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Administrative issues

Slides:
Lectures 1-6: available on webpage
Lecture 6: extra discussion about Tate uniformization

Problem sheets:
3 sets for assessment

1 22nd February (Monday of Week 6): posted
2 8th March (Monday of Week 8): posted
3 22nd March (Monday of Week 10): tentative

available at least two weeks before deadlines
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Administrative issues

Office hours:
Dates: 2nd, 9th, 16th March (Tuesdays)
Time: 12 pm to 1 pm
Format: Q&A, possibly supplementary lectures

References for geometric modular forms:
Calegari’s AWS notes, 2013
Loeffler’s TCC notes, 2014
Katz, §1 and Appendix 1
I am happy to answer questions about these!
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Plans

Today:
Recap of geometric modular forms
q-expansion principle and base change
Hasse invariant
p-adic modular forms

Next week: a subset of
Hecke operators
Canonical subgroups
Spectral theory
Further topics
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Example: E4 and E6

Suppose 1
6 ∈ R0. Then any pair (E/R, ω) can be written in terms

of Weierstrass equation(
y2 = 4x3 + a4x + a6,

dx
y

)
.

Then the rules

E4(E/R, ω) := −12a4,

E6(E/R, ω) := 216a6

define modular forms of weights 4 and 6 respectively, so

E4 ∈ M(R0; 1, 4), E6 ∈ M(R0; 1, 6);

here R0 can be taken to be Z[ 1
6 ] (in fact Z, as we will see).
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Example: E4 and E6

Evaluating at the Tate curve gives the q-expansions

E4(Tate(q), ωcan) = 1 + 240
∞∑

n=1
σ3(n)qn ∈ Z[[q]],

E6(Tate(q), ωcan) = 1− 504
∞∑

n=1
σ5(n)qn ∈ Z[[q]].

By the q-expansion principle (to be discussed next), E4 and E6 are
holomorphic modular forms defined over Z:

E4 ∈ S(Z; 1, 4), E6 ∈ S(Z; 1, 6).

See Problem Sheet 3.
Remark
In general, Ek ∈ S(Q; 1, k) for even k ≥ 4.
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Recap: Modular curves

A level N structure on E/S is an isomorphism of group
schemes αN : E [N] ∼→ (Z/NZ)2

S .
For N ≥ 3, the moduli problem

S scheme over Z[ 1
N ] {(E/S, αN)}/ ∼

is represented by a (fine) moduli scheme Y (N) over Z[ 1
N ].

Y (N) has a “natural compactification” X (N).
Refer to [Loeffler, §3] for the formalism of moduli spaces and
representable functors.
For instance, Y (N)(C) is a disjoint union of ϕ(N) copies of
Γ(N)\H.
The level N structures on Tate(qN) correspond to the cusps
of X (N).
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q-expansion principle
Recall that we have defined for any Z[ 1

N ]-module R

S(R; N, k) := H0(X (N), ω⊗k ⊗Z[ 1
N ] R);

this agrees with the ruled-based definition when R is a ring.
Theorem (q-expansion principle)
Let N ≥ 3. Suppose L ⊂ K are Z[ 1

N ]-modules, and
f ∈ S(K ; N, k). Suppose that for each geometrically connected
component of X (N), there is at least one cusp at which the
q-expansion of f has coefficients in L⊗Z[ 1

N ] Z[ 1
N , ζN ]. Then f is a

modular form with coefficients in L.

The proof requires non-trivial use of algebraic geometry.
Remark
With some care, this is also valid for level 1 and 2.
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Base-change of modular forms

In the classical setting, the space of modular forms over C has
a rational or even integral structure.
Base-change theorems give similar results for geometric
modular forms.
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Base-change: level N ≥ 3

Theorem
Suppose either:

N ≥ 3, k ≥ 2; or
3 ≤ N ≤ 11, k = 1.

Then for any Z[ 1
N ]-module K, there is an isomorphism

S
(

Z[ 1
N ]; N, k

)
⊗Z[ 1

N ] K ∼→ S(K ; N, k).

