156

shadow price, 256
Shephard, 332
signature, 80, 105, 109
simplex, 144, 145, 154

regular, 147
unit, 266

slack variable, 222
Slater condition, 383, 384, 396, 398
solution

basic, 219
invariant, 266
stationary, 266

Spectral Theorem, 100, 101, 112
Sperner’s Lemma, 272
squeeze principle, 472
Stigler, George, 8
strong duality theorem

nonlinear, 403
subgradient, 179
sublinearity, 166
submatrix

leading principal, 496
principal, 495

subsimplex, 154
subspace, 93

dimension, 93
sup, 29
support, 158
support function, 418, 426



supporting hyperplane, 157
supremum, 29
Sylvester’s Law of Inertia, 81

tangent hyperplane, 185, 188
tangent line, 440
tangent space, 298, 305, 307
Taylor polynomial, 454, 458, 513
Taylor’s theorem, 70, 112, 113, 459, 461,

514, 515
three secant theorem, 169
translate, 140
Transportation Problem, 11, 12
transpose, 478
triangle inequality, 32, 466

unconstrained optimization, 111
necessary conditions, 112
of convex functions, 195
sufficient conditions, 112

unimodal, 405
union, 34
unit sphere, 98, 157
Utility Function, 17
utility function, 22
utility maximization, 332

value function, 255, 331, 414
Vandermonde determinant, 319
vector, 435, 463

coordinate, 464
of eigenvalues, 102
orthogonality, 101
probability, 264, 269
proportionality, 465
steady state, 264

vector space, 76
symmetric matrices, 93

vertex, 144, 159
polytope, 144

weak duality theorem, 242
nonlinear, 403

Weierstrass Theorem, see maximum the-
orem

Weyl’s theorem, 430
Weyl-Minkowski Theorem, 422
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