p-adic modular forms
 TCC (Spring 2021), Lecture 4

Pak-Hin Lee

11th February 2021

Administrative issues

Slides:

- Lectures 1-3 available on webpage

Problem sheets:

- 3 sets for assessment
(1) 22nd February (Monday of Week 6): posted!
(2) 5th March (Friday of Week 7): tentative
(3) 19th March (Friday of Week 9): tentative
- available two weeks before deadlines

Plans

Today:

- Recap
- Properties of Serre's p-adic modular forms
- Application 1: p-adic zeta functions
- Hecke operators on p-adic modular forms

Next week:

- Hecke operators, continued
- Application 2: constant terms; congruences
- Geometric modular forms

Recap: p-adic modular forms a là Serre

- $f \in \mathbf{Q}_{p}[[q]]$ is a p-adic modular form if it is the limit of a sequence of classical modular forms $f_{i} \in M_{k_{i}, \mathbf{Q}}$.
- f has a well-defined notion of weight: k_{i} converges to $k \in \mathfrak{X}=\mathbf{Z}_{p} \times \mathbf{Z} /(p-1) \mathbf{Z}$ (group of characters of \mathbf{Z}_{p}^{\times}).

Example

- For any odd $p, E_{p-1}^{-1} \in M_{1-p}^{\dagger}$.
- Problem Sheet 1: For $p=5, M_{0}^{\dagger}=\mathbf{Q}_{5}\left\langle j^{-1}\right\rangle$.
- Today: p-adic Eisenstein series

Properties of p-adic modular forms

Our previous results on congruences and weights carry over to p-adic modular forms, by a basic limiting argument:

Theorem (théorème 1', P.203)
Suppose $f \in M_{k}^{\dagger}$ and $f^{\prime} \in M_{k^{\prime}}^{\dagger}$ satisfy $f \neq 0$ and

$$
v_{p}\left(f-f^{\prime}\right) \geq v_{p}(f)+m
$$

for some $m \geq 1$. Then k and k^{\prime} have the same image in \mathfrak{X}_{m}.

Properties of p-adic modular forms

Theorem (P.202)

Suppose $f \neq 0 \in \mathbf{Q}_{p}[[q]]$, and there is a sequence of p-adic modular forms $f_{i} \in M_{k_{i}}^{\dagger}$ with $f_{i} \rightarrow f$. Then:

- $k=\lim k_{i} \in \mathfrak{X}$ exists;
- f is a p-adic modular form of weight k.

Thus M^{\dagger} is a p-adic Banach space (as a closed subspace of $\mathbf{Z}_{p}[[q]] \otimes \mathbf{Q}_{p}$), equipped with a continuous map $M^{\dagger} \rightarrow \mathfrak{X}$ (weight map).

Remark

This is useful for f which is more easily seen as a limit of p-adic (rather than classical) modular forms.

Properties of p-adic modular forms

Corollary (corollaire 1, P.203)
Let $f=\sum a_{n} q^{n} \in M_{k}^{\dagger}$ with $k \neq 0 \in \mathfrak{X}_{m+1}$ for some m (i.e. $\left.p^{m}(p-1) \nmid k\right)$. Then

$$
v_{p}\left(a_{0}\right)+m \geq \inf _{n \geq 1} v_{p}\left(a_{n}\right)
$$

Proof.

If $a_{0}=0$ there is nothing to prove. Otherwise, set $f^{\prime}=a_{0} \in M_{0}^{\dagger}$, so that

$$
v_{p}\left(f-f^{\prime}\right)=\inf _{n \geq 1} v_{p}\left(a_{n}\right)
$$

Since $k \neq 0 \in \mathfrak{X}_{m+1}$, the contrapositive of the theorem shows

$$
v_{p}\left(f-f^{\prime}\right)<v_{p}\left(f^{\prime}\right)+(m+1) \leq v_{p}\left(a_{0}\right)+m+1
$$

Properties of p-adic modular forms

As an immediate (but non-trivial?) consequence, this shows that non-zero constants cannot be p-adic modular form of weights $k \neq 0$.

Example

Suppose $f=a_{0}$ is a p-adic modular form of weight $k \neq 0$. Then $k \neq 0 \in \mathfrak{X}_{m+1}$ for sufficiently large m, so the corollary gives

$$
v_{p}\left(a_{0}\right)+m \geq \inf _{n \geq 1} v_{p}\left(a_{n}\right)=\infty
$$

This forces $a_{0}=0$.
This will be used in the proof of the next theorem.