Idea of proof.
Identify S(K ; N, k) = H0(X (N), ω⊗k ⊗Z[ 1

N ] K ).
Use cohomology and base-change, and show
H1(X (N), ω⊗k) = 0.
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Base-change: level 1 and 2

Theorem
Suppose N = 1 (resp. N = 2), k ≥ 1 and R is any ring with 1

6 ∈ R
(resp. 1

2 ∈ R). Then there is an isomorphism

S(Z; N, k)⊗Z R ∼→ S(R; N, k).

Idea of proof.
Identify level 1 modular forms as the fiber product:

S(R; 3, k)

��

�

S(R; 1, k)oo

��

S(R; 12, k) S(R; 4, k)oo
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Base-change: level 1 and 2

The condition that 6 is invertible is crucial:
Example
Later we will study the Hasse invariant A ∈ S(Fp; 1, p − 1).

1 p = 2: A ∈ S(F2; 1, 1) but S(Z; 1, 1) = 0.
2 p = 3: A ∈ S(F3; 1, 2) but S(Z; 1, 2) = 0.

Hence for p = 2, 3, the map

S(Z; 1, k)⊗Z Fp → S(Fp; 1, k)

is in general not an isomorphism.
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Hasse invariant

In Serre’s theory, the modular form Ep−1 plays a fundamental
role:

Ep−1 ≡ 1 (mod p).

In Katz’s theory, this will be replaced by the Hasse invariant,
which is a modular form in characteristic p.
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Notation

Let R be a ring in which p = 0, i.e. R is an Fp-algebra.
Consider (E/R, ω) where E is an elliptic curve over R and ω
is a basis of ωE/R = H0(E ,Ω1

E/R).
By Serre duality, ω ∈ H0(E ,Ω1

E/R) determines a dual basis

η ∈ H1(E ,OE ).

Consider the absolute Frobenius

Fabs : OE → OE

f 7→ f p.

This induces F ∗abs : H1(E ,OE )→ H1(E ,OE ), which is
Fp-linear.
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Hasse invariant

Definition (Hasse invariant)
Define A(E/R, ω) ∈ R by setting

F ∗abs(η) = A(E/R, ω)η

in H1(E ,OE ).

Remark
Passing to the dual H1(E ,OE ) allows us to see more structure;
indeed, the absolute Frobenius kills H0(E ,Ω1

E/R):

F ∗abs(dx) = d(xp) = 0.

Equivalently, we can study the Verschiebung operator V on
H0(E ,Ω1

E/R).
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Hasse invariant and supersingular elliptic curves

Remark
Suppose R is a field with char(R) = p. Then E is
supersingular if and only if A(E , ω) = 0 for any choice of ω.
Over Fp, the key relation is

#E (Fp) = 1 + p − tr
(

F ∗abs : H1(E ,OE )→ H1(E ,OE )
)
.

Note that F ∗abs is multiplication by A(E , ω), so its trace equals
A(E , ω) in Fp and

#E (Fp) ≡ 1 (mod p) ⇐⇒ A(E , ω) = 0.
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Hasse invariant as a modular form

Lemma
A(E/R, ω) ∈ M(Fp; 1, p − 1) is a (meromorphic) modular form of
weight p − 1.

Proof.
If ω is scaled by λ, then η is scaled by λ−1. Then

A(E , λω)(λ−1η) = F ∗abs(λ−1η)
= λ−pF ∗abs(η)
= λ−pA(E , ω)η

and hence A(E , λω) = λ1−pA(E , ω).
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Hasse invariant: q-expansion

Question
What is its q-expansion?

Katz gives two approaches:
1 dualizing sheaf;
2 derivations.

Sketch of second approach:
H1(E ,OE/R) = LieR(E ) can be identified as the R-module of
invariant derivations of E .
In general, iterating a derivation does not yield a derivation,
but in characteristic p we have

Dp(xy) =
p∑

i=0

(
p
i

)
(Di x)(Dp−i y) = (Dpx)y + x(Dpy)

so Dp is a derivation.
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Hasse invariant: q-expansion

F ∗abs : H1(E ,OE )→ H1(E ,OE ) is given by D 7→ Dp.
To compute the q-expansion of A, consider (Tate(q), ωcan)
and the derivation D dual to ωcan, so that

A(Tate(q), ωcan)D = Dp.

