p-adic modular forms TCC (Spring 2021), Lecture 6

Pak-Hin Lee

25th February 2021

Administrative issues

Slides:

- Lectures 1-5: available on webpage
- Lecture 5, P.23: My generalization of lemme 3 isn't quite right. See Problem Sheet 2.

Problem sheets:

- 3 sets for assessment
 - 22nd February (Monday of Week 6): posted
 - 8th March (Monday of Week 8): posted
 - 3 22nd March (Monday of Week 10): tentative
- available at least two weeks before deadlines

Administrative issues

Office hours:

- Day: Tuesdays during Weeks 7, 8, 9 (tentative)
- Time: TBA
- Format: Q&A, possibly supplementary discussion or lectures
- Email: Please respond!

References for geometric modular forms:

- Calegari's AWS notes, 2013
- Loeffler's TCC notes, 2014
- Katz, §1 and Appendix 1
- I might go over some skipped details during office hours.

Plans

Today:

- Reinterpretation of modular forms over C
- Algebro-geometric interpretation of modular forms
- Tate curve and *q*-expansions

Next week:

- q-expansion principle
- Hasse invariants
- p-adic modular forms, finally!

Overview: Geometric modular forms

Goal

Interpret modular forms using algebraic geometry.

- Complex analysis: Modular forms are initially defined as holomorphic functions on **H** satisfying a transformation property.
- Lattices: Interpret as functions on lattices $\Lambda \subset \boldsymbol{C}.$
- Weierstrass parametrization: Interpret as functions on elliptic curves over **C** (with additional data).
- Algebraic geometry: Generalize this for elliptic curves over any ring (or scheme).

Weierstrass parametrization

Weierstrass parametrization: For a lattice $\Lambda \subset C$, the complex torus C/Λ has the structure of an elliptic curve with equation

$$y^2 = 4x^3 - 60G_4(\Lambda)x - 140G_6(\Lambda)$$

where

$$G_{2k}(\Lambda) := \sum_{\lambda \in \Lambda - \{0\}} \frac{1}{\lambda^{2k}}.$$

The isomorphism is given by

$$\begin{split} x &= \wp(z;\Lambda) := \frac{1}{z^2} + \sum_{\lambda \in \Lambda - \{0\}} \left(\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2} \right), \\ y &= \wp'(z;\Lambda) = -\sum_{\lambda \in \Lambda} \frac{2}{(z-\lambda)^3}. \end{split}$$

6/34

Weierstrass parametrization

- Homothety: Two lattice Λ and Λ' are homothetic, denoted Λ ~ Λ' if Λ = μΛ' for some μ ∈ C[×].
- Two homothetic lattices give rise to isomorphic elliptic curves, and vice versa:

$$\Lambda \sim \Lambda' \iff {\bm C}/\Lambda \cong {\bm C}/\Lambda'.$$

• Weierstrass parametrization: There is a bijection

$$\begin{aligned} \label{eq:lattices} \{ \mathsf{Lattices in} \ \mathbf{C} \} / \sim &\longleftrightarrow \{ \mathsf{Elliptic \ curves \ over} \ \mathbf{C} \} / \cong \\ & \Lambda \longmapsto \mathbf{C} / \Lambda. \end{aligned}$$

Modular forms as functions on lattices

• Every lattice is homothetic to one of the form

$$\mathbf{Z} au + \mathbf{Z}, \quad \tau \in \mathbf{H}.$$

We have

$$\mathbf{Z} au + \mathbf{Z} \sim \mathbf{Z} au' + \mathbf{Z} \iff au' = rac{a au + b}{c au + d}, \quad egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z}).$$

• Modular forms of weight k can be interpreted as functions on lattices satisfying

$$F(\mu\Lambda) = \mu^{-k}F(\Lambda).$$

This correspondence is given by $f(\tau) = F(\mathbf{Z}\tau + \mathbf{Z})$.

Example

$$G_{2k}(\mu\Lambda) = \mu^{-2k} G_{2k}(\Lambda).$$

Lattices and elliptic curves

Can we upgrade the following diagram?