Properties of p-adic modular forms

The corollary gives a condition on the p-divisibility of a_{0} in terms of a_{n} for $n \geq 1$. More concretely:

Example

In the setting of the corollary:

- If a_{n} are p-integral for all $n \geq 1$, then so is $p^{m} a_{0}$.
- When $(p-1) \nmid k, m$ can be taken to be 0 .

Even for classical modular forms, this is a new result!

Idea

Slogan: For p-adic modular forms, the non-constant Fourier coefficients govern the constant term.

Properties of p-adic modular forms

This is already remarkable, but the following is even more drastic:

Theorem (corollaire 2, P.204)

Let $f_{i}=\sum_{n=0}^{\infty} a_{n}^{(i)} q^{n} \in M_{k_{i}}^{\dagger}$ be a sequence of p-adic modular forms of weights k_{i} such that

- $\lim _{i \rightarrow \infty} a_{n}^{(i)}=a_{n} \in \mathbf{Q}_{p}$ uniformly for all $n \geq 1$;
- $\lim _{i \rightarrow \infty} k_{i}=k \neq 0 \in \mathfrak{X}$.

Then:

- $a_{0}=\lim _{i \rightarrow \infty} a_{0}^{(i)} \in \mathbf{Q}_{p}$ exists;
- $f=\sum_{n=0}^{\infty} a_{n} q^{n}$ is a p-adic modular form of weight k.

Properties of p-adic modular forms

Remark

- Thus to prove that a sequence of p-adic modular forms converges, it is enough to check that all the non-constant terms and the weights converge.
- At first glance this might not seem very useful...
- We will apply this to the Eisenstein series, for which the conditions on $a_{n}^{(i)}$ and $k^{(i)}$ are easy to check - not so much for the constant terms (zeta values)!

Proof of theorem

Idea

How to find a_{0} ?

- Use previous corollary to bound $\left\{a_{0}^{(i)}\right\} \subset \mathbf{Q}_{p}$.
- Use a compactness argument to find the limit.

Proof of theorem:

- Since $k \neq 0$, there exists $m \geq 1$ such that $k \neq 0 \in \mathfrak{X}_{m+1}$.
- By $\lim k_{i}=k$, the same holds for all $i \gg 0$:

$$
k_{i} \neq 0 \in \mathfrak{X}_{m+1} .
$$

- By uniform convergence, there exists $t \in \mathbf{Z}$ such that

$$
v_{p}\left(a_{n}^{(i)}\right) \geq t
$$

for all $n \geq 1$ and all $i \gg 0$.

Proof of theorem

- Applying the corollary to $f_{i}=\sum a_{n}^{(i)} q^{n} \in M_{k_{i}}^{\dagger}$ with $k_{i} \neq 0 \in \mathfrak{X}_{m+1}$, we get

$$
v_{p}\left(a_{0}^{(i)}\right)+m \geq \inf _{n \geq 1} v_{p}\left(a_{n}^{(i)}\right)
$$

and hence

$$
v_{p}\left(a_{0}^{(i)}\right) \geq t-m
$$

for all $i \gg 0$.

- Thus $\left\{a_{0}^{(i)}\right\}_{i}$ lies in the compact subset $p^{t-m} \mathbf{Z}_{p} \subset \mathbf{Q}_{p}$.
- To prove $a_{0}^{(i)}$ converges, it suffices to show every convergent subsequence has the same limit.

Proof of theorem

- Suppose some subsequence $a_{0}^{\left(i_{j}\right)}$ converges to $a_{0} \in \mathbf{Q}_{p}$. Then

$$
f:=\lim _{j \rightarrow \infty} f_{i j}=a_{0}+\sum_{n=1}^{\infty} a_{n} q^{n}
$$

is a p-adic modular form of weight k.

- If $a_{0}^{\left(i_{j}^{\prime}\right)}$ is another subsequence convergent to $a_{0}^{\prime} \in \mathbf{Q}_{p}$, then

$$
f^{\prime}:=\lim _{j \rightarrow \infty} f_{i_{j}^{\prime}}=a_{0}^{\prime}+\sum_{n=1}^{\infty} a_{n} q^{n}
$$

is also a p-adic modular form of weight k.

- Now their difference

$$
f-f^{\prime}=a_{0}-a_{0}^{\prime}
$$

is a p-adic modular form of weight k and weight 0 .

- Since $k \neq 0$, we conclude $a_{0}-a_{0}^{\prime}=0$ as desired.

