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Admin and recap

Administrative issues

Slides:
@ Lectures 1-3 available on webpage
Problem sheets:

@ 3 sets for assessment

© 22nd February (Monday of Week 6): posted!
@ 5th March (Friday of Week 7): tentative
© 19th March (Friday of Week 9): tentative

@ available two weeks before deadlines
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Admin and recap

Today:

@ Recap

@ Properties of Serre's p-adic modular forms

@ Application 1: p-adic zeta functions

@ Hecke operators on p-adic modular forms
Next week:

@ Hecke operators, continued

@ Application 2: constant terms; congruences

@ Geometric modular forms
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Admin and recap

Recap: p-adic modular forms a la Serre

f € Qp[[q]] is a p-adic modular form if it is the limit of a
sequence of classical modular forms f; € My, q.

o f has a well-defined notion of weight: k; converges to
keX=12Z,xZ/(p—1)Z (group of characters of Z;).

For any odd p, Ep:ll € Mltp.
Problem Sheet 1: For p =5, Mj = Qs(j~1).

Today: p-adic Eisenstein series
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Properties of p-adic modular forms

Properties of p-adic modular forms

Our previous results on congruences and weights carry over to
p-adic modular forms, by a basic limiting argument:

Theorem (théoréme 1', P.203)

Suppose f € Ml and f' € M}, satisfy f # 0 and

vp(f = ') = vp(F) + m

for some m > 1. Then k and k' have the same image in X,.
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Properties of p-adic modular forms

Properties of p-adic modular forms

Theorem (P.202)
Suppose f # 0 € Qp[[q]], and there is a sequence of p-adic
modular forms f; € /\/I);, with f; — f. Then:

@ k= Ilimk; € X exists;

e f is a p-adic modular form of weight k.

Thus M' is a p-adic Banach space (as a closed subspace of
Z,[[q]] ® Qp), equipped with a continuous map MT — X (weight
map).

This is useful for f which is more easily seen as a limit of p-adic
(rather than classical) modular forms.
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Properties of p-adic modular forms

Properties of p-adic modular forms

Corollary (corollaire 1, P.203)

Let f = > apq" € I\/Il with k # 0 € X 41 for some m (i.e.
p"(p—1)t k). Then

> .
V(@) + m = inf vo(an)

Proof.

If ag = O there is nothing to prove. Otherwise, set f' = a9 € M(J)r,
so that
AN
Vplf = ) = inf vo(an).

Since k # 0 € X,+1, the contrapositive of the theorem shows

vp(F — ') < vp(F) + (m+1) < vp(ag) + m+ 1. O
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Properties of p-adic modular forms

Properties of p-adic modular forms

As an immediate (but non-trivial?) consequence, this shows that
non-zero constants cannot be p-adic modular form of weights

k 0.

Example

Suppose f = ag is a p-adic modular form of weight k # 0. Then
k # 0 € X 11 for sufficiently large m, so the corollary gives

vp(a0) + m > inf vp(ap) = oo.
n>1

This forces ag = 0.

This will be used in the proof of the next theorem.
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Properties of p-adic modular forms

Properties of p-adic modular forms

The corollary gives a condition on the p-divisibility of ag in terms
of a, for n > 1. More concretely:

Example

In the setting of the corollary:
e If a, are p-integral for all n > 1, then so is p™ag.
@ When (p — 1) 1 k, m can be taken to be 0.
Even for classical modular forms, this is a new result! )
dea |
Slogan: For p-adic modular forms, the non-constant Fourier
coefficients govern the constant term.
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Properties of p-adic modular forms

Properties of p-adic modular forms

This is already remarkable, but the following is even more drastic:

Theorem (corollaire 2, P.204)

Let fi =372 ag,)q" € M}; be a sequence of p-adic modular forms
of weights k; such that

o limj_ af,i) = an € Qp uniformly for all n > 1;
o limiki=k#0€X.

Then:
@ a9 = limj_ e a(()i) € Q, exists;

o f=>3720anq" is a p-adic modular form of weight k.
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Properties of p-adic modular forms

Properties of p-adic modular forms

@ Thus to prove that a sequence of p-adic modular forms
converges, it is enough to check that all the non-constant
terms and the weights converge.

@ At first glance this might not seem very useful...

@ We will apply this to the Eisenstein series, for which the
conditions on af,') and k() are easy to check — not so much

for the constant terms (zeta values)!
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Properties of p-adic modular forms

Proof of theorem

How to find ag?
@ Use previous corollary to bound {a(()')} C Qp.

@ Use a compactness argument to find the limit.

