p-adic modular forms TCC (Spring 2021), Lecture 4

Pak-Hin Lee

11th February 2021

 Admin and recap

Properties of *p*-adic modular forms Application to *p*-adic zeta functions Hecke operators

Administrative issues

Slides:

• Lectures 1-3 available on webpage

Problem sheets:

- 3 sets for assessment
 - 22nd February (Monday of Week 6): posted!
 - Sth March (Friday of Week 7): tentative
 - I9th March (Friday of Week 9): tentative
- available two weeks before deadlines

Admin and recap

Properties of *p*-adic modular forms Application to *p*-adic zeta functions Hecke operators

Plans

Today:

- Recap
- Properties of Serre's *p*-adic modular forms
- Application 1: p-adic zeta functions
- Hecke operators on *p*-adic modular forms

Next week:

- Hecke operators, continued
- Application 2: constant terms; congruences
- Geometric modular forms

Recap: *p*-adic modular forms a là Serre

- *f* ∈ **Q**_p[[*q*]] is a *p*-adic modular form if it is the limit of a sequence of classical modular forms *f_i* ∈ *M*_{k_i,**Q**}.
- f has a well-defined notion of weight: k_i converges to $k \in \mathfrak{X} = \mathbf{Z}_p \times \mathbf{Z}/(p-1)\mathbf{Z}$ (group of characters of \mathbf{Z}_p^{\times}).

Example

- For any odd p, $E_{p-1}^{-1} \in M_{1-p}^{\dagger}$.
- Problem Sheet 1: For p = 5, $M_0^{\dagger} = \mathbf{Q}_5 \langle j^{-1} \rangle$.
- Today: *p*-adic Eisenstein series

Properties of *p*-adic modular forms

Our previous results on congruences and weights carry over to *p*-adic modular forms, by a basic limiting argument:

Theorem (théorème 1', P.203)

Suppose
$$f \in M_k^{\dagger}$$
 and $f' \in M_{k'}^{\dagger}$ satisfy $f \neq 0$ and

$$v_p(f-f') \ge v_p(f) + m$$

for some $m \ge 1$. Then k and k' have the same image in \mathfrak{X}_m .

Properties of *p*-adic modular forms

Theorem (P.202)

Suppose $f \neq 0 \in \mathbf{Q}_p[[q]]$, and there is a sequence of p-adic modular forms $f_i \in M_{k_i}^{\dagger}$ with $f_i \to f$. Then:

- $k = \lim k_i \in \mathfrak{X}$ exists;
- f is a p-adic modular form of weight k.

Thus M^{\dagger} is a *p*-adic Banach space (as a closed subspace of $\mathbf{Z}_{\rho}[[q]] \otimes \mathbf{Q}_{\rho}$), equipped with a continuous map $M^{\dagger} \to \mathfrak{X}$ (weight map).

Remark

This is useful for f which is more easily seen as a limit of p-adic (rather than classical) modular forms.

< ロ > < 同 > < 回 > < 回 >

Properties of *p*-adic modular forms

Corollary (corollaire 1, P.203)

Let $f = \sum a_n q^n \in M_k^{\dagger}$ with $k \neq 0 \in \mathfrak{X}_{m+1}$ for some m (i.e. $p^m(p-1) \nmid k$). Then

$$v_p(a_0)+m\geq \inf_{n\geq 1}v_p(a_n).$$

Proof.

If $a_0 = 0$ there is nothing to prove. Otherwise, set $f' = a_0 \in M_0^{\dagger}$, so that

$$\nu_p(f-f') = \inf_{n\geq 1} \nu_p(a_n).$$

Since $k \neq 0 \in \mathfrak{X}_{m+1}$, the contrapositive of the theorem shows

$$v_p(f-f') < v_p(f') + (m+1) \le v_p(a_0) + m + 1.$$

7 / 30

Properties of *p*-adic modular forms

As an immediate (but non-trivial?) consequence, this shows that non-zero constants cannot be *p*-adic modular form of weights $k \neq 0$.