Application: p-adic zeta function

For k even, recall the Eisenstein series

$$
\begin{aligned}
G_{k} & =-\frac{B_{k}}{2 k}+\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \\
& =\frac{1}{2} \zeta(1-k)+\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} .
\end{aligned}
$$

Idea

For suitable sequences $k_{i} \rightarrow k \in \mathfrak{X}$, the non-constant coefficients converge for all $n \geq 1 \Longrightarrow$ the constant terms converge to the p-adic zeta function!

p-adic weights

Remark (p-adic weights)

- Recall that a p-adic weight $k \in \mathfrak{X}$ is a continuous character $k: \mathbf{Z}_{p}^{\times} \rightarrow \mathbf{Z}_{p}^{\times}$.
- For $d \in \mathbf{Z}_{p}^{\times}$,

$$
d^{k}:=k(d)
$$

makes sense; this notation extends d^{k} for integral weights $k \in \mathbf{Z}$.

- For each fixed $d \in \mathbf{Z}_{p}^{\times}$, this gives a continuous map

$$
\begin{aligned}
\mathfrak{X} & \rightarrow \mathbf{Q}_{p}^{\times} \\
k & \mapsto d^{k}
\end{aligned}
$$

with respect to the p-adic topology (check this!).

p-adic divisor sums

Definition

For $k \in \mathfrak{X}$ and $n \in \mathbf{Z}_{\geq 1}$, define

$$
\sigma_{k-1}^{*}(n):=\sum_{\substack{d \mid n \\(d, p)=1}} d^{k-1}
$$

Remark

The condition $(d, p)=1$ ensures $d \in \mathbf{Z}_{p}^{\times}$, so that d^{k-1} is well-defined for general $k \in \mathfrak{X}$.

- Suppose $k_{i} \in \mathbf{Z}$ converges to $k \in \mathfrak{X}$.
- Replacing k_{i} by $k_{i}+p^{m_{i}}(p-1)$ (where $m_{i} \gg 0$), we may assume additionally that $k_{i} \rightarrow \infty$ in \mathbf{R}.

p-adic divisor sums

- For each fixed $n \in \mathbf{Z}_{\geq 1}$,

$$
\begin{aligned}
\sigma_{k_{i}-1}(n) & =\sum_{d \mid n} d^{k_{i}-1} \\
& =\sum_{\substack{d \mid n \\
(d, p)=1}} d^{k_{i}-1}+\sum_{\substack{d|n \\
p| d}} d^{k_{i}-1}
\end{aligned}
$$

- As $i \rightarrow \infty$:
- For d prime to $p, d^{k_{i}-1} \rightarrow d^{k-1}$ because $k_{i} \rightarrow k$ in \mathfrak{X}.
- For d divisible by $p, d^{k_{i}-1} \rightarrow 0$ because $k_{i} \rightarrow \infty$ in \mathbf{R}.

Thus

$$
\sigma_{k_{i}-1}(n) \rightarrow \sum_{\substack{d \mid n \\(d, p)=1}} d^{k-1}+0=\sigma_{k-1}^{*}(n)
$$

- Moreover, this convergence is uniform in n (check this!).

p-adic Eisenstein series

- Suppose $k \neq 0 \in \mathfrak{X}$ is even (i.e. $k \in 2 \mathfrak{X}$).
- Pick a sequence of even integers $k_{i} \geq 4$ as above.
- By the theorem, the sequence

$$
G_{k_{i}}=\frac{1}{2} \zeta\left(1-k_{i}\right)+\sum_{n=1}^{\infty} \sigma_{k_{i}-1}(n) q^{n}
$$

converges to a p-adic modular form of weight k.

Proposition (p-adic Eisenstein series)

For even $k \in \mathfrak{X}-\{0\}$, there is a p-adic modular form of weight k

$$
G_{k}^{*}:=a_{0}+\sum_{n=1}^{\infty} \sigma_{k-1}^{*}(n) q^{n}
$$

where $a_{0}=\lim _{i \rightarrow \infty} \frac{1}{2} \zeta\left(1-k_{i}\right)$.

p-adic zeta function

Denote the constant term a_{0} by

$$
\frac{1}{2} \zeta^{*}(1-k):=\lim _{i \rightarrow \infty} \frac{1}{2} \zeta\left(1-k_{i}\right) .
$$

Definition (p-adic zeta function)

$\zeta^{*}(s)$ defines a function on the odd elements of $\mathfrak{X}-\{1\}$.
Continuity:

- Suppose $k_{i} \rightarrow k$, all of which are even elements of $\mathfrak{X}-\{0\}$.
- Then the non-constant coefficients of $G_{k_{i}}^{*}$ tend to those of G_{k}^{*} uniformly.
- By the theorem, $\frac{1}{2} \zeta^{*}\left(1-k_{i}\right) \rightarrow \frac{1}{2} \zeta^{*}(1-k)$.

p-adic zeta function: special values

Question

What are the special values $\zeta^{*}(1-k)$ for $k \in \mathbf{Z}_{\geq 2}$ even?