Proof of theorem:
@ Since k # 0, there exists m > 1 such that k # 0 € X,41.
@ By lim k; = k, the same holds for all i > 0:

ki #0 € Xmy1-
@ By uniform convergence, there exists t € Z such that
vp(al)) > t

forall n>1 and all i > 0.
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Properties of p-adic modular forms

Proof of theorem

@ Applying the corollary to f; = > ag,'.)q” € I\/I);, with
ki %0 € Xpma1, we get

vo(ag)) + m = inf vp(a))
and hence _
vp(a(()')) >t—m
for all i > 0.
e Thus {aéi)}; lies in the compact subset p'~"Z, C Q,.

@ To prove a(()') converges, it suffices to show every convergent
subsequence has the same limit.

13/30



Properties of p-adic modular forms

Proof of theorem

@ Suppose some subsequence a[()'j) converges to ag € Qp. Then
o0
P H L n
f -—jl_l)rgoﬁ,- =a0+ Y _ anq

n=1

is a p-adic modular form of weight k.

!

i
o If a(()’) is another subsequence convergent to ag € Qp, then

(0.9}
AT L — ol n
1= fim fy =%+ 3 ang
is also a p-adic modular form of weight k.

@ Now their difference
f—f =ay—a

is a p-adic modular form of weight k and weight 0.

@ Since k # 0, we conclude ag — aj = 0 as desired.
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Application to p-adic zeta functions

Application: p-adic zeta function

For k even, recall the Eisenstein series

B oo
Gy = . Z ok-1(n)q"
2k =

1

= 5C(l — k) + i ok-1(n)q".
n=1

For suitable sequences k; — k € X, the non-constant coefficients
converge for all n > 1 = the constant terms converge to the
p-adic zeta function!
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Application to p-adic zeta functions

p-adic weights

Remark (p-adic weights)
@ Recall that a p-adic weight kK € X is a continuous character
k27 —Z;.
e FordeZ},
d* .= k(d)
makes sense; this notation extends d* for integral weights
kel

o For each fixed d € ZJ, this gives a continuous map

%—)Q;
k s dk

with respect to the p-adic topology (check this!).
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Application to p-adic zeta functions

p-adic divisor sums

Definition
For k € X and n € Z>1, define

Ukl Z dkl

(d, p)

The condition (d, p) =1 ensures d € Z, so that d*~ 1 is
well-defined for general k € X.

@ Suppose k; € Z converges to k € X.
@ Replacing k; by ki + p™(p — 1) (where m; > 0), we may
assume additionally that k; — oo in R.
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Application to p-adic zeta functions

p-adic divisor sums

@ For each fixed n € Z>4,

ak,.,l(n) = Z dki—1
d|n
— Z dk,'—l + Z dki_l.

d|n d|n
(d,p)=1 pld

@ As i — oo

o For d prime to p, d“—1' — d*~1 because k; — k in X.
o For d divisible by p, d“~! — 0 because k; — oo in R.
Thus

Ta(n) = Y A0 =ofy(n)
d|n
(d.p)=1

@ Moreover, this convergence is uniform in n (check this!).
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Application to p-adic zeta functions

p-adic Eisenstein series

@ Suppose k #0 € X is even (i.e. k € 2X).
o Pick a sequence of even integers k; > 4 as above.
@ By the theorem, the sequence

G = 3¢~ k) + Y ok a(n)d’

n=1

converges to a p-adic modular form of weight k.

Proposition (p-adic Eisenstein series)

For even k € X — {0}, there is a p-adic modular form of weight k

o0
Gi = a0+ Z or_1(n)q"
n=1

1
where ag = II_|>r’(r>10 5{(1 — ki).
1930




Application to p-adic zeta functions

p-adic zeta function

Denote the constant term ag by

Lo — k) = lim C(l— ).

I—>OO

Definition (p-adic zeta function)

(*(s) defines a function on the odd elements of X — {1}.

Continuity:
@ Suppose k; — k, all of which are even elements of X — {0}.

@ Then the non-constant coefficients of G, tend to those of G
uniformly.

o By the theorem, 1¢*(1 — ki) — 3¢*(1 — k).

20/30



Application to p-adic zeta functions

p-adic zeta function: special values

What are the special values (*(1 — k) for k € Z>> even?

Warning;:
@ (*(1 — k) is constructed as the limit of (1 — k;) for a
sequence ki — k (in X) satisfying ki — oo (in R), so a priori

C(1=k) #¢(1—k)

even when k € Z>,!
@ Here is a formal (but bogus!) calculation:

y , "o 1
C-k)= i|—|>r20C(1 — ki) = ,-'LTOEI 1— ¢ki-1
1 ?1
=11 T (1—p 1)@ — k).
t#p
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Application to p-adic zeta functions

p-adic zeta function: special values

Proposition
For k € Z>, even, ¢*(1 — k) = (1 — p*¥"1)¢(1 — k).

