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Administrative issues

Slides:
Lectures 1-7: available on webpage

Problem sheets:
Problem Sheet 3: available later, due two weeks after being
posted

Office hours:
12th March (Friday): 5 pm to 6 pm
18th March (Thursday): usual class time, details TBA
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Plans

Today (survey style):
Recap of p-adic modular forms
Hecke operators
Canonical subgroups
Spectral theory
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Recap: p-adic modular forms with growth conditions

Fix a p-adically complete ring R0 and r ∈ R0.
r -test object: (E/R, ω, αN ,Y ) where R is an R0-algebra in
which p is nilpotent, and Y · Ep−1(E/R, ω) = r .
p-adic modular forms over R0 of growth r , level N and weight
k: f ∈ M(R0; r ,N, k) is a rule on r -test objects.

Idea
We only consider test objects which are not “too supersingular”:

|r | = 1: ordinary locus (with supersingular disks removed)
 convergent p-adic modular forms;
|r | < 1: thickening of ordinary locus (extending across the
boundary of supersingular disks)
 overconvergent p-adic modular forms.
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Moduli interpretation: p ∈ R0 nilpotent
Suppose p is nilpotent in R0, and N is such that Ep−1 exists. Set
L := ω⊗(1−p).
Proposition
The moduli problem

R0-scheme S  {(E/S, αN ,Y )}/ ∼

(with notation as in the previous remark) is representable by the
affine scheme

Y (r)(N) := SpecY (N)R0

(
Sym(L∨)/(Ep−1 − r)

)
.

Remark
The affine curve Y (N)R0 represents {(E/S, αN)}.
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Moduli interpretation: p ∈ R0 nilpotent
As before, this implies we can work geometrically:
Proposition

M(R0; r ,N, k) = H0(Y (r)(N), ω⊗k).

As a corollary, we obtain an anologue of Swinnerton-Dyer’s result
on mod p modular forms:
Corollary

M(R0; r ,N, k) =

⊕
j≥0

M(R0; N, k + j(p − 1))

 /(Ep−1 − r).

Remark
This corrects a typo from Lecture 7.
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Moduli interpretation

For general R0, recall that

M(R0; r ,N, k) = lim←−m
M(R0/pmR0; r ,N, k).

When r = 1,

Y (1)(N) = Y (N)− {Ep−1 = 0} =: Y (N)ord

is the ordinary locus and the space of p-adic modular forms is
given by

M(Zp; 1,N, k) = lim←−m
H0(Y (N)ord ⊗ Z/pmZ, ω⊗k).

Next we will see that this agrees with Serre p-adic modular
forms of integral weights k.
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Relation with Serre p-adic modular forms

Proposition (Imprecise form of Proposition 2.7.2)
f ∈ M(Zp; 1,N, k) if and only if there exists a sequence
fm ∈ M(Zp; N, km) such that km → k in X and their q-expansions
converge fm → f .

Proof sketch:
Given f ∈ M(Zp; 1,N, k), we have

f (mod pm) ∈ H0((Y (N)⊗ Z/pmZ)[E−1
p−1], ω⊗k).

This can be written as gm
Eαm

p−1
, where

gm ∈ H0(Y (N)⊗ Z/pmZ, ω⊗(k+αm(p−1)))
= H0(Y (N)Zp , ω

⊗(k+αm(p−1)))⊗ Z/pmZ.
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Relation with Serre p-adic modular forms

Multiplying gm by a higher power of Ep−1 if necessary, we can
assume

αm ≡ 0 (mod pm).

The converse is easier.
For precise statements and proofs, see [Katz, §2.7].
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An example

Example
Let p = 5 and N = 1.

There is only one supersingular point in char 5, since E4 ≡ A
(mod 5).
The modular curve does not exist, but we can consider
X = P1

j,Zp
where j = E3

4
∆ .

The ordinary locus is

X ord = P1
j,Zp − {E4 = 0} = Spec Zp[1

j ] = A1
j,Zp .

For simplicity, consider the spaces of weight 0 modular forms

M(R) := M(R; r = 1,N = 1, k = 0).
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An example

Example (continued)
Then the fibers X ord ⊗ Z/pmZ give

M(Z/pmZ) = H0(X ord ⊗ Z/pmZ,O) = (Z/pmZ)[1
j ].

Note that we don’t want M(Zp) to be

H0(X ord
Zp ,O) = Zp[1

j ]

but it should be

lim←−m
M(Z/pmZ) = Zp〈

1
j 〉.