Example

Suppose $f = a_0$ is a *p*-adic modular form of weight $k \neq 0$. Then $k \neq 0 \in \mathfrak{X}_{m+1}$ for sufficiently large *m*, so the corollary gives

$$v_p(a_0)+m\geq \inf_{n\geq 1}v_p(a_n)=\infty.$$

This forces $a_0 = 0$.

This will be used in the proof of the next theorem.

Properties of *p*-adic modular forms

The corollary gives a condition on the *p*-divisibility of a_0 in terms of a_n for $n \ge 1$. More concretely:

Example

In the setting of the corollary:

- If a_n are *p*-integral for all $n \ge 1$, then so is $p^m a_0$.
- When $(p-1) \nmid k$, *m* can be taken to be 0.

Even for classical modular forms, this is a new result!

Idea

Slogan: For *p*-adic modular forms, the non-constant Fourier coefficients govern the constant term.

Properties of *p*-adic modular forms

This is already remarkable, but the following is even more drastic:

Theorem (corollaire 2, P.204)

Let $f_i = \sum_{n=0}^{\infty} a_n^{(i)} q^n \in M_{k_i}^{\dagger}$ be a sequence of p-adic modular forms of weights k_i such that

•
$$\lim_{i\to\infty} a_n^{(i)} = a_n \in \mathbf{Q}_p$$
 uniformly for all $n \ge 1$;

•
$$\lim_{i\to\infty} k_i = k \neq 0 \in \mathfrak{X}$$
.

Then:

•
$$a_0 = \lim_{i \to \infty} a_0^{(i)} \in \mathbf{Q}_p$$
 exists;

• $f = \sum_{n=0}^{\infty} a_n q^n$ is a p-adic modular form of weight k.

Properties of *p*-adic modular forms

Remark

- Thus to prove that a sequence of *p*-adic modular forms converges, it is enough to check that all the non-constant terms and the weights converge.
- At first glance this might not seem very useful...
- We will apply this to the Eisenstein series, for which the conditions on a_n⁽ⁱ⁾ and k⁽ⁱ⁾ are easy to check not so much for the constant terms (zeta values)!

Proof of theorem

Idea

How to find a_0 ?

- Use previous corollary to bound $\{a_0^{(i)}\}\subset {f Q}_p.$
- Use a compactness argument to find the limit.

Proof of theorem:

- Since $k \neq 0$, there exists $m \geq 1$ such that $k \neq 0 \in \mathfrak{X}_{m+1}$.
- By $\lim k_i = k$, the same holds for all $i \gg 0$:

$$k_i \neq 0 \in \mathfrak{X}_{m+1}.$$

• By uniform convergence, there exists $t \in \mathbf{Z}$ such that

$$v_p(a_n^{(i)}) \geq t$$

for all $n \ge 1$ and all $i \gg 0$.

12/30

イロン 不得 とうほう イロン 二日

Proof of theorem

• Applying the corollary to $f_i = \sum a_n^{(i)} q^n \in M_{k_i}^{\dagger}$ with $k_i \neq 0 \in \mathfrak{X}_{m+1}$, we get

$$v_p(a_0^{(i)}) + m \ge \inf_{n \ge 1} v_p(a_n^{(i)})$$

and hence

$$v_p(a_0^{(i)}) \geq t-m$$

for all $i \gg 0$.

- Thus $\{a_0^{(i)}\}_i$ lies in the compact subset $p^{t-m} \mathbf{Z}_p \subset \mathbf{Q}_p$.
- To prove $a_0^{(i)}$ converges, it suffices to show every convergent subsequence has the same limit.

Proof of theorem

• Suppose some subsequence $a_0^{(i_j)}$ converges to $a_0 \in \mathbf{Q}_p$. Then

$$f := \lim_{j \to \infty} f_{i_j} = a_0 + \sum_{n=1}^{\infty} a_n q^n$$

is a *p*-adic modular form of weight *k*. • If $a_0^{(i'_j)}$ is another subsequence convergent to $a'_0 \in \mathbf{Q}_p$, then

$$f':=\lim_{j\to\infty}f_{i'_j}=a'_0+\sum_{n=1}^\infty a_nq^n$$

is also a p-adic modular form of weight k.

