p-adic modular forms TCC (Spring 2021), Lecture 5

Pak-Hin Lee

18th February 2021

Administrative issues

Slides:

- Lectures 1-4: available on webpage
- Lecture 4 includes a corrected discussion of the special values $\zeta^*(1-k)$ on P.21-24.

Problem sheets:

- 3 sets for assessment
 - 22nd February (Monday of Week 6): posted
 - **2** 8th March (Monday of Week 8): available this weekend
 - 22nd March (Monday of Week 10): tentative
- available at least two weeks before deadlines

Administrative issues

Office hours:

- Time: starting next week
- Format: Q&A? Tutorial? Supplementary lectures?
- Content: Problem sheets? Geometric modular forms? Email:
 - Personal replies: I still owe many of you!
 - Survey: office hours, feedback, etc.

Plans

Today (mostly):

- Recap
- Hecke operators on *p*-adic modular forms
- Applications of U_p -operator: constant terms; congruences
- Note: I want to illustrate two important principles, while omitting many details.

Today (briefly):

- $\bullet\,$ Weierstrass parametrization of elliptic curves over ${\bf C}$
- Crash course on geometric modular forms: next week (possibly during office hours?)

Recap: *p*-adic modular forms

- *f* ∈ Q_p[[*q*]] is a (Serre) *p*-adic modular form if it is the limit of a sequence of classical modular forms *f_i* ∈ *M_{ki}*, Q.
- f has a well-defined notion of weight: k_i converges to $k \in \mathfrak{X} = \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$ (group of characters of \mathbb{Z}_p^{\times}).
- Slogan: The non-constant coefficients a_n (for n ≥ 1) govern the constant term a₀.

Example

- *p*-adic Eisenstein series G_k^*
- *p*-adic zeta function $\zeta^*(s)$
- Today: formula for a₀ in certain cases

Hecke operators T_{ℓ} for $\ell \neq p$

• Recall **Hecke operators** on classical modular forms: If $f = \sum_{n=0}^{\infty} a_n q^n \in M_k$, then for ℓ prime,

$$f|_k T_\ell = \sum_{n=0}^\infty a_{n\ell} q^n + \ell^{k-1} \sum_{n=0}^\infty a_n q^{n\ell} \in M_k$$

- Recall: for each fixed d ∈ Z[×]_p, the map 𝔅 → Q[×]_p, k ↦ d^k is continuous.
- Last week: T_{ℓ} behaves well under *p*-adic limits so long as $\ell \neq p$. (More precisely, if $f_i \in M_{k_i}$ tends to $f \in M_k^{\dagger}$, then $f_i|_{k_i}T_{\ell} \in M_{k_i}$ tends to $f|_k T_{\ell} \in M_k^{\dagger}$ given by the same formula.)
- Hence for $\ell
 eq p$, T_ℓ acts on $f = \sum_{n=0}^\infty a_n q^n \in M_k^\dagger$ by

$$f|_k T_\ell := \sum_{n=0}^\infty a_{n\ell} q^n + \ell^{k-1} \sum_{n=0}^\infty a_n q^{n\ell} \in M_k^{\dagger}.$$

Hecke operator U_p

For $\ell = p$, the behavior of p^{k_i-1} is erratic even when $k_i \to k \in \mathfrak{X}$.

Idea

- We have seen that every sequence $k_i \in \mathbb{Z}$ tending to $k \in \mathfrak{X}$ can be replaced by one for which $k_i \to \infty$ in \mathbb{R} .
- This can be done even for a sequence $f_i \in M_{k_i}$ tending to $f \in M_k^{\dagger}$, as follows.
- Since $E_{p^m(p-1)} \equiv 1 \pmod{p^{m+1}}$, replacing f_i by $f_i \cdot E_{p^{m_i}(p-1)}$ (where $m_i \gg 0$) has the effect of replacing k_i by $k_i + p^{m_i}(p-1)$, and therefore:
 - $f_i \to f$ in $\mathbf{Q}_p[[q]]$.
 - $k_i \rightarrow k$ in \mathfrak{X} .
 - $k_i \to \infty$ in **R**.

This trick can always be applied to ensure $k_i \to \infty$, whenever we have $f_i \in M_{k_i}$ tending to $f \in M_k^{\dagger}$.