This illustrates why p has to be nilpotent in the definition. 11 / 31
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Hecke operators

Classical theory (over C):
modular forms: functions on lattices Λ ⊂ C
Hecke operators T`: averaging over sublattices Λ′ ⊂ Λ of
index `

Moduli interpretation (over any ring R):
For a prime ` and test object (E , ω), let C ⊂ E be any finite
flat subgroup scheme of order ` defined over R.
Consider π : E → E/C (an isogeny of degree `) and the dual
isogeny π∨ : E/C → E .
ω on E pulls backs to (π∨)∗ω on E/C .
(E/C , (π∨)∗ω) is a test object if ` is invertible in R.
Level structures can be incorporated if ` - N.
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Hecke operators

For f a modular form of weight k, define T`f by

(T`f )(E , ω) := `k−1∑
C

f (E/C , (π∨)∗ω)

where C runs through the `+ 1 subgroups of E [`] of order `.

Remark
Technical issues (which can be ignored for now):

1 One has to pass to an extension R ⊂ R ′ to trivialize E [`] in
the étale topology.

2 Show that T`f is independent of the choices of C .
3 Show that T`f is defined over R.
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Tate curve
Consider Tate(q) over Z((q)). View this as Gm/qZ, so the order `
subgroups are

µ` = 〈ζ〉 and Hi := 〈ζ i q1/`〉, i = 0, 1, · · · , `− 1.

For µ`:
Tate(q)/µ` ∼= Tate(q`) is induced by X 7→ X `.
Dual π∨ : Tate(q`)→ Tate(q) is induced by quotienting qZ.
Hence (π∨)∗(ωcan) = ωcan.

For Hi :
Tate(q)/Hi ∼= Tate(ζ i q1/`).
Dual π∨ : Tate(ζ i q1/`)→ Tate(q) is induced by X 7→ X `.
Hence (π∨)∗(ωcan) = `ωcan (check: du

u 7→
d(u`)

u` = ` · du
u ).
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q-expansions of Hecke operators
Using these, it is straightforward to compute the
q-expansions: If

f (Tate(q), ωcan) =
∑

i
ai qi ,

then

(T`f )(Tate(q), ωcan) =
∑

i

(
`k−1ai/` + a`i

)
qi .

See [Katz, §1.11] for details about Hecke operators.

Remark
The subgroups µ` and Hi play different roles: µ` is
“distinguished”.
There is a similar story in the p-adic setting.
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Supersingular elliptic curves
Before introducing the canonical subgroup, we need to study
supersingular elliptic curves.
Notation:

Consider a finite extension K/Qp, with ring of integers
R = OK and valuation v : OK −{0} → Q≥0 (normalized such
that v(p) = 1).
Let S = R/pR. Then v induces

v : S − {0} → [0, 1) ∩Q

satisfying v(ur) = v(r) for u ∈ S×.

Remark
S may contain nilpotents! In fact, we will see that the theory is
almost vacuous if S is reduced (i.e. K/Qp is unramified).
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Supersingular elliptic curves

Let E/K be an elliptic curve with good reduction.
There is a model E/R, and hence E/S.
Consider the Hasse invariant

A(E , ω) ∈ S,

where ω ∈ H0(E ,Ω1
E/S) is a basis (unique up to S×).

Two cases:
1 A(E , ω) = 0: We say E is “very supersingular”.
2 A(E , ω) 6= 0: We say E is “not too supersingular” and define

v(E ) := v(A(E , ω)) ∈ [0, 1) ∩Q.
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Supersingular elliptic curves

Thus v(E ) ∈ [0, 1) measures how supersingular E is:
v(E ) = 0: E has ordinary reduction.
v(E ) > 0: E has supersingular reduction.
The larger v(E ) is, the “more supersingular” E is.

Given a test object (E/R, ω),

(E/R, ω) can be upgraded to an r -test object
⇐⇒ Y · Ep−1(E , ω) = r has a solution
⇐⇒ v(E ) ≤ v(r).
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Canonical subgroups: ordinary case

Let R = OK with residue field k, and E/R be an elliptic curve.
E (K )[p] ∼= (Z/pZ)2 contains p + 1 subgroups of order p. We
shall see that E [p] contains a “canonical” subgroup of order p
in certain cases.
If E has ordinary reduction, then E (k)[p] ∼= Z/pZ, so the
kernel of

E (K )[p]→ E (k)[p]

is a cyclic subgroup of E (K ) of order p; this is the canonical
subgroup of E .
If E has supersingular reduction, then E (k)[p] = 0, so the
reduction map above gives no information. However, we will
see that E has a canonical subgroup when it is “not too
supersingular”.
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Canonical subgroups: p = 2
Let us illustrate everything explicitly when p = 2:

subgroups of order 2←→ non-trivial 2-torsion points!

Every elliptic curve has a minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, ai ∈ R.

Completing the square gives(
y + a1x

2 + a3
2

)2
= x3+

(
a2 + a2

1
4

)
x2+

(
a4 + a1a3

2

)
x+
(

a6 + a2
3

4

)
.

Idea
A canonical root is the unique root of the RHS of minimal
valuation.
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Canonical subgroups: p = 2

By an exercise with the Newton polygon:
If v(a1) ≥ 2

3 , then all roots have valuation −2
3 .