Warning:

- $\zeta^{*}(1-k)$ is constructed as the limit of $\zeta\left(1-k_{i}\right)$ for a sequence $k_{i} \rightarrow k$ (in \mathfrak{X}) satisfying $k_{i} \rightarrow \infty$ (in \mathbf{R}), so a priori

$$
\zeta^{*}(1-k) \neq \zeta(1-k)
$$

even when $k \in \mathbf{Z}_{\geq 2}$!

- Here is a formal (but bogus!) calculation:

$$
\begin{aligned}
\zeta^{*}(1-k) & =\lim _{i \rightarrow \infty} \zeta\left(1-k_{i}\right) \stackrel{?!}{=} \lim _{i \rightarrow \infty} \prod_{\ell} \frac{1}{1-\ell^{k_{i}-1}} \\
& =\prod_{\ell \neq p} \frac{1}{1-\ell^{k-1}} \stackrel{?!}{=}\left(1-p^{k-1}\right) \zeta(1-k)
\end{aligned}
$$

p-adic zeta function: special values

Proposition

For $k \in \mathbf{Z}_{\geq 2}$ even, $\zeta^{*}(1-k)=\left(1-p^{k-1}\right) \zeta(1-k)$.

- Serre deduces this from théorème 3 on P.206-207, by identifying ζ^{*} as the Kubota-Leopoldt p-adic zeta function.
- However, it seems more natural to turn the development around: an alternative calculation of $\zeta^{*}(1-k)$ would imply théorème 3.
- It is possible to do this using the Hecke operator V_{p}, which acts on $f=\sum_{n=0}^{\infty} a_{n} q^{n} \in \mathbf{Q}_{p}[[q]]$ via

$$
f \mid V_{p}:=\sum_{n=0}^{\infty} a_{n} q^{n p}
$$

We shall see later that V_{p} preserves the space of p-adic modular forms M_{k}^{\dagger}.

p-adic zeta function: special values

Taking the operator V_{p} for granted, we can relate

$$
G_{k}^{*}=\frac{1}{2} \zeta^{*}(1-k)+\sum_{n=1}^{\infty} \sigma_{k-1}^{*}(n) q^{n}
$$

and

$$
G_{k}=\frac{1}{2} \zeta(1-k)+\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

Lemma

If $k \in \mathbf{Z}_{\geq 2}$ is even, then

$$
G_{k}^{*}=G_{k} \mid\left(1-p^{k-1} V_{p}\right)
$$

See Problem Sheet 2.

p-adic zeta function

- Comparing the constant terms yields

$$
\zeta^{*}(1-k)=\left(1-p^{k-1}\right) \zeta(1-k) .
$$

- Summary: ζ^{*} is a continuous function on the odd elements of $\mathfrak{X}-\{1\}$ and interpolates the values $\left(1-p^{k-1}\right) \zeta(1-k)$ at the negative odd integers (a dense subset of \mathfrak{X} !).
- Therefore, ζ^{*} must coincide with the Kubota-Leopoldt p-adic zeta function L_{p} - see théorème 3 on P. 206 for a precise statement.

p-adic zeta function

Remark

- This gives a clean construction of the p-adic zeta function.
- But this doesn't come for free!
- In the development of mod p and p-adic modular forms:
(1) Clausen-von Staudt theorem ("elementary"): used extensively for E_{p-1} and $E_{p^{m}(p-1)}$
(2) Kummer congruence ("deep"): used to show $E_{p+1} \equiv E_{2}$ $(\bmod p)$
- In particular, it seems impossible to completely avoid the use of Kummer congruence; the whole theory relies upon the single instance of $E_{p+1} \equiv E_{2}(\bmod p)$.

p-adic zeta function for totally real fields

Let K be a totally real number field.

