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Administrative issues

Slides:
Lectures 1-5: available on webpage
Lecture 5, P.23: My generalization of lemme 3 isn’t quite
right. See Problem Sheet 2.

Problem sheets:
3 sets for assessment

1 22nd February (Monday of Week 6): posted
2 8th March (Monday of Week 8): posted
3 22nd March (Monday of Week 10): tentative

available at least two weeks before deadlines
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Administrative issues

Office hours:
Day: Tuesdays during Weeks 7, 8, 9 (tentative)
Time: TBA
Format: Q&A, possibly supplementary discussion or lectures
Email: Please respond!

References for geometric modular forms:
Calegari’s AWS notes, 2013
Loeffler’s TCC notes, 2014
Katz, §1 and Appendix 1
I might go over some skipped details during office hours.
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Plans

Today:
Reinterpretation of modular forms over C
Algebro-geometric interpretation of modular forms
Tate curve and q-expansions

Next week:
q-expansion principle
Hasse invariants
p-adic modular forms, finally!
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Overview: Geometric modular forms

Goal
Interpret modular forms using algebraic geometry.

Complex analysis: Modular forms are initially defined as
holomorphic functions on H satisfying a transformation
property.
Lattices: Interpret as functions on lattices Λ ⊂ C.
Weierstrass parametrization: Interpret as functions on elliptic
curves over C (with additional data).
Algebraic geometry: Generalize this for elliptic curves over any
ring (or scheme).
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Weierstrass parametrization
Weierstrass parametrization: For a lattice Λ ⊂ C, the complex
torus C/Λ has the structure of an elliptic curve with equation

y2 = 4x3 − 60G4(Λ)x − 140G6(Λ)

where
G2k(Λ) :=

∑
λ∈Λ−{0}

1
λ2k .

The isomorphism is given by

x = ℘(z ; Λ) := 1
z2 +

∑
λ∈Λ−{0}

( 1
(z − λ)2 −

1
λ2

)
,

y = ℘′(z ; Λ) = −
∑
λ∈Λ

2
(z − λ)3 .
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Weierstrass parametrization

Homothety: Two lattice Λ and Λ′ are homothetic, denoted
Λ ∼ Λ′ if Λ = µΛ′ for some µ ∈ C×.
Two homothetic lattices give rise to isomorphic elliptic curves,
and vice versa:

Λ ∼ Λ′ ⇐⇒ C/Λ ∼= C/Λ′.

Weierstrass parametrization: There is a bijection

{Lattices in C}/ ∼ ←→ {Elliptic curves over C}/ ∼=
Λ 7−→ C/Λ.
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Modular forms as functions on lattices
Every lattice is homothetic to one of the form

Zτ + Z, τ ∈ H.

We have

Zτ + Z ∼ Zτ ′ + Z ⇐⇒ τ ′ = aτ + b
cτ + d ,

(
a b
c d

)
∈ SL2(Z).

Modular forms of weight k can be interpreted as functions on
lattices satisfying

F (µΛ) = µ−kF (Λ).

This correspondence is given by f (τ) = F (Zτ + Z).

Example
G2k(µΛ) = µ−2kG2k(Λ).
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Lattices and elliptic curves
Can we upgrade the following diagram?

{Lattices in C} oo //

��

?

��

{Lattices in C}/ ∼ oo // {Elliptic curves over C}/ ∼=

Λ � // C/Λ : y2 = 4x3 − 60G4(Λ)x − 140G6(Λ)

Lemma
The space H0(E ,Ω1) of holomorphic 1-forms on an elliptic curve E
over C is one-dimensional.

For E = C/Λ, H0(E ,Ω1) = C · dz .
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Lattices and elliptic curves

Thus there is a bijection

{Lattices in C} ←→
{

(E , ω) : ω ∈ H0(E ,Ω1)− {0}
}
/ ∼=

Λ 7−→ (C/Λ, dz).

If Λ corresponds to (E , ω), then µΛ corresponds to (E , µω).
Modular forms of weight k can be interpreted as functions on
(E , ω) satisfying

f (E , µω) = µ−k f (E , ω)

(with some condition at ∞).
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Notation

We want to generalize this for any ring R (in fact, any scheme S).
Notation:

R0: base ring
S: scheme over R0

E/S: elliptic curve over S, i.e. a morphism p : E → S such
that p is smooth and proper and all fibers are connected
curves of genus 1, together with a section s : S → E
Then ωE/S := p∗(Ω1

E/S) is an invertible sheaf on S.
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Elliptic curves over schemes

If this scares you...

Remark
Locally on S = Spec R (where R is an R0-algebra):

E is given by a Weierstrass equation over R;
ωE/R is a free R-module of rank 1.

Thus everything can be made explicit!