{Lattices in C} \leftarrow ? \downarrow {Lattices in C} $/ \sim$ \leftarrow {Elliptic curves over C} $/ \cong$

$$\Lambda \longmapsto \mathbf{C}/\Lambda : y^2 = 4x^3 - 60G_4(\Lambda)x - 140G_6(\Lambda)$$

Lemma

The space $H^0(E, \Omega^1)$ of holomorphic 1-forms on an elliptic curve E over **C** is one-dimensional.

For
$$E = \mathbf{C}/\Lambda$$
, $H^0(E, \Omega^1) = \mathbf{C} \cdot dz$

9 / 34

イロン 不得 とうほう イロン 二日

Lattices and elliptic curves

• Thus there is a bijection

$$\begin{aligned} \{ \text{Lattices in } \mathbf{C} \} &\longleftrightarrow \left\{ (E, \omega) : \omega \in H^0(E, \Omega^1) - \{ 0 \} \right\} / \cong \\ & \Lambda \longmapsto (\mathbf{C} / \Lambda, dz). \end{aligned}$$

- If Λ corresponds to (E, ω) , then $\mu\Lambda$ corresponds to $(E, \mu\omega)$.
- Modular forms of weight k can be interpreted as functions on (E, ω) satisfying

$$f(E,\mu\omega)=\mu^{-k}f(E,\omega)$$

(with some condition at ∞).

Notation

We want to generalize this for any ring R (in fact, any scheme S). Notation:

- R₀: base ring
- S: scheme over R₀
- E/S: elliptic curve over S, i.e. a morphism p : E → S such that p is smooth and proper and all fibers are connected curves of genus 1, together with a section s : S → E
- Then $\underline{\omega}_{E/S} := p_*(\Omega^1_{E/S})$ is an invertible sheaf on S.

Elliptic curves over schemes

If this scares you...

Remark

Locally on $S = \operatorname{Spec} R$ (where R is an R_0 -algebra):

- E is given by a Weierstrass equation over R;
- $\underline{\omega}_{E/R}$ is a free *R*-module of rank 1.

Thus everything can be made explicit!

For details, see [Loeffler, Proposition 3.3.2].

Geometric modular forms

Definition

A **modular form** of level 1 and weight k with coefficients in R_0 is a rule f which assigns

$$E/S \mapsto f(E/S) \in H^0(S, \underline{\omega}_{E/S}^{\otimes k})$$

with the following properties:

- f(E/S) depends only on the S-isomorphism class of E/S;
- 3 the formation of f(E/S) commutes with base change, i.e. for any fiber diagram

we have $f(E_{S'}/S') = g^*(f(E/S))$.

Geometric modular forms

- The R_0 -module of such forms is denoted $M(R_0; 1, k)$.
- The test objects S vary over R_0 -schemes, but it is enough to consider the affine ones.
- Idea: Base change and gluing.

Geometric modular forms

Equivalent definition: $f \in M(R_0; 1, k)$ is a rule which assigns to every pair $(E/R, \omega)$ where

- *R* is an *R*₀-algebra;
- E/R is an elliptic curve over R;
- ω is a basis of $\underline{\omega}_{E/R}$

an element

$$f(E/R,\omega) \in R,$$

with the following properties:

- f(E/R) depends only on the R-isomorphism class of (E/R, ω);
- $\ \, {\it O} \ \, f(E,\lambda\omega)=\lambda^{-k}f(E,\omega) \ \, {\it for any} \ \, \lambda\in R^{\times};$
- the formation of f(E/R) commutes with base change, i.e. for any ring map $\phi : R \to R'$, we have $f(E/R', \omega_{R'}) = \phi(f(E/R, \omega)).$

Geometric modular forms

Given the second definition, we recover the first definition by defining the section

$$f(E/R,\omega)\omega^{\otimes k} \in \underline{\omega}_{E/R}^{\otimes k}$$

which is independent of the choice of basis ω by (2).

