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Admin

Administrative issues

Slides:
@ Lectures 1-7: available on webpage
Problem sheets:

@ Problem Sheet 3: available later, due two weeks after being
posted

Office hours:
@ 12th March (Friday): 5 pm to 6 pm
@ 18th March (Thursday): usual class time, details TBA
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Admin

Today (survey style):
@ Recap of p-adic modular forms
@ Hecke operators
@ Canonical subgroups
°

Spectral theory
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p-adic modular forms

Recap: p-adic modular forms with growth conditions

@ Fix a p-adically complete ring Ry and r € Ry.

@ r-test object: (E/R,w,apn, Y) where R is an Rp-algebra in
which p is nilpotent, and Y - E,_1(E/R,w) =r.

@ p-adic modular forms over Ry of growth r, level N and weight
k: f € M(Ro;r,N, k) is a rule on r-test objects.

We only consider test objects which are not “too supersingular”:

@ |r| = 1: ordinary locus (with supersingular disks removed)
~» convergent p-adic modular forms;

@ |r| < 1: thickening of ordinary locus (extending across the
boundary of supersingular disks)
~> overconvergent p-adic modular forms.
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p-adic modular forms

Moduli interpretation: p € Ry nilpotent

Suppose p is nilpotent in Ry, and N is such that E,_; exists. Set

Proposition

The moduli problem
Ro-scheme S ~ {(E/S,an, Y)}/ ~

(with notation as in the previous remark) is representable by the
affine scheme

YO(N) := Specy (), (Sym(LY)/(Ep-1— 1)) -

The affine curve Y(N)g, represents {(E/S,an)}.
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p-adic modular forms

Moduli interpretation: p € Ry nilpotent

As before, this implies we can work geometrically:

Proposition

M(Ro; r, N, k) = H(Y(D(N), w®*).

As a corollary, we obtain an anologue of Swinnerton-Dyer's result
on mod p modular forms:

M(Ro; r, N, k) (@M (Ro; N,k + j(p —1))) /(Ep,1 —r).

j>0

This corrects a typo from Lecture 7.
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p-adic modular forms

Moduli interpretation

@ For general Ry, recall that

M(Ro;h va) = mM(RO/meU;ra Nv k)

@ When r =1,
YO(N) = Y(N) — {E,_1 = 0} =: Y(N)od

is the ordinary locus and the space of p-adic modular forms is
given by
M(Zp; 1, N, k) = lim HO(Y(N)" @ Z/p™Z, w®*).

<__
m

@ Next we will see that this agrees with Serre p-adic modular
forms of integral weights k.
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p-adic modular forms

Relation with Serre p-adic modular forms

Proposition (Imprecise form of Proposition 2.7.2)

f e M(Z,;1, N, k) if and only if there exists a sequence

fm € M(Zp; N, ki) such that k,, — k in X and their q-expansions
converge fy, — f.

Proof sketch:
o Given f € M(Z,;1,N, k), we have

f (mod p™) € H((Y(N) ® Z/p"Z)[E, 1], w®*).

Em

@ This can be written as , Where

b1
gm € HO(Y(N) © Z/p"Z, w®ktan(p-1)))
= H(Y(N)z,, o ren=D)) © 7/p72Z.
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p-adic modular forms

Relation with Serre p-adic modular forms

e Multiplying gm by a higher power of E,_; if necessary, we can

assume
am=0 (mod p™).

@ The converse is easier.
e For precise statements and proofs, see [Katz, §2.7].
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p-adic modular forms

An example

Let p=5and N =1.

@ There is only one supersingular point in char 5, since E4 = A
(mod 5).

@ The modular curve does not exist, but we can consider
3
_ pl R
X = Pj,Z,, where j = &

@ The ordinary locus is
. 1
XO© d = P}7zp — {E4 = 0} = Spec Zp[j] = A};zp

@ For simplicity, consider the spaces of weight 0 modular forms

M(R) .= M(R;r=1,N =1,k =0).
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p-adic modular forms

An example

Example (continued)
@ Then the fibers X°™ ® Z/p™Z give

1
M(Z/p"Z) = H'(X* ©Z/p"Z,0) = (2/p"2)[]-
@ Note that we don't want M(Z,) to be
HO(Xg, 0) = Z,]
Z, > - pj
but it should be

i M(2/p"2) = Z,().

@ This illustrates why p has to be nilpotent in the definition. 11,31



Hecke operators

Hecke operators

Classical theory (over C):
@ modular forms: functions on lattices A C C

@ Hecke operators T;: averaging over sublattices A’ C A of
index ¢

Moduli interpretation (over any ring R):

@ For a prime ¢ and test object (E,w), let C C E be any finite
flat subgroup scheme of order ¢ defined over R.

e Consider m: E — E/C (an isogeny of degree £) and the dual
isogeny 7V : E/C — E.