Hecke operator U_p

The condition $k_i \to \infty$ implies $p^{k_i-1} \to 0 \in \mathbf{Q}_p$, so

$$f_i|_{k_i} T_p = \sum_{n=0}^{\infty} a_{np}^{(i)} q^n + p^{k_i - 1} \sum_{n=0}^{\infty} a_n^{(i)} q^{np} \in M_{k_i}$$

tends to

$$f|U_p:=\sum_{n=0}^\infty a_{np}q^n.$$

Hence this defines a *p*-adic modular form of weight $k = \lim k_i$.

Remark (Notation)

For classical modular forms of level N divisible by p, T_p is denoted by U_p and $f|U_p$ is given by the same formula.

Hecke operator V_p

Question

What about the part
$$f|V_p:=\sum_{n=0}^\infty a_n q^{np}$$
?

Remark (Notation)

Classically, the level-raising operator $(f|V_p)(z) := f(pz)$ is given by the same formula.

As formal power series in $\mathbf{Q}_{p}[[q]]$, we have

$$f_i|V_p = p^{1-k_i}(f_i|_{k_i}T_p - f_i|U_p),$$

where:

- $f_i|_{k_i}T_p \in M_{k_i}$ is a **classical** modular form;
- $f_i | U_p \in M_{k_i}^{\dagger}$ is a *p*-adic modular form.

Thus $f_i | V_p \in M_{k_i}^{\dagger}$.

Hecke operator V_p

Now

$$f_i|V_p = \sum_{n=0}^{\infty} a_n^{(i)} q^{np} \in M_{k_i}^{\dagger}$$

tends to

$$f|V_p=\sum_{n=0}^\infty a_n q^{np}.$$

Hence this defines a *p*-adic modular form of weight $k = \lim k_i$.

Remark

This is slightly tricky: $f|V_p$ is more readily seen as a limit of *p*-adic modular forms (rather than classical modular forms).

Hecke operators on *p*-adic modular forms

Definition (Hecke operators)

Let $f = \sum_{n=0}^{\infty} a_n q^n \in \mathbf{Q}_p[[q]]$. Define

$$f|U_p := \sum_{n=0}^{\infty} a_{np} q^n,$$
$$f|V_p := \sum_{n=0}^{\infty} a_n q^{np}.$$

If $\ell \neq p$ is a prime and $k \in \mathfrak{X}$, define

$$f|_k T_\ell := \sum_{n=0}^\infty a_{n\ell} q^n + \ell^{k-1} \sum_{n=0}^\infty a_n q^{n\ell}.$$

Hecke operators on *p*-adic modular forms

We have shown:

Theorem (théorème 4, P.209)

If f is a p-adic modular form of weight $k \in \mathfrak{X}$, then so are $f|U_p$, $f|V_p$ and $f|_k T_\ell$ for any prime $\ell \neq p$.

Example: *p*-adic Eisenstein series

Recall the *p*-adic Eisenstein series

$$G_k^*=rac{1}{2}\zeta^*(1-k)+\sum_{n=1}^\infty\sigma_{k-1}^*(n)q^n\in M_k^\dagger.$$

Problem Sheet 2:

- \$G_k^*|T_{\ell} = (1 + \ell^{k-1})G_k^*\$.
 \$G_k^*|U_p = G_k^*\$.
 \$G_k^* = G_k|(1 p^{k-1}V_p)\$ for \$k \in \mathbb{Z}_{\geq 2}\$ even.
 (3) can be used to show:
 - $\zeta^*(1-k) = (1-p^{k-1})\zeta(1-k)$ for $k \in \mathbb{Z}_{\geq 2}$ even.
 - *E*₂ is a *p*-adic modular form of weight 2.

Theta operators on *p*-adic modular forms

Recall the theta operator:

- Θ almost acts on classical modular forms, up to a factor of *P*.
- Θ acts on mod p modular forms M.

Theorem (théorème 5, P.211)

If $f = \sum a_n q^n$ is a p-adic modular form of weight $k \in \mathfrak{X}$, then:

1

$$\Theta f := q rac{df}{dq} = \sum_{n=0}^{\infty} n a_n q^n$$

is a p-adic modular form of weight k + 2.

2 For $h \in \mathfrak{X}$,

$$f|R_h := \sum_{(n,p)=1} n^h a_n q^n$$

is a p-adic modular form of weight k + 2h.

) ৭ ে 14 / 34

Motivation

Idea

Slogan: The U_p -operator has a good spectral theory.

