p-adic modular forms TCC (Spring 2021), Lecture 8

Pak-Hin Lee

11th March 2021

Administrative issues

Slides:

• Lectures 1-7: available on webpage

Problem sheets:

• Problem Sheet 3: available later, due two weeks after being posted

Office hours:

- 12th March (Friday): 5 pm to 6 pm
- 18th March (Thursday): usual class time, details TBA

Today (survey style):

- Recap of *p*-adic modular forms
- Hecke operators
- Canonical subgroups
- Spectral theory

Recap: *p*-adic modular forms with growth conditions

- Fix a *p*-adically complete ring R_0 and $r \in R_0$.
- *r*-test object: $(E/R, \omega, \alpha_N, Y)$ where *R* is an *R*₀-algebra in which *p* is nilpotent, and $Y \cdot E_{p-1}(E/R, \omega) = r$.
- *p*-adic modular forms over R_0 of growth *r*, level *N* and weight $k: f \in M(R_0; r, N, k)$ is a rule on *r*-test objects.

Idea

We only consider test objects which are not "too supersingular":

- |r| = 1: ordinary locus (with supersingular disks removed)
 → convergent p-adic modular forms;
- |r| < 1: thickening of ordinary locus (extending across the boundary of supersingular disks)
 - \rightsquigarrow overconvergent *p*-adic modular forms.

Moduli interpretation: $p \in R_0$ nilpotent

Suppose p is nilpotent in R_0 , and N is such that E_{p-1} exists. Set $\mathcal{L} := \underline{\omega}^{\otimes (1-p)}$.

Proposition

The moduli problem

$$R_0$$
-scheme $S \rightsquigarrow \{(E/S, \alpha_N, Y)\}/\sim$

(with notation as in the previous remark) is representable by the affine scheme

$$\Upsilon^{(r)}(\mathsf{N}) := \operatorname{Spec}_{\Upsilon(\mathsf{N})_{\mathcal{R}_0}}\left(\operatorname{Sym}(\mathcal{L}^{\vee})/(E_{p-1}-r)
ight).$$

Remark

The affine curve $Y(N)_{R_0}$ represents $\{(E/S, \alpha_N)\}$.

Moduli interpretation: $p \in R_0$ nilpotent

As before, this implies we can work geometrically:

Proposition

$$M(R_0; r, N, k) = H^0(Y^{(r)}(N), \underline{\omega}^{\otimes k}).$$

As a corollary, we obtain an anologue of Swinnerton-Dyer's result on mod p modular forms:

Corollary

$$M(R_0; r, N, k) = \left(\bigoplus_{j\geq 0} M(R_0; N, k+j(p-1))\right)/(E_{p-1}-r).$$

6/31

Remark

This corrects a typo from Lecture 7.

Moduli interpretation

• For general R_0 , recall that

$$M(R_0; r, N, k) = \varprojlim_m M(R_0/p^m R_0; r, N, k).$$

• When r = 1,

$$Y^{(1)}(N) = Y(N) - \{E_{p-1} = 0\} =: Y(N)^{\text{ord}}$$

is the ordinary locus and the space of p-adic modular forms is given by

$$M(\mathbf{Z}_{p}; 1, N, k) = \varprojlim_{m} H^{0}(Y(N)^{\mathrm{ord}} \otimes \mathbf{Z}/p^{m}\mathbf{Z}, \underline{\omega}^{\otimes k}).$$

• Next we will see that this agrees with Serre *p*-adic modular forms of integral weights *k*.

Relation with Serre *p*-adic modular forms

Proposition (Imprecise form of Proposition 2.7.2)

 $f \in M(\mathbf{Z}_p; 1, N, k)$ if and only if there exists a sequence $f_m \in M(\mathbf{Z}_p; N, k_m)$ such that $k_m \to k$ in \mathfrak{X} and their q-expansions converge $f_m \to f$.

