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This article studies subellipticity and asymptotic eigenvalue dis-
tribution of second-order partial differential operators with non-
negative principal symbols. We obtain definitive results for
self-adjoint operators with real coefficients. Deep theorems on
subellipticity and related topics have been obtained by Hormander
[6], Kohn [7], and Rothschild and Stein [10] for sums of squares
of vector fields; and by Olenik and Radkevitch [9] for general
second-order equations; while subelliptic eigenvalue asymptotics
were studied by Menikoff and Sjdstrand [8]. The interest of our
work is that it gives sharp necessary and sufficient conditions
for operators not assumed to be written as sums of squares. It
would be interesting to understand also non-self-adjoint equations
and equations with complex coefficients.

To fix the notation, let I be a second-order self-adjoint
differential operator on a compact manifold M with smooth measure

H. Assume that in local coordinates
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where a®, b;, ¢ are real and (a® (x)) is positive semidefinite.

We want to understand the following:

(A) When does L satisfy the subelliptic estimates
rRe{Lu, u) + Cllul? > c[lu[l("‘e) for u € C*(M); (1)
lzul + clul > elull e for u € C*(M)? (2)

(B) What is the asymptotic behavior as A >~ » of N(A, L), the

number of eigenvalues of I which are < A?

These questions are answered in terms of a family of "non-
Euclidean balls,” which we now define.

A tangent vector X = 2:Y3§%;~at x € M is said to be subunit
for L if (ijk) 5_(ajk(x)) as matrices. One easily checks that
this notion is independent of the particular coordinate chart.

For x € ¥ and p > O, the "ball" B; (x, P) consists of all the points
y € M that can be joined to & by a Lipschitz path v : [0, pl = M for
which é%—Y(t) is a subunit vector for L at Y(f) for almost every ¢.

By Bg(x, P) we denote an ordinary Euclidean ball of radius
P about x. Note that if -I is the IL.aplacian for a metric ds? on M,
then B (x, p) agrees with the usual ball of radius P in ds?. see
also Rothschild and Stein [10], in which suitable non-Euclidean

balls play an important role.
Theorem 1. For L as above, the estimates (1) and (2) are equiva-
lent, and they both hold if and only if

By (@, py C B, (x, Cp®) for x € M, p > O.

Theorem 2. Assume L satisfies (1) and (2). Then for large A,

N(A, L) is bounded above and below by constant multiples of

Fn, 1) =/ d“(f”l’/ .
M U(BL (xr >\ 2))
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The rest of this paper sketches the proofs of Theorems 1 and 2.
We make essential use of results and techniques in [2] and [5],
with which we assume the reader is familiar. The new tools needed

in our proofs are the following geometric lemmas.
Lemma 1. Bgp(x, A\) C By (x, CA®) if and only if
Bg(x, )\) L )\znA(.’L' CcAE)Y,

-50

provided N > € Moreover, these inclusions imply that

By @, 2)) ~ (B, e, N)).

Lemma 2. In R"™, set

I = ‘(i)z Z at (8wt - Aa;
A ot 0x; 9% ; =
in R", set
52
= —E atd (.90)a - A*TA,,

where

aii (x) = A‘I/ atdi (t, x)dt.
l£l< A

Then the non-Euclidean balls B, , By, about the origin are related

by By (eM) C {[t| <A} x B, () C B, (€M)

Lemma 1 and the terms )\ZNA.,C in Lemma 2 are technicalities; while
Lemma 2 contains new geometric information, which is essential both
here and in our paper [4].

To prove Lemma 2, we need the following result, which forms
an [®-analogue of the spectral decomposition theorem in [5].

For

32
L =-2ab(@g—g—+ -

iJ z xJ

defined on the unit cube @°, and for u € L*(Q%), define
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35 ()00 9V
Za”x)axi x5
i J

L, (W) = infuecl(Qo){K"u - o)+ + K—zzv"vuuz},

where the norms are taken in L“(QO) .
Lemma 3. cy(L + L")y (u) < Lyu) + L}(u).

We first sketch how Lemmas 1 and 2 yield Theorems 1 and 2
by using {2 and 5]. Next we prove Lemma 1 and reduce Lemma 2 to

Lemma 3. Finally, we sketch the proof of Lemma 3.