Holomorphicity

Holomorphicity:

- The base change condition captures "continuity" and even "holomorphicity".
- Idea: Two test objects that are "close" can be put in a family. Holomorphicity at ∞ :
 - $\bullet\,$ What about "holomorphicity at ∞ "? Note that we don't have analysis!
 - We will see that the base change condition guarantees "meromorphicity at ∞", so M(R₀; 1, k) can be thought of as the space of meromorphic modular forms.
 - To understand behavior at ∞ (more precisely, *q*-expansions), we introduce a special test object: the Tate curve Tate(*q*).

Tate curve

Definition

The **Tate curve** is the elliptic curve Tate(q) over $Z((q)) := Z[[q]][\frac{1}{q}]$ defined by

$$y^2 + xy = x^3 + a_4(q)x + a_6(q)$$

where

$$egin{aligned} &a_4(q) := -5S_3(q),\ &a_6(q) := -rac{1}{12}\left(5S_3(q) + 7S_5(q)
ight),\ &S_k(q) := \sum_{n=1}^\infty \sigma_k(n)q^n \in \mathbf{Z}[[q]]. \end{aligned}$$

Tate curve

Remark

Tate(q) has discriminant given by the normalized weight 12 cusp form

$$\Delta = q \prod_{n=1}^\infty (1-q^n)^{24}$$

and j-invariant given by the j-function

$$j = q^{-1} + 744 + 196884q + \cdots$$
 .

In particular, this explains why Tate(q) is an elliptic curve over Z((q)) – although its coefficients lie in Z[[q]], one has to invert Δ :

$$\mathbf{Z}[[q]][\Delta^{-1}] = \mathbf{Z}((q)).$$

Tate curve

Where does this come from?

• By a change of variables, the equation can be rewritten as

$$Y^{2} = 4X^{3} - \frac{1}{12}E_{4}(q)X + \frac{1}{216}E_{6}(q)$$

where $E_k(q) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$ is (the *q*-expansion of) the Eisenstein series. This is only defined over $Z[\frac{1}{6}]$, but the previous equation always has Z-coefficients.

- Let us interpret how this equation arises (bonus: canonical differential ω_{can} on Tate(q)/Z((q))).
- For simplicity, we work over $\mathbf{Z}[\frac{1}{6}]$.

Tate curve

• Given a lattice Λ , recall the Weierstrass parametrization

$$egin{aligned} \mathbf{C}/\Lambda & o \mathbf{P}^2 \ z &\mapsto [\wp(z;\Lambda), \wp'(z;\Lambda), 1] \end{aligned}$$

where $\wp(z; \Lambda)$ is the Weierstrass \wp -function

$$\wp(z;\Lambda) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda - \{0\}} \left(\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2} \right).$$

• Consider the lattice $\Lambda_{\tau} := \mathbf{Z} + \mathbf{Z}\tau$, $\tau \in \mathbf{H}$. The exponential map $e^{2\pi i -} : \mathbf{C}/\mathbf{Z} \xrightarrow{\sim} \mathbf{C}^{\times}$ induces an isomorphism

$${f C}/{\Lambda_ au} \stackrel{\sim}{ o} {f C}^ imes/q^{f Z}$$
 $z\mapsto e^{2\pi i z}$

where $q = e^{2\pi i \tau}$.

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > 21/34

Tate curve

• In terms of the parameter $u=e^{2\pi i z}$ on $\mathbf{C}^{ imes}/q^{\mathbf{Z}}$, we rewrite

$$\wp(z;\Lambda_{\tau}) = F(u;q),$$

$$\wp'(z;\Lambda_{\tau}) = G(u;q).$$

Then F and G define an isomorphism $\mathbf{C}^{\times}/q^{\mathbf{Z}} \cong \text{Tate}(q)$.