Now their difference

$$f-f'=a_0-a_0'$$

is a p-adic modular form of weight k and weight 0.

• Since $k \neq 0$, we conclude $a_0 - a'_0 = 0$ as desired.

Application: *p*-adic zeta function

For k even, recall the Eisenstein series

$$egin{aligned} \widehat{\sigma}_k &= -rac{B_k}{2k} + \sum_{n=1}^\infty \sigma_{k-1}(n) q^n \ &= rac{1}{2} \zeta(1-k) + \sum_{n=1}^\infty \sigma_{k-1}(n) q^n \end{aligned}$$

Idea

For suitable sequences $k_i \rightarrow k \in \mathfrak{X}$, the non-constant coefficients converge for all $n \ge 1 \implies$ the constant terms converge to the *p*-adic zeta function!

p-adic weights

Remark (*p*-adic weights)

- Recall that a *p*-adic weight $k \in \mathfrak{X}$ is a continuous character $k : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$.
- For $d \in \mathbf{Z}_p^{\times}$,

$$d^k := k(d)$$

makes sense; this notation extends d^k for integral weights $k \in \mathbf{Z}$.

• For each fixed $d \in \mathbf{Z}_p^{\times}$, this gives a *continuous* map

$$\mathfrak{X} o \mathbf{Q}_p^{ imes}$$

 $k \mapsto d^k$

with respect to the *p*-adic topology (check this!).

p-adic divisor sums

Definition

For $k \in \mathfrak{X}$ and $n \in \mathbf{Z}_{\geq 1}$, define

$$\sigma^*_{k-1}(n) := \sum_{\substack{d \mid n \ (d,p) = 1}} d^{k-1}.$$

Remark

The condition
$$(d, p) = 1$$
 ensures $d \in \mathbf{Z}_p^{\times}$, so that d^{k-1} is well-defined for general $k \in \mathfrak{X}$.

- Suppose $k_i \in \mathbf{Z}$ converges to $k \in \mathfrak{X}$.
- Replacing k_i by $k_i + p^{m_i}(p-1)$ (where $m_i \gg 0$), we may assume *additionally* that $k_i \to \infty$ in **R**.

p-adic divisor sums

• For each fixed $n \in \mathbf{Z}_{\geq 1}$,

$$egin{aligned} \sigma_{k_i-1}(n) &= \sum_{d \mid n} d^{k_i-1} \ &= \sum_{\substack{d \mid n \ (d,p) = 1}} d^{k_i-1} + \sum_{\substack{d \mid n \ p \mid d}} d^{k_i-1} \end{aligned}$$

• As $i \to \infty$:

• For d prime to p, $d^{k_i-1} \rightarrow d^{k-1}$ because $k_i \rightarrow k$ in \mathfrak{X} .

• For *d* divisible by *p*, $d^{k_i-1} \to 0$ because $k_i \to \infty$ in **R**.

Thus

$$\sigma_{k_i-1}(n) \to \sum_{\substack{d \mid n \ (d,p)=1}} d^{k-1} + 0 = \sigma^*_{k-1}(n).$$

• Moreover, this convergence is uniform in *n* (check this!).

18 / 30

p-adic Eisenstein series

- Suppose $k \neq 0 \in \mathfrak{X}$ is even (i.e. $k \in 2\mathfrak{X}$).
- Pick a sequence of even integers $k_i \ge 4$ as above.
- By the theorem, the sequence

$$G_{k_i} = \frac{1}{2}\zeta(1-k_i) + \sum_{n=1}^{\infty} \sigma_{k_i-1}(n)q^n$$

converges to a p-adic modular form of weight k.

Proposition (*p*-adic Eisenstein series)

For even $k \in \mathfrak{X} - \{0\}$, there is a p-adic modular form of weight k

$$G_k^* := a_0 + \sum_{n=1}^{\infty} \sigma_{k-1}^*(n) q^n$$

where
$$a_0 = \lim_{i \to \infty} \frac{1}{2} \zeta(1 - k_i).$$

ର ୧୦ ୧୨ / 30

p-adic zeta function

Denote the constant term a_0 by

$$\frac{1}{2}\zeta^*(1-k):=\lim_{i\to\infty}\frac{1}{2}\zeta(1-k_i).$$

Definition (*p*-adic zeta function)

 $\zeta^*(s)$ defines a function on the odd elements of $\mathfrak{X} - \{1\}$.