- For Serre *p*-adic modular forms, this follows from a contraction property of U_p on mod p modular forms, which controls the filtration degree w(*f*).
- In the geometric theory, we will see that U_p is a compact (or "completely continuous") operator.

U_p -operator on mod p modular forms

On classical modular forms of weight k (and level 1),

$$f|_k T_p = \sum_{n=0}^{\infty} a_{np} q^n + p^{k-1} \sum_{n=0}^{\infty} a_n q^{np} \in M_k.$$

Reduction mod p gives

$$f|_k T_p \equiv \sum_{n=0}^{\infty} a_{np} q^n = f|U_p \pmod{p}.$$

This shows U_p defines an operator on M_k , and hence on

$$\widetilde{M}^lpha = igcup_{k\equiv lpha} igcup_{({\sf mod} \ p-1)} \widetilde{M}_k, \quad lpha \in {\sf Z}/(p-1){\sf Z}.$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 16 / 34

Contraction property of U_p

The U_p -operator satisfies the following contraction property.

Theorem (théorème 6, P.212)

• If
$$k > p + 1$$
, then $U_p(\widetilde{M}_k) \subset \widetilde{M}_{k'}$ for some $k' < k$.

2
$$U_p: M_{p-1} \to M_{p-1}$$
 is an isomorphism.

Remark

Note that in (1), we necessarily have $k' \equiv k \pmod{p-1}$ by the structure theorem

$$\widetilde{M} = \bigoplus_{\alpha \in \mathbf{Z}/(p-1)\mathbf{Z}} \widetilde{M}^{\alpha}.$$

Contraction property of U_p

Picture:

• Recall the filtration on \widetilde{M}^{lpha}

$$\widetilde{M}_{lpha} \subset \widetilde{M}_{lpha+(p-1)} \subset \widetilde{M}_{lpha+2(p-1)} \subset \cdots$$

- Start with any $\tilde{f} \in \widetilde{M}_k$.
- Applying U_p brings it down the filtration.
- Repeating this, $U_p^m \tilde{f}$ lands in $\widetilde{M}_{k'}$ for some $k' \leq p+1$.
- The space $\widetilde{M}_{k'}$ is finite-dimensional!

Proof of contraction property

The proof uses the filtration degree $w(\tilde{f})$. As usual, let $p \ge 5$.

Lemma (lemme 2, P.213)

Let
$$f \in M_{k, \mathbb{Z}_{(p)}}$$
 with $\tilde{f} \neq 0$. Then
• $w(\tilde{f}|U_p) \leq p + \frac{w(\tilde{f}) - 1}{p}$.
• If $w(\tilde{f}) = p - 1$, then $w(\tilde{f}|U_p) = p - 1$.

See Serre for the proofs of:

- Iemme 2;
- lemme 2 \implies théorème 6.

Some linear algebra

Lemma

Let V be a finite-dimensional vector space and T be an operator on V. Then there is a unique decomposition

 $V = S \oplus N$

such that T is bijective on S and nilpotent on N.

Proof.

Let $d = \dim V$. Then define

$$S := \bigcap_{i=1}^{\infty} \operatorname{im}(T^i) = \operatorname{im}(T^d),$$

 $N := \bigcup_{i=1}^{\infty} \operatorname{ker}(T^i) = \operatorname{ker}(T^d).$

20/34

Spectral decomposition of mod p modular forms

In general this cannot be done for infinite-dimensional spaces, but the contraction property of U_p allows for an analogous decomposition of \widetilde{M}^{α} .

Theorem (corollaire, P.214)

Let $p \geq 5$ and $\alpha \in \mathbf{Z}/(p-1)\mathbf{Z}$ be even.

• There is a unique decomposition

$$\widetilde{M}^{lpha} = \widetilde{S}^{lpha} \oplus \widetilde{N}^{lpha}$$

such that U_p is bijective on \widetilde{S}^{α} and locally nilpotent on \widetilde{N}^{α} .

 ^{Sα} ⊂ M_j, where j ∈ α is such that 4 ≤ j ≤ p + 1. In particular, S^α is finite-dimensional.

• For
$$\alpha = 0$$
, we have $\widetilde{S}^0 = \widetilde{M}_{p-1}$.