Proof of Theorem 1. It is easy to show that (1) and (2) are equiv-
alent. In fact, (2) asserts that (L + CI)? > A*® as self-adjoint
operators on L?(M). One knows from operator theory that 42 > B2
implies 4 > B for positive operators 4, B, so L + CI > A%*®, which
is (1). On the other hand, assume (1), and note that
Re(Tu, A**u) < cluu”(zzg) + 100{1||Lu“2 for a small e¢; to be picked
later. However, Re(Lu, A**u) = Re(LA®u, A°u) + Re(AS[A®, Llu, u).
One computes that A®[A®, L] =T, + T, with T, e §2¢*+1 skew~adjoint
and T, € S%¢.  Therefore,

|Re(A® (A%, L1, u)| = |Re(Tyu, u)| < e, fulde + 1067 |uf?..
Moreover, our assumption (1) implies

1
Re(LA®u, Mu) > elulb, - Clulf, > 50”7"”(228) - ']

Putting these estimates together, we obtain

Sulley - Crlul? - erlull, - 1067 ul? < oyllull?,, + 1005 zu]?,
which implies (2) if we pick ¢; < % We are indebted to J. J. Kohn

-and E. M. Stein for stimulating conversations on estimate (2).

The hard part of Theorem 1 is to show that (1) is equivalent
to Bylx, A) < By(x, CA®*). To prove this, we formulate a stronger
result, which can be proved by induction on the dimension.

Given a second-order operator I defined on R”, and large

constants X, S, we say that L > X microlocally in I.’Jcl <1, |£I ~ 3
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if 6(x, D)*(L - K[)®(x, D) > ~CI for some symbol 6 € S° satisfy-
ing 6(x, &) =1 for lxlvi 1, lil ~ 5.

One checks easily that (1) amounts to saying that in local
coordinates L > (const)X microlocally in lx| <1, |E| ~ 5, with
K = 8%,

Therefore, Theorem 1 will follow at once from Lemma 1 and

the
Main Estimate. Assume K > S% and N > Ny, (8). Then

(i) L > (const)X microlocally in |x| <1, IEI ~ 8 iff
(ii) Bglx, (const)§™*) CB,_ , (e, K2).

So out task is to prove the main estimate. In one variable, the
result is trivial; in #» dimensions we proceed by induction on n
as follows.

We first reduce matters to the case

9 \? ~ 3
L= _(8t> + L(t, Y. )
This is done by localizing. We make a Calderdén-Zygmund decomposi-
tion of {le f_l} into cubes {QV} of diameters Sy, stopping at @y
when max_ . max la®d @) | > ¢83. (Recall
J xeQ¥ -
2

T
L=-Yai@ese—+ - .
7 ;35 )

We may assume all the S, 2,8—1, since otherwise (i) and
(ii) are both false. In each Qv, make a change of coordinates from

x € Qt to (¢, y) € unit cube, so that L goes over to

3 \? ~ 3
Ly = '(5;) + Lv(tr Yr 55)-

Now the sumbolic calculus of pseudodifferential operators shows
that I > (const)X microlocally for IE' ~ 5 if and only if each

L, > (const)X microlocally for I(T, n)| ~ 58,. Moreover, under the
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coordinate change x > (£, y), Byl(x, S goes over to

Be( (£, y), (S8,)71), while B ¢ junx(®, KY%) goes over to

By +junk((t, Y, K{UZ). Thus, the main estimate holds for [ if
and only if it holds for L,. So it is enough to look at

8 2
L = —<B_t> + L(t, y, Y)-

Also, we may assume K 5_52, since otherwise (i) and (ii) are again
obviously false. Now, however, Lemma 2 shows that in place of

BL_K—NA( (£, ¥), K2}, we may take

{|t - 2| <x*?} x By, , 5 (G, K?)
in (ii). Here

E;(y, ay) =K1/%;_E|5_K_1/2E(t’ y, ay)dt.

Also, the results in Fefferman and Phong [5] show that (i) is
equivalent to saying that fg'z (const)X microlocally in |y| <1,
lnl ~ § for each £. Therefore, our main estimate holds for L, pro-
vided it holds for fg for every . Since f; is an operator in

n - 1 variables, the induction step is complete. So we know both

the main estimate and Theorem 1.

