TCC (SPRING 2021): p-ADIC MODULAR FORMS

PROBLEM SHEET 3

INSTRUCTOR: PAK-HIN LEE

This problem sheet is due at 11:59 PM on **Friday 9th April 2021**. Please submit your work as a single PDF file (either typeset in L^AT_EX or a scan of legible handwriting) by email.

Problem 0. (NOT FOR SUBMISSION) Suppose R is a ring containing $\frac{1}{6}$. Recall that any pair $(E/R, \omega)$ can be written in terms of the Weierstrass equation:

$$E: y^2 = x^3 + a_4 x + a_6, \quad \omega = \frac{dx}{y}.$$

(a) Prove that the rules

$$E_4(E/R, \omega) := -12a_4,$$

 $E_6(E/R, \omega) := 216a_6$

define modular forms of weights 4 and 6 respectively.

(b) Show that E_4 and E_6 have q-expansions

$$E_4(\text{Tate}(q), \omega_{\text{can}}) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n,$$

$$E_6(\text{Tate}(q), \omega_{\text{can}}) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n.$$

In particular, they define holomorphic modular forms over \mathbf{Z} and agree with the classical definitions of Eisenstein series.

Problem 1. Let R be an \mathbf{F}_p -algebra. Consider an elliptic curve E/R given by the Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

with a differential form

$$\omega = \frac{dx}{2y + a_1x + a_3} \in H^0(E/R, \Omega^1).$$

- (a) Suppose p=2. Show that a_1 is the Hasse invariant of (E,ω) .
- (b) Suppose p = 3. Show that $a_1^2 + a_2$ is the Hasse invariant of (E, ω) .

Problem 2. Recall that U_p and V_p act on the space M of convergent p-adic modular forms as follows: if $f = \sum a_n q^n \in M$, then

$$U_p f = \sum_{n \in \mathbb{N}} a_{np} q^n,$$

$$V_p f = \sum a_n q^{np}.$$

Last updated: March 29, 2021. Please send questions and comments to Pak-Hin.Lee@warwick.ac.uk.

¹This corrects a typo in Exercise 3.0.6 of Calegari's notes.

(For concreteness, you may think of M with growth condition r=1, level N=1, weight $k\in \mathbf{Z}$ and coefficients \mathbf{C}_p – although the precise choices don't matter for this problem – and assume that M is a p-adic Banach space.)

Let $f \in M$ and set $g = (1 - V_p U_p) f$.

- (a) Show that $U_pg = 0$. (b) For any $\lambda \in \mathbf{C}_p$ with $|\lambda| < 1$, prove that

$$f_{\lambda} := \sum_{i=0}^{\infty} (\lambda V_p)^i g \in M$$

satisfies $U_p f_{\lambda} = \lambda f_{\lambda}$.

In particular, this shows that U_p has a continuous spectrum on M.