21 / 34

Spectral decomposition of mod p modular forms

Remark

- *S*^α is called the ordinary part of *M*^α, and is the image of the ordinary projector e = lim_{n→∞} U^{n!}_p on *M*^α.
- "Locally nilpotent on N
 ^α" means for every v ∈ N
 ^α, there exists m ∈ Z such that U^m_pv = 0 (note that m depends on v because N
 ^α is infinite-dimensional).
- There is a similar statement for p = 2 or 3, which we omit.

Spectral decomposition of mod p modular forms

This has the following implication for *p*-adic modular forms.

- For mod p modular forms, U_p is **locally nilpotent** on \widetilde{N}^{α} .
- For *p*-adic modular forms, U_p is **topologically nilpotent** on the preimage of \tilde{N}^{α} .

Lemma (generalizing lemme 3, P.216)

If
$$g\in M_k^\dagger$$
 with $\widetilde{g}\in\widetilde{N}^lpha$, then

$$\lim_{m\to\infty}g|U_p^m=0.$$

See Problem Sheet 2.

Application: Constant terms

Recurring theme: The non-constant coefficients of a *p*-adic modular form control its constant term.

Theorem (théorème 7, P.215; remarque, P.216)

Let $f = \sum_{n=0}^{\infty} a_n(f)q^n \in M_k^{\dagger}$ with $k \neq 0 \in \mathfrak{X}$ and $k \equiv 4, 6, 8, 10, 14 \pmod{p-1}$. Then

$$a_0(f)=rac{1}{2}\zeta^*(1-k)\lim_{n
ightarrow\infty}a_{p^n}(f).$$

- p ≤ 7: stated and proved in théorème 7; condition on k (mod p − 1) is automatic
- $p \ge 11$: stated in remarque; follows a similar argument

Application: Constant terms

Proof sketch:

• The condition on $k \pmod{p-1}$ guarantees that the ordinary part \tilde{S}^{α} is one-dimensional and spanned by \tilde{E}_{k_0} where $k_0 \in \{4, 6, 8, 10, 14\}$.

Write

$$f = \frac{a_0(f)}{\frac{1}{2}\zeta^*(1-k)}G_k^* + g$$

where g is a cusp form (i.e. $a_0(g) = 0$).

• Under the decomposition $\widetilde{M}^lpha = \widetilde{S}^lpha \oplus \widetilde{N}^lpha$, we see that

$$\widetilde{g} \in \widetilde{N}^{\alpha}.$$

イロン 不得 とうほう イロン 二日

Application: Constant terms

Proof sketch (continued):

- Show the formula for G_k^* and g respectively.
- For G_k^* , this is clear from its explicit formula:

$$a_0(G_k^*) = rac{1}{2}\zeta^*(1-k),$$

 $a_{p^n}(G_k^*) = \sigma_{k-1}^*(p^n) = 1.$

• For g with $\tilde{g} \in \tilde{N}^{\alpha}$, this follows from the topological nilpotence of U_p :

 $\lim_{m\to\infty}g|U_p^m=0;$

taking the Fourier coefficient at n = 1 gives

$$a_1(g|U_p^m)=a_{p^m}(g).$$

26 / 34

Application: Constant terms

Remark

- For general $f \in M_k^{\dagger}$ with $k \neq 0$, there exists a (complicated!) universal formula for calculating $a_0(f)$ in terms of $a_n(f)$ see Serre's discussion on P.217-222.
- The complication is caused by the fact that the ordinary part \widetilde{S}^{α} is not necessarily one-dimensional.
- This would make a good project for those of you interested in the computational aspects of *p*-adic modular forms.

Application: Congruences for *j*-invariant

Take as black box the main result of §3:

Theorem (théorème 10, P.226; remarque, P.228)

Let $f = \sum a_n q^n$ be a (meromorphic) modular form of weight k on $\Gamma_0(p)$ with $a_n \in \mathbf{Q}$, which is holomorphic at ∞ and meromorphic at 0. Then f is a p-adic modular form of weight k.

Remark

 $\Gamma_0(p)$ has two cusps at ∞ and 0.

Idea

Slogan: *p*-adic modular forms of level *N* see all classical forms of level Np^m .