Proof of Theorem 2. Using symbolic calculus and the minimax for-
mula for eigenvalues, one can easily localize the problem by assum-—
ing I to be elliptic outside {|x| < 1}. Another application of
symbolic calculus localizes the problem still further to the oper-

ators L, in the proof of Theorem 1. So we may assume

3\ |~
L = _<5E> + L(t, y, 9y)

with [ élliptic outside {|#|, |y| < 1}. since L is subelliptic, one
checks that N(A, L) is comparable to N(\; L - A ?¥*A) for large N

depending on the € in (1). So we may also assume that

~ .. 32
L(t, y, 9y) = - g;a‘J(t, y)§§;§§;-+ ceey

with (a® (¢, y)) 2_X_2”(6ij). (This uses Lemma 1.) Now define
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= _ y+1/2 ~
Ly (y, 3y) = X L_Emﬂﬂfz(t, y, dy)dt.

Lemma 2 shows that BL((t, Yl XUZ) is comparable to
{|t - Z| < X2} x Bz, (Y., A2y while the results of Fefferman and

Phong [2] show that N(A, L) is comparable to

X2 g, Lpdt
1Tl<1

for large A. Therefore, the formula
du ()
BL (xl >\_l/2) )

is easily deduced from the corresponding formula for the Lz. Since

N\, L) ~ K, L) =/ '
Moy

Lz is an operator in n - 1 variables, we can now proceed by induc-
tion on the dimension.

The above argument shows that N and ¥ are comparable in the
sense that off (e, ©) < WA, L) j_Cﬁ(CX, L). A final application of
Lemma 2 gives N(CA, L) < C'N(A, L) and N(eX, L) > ¢'N(\, L), so
that ¢"V (A, L) < N(A, L) < C"N(\, L) for large A.

Proof of Lemma 1. Assuming Bj(x, X”/z) C By _j2n, (2, A) for x € M,

A > 0, we shall prove that
(+) B, _yon, (@, A) C By (x, CA).

This easily implies Lemma 1. In fact, using CA® in place of A and
€N in place of N in (+), we obtain B, _,z, (@, CA®) C By (x, C'A%),

so that By (...) € B

C B, _,a,(...) implies Bz (...) C By(...). The con-

verse implication is trivial, since B (x, CA®) C Bp_ 20, (x, CAEY.
Inclusion (+) also yields the part of Lemma 1 on u(BL(x, A)), since
u(B, (@, A)) < u(By_enpl@, 2)) < w(By(x, CN)). This implies
(B - arzmalee, eM)) < By (x, A)) < w(By_yznylee, CA)).

An application of Lemma 2 shows that the terms on the
extreme left and right are comparable, so that indeed (+) implies
all of Lemma 1.

We proceed to prove (+).
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Given a point Y € B _ ey lx, A), we may join 2 to Yy by a

geodesic vy : [0, A] = ¥ in the metric

d82 = Z gij (x)dx,bclxgr
i

where

2
(gij)—l = (c}iﬁQ A2¥§;5) >0, L = —Zaii(x)—aa—a—+ el
i3 xi .’X,'J

Thus y(0) = x, Y(A) =y, and é%'y(t) is a subunit vector for
L - A\%Fp,
We shall perturb y(#) to a broken path Y#(t) that starts
edYy (%)

at x and ends very near y, so that B is a subunit vector for
L.

We construct Yy using the following elementary remarks.

(a) PERTURBATION OF TANGENT VECTORS

Say that X = z:yﬁéi?_ is a subunit vector for L - A?YA at 2%, and
J J

suppose |x' - z°| < e;A¥. Then there is a tangent vector

9
¥ =2
J

t x' satisfyin
e ying

(1) lYﬁ‘ le E.CAN'
(ii) ¥ is a subunit vector for I at x',

(1i1) y] = Ta“@"e! with |g/] < A",
J

For our hypothesis on X is that
(Z Y1ﬂ1>2 < 2(a®@®) + A28, )nyn;
for n € R". Appi;ing Lemma ;{1 in [5] to the function
F&y = n|7? X @z + t@® - 2h) + A%y, )nn, > 0

td

yields



598 Subelliptic Eigenvalue Problems

g (a® (x°%) + }\Zﬁﬁij )ninj < C’g (a¥ (x') + )\ZN(Sij )ninj
+ Clx' _ xoi2|n|2’
so that for |z° - z'| < e1¥, we have

G(Z Y.a'”d)z < L@@ + 3oy )n;.
J

)

. > 9
Thus ¢f is a subunit vector for I - A%*A at z', where ¥ = ZYJ’BT
., j J
at x'. Next we rotate the coordinate axes so that a% (x')
is diagonalized: (aq_-j (")) = (A6 ij)r Ay > 0. Note that conclusions

(i), (ii), and (iii) are unaffected by the rotation. Now we know

that ef is a suwbunit for I - A?YA, that is,

Y2
__l’_ic.
7 >\i+)\2N

Define ¥ = Ly/=o— at x', where Y] =y, if A > AP, y! =0 if
i

ZB.’L’-L'
A: < A*Y. setting £! = y¥/A; for Ay 2 A*F, £! = 0 for X; < A%,

we see easily that (i), (ii), and (iii) hold.