Continuity:

- Suppose $k_i \rightarrow k$, all of which are even elements of $\mathfrak{X} \{0\}$.
- Then the non-constant coefficients of $G_{k_i}^*$ tend to those of G_k^* uniformly.
- By the theorem, $\frac{1}{2}\zeta^*(1-k_i) \rightarrow \frac{1}{2}\zeta^*(1-k)$.

p-adic zeta function: special values

Question

What are the special values $\zeta^*(1-k)$ for $k \in \mathbb{Z}_{\geq 2}$ even?

Warning:

ζ*(1 − k) is constructed as the limit of ζ(1 − k_i) for a sequence k_i → k (in 𝔅) satisfying k_i → ∞ (in R), so a priori ζ*(1 − k) ≠ ζ(1 − k)

even when $k \in \mathbb{Z}_{\geq 2}$!

• Here is a formal (but bogus!) calculation:

$$\zeta^*(1-k) = \lim_{i \to \infty} \zeta(1-k_i) \stackrel{?!}{=} \lim_{i \to \infty} \prod_{\ell} \frac{1}{1-\ell^{k_i-1}}$$
$$= \prod_{\ell \neq p} \frac{1}{1-\ell^{k-1}} \stackrel{?!}{=} (1-p^{k-1})\zeta(1-k).$$

p-adic zeta function: special values

Proposition

For
$$k \in \mathbf{Z}_{\geq 2}$$
 even, $\zeta^*(1-k) = (1-p^{k-1})\zeta(1-k)$.

- Serre deduces this from théorème 3 on P.206-207, by identifying ζ^* as the Kubota–Leopoldt *p*-adic zeta function.
- However, it seems more natural to turn the development around: an alternative calculation of $\zeta^*(1-k)$ would **imply** théorème 3.
- It is possible to do this using the Hecke operator V_p , which acts on $f = \sum_{n=0}^{\infty} a_n q^n \in \mathbf{Q}_p[[q]]$ via

$$f|V_p:=\sum_{n=0}^{\infty}a_nq^{np}.$$

We shall see later that V_p preserves the space of p-adic modular forms M_{μ}^{\dagger} . ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

22 / 30

p-adic zeta function: special values

Taking the operator V_p for granted, we can relate

$$G_k^* = \frac{1}{2}\zeta^*(1-k) + \sum_{n=1}^{\infty} \sigma_{k-1}^*(n)q^n$$

and

$$G_k = \frac{1}{2}\zeta(1-k) + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n.$$

Lemma

If $k \in \mathbf{Z}_{\geq 2}$ is even, then

$$G_k^* = G_k | (1 - p^{k-1} V_p).$$

See Problem Sheet 2.

p-adic zeta function

• Comparing the constant terms yields

$$\zeta^*(1-k) = (1-p^{k-1})\zeta(1-k).$$

- Summary: ζ* is a continuous function on the odd elements of X − {1} and interpolates the values (1 − p^{k−1})ζ(1 − k) at the negative odd integers (a dense subset of X!).
- Therefore, ζ* must coincide with the Kubota–Leopoldt p-adic zeta function L_p – see théorème 3 on P.206 for a precise statement.

p-adic zeta function

Remark

- This gives a clean construction of the *p*-adic zeta function.
- But this doesn't come for free!
- In the development of mod p and p-adic modular forms:
 - Clausen-von Staudt theorem ("elementary"): used extensively for E_{p-1} and E_{p^m(p-1)}
 - Wummer congruence ("deep"): used to show E_{p+1} ≡ E₂ (mod p)
- In particular, it seems impossible to completely avoid the use of Kummer congruence; the whole theory relies upon the single instance of $E_{p+1} \equiv E_2 \pmod{p}$.

p-adic zeta function for totally real fields

Let K be a totally real number field.