For details, see [Loeffler, Proposition 3.3.2].
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Geometric modular forms

Definition
A modular form of level 1 and weight k with coefficients in R0 is
a rule f which assigns

E/S 7→ f (E/S) ∈ H0(S, ω⊗k
E/S)

with the following properties:
1 f (E/S) depends only on the S-isomorphism class of E/S;
2 the formation of f (E/S) commutes with base change, i.e. for

any fiber diagram
ES′ //

��

�

S ′

g
��

E // S
we have f (ES′/S ′) = g∗(f (E/S)).
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Geometric modular forms

The R0-module of such forms is denoted M(R0; 1, k).
The test objects S vary over R0-schemes, but it is enough to
consider the affine ones.
Idea: Base change and gluing.
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Geometric modular forms
Equivalent definition: f ∈ M(R0; 1, k) is a rule which assigns to
every pair (E/R, ω) where

R is an R0-algebra;
E/R is an elliptic curve over R;
ω is a basis of ωE/R

an element
f (E/R, ω) ∈ R,

with the following properties:
1 f (E/R) depends only on the R-isomorphism class of

(E/R, ω);
2 f (E , λω) = λ−k f (E , ω) for any λ ∈ R×;
3 the formation of f (E/R) commutes with base change, i.e. for

any ring map φ : R → R ′, we have
f (E/R ′, ωR′) = φ(f (E/R, ω)).
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Geometric modular forms

Given the second definition, we recover the first definition by
defining the section

f (E/R, ω)ω⊗k ∈ ω⊗k
E/R

which is independent of the choice of basis ω by (2).
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Holomorphicity

Holomorphicity:
The base change condition captures “continuity” and even
“holomorphicity”.
Idea: Two test objects that are “close” can be put in a family.

Holomorphicity at ∞:
What about “holomorphicity at ∞”? Note that we don’t have
analysis!
We will see that the base change condition guarantees
“meromorphicity at ∞”, so M(R0; 1, k) can be thought of as
the space of meromorphic modular forms.
To understand behavior at ∞ (more precisely, q-expansions),
we introduce a special test object: the Tate curve Tate(q).
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Tate curve

Definition
The Tate curve is the elliptic curve Tate(q) over
Z((q)) := Z[[q]][ 1

q ] defined by

y2 + xy = x3 + a4(q)x + a6(q)

where

a4(q) := −5S3(q),

a6(q) := − 1
12 (5S3(q) + 7S5(q)) ,

Sk(q) :=
∞∑

n=1
σk(n)qn ∈ Z[[q]].
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Tate curve

Remark
Tate(q) has discriminant given by the normalized weight 12 cusp
form

∆ = q
∞∏

n=1
(1− qn)24

and j-invariant given by the j-function

j = q−1 + 744 + 196884q + · · · .

In particular, this explains why Tate(q) is an elliptic curve over
Z((q)) – although its coefficients lie in Z[[q]], one has to invert ∆:

Z[[q]][∆−1] = Z((q)).
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Tate curve

Where does this come from?
By a change of variables, the equation can be rewritten as

Y 2 = 4X 3 − 1
12E4(q)X + 1

216E6(q)

where Ek(q) = 1− 2k
Bk

∑∞
n=1 σk−1(n)qn is (the q-expansion

of) the Eisenstein series. This is only defined over Z[ 1
6 ], but

the previous equation always has Z-coefficients.
Let us interpret how this equation arises (bonus: canonical
differential ωcan on Tate(q)/Z((q))).
For simplicity, we work over Z[ 1

6 ].
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Tate curve

Given a lattice Λ, recall the Weierstrass parametrization

C/Λ→ P2

z 7→ [℘(z ; Λ), ℘′(z ; Λ), 1]

where ℘(z ; Λ) is the Weierstrass ℘-function

℘(z ; Λ) = 1
z2 +

∑
λ∈Λ−{0}

( 1
(z − λ)2 −

1
λ2

)
.

Consider the lattice Λτ := Z + Zτ , τ ∈ H. The exponential
map e2πi− : C/Z ∼→ C× induces an isomorphism

C/Λτ ∼→ C×/qZ

z 7→ e2πiz

where q = e2πiτ .
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Tate curve
In terms of the parameter u = e2πiz on C×/qZ, we rewrite

℘(z ; Λτ ) = F (u; q),
℘′(z ; Λτ ) = G(u; q).

Then F and G define an isomorphism C×/qZ ∼= Tate(q).
Transporting the canonical differential dz on C/Λτ to C×/qZ

gives:
Definition
The canonical differential ωcan on the Tate curve

Tate(q) : y2 + xy = x3 + a4(q)x + a6(q)

is
ωcan := dx

2y + x .
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Tate curve

For details, see [Katz, Appendix 1] and carry out the
calculations.
Over C, every elliptic curve is parametrized by (a
specialization of) the Tate curve; this is essentially by
construction (and Weierstrass parametrization).
In general, this is not true.

Example (Tate)
Over a p-adic field K , the formal power series involved in Tate(q)
turn out to be convergent for 0 < |q| < 1. Then Tate(q) is an
elliptic curve with |j | > 1, and we can identify

K×/qZ ∼= Tate(q)(K )

via F and G . Furthermore, this isomorphism is Galois-equivariant.
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Digression: Tate uniformization
In particular, any elliptic curve E/K with |j(E )| ≤ 1 cannot be
parametrized by the Tate curve.
Theorem (Tate)
Let K be a finite extension of Qp.