(b) ESTIMATES FOR SECOND DERIVATIVES OF HAMILTONIAN PATHS

Say H = %Zaid (x)E;&; and initially IEI < )XY . Hamiltonian's
i
equations
. g . da % (x)
2 = 2: a®”(x)e;, & =- Z; ——faif—*iiﬁf
g ig
£t =

.. . aaiJ (x) .
; a¥ (x)EJ + % szgJ

imply |z| < C|&], IEI < clgl?, |#] <clgl®. so if we flow for time
At < ¢, A¥, then IEI <ol 1x| < ¢"\"?" along the path.

Now we can construct the broken path 7Yy (£) mentioned above.
Suppose we have constructed 7y (t) for 0 £ t < Ty, and that v (0) =
Y (0), |Y(7‘;) - Y#(t)[ < CyA¥t, for 0 < t < Tc. (The large constant
C, will be picked later. Note that the assertion is vacuous for

T = 0.) Apply (a) above with x% = Y(Tg), &' = Y4 (T¢), and
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X = 4 Y(t)| . Since A is small, we have
dt T,

|x® - '] < Mt < Gl +Y,

so the hypotheses of (a) are satisfied. With Y, &' as in (a), we
now define Yy (¢) for 1, £t < T.,, as the projection onto the -
coordinate of the Hamiltonian curve for
1 i
3 Za () gi EJ'

%

. d

Tx . Since T Y#

H

starting at (x’, £') for ¢ = Y, and since ¥ is

Te

conserved along the path, it follows from (a) (ii) above that cd_dt Yy

is a subunit vector for L throughout T, < ¢ < T,,;. The estimates
i Yol SOV for 1, < £ < 1T provided
df}z # — K — TK+l7

2

d
a? ’

of (b) show that-

Tesr = Te < e A, similarly, <X, while

Ge(Te) - E%*i(rk) = |X - 7] <O\ by (a)(i). So if Ty,y - T¢ =

A3, then we have for T £ t <_Ty,; that

ay dY#

It~ It X oAt - 1| < A,

A

Our assumption 1Y(TK) - Y (TK)] < C'+)\NT,< now implies for *

Te £ ¢ < Ty, that
lY(t) = vy | < CAte + 0 (2 - 1) < O T, o,

provided we pick ¢, > C'. Our construction of Y4 (£) is complete,
with T, =k « A%,

The proof of (+) is now easy. Given y € Bj_ja, (x, A) and
Y as above, we constructed a broken curve Yy : [0, Al > M so that
cd—ciy# is subunit for [, while Yg(0) ==, |yz(\) - y| < ¢ A¥*L.
Thus ¥y = Y4 (\) € By(x, CA), while y € By (yy, A') C By _pumiy?, A%).
Repeating the process yields a sequence of paths Y#: [Zy, tysrl > M
with tangent vectors subunit for I, so that Y;: joins & = Yz(to = 0)
to y; = Y,(t1), v; Joins y; to y;”, Yy ~ Yy, and Zu:tu < Ch
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Combining the Y# into a single Lipschitz path Yy 4r We see that
y € Bp(x, C'\) as required.

Proof of Lemma 2. Since (a® (¢, 2)) < ¢(a® (x) + A\?¥&;;) for

|£] < A, we see at once that BL(GK) Byx (M) C {|¢] <A} x Bg,(A),

where L¥ = (3/3¢)% + L,(y, A\y). So our problem is to show that

{|t| < A} x BE$A) Q_BLACK). To see this, let u(f, y) be the dis-

tance from (¢, y) to the origin induced by L,. Note that

u, € Lip(1), since (a® + Az”éij) > 0. Since 3/3t is a subunit

vector for L,, we have t'zlux(t, x) - uA(O, x)l2 < 1, while also
du, (£, y) du,(t, y)