Proof sketch:

• Given $f \in M(\mathbf{Z}_p; 1, N, k)$, we have

$$f \pmod{p^m} \in H^0((Y(N)\otimes \mathbf{Z}/p^m\mathbf{Z})[E_{p-1}^{-1}],\underline{\omega}^{\otimes k}).$$

• This can be written as
$$\frac{g_m}{E_{p-1}^{\alpha_m}}$$
, where

$$g_m \in H^0(Y(N) \otimes \mathbb{Z}/p^m \mathbb{Z}, \underline{\omega}^{\otimes (k+\alpha_m(p-1))}) \\ = H^0(Y(N)_{\mathbb{Z}_p}, \underline{\omega}^{\otimes (k+\alpha_m(p-1))}) \otimes \mathbb{Z}/p^m \mathbb{Z}.$$

Relation with Serre *p*-adic modular forms

• Multiplying g_m by a higher power of E_{p-1} if necessary, we can assume

$$\alpha_m \equiv 0 \pmod{p^m}.$$

- The converse is easier.
- For precise statements and proofs, see [Katz, §2.7].

An example

Example

Let p = 5 and N = 1.

- There is only one supersingular point in char 5, since $E_4 \equiv A \pmod{5}$.
- The modular curve does not exist, but we can consider $X = \mathbf{P}_{j,\mathbf{Z}_{\rho}}^{1}$ where $j = \frac{E_{4}^{3}}{\Delta}$.
- The ordinary locus is

$$X^{\mathrm{ord}} = \mathbf{P}_{j,\mathbf{Z}_p}^1 - \{E_4 = 0\} = \operatorname{Spec} \mathbf{Z}_p[\frac{1}{j}] = \mathbf{A}_{j,\mathbf{Z}_p}^1.$$

• For simplicity, consider the spaces of weight 0 modular forms

$$M(R) := M(R; r = 1, N = 1, k = 0).$$

10 / 31

An example

Example (continued)

• Then the fibers $X^{\operatorname{ord}}\otimes {f Z}/p^m{f Z}$ give

$$M(\mathbf{Z}/p^{m}\mathbf{Z}) = H^{0}(X^{\text{ord}} \otimes \mathbf{Z}/p^{m}\mathbf{Z}, \mathcal{O}) = (\mathbf{Z}/p^{m}\mathbf{Z})[\frac{1}{i}]$$

• Note that we don't want $M(\mathbf{Z}_p)$ to be

$$H^0(X^{\mathrm{ord}}_{\mathsf{Z}_p},\mathcal{O})=\mathsf{Z}_p[rac{1}{j}]$$

but it should be

$$\lim_{m} M(\mathbf{Z}/p^m\mathbf{Z}) = \mathbf{Z}_p \langle \frac{1}{j} \rangle.$$

• This illustrates why p has to be nilpotent in the definition.

) ९ (२ 11 / 31

Hecke operators

Classical theory (over **C**):

- $\bullet\,$ modular forms: functions on lattices $\Lambda\subset \boldsymbol{C}$
- Hecke operators $\mathcal{T}_\ell :$ averaging over sublattices $\Lambda' \subset \Lambda$ of index ℓ

Moduli interpretation (over any ring R):

- For a prime ℓ and test object (E, ω), let C ⊂ E be any finite flat subgroup scheme of order ℓ defined over R.
- Consider $\pi: E \to E/C$ (an isogeny of degree ℓ) and the dual isogeny $\pi^{\vee}: E/C \to E$.
- ω on *E* pulls backs to $(\pi^{\vee})^*\omega$ on *E*/*C*.
- $(E/C, (\pi^{\vee})^*\omega)$ is a test object if ℓ is invertible in R.
- Level structures can be incorporated if $\ell \nmid N$.

Hecke operators

For f a modular form of weight k, define $T_{\ell}f$ by

$$(T_\ell f)(E,\omega) := \ell^{k-1} \sum_C f(E/C, (\pi^{\vee})^* \omega)$$

where C runs through the $\ell + 1$ subgroups of $E[\ell]$ of order ℓ .