Application: Congruences for *j*-invariant

Example

The *j*-invariant

$$j(z) = q^{-1} + 744 + \sum_{n=1}^{\infty} c(n)q^n, \quad c(n) \in \mathbf{Z}$$

is a meromorphic modular function on ${\rm SL}_2({\boldsymbol Z}),$ with a simple pole at $\infty.$ Now

$$(j|U_p)(z) = 744 + \sum_{n=1}^{\infty} c(pn)q^n$$

is a meromorphic modular function on $\Gamma_0(p)$, with a pole of order p at 0. Thus the theorem implies

$$j|U_p\in M_0^\dagger.$$

29 / 34

Application: Congruences for *j*-invariant

Recall that Lehner (1949) and Atkin (1966) imply:

Theorem

For $p \leq 11$ and $n \in \mathbf{Z}_{\geq 1}$, $c(p^m n) \rightarrow 0$ in \mathbf{Q}_p as $m \rightarrow \infty$.

Proof.

We have seen that
$$j|U_p \in M_0^{\dagger}$$
. For $\alpha = 0 \in \mathbf{Z}/(p-1)\mathbf{Z}$,

$$\widetilde{M}^{0} = \widetilde{S}^{0} \oplus \widetilde{N}^{0} \stackrel{\text{by}}{=} \stackrel{\alpha=0}{=} \widetilde{M}_{p-1} \oplus \widetilde{N}^{0} \stackrel{\text{by}}{=} \stackrel{p\leq 11}{=} \mathbf{F}_{p} \oplus \widetilde{N}^{0},$$

so that $j|U_p - 744 \in \widetilde{N}^0$. By the previous lemma,

$$(j|U_p-744)|U_p^m
ightarrow 0$$
 as $m
ightarrow\infty,$

i.e. $(j - 744)|U_p^m \to 0$. Its *n*-th Fourier coefficient is $c(p^m n)$.

Geometric modular forms

Goal

Interpret modular forms using algebraic geometry.

- Complex analysis: Modular forms are initially defined as holomorphic functions on **H** satisfying a transformation property.
- Lattices: Interpret as functions on lattices $\Lambda \subset \boldsymbol{C}.$
- Weierstrass parametrization: Interpret as functions on elliptic curves over **C** (with additional data).
- Algebraic geometry: Generalize this for elliptic curves over any ring (or scheme).

Elliptic curves over C

Weierstrass parametrization: For a lattice $\Lambda \subset C$, the complex torus C/Λ has the structure of an elliptic curve with equation

$$y^2 = 4x^3 - 60G_4(\Lambda)x - 140G_6(\Lambda)$$

where

$$G_{2k}(\Lambda) := \sum_{\lambda \in \Lambda - \{0\}} \frac{1}{\lambda^{2k}}.$$

The isomorphism is given by

$$\begin{split} x &= \wp(z;\Lambda) := \frac{1}{z^2} + \sum_{\lambda \in \Lambda - \{0\}} \left(\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2} \right), \\ y &= \wp'(z;\Lambda) = - \sum_{\lambda \in \Lambda} \frac{2}{(z-\lambda)^3}. \end{split}$$

32 / 34

3

イロト 不得 トイヨト イヨト

Elliptic curves over C

- Homothety: Two lattice Λ and Λ' are homothetic, denoted Λ ~ Λ' if Λ = μΛ' for some μ ∈ C[×].
- Two homothetic lattices give rise to isomorphic elliptic curves, and vice versa:

$$\Lambda \sim \Lambda' \iff \mathbf{C}/\Lambda \cong \mathbf{C}/\Lambda'.$$

• Weierstrass parametrization: There is a bijection

$$\begin{aligned} \label{eq:constraint} \{ \mathsf{Lattices in} \; \mathbf{C} \} / \sim &\longleftrightarrow \{ \mathsf{Elliptic \ curves \ over \ } \mathbf{C} \} / \cong \\ & \Lambda \longmapsto \mathbf{C} / \Lambda. \end{aligned}$$

Modular forms as functions on lattices

• Every lattice is homothetic to one of the form

$$\mathbf{Z}\tau + \mathbf{Z}, \quad \tau \in \mathbf{H}.$$

We have

$$\mathbf{Z} au + \mathbf{Z} \sim \mathbf{Z} au' + \mathbf{Z} \iff au' = rac{a au + b}{c au + d}, \quad egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z}).$$

• Modular forms of weight k can be interpreted as functions on lattices satisfying

$$F(\mu\Lambda) = \mu^{-k}F(\Lambda).$$

This correspondence is given by $f(\tau) = F(\mathbf{Z}\tau + \mathbf{Z})$.

Example

$$G_{2k}(\mu\Lambda) = \mu^{-2k} G_{2k}(\Lambda).$$