ati(t, y) + A¥s,.) <1,
%( Yy iF 7 ayi ayj =

where u, is differentiable. By mollifying u, (£, ¢) slightly, we

obtain v = v, , € C®, so that

£ uy 0, ) - v|* + £ 22wy 0| ? < 10,

;g av 81}
a*(t, )
izj: dY; Y

the norms being taken in L&. That is, with

82
L(t) = -2 ati(t, yyea—
’ iJ ayzayﬂ

(L)), (u, (0, +)) < 10 for |£] < A. Taking t, = WA/N?,

£ =0, ..., Nz, and applying Lemma 3 repeatedly, we obtain

(Zl;sz))x_z(u 0, *)) < Cy,

which implies easily (EA)Xq(u(O, ) < Cy- Thus, for a suitable ct

function v we have

2|u 0, y) - vy |2 + 2: a® (y )Bv(y) _2jﬂ__+ Kz”le(y)|2 <c

for all y € M. 1In particular, |v(0)|_s CA. Moreover, let
v: [0, A] » ¥ be a Lipschitz path with dy/dt subunit for L,. Our

estimates on v and the definition of subunit vectors together yield

A
l[o(y () - vy ()] i[) | (v, v(t))|dt,
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while

v

—_ 2N 2 . -
dy; 9y; WHVo @) [* with y = y(£)] < C.

(dv, Y(£))? < T a¥ (y)
i

Therefore, IU(Y(A)) - U(Y(O))I < CA, and it follows that

lv)| <CX for y e BZAK)' The estimate defining v now shows that
also u, (0, y) < C'A for y e Bf;(M . Recalling that

qu(t, y) - u (0, ¥)| §_|t|, we obtain u, (¢, y) £ C"X for

(t, y) € {|t] <A} x Bz (A). By definition of u,, this means that
{]t] <A} x Br (\) € B, (CA), as needed.

Sketch of the Proof of Lemma 3. We use induction on the dimension n.
The result being trivial in n = 0, we assume Lemma 3 is known in

R™ ! and deduce successively the following seven lemmas.

Lemma 3.1. Let A = Zaj(_x)g‘,i—. be a first-order operator in R""1,
J J

and let u, v, w: 1 > Cl(R"'l), where I is an interval of length

~ K2 get u0 = l—}l—/‘ u({t)dt. Then there exists ut € (! (R”'l)
I

for which
Klu® - w*)? + Jaut|? + k7P| v,ut]? < ¢ supI{K”u(t) - |?
2
+ g—z + Klut)y - wey|?
3 : 2 -2N 2
+ilag —4Jw@®)| +K v,wl?¢,

the norms being taken in L (unit cube in BR""1).

Lemma 3.2. Set I, = {|t - ,QK"I/Z‘ < 10K™2}, 1* = union of consecu-

tive I,'s,

nil 82

L(¢) = - at (t, ©)e—a—,

i, 7=1 8307,89627

where a®/ is smooth and (a%) > K‘ZN(dij) . Then given C'-functions

u(t, ) on I* x unit cube, Uy, and vy on I, X unit cube, we can find

v € CL(I* X cube) so that
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0 dvl? v v
K"u - v” + 5;" + at (t, x)axl ij
» vy 2
£ C max, K“u - 02" + 5% + K“u - uz"

ou, ou
i, x)axl sz
J

Here the norms on the left are taken in L™ (I* X cube), while those

on the right are taken in L¥ (I, X cube).

n-1 .
Lemma 3.3. Set A(t) = 2: al (¢, x)sgj-with a? smooth, and let I be
j=1 g

-1/2

an interval of length ~ K Given Cl-Ffunctions U, v, won

I X unit cube, we can find u? so that

#2
Klu - w2 + | 20+ la@ufl? « k727 [vut]?
2
< C{Kllu - ol2 w52+ lu - ol

+

2
(& + 2w + K-wnvxww},

the norms being taken in L (I X cube).

Lemma 3.4. Let the unit cube in R" be partitioned into subcubes

{9,} of diameters §,, where Q% N QY # @ implies &, ~ Sy.

Let
2

. 3
= — i3 _°
g
for smooth functions a®’l satisfying K—ZN(Sij) < (a® (x)) 5_06%(5ij)

for * € §,. Then given U € L” and C'-functions v, defined on &3,

L%Qf)}

2 .
o + «-+ with max|a® | > C,
;0% i4

we have

v, 9y
L, (u) < C max,K|u - ”“uLﬁat

2: alJ(x)Bx axJ

Lemma 3.5. Assume L = —g; a J(x)a

L' = —(i>2 - k7.

and set

ox
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Then
(L + L") g(w) < Ly(w) + Lhu).