• Transporting the canonical differential dz on $\mathbf{C}/\Lambda_{\tau}$ to $\mathbf{C}^{\times}/q^{\mathbf{Z}}$ gives:

Definition

The canonical differential ω_{can} on the Tate curve

$$Tate(q): y^2 + xy = x^3 + a_4(q)x + a_6(q)$$

is

$$\omega_{\operatorname{can}} := \frac{dx}{2y+x}.$$

22 / 34

Tate curve

- For details, see [Katz, Appendix 1] and carry out the calculations.
- Over **C**, every elliptic curve is parametrized by (a specialization of) the Tate curve; this is essentially by construction (and Weierstrass parametrization).
- In general, this is not true.

Example (Tate)

Over a *p*-adic field *K*, the formal power series involved in Tate(*q*) turn out to be **convergent** for 0 < |q| < 1. Then Tate(*q*) is an elliptic curve with |j| > 1, and we can identify

$$\overline{K}^{\times}/q^{\mathsf{Z}} \cong \operatorname{Tate}(q)(\overline{K})$$

via F and G. Furthermore, this isomorphism is Galois-equivariant.

Digression: Tate uniformization

In particular, any elliptic curve E/K with $|j(E)| \le 1$ cannot be parametrized by the Tate curve.

Theorem (Tate)

Let K be a finite extension of \mathbf{Q}_p .

- Given an elliptic curve E/K with |j(E)| > 1, there exists a unique q ∈ K[×] with |q| < 1 such that E ≅ Tate(q) over K.
- This isomorphism descends to K if and only if E has split multiplicative reduction.

Remark

- The isomorphism in (1) always descends to a quadratic extension of *K*.
- This result is what led Tate to introduce the Tate curve and subsequently develop the theory of rigid analytic geometry.

24 / 34

q-expansions

Idea

- Understand Tate(q) as a family of elliptic curves over the punctured disk.
- The behavior at q = 0 tells us how the curve degenerates at ∞ .

Let $f \in M(R_0; 1, k)$ be a modular form over R_0 .

• Evaluating f at the Tate curve gives its q-expansion

$$f(\mathsf{Tate}(q), \omega_{\mathrm{can}}) \in \mathsf{Z}((q)) \otimes_{\mathsf{Z}} R_0.$$

 A priori this has a finite tail, so f can be thought of as being automatically meromorphic at ∞.

q-expansions

• f is said to be **holomorphic at** ∞ if

```
f(\mathsf{Tate}(q), \omega_{\mathrm{can}}) \in \mathsf{Z}[[q]] \otimes_{\mathsf{Z}} R_0,
```

and a cusp form if

 $f(\mathsf{Tate}(q), \omega_{\mathrm{can}}) \in q\mathbf{Z}[[q]] \otimes_{\mathbf{Z}} R_0.$

- Warning: $\mathbf{Z}[[q]] \otimes_{\mathbf{Z}} R_0 \subsetneq R_0[[q]].$
- The set of holomorphic modular forms is denoted

$$S(R_0;1,k) \subset M(R_0;1,k).$$

Remark (Notation)

Katz's notation differs from the classical usage, where S and M denote the cusp forms and holomorphic modular forms respectively.

Higher levels

- If there is a universal element in the moduli space of test objects E/S, then we can simply pull back.
- Unfortunately, there is no such element in the level 1 case.
- Now we generalize for higher levels.
- Fix a positive integer *N*, and *S* will denote a scheme over $\mathbf{Z}[\frac{1}{N}]$.

Remark

Katz-Mazur works with Drinfeld level structures, which allows working over \mathbf{Z} .

Higher levels

Definition

A level N structure for E/S is an isomorphism of group schemes

$$\alpha_N: E[N] \xrightarrow{\sim} (\mathbf{Z}/N\mathbf{Z})_S^2.$$

Remark

- For this to exist, *N* has to be invertible on *S*.
- If this exists (and S is connected), then the set of level N structures is a torsor for GL₂(Z/NZ).

Modular forms of higher levels

• The (meromorphic) modular forms of level N and weight k, denoted $M(R_0; N, k)$, are rules f

$$(E/S, \alpha_N) \mapsto f(E/S, \alpha_N) \in H^0(S, \underline{\omega}_{E/S}^{\otimes k})$$

or equivalently

$$(E/R, \omega, \alpha_N) \mapsto f(E/R, \omega, \alpha_N) \in R$$

satisfying the evident properties.