Interpret (Tate(q), ωcan) as
(
Gm/qZ, du

u

)
.

For the formal parameter t of Tate(q) at identity, ωcan = dt
1+t .

The dual derivation is given by D(t) = 1 + t, so that

D(1 + t) = 1 + t =⇒ Dn(1 + t) = 1 + t for all n ≥ 1.

Hence Dp = D and A(Tate(q), ωcan) = 1.
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Hasse invariant: q-expansion
Therefore we have shown
Theorem
A ∈ S(Fp; 1, p − 1) is a holomorphic modular form of weight p − 1,
with q-expansion 1.

Remark
This works for all p, including p = 2 and p = 3! In particular,

S(Z; 1, p − 1)⊗Z Fp → S(Fp; 1, p − 1)

fails to be an isomorphism for p = 2, 3: the source is 0 but
the target contains A.
Note that 1 /∈ S(Fp; 1, p − 1), so this theorem doesn’t violate
the q-expansion principle.
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Lifting the Hasse invariant

Recall the weight k Eisenstein series for even k ≥ 4:

Ek = 1− 2k
B2k

∞∑
n=1

σk−1(n)qn.

By the q-expansion principle, Ek ∈ S(Q; 1, k).
For k = p − 1 and p ≥ 5, vp

(
2(p−1)
B2(p−1)

)
= 1, so reduction mod

p gives
E p−1 ∈ S(Fp; 1, p − 1)

with q-expansion 1.
By the q-expansion principle again,

A ≡ Ep−1 (mod p).

In other words, Ep−1 is a lift of A to Z if p ≥ 5.
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Lifting the Hasse invariant
If p = 2 (resp. p = 3), A does not lift to a holomorphic
modular form of level 1, but E4 is a lift of A4 (resp. of A2).
To define p-adic modular forms, we need to fix a lift of A
itself (of possibly higher level). A careful study of base-change
shows:

Proposition

A lifts to a holomorphic modular form in S
(
Z[ 1

N ]; N, p − 1
)

when:

p = 2: N = 3, 5, 7, 9, 11 (hence any multiples of these);
p = 3: N ≥ 2 with 3 - N;
p ≥ 5: N ≥ 1 with 5 - N.

From now on, we restrict to these settings and fix a choice of lift
Ep−1 ∈ S

(
Z[ 1

N ]; N, p − 1
)

(by an abuse of notation).
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Motivations
To develop a p-adic theory of modular forms, taking
S(R; N, k) for a p-adic coefficient ring R is too simplistic: it is
essentially the base-change of S(Z[ 1

N ]; N, k) and does not
incorporate the p-adic topology.
For example, Ep−1 ≡ 1 (mod p) implies E pm

p−1 → 1 p-adically,
so

E−1
p−1 = lim

m→∞
E pm−1

p−1

should exist.
On the other hand, if E is a supersingular elliptic curve, then
Ep−1(E/R, ω) = 0.

Idea
Remove the elliptic curves which are supersingular (or have
supersingular reduction) in the modular definition of p-adic
modular forms.
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Notation

(p,N): such that A ∈ S(Fp; 1, p − 1) has a lift
Ep−1 ∈ S(Z[ 1

N ]; N, p − 1) (simplest case: p ≥ 5)
R0: a p-adically complete ring, i.e. R0 = lim←−R0/pmR0

r : a fixed element of R0 (“growth condition”)

Idea
Remove the test objects which are not “too supersingular”, i.e.
whose Hasse invariant lies in a disk of radius |r |p around 0:

|r | = 1: ordinary locus
|r | < 1: a “thickening” of the ordinary locus
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r -test objects

Definition
An r -test object is (E/R, ω, αN ,Y ) where:

E is an elliptic curve over an R0-algebra R in which p is
nilpotent (i.e. pm = 0 for some m);
ω is basis of ωE/R ;
αN is a level N structure;
Y ∈ R with Ep−1(E/R, ω, αN) · Y = r .