• Dedekind zeta function of K:

$$\zeta_{\mathcal{K}}(s) := \sum_{\substack{0 \neq \mathfrak{a} \subset \mathcal{O}_{\mathcal{K}} \\ \mathsf{ideal}}} N\mathfrak{a}^{-s} = \prod_{\substack{0 \neq \mathfrak{p} \subset \mathcal{O}_{\mathcal{K}} \\ \mathsf{prime}}} (1 - N\mathfrak{p}^{-s})^{-1}$$

• Special values:

- $\zeta_{\mathcal{K}}(1-n) = 0$ for all odd $n \in \mathbf{Z}_{\geq 1}$ (unless $\mathcal{K} = \mathbf{Q}$ and n = 1)
- $\zeta_{\mathcal{K}}(1-n) \in \mathbf{Q} \{0\}$ for all even $n \in \mathbf{Z}_{\geq 1}$, with generalized Clausen-von Staudt and Kummer
- Eisenstein series with constant terms $\sim \zeta_{\mathcal{K}}(1-n)$
- Construction of *p*-adic zeta function $\zeta_K^*(s)$

See §5 for a detailed treatment.

Motivation: Congruences for j

• Consider the *j*-invariant

$$j(z) = q^{-1} + 744 + \sum_{n=1}^{\infty} c(n)q^n, \quad c(n) \in \mathbf{Z}.$$

 For *p* ∈ {2, 3, 5, 7, 11}, we saw congruences (Lehner, 1949; Atkin, 1966) which imply

$$c(p^m n)
ightarrow 0$$
 in \mathbf{Q}_p as $m
ightarrow \infty$.

- Conceptually $c(p^m n)$ is the *n*-th Fourier coefficient of $j|U_p^m$, but there are technical issues:
 - *j* is a meromorphic modular function on $SL_2(Z)$, with a pole at ∞ .
 - (2) $j|U_p$ is a meromorphic modular function on $\Gamma_0(p)$, with a pole at 0.

Hecke operators on classical modular forms

Let $f = \sum_{n=0}^{\infty} a_n q^n \in M_k$ be a (classical) modular form of weight k and level 1.

For ℓ prime, recall the Hecke operator is given by

$$f|_k T_\ell = \sum_{n=0}^\infty a_{n\ell} q^n + \ell^{k-1} \sum_{n=0}^\infty a_n q^{n\ell} \in M_k.$$

Question

To what extent does this formula define an operator on *p*-adic modular forms?

Hecke operators on *p*-adic modular forms

Let $f = \sum a_n q^n \in M_k^{\dagger}$ be a *p*-adic modular form, and $f_i = \sum a_n^{(i)} q^n \in M_{k_i}$ be a sequence of (classical) modular forms with $f_i \to f$. For any prime ℓ

For any prime ℓ ,

$$f_i|_{k_i} T_{\ell} = \sum_{n=0}^{\infty} a_{n\ell}^{(i)} q^n + \ell^{k_i - 1} \sum_{n=0}^{\infty} a_n^{(i)} q^{n\ell}$$

is a modular form of weight k_i . The assumption $f_i \rightarrow f$ implies:

•
$$a_n^{(i)} o a_n$$
 for all n .

•
$$k_i \rightarrow k$$
.

Question

When can we say " $f_i|_{k_i}T_\ell \to f|_k T_\ell$ "?

Hecke operators T_{ℓ} for $\ell \neq p$

Remark (*p*-adic weights)

Recall that for each fixed $d \in \mathbf{Z}_p^{\times}$, the map $\mathfrak{X} \to \mathbf{Q}_p^{\times}$ given by $k \mapsto d^k$ is continuous.

If
$$\ell \neq p$$
, then $\ell^{k_i-1} \rightarrow \ell^{k-1}$, so

$$f_i|_{k_i} T_{\ell} = \sum_{n=0}^{\infty} a_{n\ell}^{(i)} q^n + \ell^{k_i - 1} \sum_{n=0}^{\infty} a_n^{(i)} q^{n\ell} \in M_{k_i}$$

tends to

$$f|_k T_\ell := \sum_{n=0}^\infty a_{n\ell} q^n + \ell^{k-1} \sum_{n=0}^\infty a_n q^{n\ell}.$$

Hence this defines a p-adic modular form of weight k.