1 Given an elliptic curve E/K with |j(E )| > 1, there exists a
unique q ∈ K× with |q| < 1 such that E ∼= Tate(q) over K.

2 This isomorphism descends to K if and only if E has split
multiplicative reduction.

Remark
The isomorphism in (1) always descends to a quadratic
extension of K .
This result is what led Tate to introduce the Tate curve and
subsequently develop the theory of rigid analytic geometry.
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q-expansions

Idea
Understand Tate(q) as a family of elliptic curves over the
punctured disk.
The behavior at q = 0 tells us how the curve degenerates at
∞.

Let f ∈ M(R0; 1, k) be a modular form over R0.
Evaluating f at the Tate curve gives its q-expansion

f (Tate(q), ωcan) ∈ Z((q))⊗Z R0.

A priori this has a finite tail, so f can be thought of as being
automatically meromorphic at ∞.
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q-expansions

f is said to be holomorphic at ∞ if

f (Tate(q), ωcan) ∈ Z[[q]]⊗Z R0,

and a cusp form if

f (Tate(q), ωcan) ∈ qZ[[q]]⊗Z R0.

Warning: Z[[q]]⊗Z R0 ( R0[[q]].
The set of holomorphic modular forms is denoted

S(R0; 1, k) ⊂ M(R0; 1, k).

Remark (Notation)
Katz’s notation differs from the classical usage, where S and M
denote the cusp forms and holomorphic modular forms respectively.
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Higher levels

If there is a universal element in the moduli space of test
objects E/S, then we can simply pull back.
Unfortunately, there is no such element in the level 1 case.
Now we generalize for higher levels.
Fix a positive integer N, and S will denote a scheme over
Z[ 1

N ].

Remark
Katz–Mazur works with Drinfeld level structures, which allows
working over Z.
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Higher levels

Definition
A level N structure for E/S is an isomorphism of group schemes

αN : E [N] ∼→ (Z/NZ)2
S .

Remark
For this to exist, N has to be invertible on S.
If this exists (and S is connected), then the set of level N
structures is a torsor for GL2(Z/NZ).
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Modular forms of higher levels

The (meromorphic) modular forms of level N and weight k,
denoted M(R0; N, k), are rules f

(E/S, αN) 7→ f (E/S, αN) ∈ H0(S, ω⊗k
E/S)

or equivalently

(E/R, ω, αN) 7→ f (E/R, ω, αN) ∈ R

satisfying the evident properties.
To talk about q-expansions and holomorphicity at ∞, we need
to study the Tate curve.
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Tate curve at higher level

Definition
The Tate curve at level N is Tate(qN) over Z((q)) defined by

y2 + xy = x3 + a4(qN)x + a6(qN)

where a4 and a6 are as before. The canonical differential is

ωcan = dx
2y + x .

Fix a primitive N-th root of unity ζN .
The N-torsion of C×/qNZ is {ζ i

Nqj : 0 ≤ i , j ≤ N − 1}.
On Tate(qN), these are defined over Z[[q]]⊗Z Z[ζN ,

1
N ].
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q-expansions at higher level

Suppose R0 contains 1
N and ζN .

For each level N structure α on Tate(qN), the q-expansion of
f ∈ M(R0; N, k) at α is

f (Tate(qN), ωcan, α) ∈ Z((q))⊗Z R0.

Again, meromorphicity at ∞ is automatic.
f is holomorphic at ∞ (resp. a cusp form) if for all level N
structures α, its q-expansion at α belongs to Z[[q]]⊗Z R0
(resp. qZ[[q]]⊗Z R0).
The space of holomorphic forms is denoted
S(R0; N, k) ⊂ M(R0; N, k).
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Modular curves
A brief summary:

For N ≥ 3, there exists a (fine) moduli scheme Y (N)
parametrizing elliptic curves with level N structure:

S scheme over Z[ 1
N ] {(E/S, αN)}/ ∼ .

Y (N) is a smooth affine curve over Z[ 1
N ].

Its “compactification” X (N) is a smooth proper curve over
Z[ 1

N ].
These come with universal elliptic curves

E //

π
��

E

��

Y (N) // X (N).
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Modular curves

The invertible sheaf ω := π∗(ΩE/Y (N)) on Y (N) extends
uniquely to X (N) (“weight 1 modular forms”).

Theorem (Consequence of Kodaira–Spencer isomorphism)
For any Z[ 1

N ]-algebra R0, we have

S(R0; N, k) = H0(X (N), ω⊗k ⊗Z[ 1
N ] R0).

Definition
For any Z[ 1

N ]-module R0, we define

S(R0; N, k) := H0(X (N), ω⊗k ⊗Z[ 1
N ] R0).

Here ω⊗k ⊗Z[ 1
N ] R0 is a quasi-coherent sheaf on X (N).
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Modular curves

For level N = 1 or 2, Y (N) only exists as a coarse moduli
scheme.
Solution: Use stacks or the following trick.
Lift to a covering and descend back:

S(R0; 1, k) := S(R0; 3, k)GL2(Z/3Z)

and similarly for S(R0; 2, k).

Remark
Each statement in the summary above has an analogue in the
complex-analytic setting.
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