- Dedekind zeta function of K :

$$
\zeta_{K}(s):=\sum_{\substack{0 \neq \mathfrak{a} \subset \mathcal{O}_{K} \\ \text { ideal }}} N \mathfrak{a}^{-s}=\prod_{\substack{0 \neq p \subset \mathcal{O}_{K} \\ \text { prime }}}\left(1-N \mathfrak{p}^{-s}\right)^{-1}
$$

- Special values:
- $\zeta_{K}(1-n)=0$ for all odd $n \in \mathbf{Z}_{\geq 1}$ (unless $K=\mathbf{Q}$ and $n=1$)
- $\zeta_{K}(1-n) \in \mathbf{Q}-\{0\}$ for all even $n \in \mathbf{Z}_{\geq 1}$, with generalized Clausen-von Staudt and Kummer
- Eisenstein series with constant terms $\sim \zeta_{K}(1-n)$
- Construction of p-adic zeta function $\zeta_{K}^{*}(s)$

See §5 for a detailed treatment.

Motivation: Congruences for j

- Consider the j-invariant

$$
j(z)=q^{-1}+744+\sum_{n=1}^{\infty} c(n) q^{n}, \quad c(n) \in \mathbf{Z}
$$

- For $p \in\{2,3,5,7,11\}$, we saw congruences (Lehner, 1949; Atkin, 1966) which imply

$$
c\left(p^{m} n\right) \rightarrow 0 \text { in } \mathbf{Q}_{p} \text { as } m \rightarrow \infty
$$

- Conceptually $c\left(p^{m} n\right)$ is the n-th Fourier coefficient of $j \mid U_{p}^{m}$, but there are technical issues:
(1) j is a meromorphic modular function on $\mathrm{SL}_{2}(\mathbf{Z})$, with a pole at ∞.
(2) $j \mid U_{p}$ is a meromorphic modular function on $\Gamma_{0}(p)$, with a pole at 0 .

Hecke operators on classical modular forms

Let $f=\sum_{n=0}^{\infty} a_{n} q^{n} \in M_{k}$ be a (classical) modular form of weight k and level 1.
For ℓ prime, recall the Hecke operator is given by

$$
\left.f\right|_{k} T_{\ell}=\sum_{n=0}^{\infty} a_{n \ell} q^{n}+\ell^{k-1} \sum_{n=0}^{\infty} a_{n} q^{n \ell} \in M_{k}
$$

Question

To what extent does this formula define an operator on p-adic modular forms?

Hecke operators on p-adic modular forms

Let $f=\sum a_{n} q^{n} \in M_{k}^{\dagger}$ be a p-adic modular form, and
$f_{i}=\sum a_{n}^{(i)} q^{n} \in M_{k_{i}}$ be a sequence of (classical) modular forms with $f_{i} \rightarrow f$.
For any prime ℓ,

$$
\left.f_{i}\right|_{k_{i}} T_{\ell}=\sum_{n=0}^{\infty} a_{n \ell}^{(i)} q^{n}+\ell^{k_{i}-1} \sum_{n=0}^{\infty} a_{n}^{(i)} q^{n \ell}
$$

is a modular form of weight k_{i}.
The assumption $f_{i} \rightarrow f$ implies:

- $a_{n}^{(i)} \rightarrow a_{n}$ for all n.
- $k_{i} \rightarrow k$.

Question

When can we say " $\left.\left.f_{i}\right|_{k_{i}} T_{\ell} \rightarrow f\right|_{k} T_{\ell}$ "?

Hecke operators T_{ℓ} for $\ell \neq p$

Remark (p-adic weights)

Recall that for each fixed $d \in \mathbf{Z}_{p}^{\times}$, the map $\mathfrak{X} \rightarrow \mathbf{Q}_{p}^{\times}$given by $k \mapsto d^{k}$ is continuous.

If $\ell \neq p$, then $\ell^{k_{i}-1} \rightarrow \ell^{k-1}$, so

$$
\left.f_{i}\right|_{k_{i}} T_{\ell}=\sum_{n=0}^{\infty} a_{n \ell}^{(i)} q^{n}+\ell^{k_{i}-1} \sum_{n=0}^{\infty} a_{n}^{(i)} q^{n \ell} \in M_{k_{i}}
$$

tends to

$$
\left.f\right|_{k} T_{\ell}:=\sum_{n=0}^{\infty} a_{n \ell} q^{n}+\ell^{k-1} \sum_{n=0}^{\infty} a_{n} q^{n \ell}
$$

Hence this defines a p-adic modular form of weight k.