Remark

Technical issues (which can be ignored for now):

- One has to pass to an extension R ⊂ R' to trivialize E[ℓ] in the étale topology.
- **2** Show that $T_{\ell}f$ is independent of the choices of *C*.
- **3** Show that $T_{\ell}f$ is defined over *R*.

Tate curve

Consider Tate(q) over Z((q)). View this as G_m/q^Z , so the order ℓ subgroups are

$$\mu_\ell = \langle \zeta
angle$$
 and $H_i := \langle \zeta^i q^{1/\ell}
angle, i = 0, 1, \cdots, \ell - 1.$

For μ_{ℓ} :

- $\mathsf{Tate}(q)/\mu_\ell \cong \mathsf{Tate}(q^\ell)$ is induced by $X \mapsto X^\ell.$
- Dual π^{\vee} : Tate $(q^{\ell}) \rightarrow$ Tate(q) is induced by quotienting q^{Z} .

• Hence
$$(\pi^{\vee})^*(\omega_{\operatorname{can}}) = \omega_{\operatorname{can}}.$$

For H_i :

- Tate $(q)/H_i \cong \text{Tate}(\zeta^i q^{1/\ell}).$
- Dual π^{\vee} : Tate $(\zeta^i q^{1/\ell}) \to$ Tate(q) is induced by $X \mapsto X^{\ell}$.

• Hence
$$(\pi^{\vee})^*(\omega_{\operatorname{can}}) = \ell \omega_{\operatorname{can}}$$
 (check: $\frac{du}{u} \mapsto \frac{d(u^{\ell})}{u^{\ell}} = \ell \cdot \frac{du}{u}$).

q-expansions of Hecke operators

• Using these, it is straightforward to compute the *q*-expansions: If

$$f(\mathsf{Tate}(q), \omega_{\mathrm{can}}) = \sum_i a_i q^i,$$

then

$$(T_\ell f)(\mathsf{Tate}(q),\omega_{\mathrm{can}}) = \sum_i \left(\ell^{k-1} a_{i/\ell} + a_{\ell i}\right) q^i.$$

• See [Katz, §1.11] for details about Hecke operators.

Remark

- The subgroups μ_{ℓ} and H_i play different roles: μ_{ℓ} is "distinguished".
- There is a similar story in the *p*-adic setting.

Supersingular elliptic curves

Before introducing the canonical subgroup, we need to study supersingular elliptic curves.

Notation:

• Consider a finite extension K/\mathbf{Q}_p , with ring of integers $R = \mathcal{O}_K$ and valuation $v : \mathcal{O}_K - \{0\} \rightarrow \mathbf{Q}_{\geq 0}$ (normalized such that v(p) = 1).

• Let
$$S = R/pR$$
. Then v induces

$$\mathsf{v}: S - \{0\}
ightarrow [0,1) \cap \mathbf{Q}$$

satisfying v(ur) = v(r) for $u \in S^{\times}$.

Remark

S may contain nilpotents! In fact, we will see that the theory is almost vacuous if S is reduced (i.e. K/\mathbf{Q}_p is unramified).

Supersingular elliptic curves

Let E/K be an elliptic curve with good reduction.

- There is a model \mathcal{E}/R , and hence \overline{E}/S .
- Consider the Hasse invariant

$$A(\overline{E},\omega) \in S,$$

where $\omega \in H^0(\overline{E}, \Omega^1_{\overline{E}/S})$ is a basis (unique up to S^{\times}).

Two cases:

- $A(\overline{E}, \omega) = 0$: We say *E* is "very supersingular".
- **2** $A(\overline{E}, \omega) \neq 0$: We say *E* is "not too supersingular" and define

$$v(E):=v(A(\overline{E},\omega))\in [0,1)\cap {f Q}.$$

Supersingular elliptic curves

Thus $v(E) \in [0, 1)$ measures how supersingular *E* is:

- v(E) = 0: E has ordinary reduction.
- v(E) > 0: E has supersingular reduction.