Remark
The base ring R0 is p-adically complete, but p is nilpotent in the
test ring R.
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p-adic modular forms with growth conditions

Definition
A p-adic modular form over R0 of growth r , level N and
weight k is a rule f that assigns

r -test object (E/R, ω, αN ,Y ) 7→ f (E/R, ω, αN ,Y ) ∈ R

which:
depends only on the R-isomorphism class of the r -test object;
commutes with base change;
satisfies

f (E/R, λω, αN , λ
p−1Y ) = λ−k f (E/R, ω, αN ,Y )

for λ ∈ R×.
The R-module of such is denoted M(R0; r ,N, k). 26 / 32
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p-adic modular forms with growth conditions

Remark
Reality check: (E/R, λω, αN , λ

p−1Y ) remains an r -test
object:

r = Ep−1(E/R, ω, αN) · Y = Ep−1(E/R, λω, αN) · λp−1Y .

As usual, it is equivalent to consider rules

(E/S, αN ,Y ) 7→ f (E/S, αN ,Y ) ∈ H0(S, ω⊗k
E/S)

where:
S is any R0-scheme with p nilpotent;
Y is a section of ω⊗(1−p)

E/S with Y · Ep−1(E/S, αN) = r ;
satisfying the expected conditions.
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Growth conditions

Growth condition r :
The growth condition only depends on r · R×0 , i.e. on |r |p.
Choosing |r | = 1 (i.e. r ∈ R×0 is a unit) gives a “convergent”
p-adic modular form, in the sense of being convergent on the
ordinary locus.
Choosing |r | < 1 (i.e. pα | r for some α > 0) gives an
overconvergent p-adic modular form, in the sense of being
convergent beyond the ordinary locus. Indeed, some of the
test objects might have supersingular reduction.
Why? The space of (convergent) p-adic modular forms is too
large, but the overconvergent modular forms enjoy better
properties; we will see instances of this next time.
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p-adic modular forms

We say that f ∈ M(R0; r ,N, k) is holomorphic at ∞ if for
every integer m ≥ 1 and every level N structure αN ,

f
(

Tate(qN), ωcan, αN , r · Ep−1(Tate(qN), ωcan)−1
)

∈ Z((q))⊗ (R0/pmR0)[ζN ]

belongs to Z[[q]]⊗ (R0/pmR0)[ζN ].
The space of holomorphic forms is denoted S(R0; r ,N, k).
Formally

M(R0; r ,N, k) = lim←−m
M(R0/pmR0; r ,N, k),

S(R0; r ,N, k) = lim←−m
S(R0/pmR0; r ,N, k).
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Moduli interpretation: p ∈ R0 nilpotent
Suppose p is nilpotent in R0, and N is such that Ep−1 exists. Set
L := ω⊗(1−p).
Proposition
The moduli problem

R0-scheme S  {(E/S, αN ,Y )}/ ∼

(with notation as in the previous remark) is representable by the
affine scheme

Y (r)(N) := SpecY (N)R0

(
Sym(L∨)/(Ep−1 − r)

)
.

Remark
The affine curve Y (N)R0 represents {(E/S, αN)}.
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Moduli interpretation: p ∈ R0 nilpotent

As before, this implies we can work geometrically:

Proposition

M(R0; r ,N, k) = H0(Y (r)(N), ω⊗k).

As a corollary, we obtain an anologue of Swinnerton-Dyer’s result
on mod p modular forms:

Corollary

M(R0; r ,N, k) =

⊕
j≥0

M(R0; r ,N, k + j(p − 1))

 /(Ep−1 − r).
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Moduli interpretation

For general R0, recall that

M(R0; r ,N, k) = lim←−m
M(R0/pmR0; r ,N, k).

When r = 1,

Y (1)(N) = Y (N)− {Ep−1 = 0} =: Y (N)ord

is the ordinary locus and the space of p-adic modular forms is
given by

M(Zp; 1,N, k) = lim←−m
H0(Y (N)ord ⊗ Z/pmZ, ω⊗k).

Next time we will see that this agrees with Serre p-adic
modular forms of integral weights k.
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