@ w on E pulls backs to (7V)*w on E/C.

e (E/C,(mV)*w) is a test object if £ is invertible in R.

@ Level structures can be incorporated if £ { N.
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Hecke operators

Hecke operators

For f a modular form of weight k, define T,f by

(Tef)(E,w) =LY F(E/C, (1Y) w)
C

where C runs through the ¢ 4 1 subgroups of E[{] of order ¢.

Technical issues (which can be ignored for now):

@ One has to pass to an extension R C R’ to trivialize E[/] in
the étale topology.

@ Show that T,f is independent of the choices of C.
© Show that Tyf is defined over R.
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Hecke operators

Tate curve

Consider Tate(q) over Z((q)). View this as G,,/q%, so the order ¢
subgroups are

e =(¢) and H;:={ iq1/6>7i:0,17...7g_1'

For pip:
o Tate(q)/ue = Tate(q") is induced by X — X’
o Dual 7V : Tate(q") — Tate(q) is induced by quotienting g*.
e Hence (7V)*(wean) = Wean-
For H;:
o Tate(q)/H; = Tate(¢'q/%).
o Dual 7V : Tate(¢'q'/%) — Tate(q) is induced by X — X°.
d(u')

o Hence (7V)*(wWean) = {Wean (check: % = =t duy,
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Hecke operators

g-expansions of Hecke operators

@ Using these, it is straightforward to compute the
g-expansions: If

f(Tate(q), wean) Z aiq’,

then

(Tef)(Tate(q), wean) = Z (fk_la,-/g + ag,-> q'.

1

@ See [Katz, §1.11] for details about Hecke operators.

@ The subgroups g and H; play different roles: piy is
“distinguished".

@ There is a similar story in the p-adic setting.
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Canonical subgroups and the U-operator

Supersingular elliptic curves

Before introducing the canonical subgroup, we need to study
supersingular elliptic curves.
Notation:

@ Consider a finite extension K/Qp, with ring of integers
R = Ok and valuation v : O — {0} — Q>0 (normalized such
that v(p) = 1).

@ Let S= R/pR. Then v induces

v:S5—-{0} - 1[0,1)NQ

satisfying v(ur) = v(r) for u € §*.

S may contain nilpotents! In fact, we will see that the theory is
almost vacuous if S is reduced (i.e. K/Qp is unramified).
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Canonical subgroups and the U-operator

Supersingular elliptic curves

Let E/K be an elliptic curve with good reduction.
@ There is a model £/R, and hence E/S.

@ Consider the Hasse invariant
A(E,w) € S,

where w € HO(E, QlE

Two cases:

is a basis (unique up to S*).

/5)

@ A(E,w) =0: We say E is “very supersingular”.
Q@ A(E,w) #0: We say E is “not too supersingular” and define

v(E) := v(A(E,w)) €[0,1)N Q.
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Canonical subgroups and the U-operator

Supersingular elliptic curves

Thus v(E) € [0,1) measures how supersingular E is:

@ v(E) =0: E has ordinary reduction.

e v(E) > 0: E has supersingular reduction.

@ The larger v(E) is, the “more supersingular” E is.
Given a test object (E/R,w),

(E/R,w) can be upgraded to an r-test object
<= Y - E,_1(E,w) = r has a solution
< v(E) < v(r).
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Canonical subgroups and the U-operator

Canonical subgroups: ordinary case

Let R = Ok with residue field k, and E/R be an elliptic curve.
E(K)[p] = (Z/pZ)? contains p + 1 subgroups of order p. We
shall see that E[p] contains a “canonical” subgroup of order p
in certain cases.

e If E has ordinary reduction, then E(k)[p] & Z/pZ, so the
kernel of

E(K)[pl — E(K)[p]
is a cyclic subgroup of E(K) of order p; this is the canonical
subgroup of E.

e If E has supersingular reduction, then E(k)[p] =0, so the
reduction map above gives no information. However, we will
see that E has a canonical subgroup when it is “not too
supersingular”.

19/31



Canonical subgroups and the U-operator

Canonical subgroups: p = 2

Let us illustrate everything explicitly when p = 2:

subgroups of order 2 «<— non-trivial 2-torsion points!
Every elliptic curve has a minimal Weierstrass equation

y2 + aixy + a3y = x3 + a2x2 4+ agx + ag, aj € R.