@ Serre deduces this from théoréme 3 on P.206-207, by
identifying (* as the Kubota—Leopoldt p-adic zeta function.

@ However, it seems more natural to turn the development
around: an alternative calculation of (*(1 — k) would imply
théoreme 3.

@ It is possible to do this using the Hecke operator V,,, which
actson f =32 anq" € Qp[[q]] via

[e.9]
flVp = Z anq"™.
n=0

We shall see later that V), preserves the space of p-adic

modular forms /\/I;E.
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Application to p-adic zeta functions

p-adic zeta function: special values

Taking the operator V,, for granted, we can relate

* 1 *k = * n
Ge = EC (1—k)+ Zak—l(n)q
n=1

and

Gy = %C(l — k) + Z Jk,l(n)q".
n=1

If k € Z>5 is even, then

Gr = G|(1 — pF1V,).

See Problem Sheet 2.
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Application to p-adic zeta functions

p-adic zeta function

@ Comparing the constant terms yields

(L= k)= (1= p (L~ k).

e Summary: (* is a continuous function on the odd elements
of X — {1} and interpolates the values (1 — p¥~1)¢(1 — k) at
the negative odd integers (a dense subset of X!).

@ Therefore, (* must coincide with the Kubota—Leopoldt
p-adic zeta function L, — see théoréme 3 on P.206 for a
precise statement.
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Application to p-adic zeta functions

p-adic zeta function

@ This gives a clean construction of the p-adic zeta function.

@ But this doesn't come for free!
@ In the development of mod p and p-adic modular forms:
© Clausen—von Staudt theorem (“elementary”): used extensively
for E,—1 and Epm(p_1)
© Kummer congruence (“deep”): used to show E,11 = E;
(mod p)
@ In particular, it seems impossible to completely avoid the use
of Kummer congruence; the whole theory relies upon the
single instance of E,11 = E; (mod p).

25/30



Application to p-adic zeta functions

p-adic zeta function for totally real fields

Let K be a totally real number field.
@ Dedekind zeta function of K:

Ck(s) = Z Na=° = H (1—Np—)t
0#£aCOk 0#pCOxk

ideal prime

@ Special values:

o (k(1—n)=0forallodd n€ Z>; (unless K =Q and n=1)
o (k(1—n) e Q—{0} for all even n € Z>1, with generalized
Clausen—von Staudt and Kummer

e Eisenstein series with constant terms ~ (x(1 — n)
e Construction of p-adic zeta function (j(s)
See §5 for a detailed treatment.
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Hecke operators

Motivation: Congruences for j

@ Consider the j-invariant

j(z) =gt + 744 + i c(n)q”, c(n) ez

n=1

e For p€{2,3,5,7,11}, we saw congruences (Lehner, 1949;
Atkin, 1966) which imply

c(p™n) = 0in Qp as m — oo.

e Conceptually c(p™n) is the n-th Fourier coefficient of j|UJ,
but there are technical issues:
@ , is a meromorphic modular function on SI,(Z), with a pole at
0.
@ Jj|U, is a meromorphic modular function on Fo(p), with a pole
at 0.
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Hecke operators

Hecke operators on classical modular forms

Let f =020 anq" € My be a (classical) modular form of weight
k and level 1.
For ¢ prime, recall the Hecke operator is given by

o o
fl«Te = Z aneq"” + k-1 Z a,,q"e € M.
n=0 n=0

To what extent does this formula define an operator on p-adic
modular forms?
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Hecke operators

Hecke operators on p-adic modular forms

Let f =) a,q" € /\/I,i be a p-adic modular form, and

fi=3> af,i)q" € My, be a sequence of (classical) modular forms
with f; — f.

For any prime ¢,

o o0
T = 3 ol 4 415 g
n=0 n=0

is a modular form of weight k;.
The assumption f; — f implies:
° ag,i) — ap, for all n.
o ki — k.

When can we say “fi|x, Ty — f|x T¢"? l

29/30




Hecke operators

Hecke operators T, for ¢ = p

Remark (p-adic weights)
Recall that for each fixed d € Z, the map X — Q given by
k — d¥ is continuous.

If £ = p, then rhi=1 s pk=1 g4

f;'|k,- TZ — Z afjg)qn + gk,‘*l Z agi)qnﬁ € Mk,-
n=0 n=0

tends to

o o
FlaTe = anq” + 051> apg™.
n=0 n=0

Hence this defines a p-adic modular form of weight k.
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