• The larger v(E) is, the "more supersingular" E is. Given a test object $(E/R, \omega)$,

> $(E/R, \omega)$ can be upgraded to an *r*-test object $\iff Y \cdot E_{p-1}(E, \omega) = r$ has a solution $\iff v(E) \le v(r).$

Canonical subgroups: ordinary case

Let $R = \mathcal{O}_K$ with residue field k, and E/R be an elliptic curve.

- E(K)[p] ≅ (Z/pZ)² contains p + 1 subgroups of order p. We shall see that E[p] contains a "canonical" subgroup of order p in certain cases.
- If E has ordinary reduction, then $E(\overline{k})[p] \cong {\bf Z}/p{\bf Z}$, so the kernel of

$$E(\overline{K})[p] \to E(\overline{k})[p]$$

is a cyclic subgroup of $E(\overline{K})$ of order p; this is the canonical subgroup of E.

If E has supersingular reduction, then E(k)[p] = 0, so the reduction map above gives no information. However, we will see that E has a canonical subgroup when it is "not too supersingular".

Canonical subgroups: p = 2

Let us illustrate everything explicitly when p = 2:

subgroups of order 2 \leftrightarrow non-trivial 2-torsion points!

Every elliptic curve has a minimal Weierstrass equation

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \quad a_i \in R.$$

Completing the square gives

$$\left(y + \frac{a_1x}{2} + \frac{a_3}{2}\right)^2 = x^3 + \left(a_2 + \frac{a_1^2}{4}\right)x^2 + \left(a_4 + \frac{a_1a_3}{2}\right)x + \left(a_6 + \frac{a_3^2}{4}\right)x^3 + \left(a_6$$

Idea

A **canonical** root is the unique root of the RHS of minimal valuation.

Canonical subgroups: p = 2

By an exercise with the Newton polygon:

- If $v(a_1) \geq \frac{2}{3}$, then all roots have valuation $-\frac{2}{3}$.
- If $v(a_1) < \frac{2}{3}$, then there is a unique root with minimal valuation $2(v(a_1) 1)$.

See the beginning of [Calegari, §3] for details. Moreover:

Lemma

 $a_1 \mod 2$ is the Hasse invariant of E over R/2.

Canonical subgroups

Theorem (Lubin–Katz)

Let R be a p-adically complete DVR with v(p) = 1, and S = R/pR. Then an elliptic curve E/R has a canonical subgroup of order p if and only if

$$v(A(E_S,\omega_S)) < \frac{p}{p+1},$$

where A is the Hasse invariant (over S).

The proof uses formal groups and is carried out in [Katz, §3.4–3.9]. For many applications, it is not necessary to know the proof!

Remark

If p is unramified in R, $v(E) < \frac{p}{p+1}$ forces v(E) = 0, so E must have ordinary reduction.

22 / 31

Modular forms of level p as p-adic modular forms

Using the canonical subgroup, we can view classical modular forms of level p as p-adic modular forms:

- Suppose $v(r) < \frac{p}{p+1}$.
- If $(E/R, \omega, Y)$ is an *r*-test object, then

$$v(E) \leq v(r) < \frac{p}{p+1},$$

so E has a canonical subgroup H.

• This gives rise to a (classical) test object $(E/R, \omega, H)$ of level $\Gamma_0(p)$.

Remark

Unfortunately we have not defined $\Gamma_0(p)$ -level properly; see [Katz, §1.3 & §1.13].

Modular forms of level *p* as *p*-adic modular forms

Thus we get a map

$$\{r\text{-test objects } (E/R, \omega, Y)\} \rightarrow \begin{cases} \text{test objects } (E/R, \omega, H) \\ \text{of level } \Gamma_0(p) \end{cases},$$

which induces

 $\begin{cases} \text{classical modular forms} \\ \text{of level } \Gamma_0(p) \end{cases} \rightarrow \begin{cases} p\text{-adic modular forms of} \\ \text{growth } r \text{ and level } 1 \end{cases} .$

- See [Katz, Theorem 3.2] for details.
- Moreover, this map respects the (classical) U_p-operator on LHS and the (p-adic) U_p-operator on RHS, to be defined next.