Completing the square gives

2 2 2
a a a aia a
(”?*23) :X3+<a2+41> X2+<34+123>X+<36+43>-

A canonical root is the unique root of the RHS of minimal
valuation.
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Canonical subgroups and the U-operator

Canonical subgroups: p = 2

By an exercise with the Newton polygon:

o If v(a1) > 2, then all roots have valuation —3.

o If v(a1) < %, then there is a unique root with minimal
valuation 2(v(a;) — 1).
See the beginning of [Calegari, §3] for details.
Moreover:

a; mod 2 is the Hasse invariant of E over R/2.
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Canonical subgroups and the U-operator

Canonical subgroups

Theorem (Lubin—Katz)

Let R be a p-adically complete DVR with v(p) =1, and
S = R/pR. Then an elliptic curve E/R has a canonical subgroup
of order p if and only if

v(A(Es,ws)) < ﬁ,

where A is the Hasse invariant (over S).

The proof uses formal groups and is carried out in [Katz, §3.4-3.9].
For many applications, it is not necessary to know the proof!

If p is unramified in R, v(E) < —£= forces v(E) = 0, so E must

) . p+1
have ordinary reduction.
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Canonical subgroups and the U-operator

Modular forms of level p as p-adic modular forms

Using the canonical subgroup, we can view classical modular forms

of level p as p-adic modular forms:
@ Suppose v(r) < JF;.
o If (E/R,w,Y) is an r-test object, then

p
v(E) <v(r) < —,
(E) < () < =25
so E has a canonical subgroup H.
@ This gives rise to a (classical) test object (E/R,w, H) of level

To(p)-

Unfortunately we have not defined o(p)-level properly; see [Katz,
§1.3 & §1.13].
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Canonical subgroups and the U-operator

Modular forms of level p as p-adic modular forms

@ Thus we get a map

{r-test objects (E/R,w, Y)} — {test objects (E/R, w, H)} ,

of level Mo(p)

which induces

classical modular forms p-adic modular forms of
of level Io(p) growth r and level 1

o See [Katz, Theorem 3.2] for details.

@ Moreover, this map respects the (classical) U,-operator on
LHS and the (p-adic) Up-operator on RHS, to be defined next.
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Canonical subgroups and the U-operator

U and V operators

In Serre's theory, the U and V operators are defined on the level of
power series. The canonical subgroup provides a more conceptual
framework:
@ Suppose v(r) < #, so that every r-test object (E/R,w, Y)
has a canonical subgroup H C E[p].

@ Define
(Vof)(E,w,Y)=f(E/H,--)
and
(Upf)(E,w,Y)=p""1 > f(E/H,
CCE[p]
C#H

For now we are neglecting how the growth condition behaves; this
is crucial!
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Canonical subgroups and the U-operator

U and V operators

@ In terms of g-expansions, if f =5 a,q", then

Vpf = Z anq"P

and
Upf = Z anpq".
o Clearly U,V is the identity.
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Canonical subgroups and the U-operator

U and V operators

To see how U and V affect the growth condition, it is necessary to
understand how v(E) behaves under quotients.

Suppose E has v(E) < —1 and canonical subgroup H. Then

@ If C is a subgroup of order n with (n,p) = 1, then
v(E/C) = v(E).

@ If C # H is a subgroup of order p, then v(E/C) = %V(E).
Q Ifv(E) < +1’ then v(E/H) = pv(E).
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Canonical subgroups and the U-operator

U and V operators

Now we are ready to specify how U and V act on p-adic modular
forms with growth condition r (of a fixed weight and level).
Denote this space by M[r].

1 :
Suppose v(r) < ;7. Then:

Q U, : M[r] — M[rP].

Q V,: M[rP] — M]r].

Slogan: U, improves overconvergence.

Strictly speaking, these are true over a field, but are more subtle
over integral coefficients; see [Katz, Theorem 3.3 & §3.10-3.12].
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Canonical subgroups and the U-operator

Spectrum of U

Consider r = 1 and the space M of (convergent) p-adic modular
forms.

o Let f € M and set g = (1— V,Up)f.
e For |A| < 1, check that

o0

A=) (AV,)geM
i=0

satisfies Upfy, = Afy (Problem Sheet 3).

@ Conclusion: The one-parameter family f) consists of
eigenvectors. In other words, U, has a continuous spectrum
on M.
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Canonical subgroups and the U-operator

Spectrum of U

@ There are too many convergent p-adic modular forms (for
v(r) =0).

@ On the other hand, the spectral theory for U, on
overconvergent modular forms M[r] (for v(r) > 0) is
better-behaved.

Suppose 0 < v(r) < J&5. Then U, : M[r] — M]r] is a compact
operator.

This implies Uy, has a discrete spectrum on M[r].
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Canonical subgroups and the U-operator

Spectrum of U

Let p=5, N =1and k = 0. Suppose v(r) >0, i.e. || > 1. Then

1
M[1] = {convergent power series on |=| < 1} ,
J

1 1
Mlr] = {convergent power series on |=| < |\} .
J r

Note M[1] D M[r] D M[r'] whenever 0 < v(r) < v(r').

See:
o [Katz, §3.13] for applications to congruences for j;

o [Calegari, §3] for a systematic account of the spectral theory
for U,.
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