TCC (SPRING 2021): p-ADIC MODULAR FORMS

PROBLEM SHEET 1

INSTRUCTOR: PAK-HIN LEE

This problem sheet is due at 11:59 PM on Monday 22nd February 2021 (note the extended deadline). Please submit your work as a single PDF file (either typeset in LATEX or a scan of legible handwriting) by email.

Problem 1. For this problem, you may use without proof the fact that the **Z**-algebra of modular forms with Fourier coefficients in **Z** is generated by Q, R and Δ :

$$\bigoplus_{k\geq 4} M_{k,\mathbf{Z}} = \mathbf{Z}[Q, R, \Delta]$$

(so the same statement holds over $\mathbf{Z}_{(p)}$).

Let $p \in \{2, 3\}$.

(a) Show that the \mathbf{F}_p -algebra of mod p modular forms is generated by $\widetilde{\Delta}$, i.e.

$$\widetilde{M} = \mathbf{F}_p[\widetilde{\Delta}].$$

(b) In [Antwerp, P.197] it is claimed that when p is 2 or 3,

On a
$$\widetilde{M}_{k-2} \subset \widetilde{M}_k$$
 et même $\widetilde{M}_{k-2} = \widetilde{M}_k$ si k n'est pas divisible par 12.

However this is not quite right, e.g. $\widetilde{M}_0 = \widetilde{M}_4 = \mathbf{F}_p$ but $\widetilde{M}_2 = 0$. Prove that:

- (1) If $k \not\equiv 2 \pmod{12}$, then $\widetilde{M}_{k-2} \subset \widetilde{M}_k$.
- (2) If $k \not\equiv 0, 4 \pmod{12}$, then $M_{k-2} \supset M_k$.
- (c) (**NOT FOR SUBMISSION**) Complete the proof of théorème 1 [P.198] in the case when *p* is 2 or 3. The key point [P.200] is to show

$$\Delta \equiv \sum_{(n,p)=1} \sigma_{h-1}(n) q^n \pmod{p}$$

for any integer (resp. even integer) h when p = 2 (resp. p = 3).

Problem 2. Recall that the normalized Eisenstein series of weight 2

$$P(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n, \quad q = e^{2\pi i z}$$

satisfies the transformation law

$$P\left(-\frac{1}{z}\right) = z^2 P(z) + \frac{12z}{2\pi i}$$

- (a) Show that if f is a modular form of weight k, then $12\Theta f kPf$ is a modular form of weight k+2.
- (b) Show that $12\Theta P P^2$ is a modular form of weight 4.

Last updated: February 8, 2021. Please send questions and comments to Pak-Hin.Lee@warwick.ac.uk.

(c) Deduce that

$$\begin{split} \Theta P &= \frac{1}{12}(P^2 - Q),\\ \Theta Q &= \frac{1}{3}(PQ - R),\\ \Theta R &= \frac{1}{2}(PR - Q^2),\\ \Theta \Delta &= P\Delta. \end{split}$$

Problem 3. Denote $\Delta(z) = \sum_{n=1}^{\infty} \tau(n)q^n$. Using the fact that $\Theta : \widetilde{M}_k \to \widetilde{M}_{k+p+1}$, prove the following congruences:

congruences:

- (a) $\tau(n) \equiv n\sigma_5(n) \pmod{5}$.
- (b) $\tau(n) \equiv n\sigma_3(n) \pmod{7}$.

Problem 4. Recall that the subspace $\mathbf{Z}_p[[q]] \otimes_{\mathbf{Z}_p} \mathbf{Q}_p \subset \mathbf{Q}_p[[q]]$ of formal power series with bounded coefficients is a *p*-adic Banach space under the norm

$$|f| = \sup_{n \ge 0} |a_n|, \quad f = \sum_{n=0}^{\infty} a_n q^n,$$

where $|\cdot|: \mathbf{Q}_p \to \mathbf{R}_{\geq 0}$ is the usual *p*-adic absolute value normalized such that $|p| = p^{-1}$. Denote by $\mathbf{Q}_p \langle T \rangle$ the *Tate algebra*

$$\mathbf{Q}_p \langle T \rangle = \left\{ f = \sum_{n=0}^{\infty} a_n T^n \in \mathbf{Q}_p[[T]] : \lim_{n \to \infty} |a_n| = 0 \right\}$$

consisting of convergent power series on the closed unit disk.

Let p = 5. We have seen that $\frac{1}{j} = \frac{\Delta}{Q^3} \in M_0^{\dagger}$, i.e. is a 5-adic modular form of weight 0. (a) Prove that $\mathbf{Q}_5 \left\langle \frac{1}{j} \right\rangle \subset M_0^{\dagger}$, and the norm of $f = \sum_{n=0}^{\infty} b_n \left(\frac{1}{j} \right)^n \in \mathbf{Q}_5 \left\langle \frac{1}{j} \right\rangle$ is given by $|f| = \sup_{n \ge 0} |b_n|$.

(b) Prove that $\mathbf{Q}_5 \left\langle \frac{1}{j} \right\rangle = M_0^{\dagger}$.

In particular, M_0^{\dagger} is infinite-dimensional.