U and V operators

In Serre's theory, the U and V operators are defined on the level of power series. The canonical subgroup provides a more conceptual framework:

- Suppose $v(r) < \frac{p}{p+1}$, so that every *r*-test object $(E/R, \omega, Y)$ has a canonical subgroup $H \subset E[p]$.
- Define

$$(V_p f)(E, \omega, Y) = f(E/H, \cdots)$$

and

$$(U_p f)(E, \omega, Y) = p^{k-1} \sum_{\substack{C \subset E[p] \\ C \neq H}} f(E/H, \cdots).$$

Remark

For now we are neglecting how the growth condition behaves; this is crucial!

U and V operators

• In terms of q-expansions, if $f = \sum a_n q^n$, then

$$V_p f = \sum a_n q^{np}$$

and

$$U_p f = \sum a_{np} q^n.$$

• Clearly $U_p V_p$ is the identity.

U and V operators

To see how U and V affect the growth condition, it is necessary to understand how v(E) behaves under quotients.

Proposition

Suppose E has $v(E) < \frac{p}{p+1}$ and canonical subgroup H. Then

• If C is a subgroup of order n with (n, p) = 1, then v(E/C) = v(E).

2 If $C \neq H$ is a subgroup of order p, then $v(E/C) = \frac{1}{p}v(E)$.

3 If
$$v(E) < \frac{1}{p+1}$$
, then $v(E/H) = pv(E)$.

U and V operators

Now we are ready to specify how U and V act on p-adic modular forms with growth condition r (of a fixed weight and level). Denote this space by M[r].

Theorem

Suppose
$$v(r) < \frac{1}{p+1}$$
. Then:
• $U_p : M[r] \rightarrow M[r^p]$.
• $V_p : M[r^p] \rightarrow M[r]$.

Slogan: U_p improves overconvergence.

Remark

Strictly speaking, these are true over a field, but are more subtle over integral coefficients; see [Katz, Theorem 3.3 & §3.10-3.12].

イロン 不通 とうほう イヨン

Spectrum of U

Consider r = 1 and the space M of (convergent) p-adic modular forms.

- Let $f \in M$ and set $g = (1 V_p U_p)f$.
- For $|\lambda| < 1$, check that

$$f_{\lambda} = \sum_{i=0}^{\infty} (\lambda V_p)^i g \in M$$

satisfies $U_p f_{\lambda} = \lambda f_{\lambda}$ (Problem Sheet 3).

• **Conclusion:** The one-parameter family f_{λ} consists of eigenvectors. In other words, U_p has a continuous spectrum on M.

Spectrum of U

- There are too many **convergent** *p*-adic modular forms (for v(r) = 0).
- On the other hand, the spectral theory for U_p on overconvergent modular forms M[r] (for v(r) > 0) is better-behaved.

Theorem

Suppose $0 < v(r) < \frac{p}{p+1}$. Then $U_p : M[r] \to M[r]$ is a compact operator.

This implies U_p has a discrete spectrum on M[r].

Spectrum of U

Example

Let p = 5, N = 1 and k = 0. Suppose v(r) > 0, i.e. $\left|\frac{1}{r}\right| > 1$. Then

$$M[1] = \left\{ \text{convergent power series on } |\frac{1}{j}| \le 1 \right\},$$
$$M[r] = \left\{ \text{convergent power series on } |\frac{1}{j}| \le |\frac{1}{r}| \right\}.$$

Note $M[1] \supset M[r] \supset M[r']$ whenever 0 < v(r) < v(r').

See:

- [Katz, §3.13] for applications to congruences for *j*;
- [Calegari, §3] for a systematic account of the spectral theory for U_p .