L'=——8—2-K'2”A L=—Zaij(x)i—-
Bxl ! ”; 3.’1)1300‘7'
i

where (aij(x)) is smooth and positive semidefinite. Then

e(L + L")y (u) < Ly(u) + L.

Lemma 3.7. Let
ij 2 i 82
— -_ r
= E a (.oc)a Za E a (.oc)8 3 J

i

and assume maxlaijl > C. Then
i

el + L'y () <Lpw) + Liw).

For the most part, these lemmas are proved in strict analogy
with Lemmas 1, 2, 3, 5, 7, 8, and 9 in the proof of the spectral
decomposition theorem in [5]. Instead of Lz—norms, one uses

L”-norms; and for

J
Z @ @) ax BxJ

dv_ 9V |
iJ :
(x )3 1 Y J in place of Re{lv, v).

we work with

In some ways, the present lemmas are easier than their
Lz-analogues in [5]. For instance, where [5]. uses the sharp

Garding inequality of [1], we use here merely the trivial estimate

ig ov
E:b Bx

v v
i
” 2 @ O gmy ox4 ax.?

for (bij) < (@%). Balso, the Fourier integral operators of [5]
are now replaced by simple changes of variable y = &(x).
It is now routine for a patient reader to reconstruct the

proofs of Lemmas 3.2 through 3.7, given Lemma 3.1. Moreover,
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Lemma 3.7 implies Lemma 3 in R”, just as Lemma 6.9 implies the spec-
tral decomposition theorem in [5]. Consequently, the proof of

Lemma 3 is reduced to Lemma 3.1l. Since the Lz—analogue of 3.1 in
[5] was proved using the spectral theorem, we have to make a new
argument to show (3.1). Since space is limited,'we omit all details
of Lemmas 3.2-3.7 and Lemma 3.7 » Lemma 3 in R"”. We close our arti-
cle with the proof of Lemma 3.1. First suppose 4 = 9/dx,, and let

{2 denote the right-hand side of the estimate in Lemma 3.1.

2

Since K”u - v||2 + g—z < 2, we have

Klut + b, z,, ') - u(t, x,, x")|* < CQ

3 2
(a—t“A)w

Klut + b, =y + h, ') - u(t, x,, ") |? < €0

< §, so that

for |h| < K™¥2 Also Kllu - w|* +

for Ihl f_K_UZ; and K“u - wﬂ2 + K—zm"vzwuz < § so that
Klu(t, 1, ') - u(t, x,, yNH|? <00
for lx’ - y'l < K77, Now take

u+(xl, x') =i/ w(yl' y')u('{;, Xy = Yy x! - y')dtdyl dy’,
| 7| Jr Jpmr

where Y(y,, y') is a suitable approximate identity supported in
|y1| f_K'lm, Iy’l < K™%, oOne checks easily using the previous
estimates that

Kl = wtl? + 4]+ KPnut)? < cn,
as needed.

: 9
Next we pass to the general case. With 4 = Z:aJ(x)sarq
J i

we make a Calderdn-Zygmund decomposition of the unit cube in R"1,
stopping at €, with diameter &, if
(i) max maxlaj(x)l > 108,
xeQ¥ J
or

(i) &y < Ccr7N.
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In each Qt we can find a function u} so that
Klu® - ut|? + |4u*|? + k727 |V u|? < CQ on @F.
For ¢, arising from (i), this reduces by a change of variable to a
slight variant of the case 4 = 3/3x;, in which the terms K_ZN”VmeZ
and K27V u*||? are changed to K282 |V,w]? ana K2 §=2||lg ut] 2—
there is no trouble in adapting our discussion of 4 = 9/9x; to this
variant. If §, arises from (ii), then we just take ul = w.
Now take a partition of unity 1 = 2:¢v with ¢, € C:(Qt),
v
"V¢v“ < 08y, and set ut = §:¢vu¢. Clearly
Y
Ku® - ut]? < cq.
We also have Au* = Z;(Au¢)¢v + 2 wh - u’) (44,), while |ad@)| < C8,
v
and |V¢v| 5_06;1 in supp ¢, Q,Qt. Therefore,
"Au+”2 L max{”Au*"2 + Jud - w?]?} < cq.
similarly, Vyu* = 2 (Vaud)d, + 3 (wh - u°) (Vo,), while
A v

|vo,| < 85 < kY. so

B2 vut]? < ¢ max{k 2|Vt )? 4 Jud - «°)%) < co.
Thus

Kt = u®1? + lauwt]? + k27| vut]? < ca,

proving Lemma 3.1.
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