• To talk about q-expansions and holomorphicity at ∞ , we need to study the Tate curve.

Tate curve at higher level

Definition

The **Tate curve at level** N is $Tate(q^N)$ over Z((q)) defined by

$$y^2 + xy = x^3 + a_4(q^N)x + a_6(q^N)$$

where a_4 and a_6 are as before. The canonical differential is

$$\omega_{\rm can}=\frac{dx}{2y+x}.$$

- Fix a primitive *N*-th root of unity ζ_N .
- The *N*-torsion of $\mathbf{C}^{\times}/q^{N\mathbf{Z}}$ is $\{\zeta_N^i q^j : 0 \le i, j \le N-1\}$.
- On Tate (q^N) , these are defined over $\mathbf{Z}[[q]] \otimes_{\mathbf{Z}} \mathbf{Z}[\zeta_N, \frac{1}{N}]$.

q-expansions at higher level

Suppose R_0 contains $\frac{1}{N}$ and ζ_N .

For each level N structure α on Tate(q^N), the q-expansion of f ∈ M(R₀; N, k) at α is

$$f(\mathsf{Tate}(q^N), \omega_{\mathrm{can}}, \alpha) \in \mathsf{Z}((q)) \otimes_{\mathsf{Z}} \mathsf{R}_0.$$

- $\bullet\,$ Again, meromorphicity at ∞ is automatic.
- *f* is holomorphic at ∞ (resp. a cusp form) if for all level *N* structures α, its *q*-expansion at α belongs to Z[[*q*]] ⊗_Z R₀ (resp. *q*Z[[*q*]] ⊗_Z R₀).
- The space of holomorphic forms is denoted $S(R_0; N, k) \subset M(R_0; N, k)$.

Modular curves

A brief summary:

For N ≥ 3, there exists a (fine) moduli scheme Y(N) parametrizing elliptic curves with level N structure:

S scheme over
$$\mathbf{Z}[\frac{1}{N}] \rightsquigarrow \{(E/S, \alpha_N)\}/\sim .$$

- Y(N) is a smooth affine curve over $\mathbf{Z}[\frac{1}{N}]$.
- Its "compactification" X(N) is a smooth proper curve over $\mathbf{Z}[\frac{1}{N}]$.
- These come with universal elliptic curves

$$\begin{array}{c} \mathcal{E} \longrightarrow \overline{\mathcal{E}} \\ \pi \downarrow \qquad \qquad \downarrow \\ Y(N) \longrightarrow X(N) \end{array}$$

イロト 不得 トイヨト イヨト 二日

Modular curves

 The invertible sheaf <u>ω</u> := π_{*}(Ω_{ε/Y(N)}) on Y(N) extends uniquely to X(N) ("weight 1 modular forms").

Theorem (Consequence of Kodaira–Spencer isomorphism)

For any $\mathbf{Z}[\frac{1}{N}]$ -algebra R_0 , we have

$$S(R_0; N, k) = H^0(X(N), \underline{\omega}^{\otimes k} \otimes_{\mathbf{Z}[\frac{1}{N}]} R_0).$$

Definition

For any $\mathbf{Z}[\frac{1}{N}]$ -module R_0 , we define

$$S(R_0; N, k) := H^0(X(N), \underline{\omega}^{\otimes k} \otimes_{\mathbf{Z}[\frac{1}{M}]} R_0).$$

Here $\underline{\omega}^{\otimes k} \otimes_{\mathbb{Z}[\frac{1}{N}]} R_0$ is a quasi-coherent sheaf on X(N).

Modular curves

- For level N = 1 or 2, Y(N) only exists as a coarse moduli scheme.
- Solution: Use stacks or the following trick.
- Lift to a covering and descend back:

$$S(R_0; 1, k) := S(R_0; 3, k)^{\operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z})}$$

and similarly for $S(R_0; 2, k)$.

Remark

Each statement in the summary above has an analogue in the complex-analytic setting.