If v(a1) < 2
3 , then there is a unique root with minimal

valuation 2(v(a1)− 1).
See the beginning of [Calegari, §3] for details.
Moreover:
Lemma
a1 mod 2 is the Hasse invariant of E over R/2.
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Canonical subgroups

Theorem (Lubin–Katz)
Let R be a p-adically complete DVR with v(p) = 1, and
S = R/pR. Then an elliptic curve E/R has a canonical subgroup
of order p if and only if

v(A(ES , ωS)) < p
p + 1 ,

where A is the Hasse invariant (over S).

The proof uses formal groups and is carried out in [Katz, §3.4–3.9].
For many applications, it is not necessary to know the proof!
Remark
If p is unramified in R, v(E ) < p

p+1 forces v(E ) = 0, so E must
have ordinary reduction.
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Modular forms of level p as p-adic modular forms
Using the canonical subgroup, we can view classical modular forms
of level p as p-adic modular forms:

Suppose v(r) < p
p+1 .

If (E/R, ω,Y ) is an r -test object, then

v(E ) ≤ v(r) < p
p + 1 ,

so E has a canonical subgroup H.
This gives rise to a (classical) test object (E/R, ω,H) of level
Γ0(p).

Remark
Unfortunately we have not defined Γ0(p)-level properly; see [Katz,
§1.3 & §1.13].
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Modular forms of level p as p-adic modular forms

Thus we get a map

{r -test objects (E/R, ω,Y )} →
{test objects (E/R, ω,H)

of level Γ0(p)

}
,

which induces{classical modular forms
of level Γ0(p)

}
→
{p-adic modular forms of

growth r and level 1

}
.

See [Katz, Theorem 3.2] for details.
Moreover, this map respects the (classical) Up-operator on
LHS and the (p-adic) Up-operator on RHS, to be defined next.
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U and V operators
In Serre’s theory, the U and V operators are defined on the level of
power series. The canonical subgroup provides a more conceptual
framework:

Suppose v(r) < p
p+1 , so that every r -test object (E/R, ω,Y )

has a canonical subgroup H ⊂ E [p].
Define

(Vpf )(E , ω,Y ) = f (E/H, · · · )
and

(Upf )(E , ω,Y ) = pk−1 ∑
C⊂E [p]

C 6=H

f (E/H, · · · ).

Remark
For now we are neglecting how the growth condition behaves; this
is crucial!
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U and V operators

In terms of q-expansions, if f = ∑
anqn, then

Vpf =
∑

anqnp

and
Upf =

∑
anpqn.

Clearly UpVp is the identity.
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U and V operators

To see how U and V affect the growth condition, it is necessary to
understand how v(E ) behaves under quotients.

Proposition
Suppose E has v(E ) < p

p+1 and canonical subgroup H. Then
1 If C is a subgroup of order n with (n, p) = 1, then

v(E/C) = v(E ).
2 If C 6= H is a subgroup of order p, then v(E/C) = 1

p v(E ).
3 If v(E ) < 1

p+1 , then v(E/H) = pv(E ).
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U and V operators

Now we are ready to specify how U and V act on p-adic modular
forms with growth condition r (of a fixed weight and level).
Denote this space by M[r ].

Theorem
Suppose v(r) < 1

p+1 . Then:
1 Up : M[r ]→ M[rp].
2 Vp : M[rp]→ M[r ].

Slogan: Up improves overconvergence.

Remark
Strictly speaking, these are true over a field, but are more subtle
over integral coefficients; see [Katz, Theorem 3.3 & §3.10-3.12].
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Spectrum of U

Consider r = 1 and the space M of (convergent) p-adic modular
forms.

Let f ∈ M and set g = (1− VpUp)f .
For |λ| < 1, check that

fλ =
∞∑

i=0
(λVp)i g ∈ M

satisfies Upfλ = λfλ (Problem Sheet 3).
Conclusion: The one-parameter family fλ consists of
eigenvectors. In other words, Up has a continuous spectrum
on M.
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Spectrum of U

There are too many convergent p-adic modular forms (for
v(r) = 0).
On the other hand, the spectral theory for Up on
overconvergent modular forms M[r ] (for v(r) > 0) is
better-behaved.

Theorem
Suppose 0 < v(r) < p

p+1 . Then Up : M[r ]→ M[r ] is a compact
operator.

This implies Up has a discrete spectrum on M[r ].
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Spectrum of U

Example
Let p = 5, N = 1 and k = 0. Suppose v(r) > 0, i.e. |1r | > 1. Then

M[1] =
{

convergent power series on |1j | ≤ 1
}
,

M[r ] =
{

convergent power series on |1j | ≤ |
1
r |
}
.

Note M[1] ⊃ M[r ] ⊃ M[r ′] whenever 0 < v(r) < v(r ′).

See:
[Katz, §3.13] for applications to congruences for j ;
[Calegari, §3] for a systematic account of the spectral theory

for Up.
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