p-adic modular forms
TCC (Spring 2021), Lecture 3
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Admin and recap

Administrative issues

Slides:
@ Lectures 1 and 2 available on webpage

Problem sheets:
@ 3 sets for assessment

© 19th February (Friday of Week 5)
@ 5th March (Friday of Week 7)
© 19th March (Friday of Week 9)

@ available two weeks before deadlines
Emails:
@ Thank you all for your introductory email!

@ Still working through responses...
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Admin and recap

Recap: Congruences between modular forms

@ (Swinnerton-Dyer) Structure of mod p modular forms:
f=f (modp) = k=k' (modp—1).
@ (Serre) Refinement for higher congruences:

Theorem (théoréme 1, P.198 of Antwerp)

Suppose f € My q and f' € My, q satisfy f # 0 and
vp(f = ') > vp(F) + m
for some m > 1. Then

k=k' (mod p™1(p—1)) ifp>3,
k=K (mod2m2) ifp=2.
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Admin and recap

Recap: Filtration degree

Recall that Ep_l =1 gives

Mk C Mk+p_1 C Mk+2(p,1) (@I

Definition (Filtration degree)

For?em,

W(?) — min{k € ZZO : ? € Mk} Ifz# 0,
—00 if f =0.
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Admin and recap

Recap: Filtration degree

Let f € Mz, with f # 0. Then:
@ w(f) < k if and only if A divides ®, where ® € Z,)[X, Y] is
such that f = ®(Q, R).
Q@ w(Of) < w(f) + p + 1, with equality if and only if w(f) # 0
(mod p).
Q@ w(f’) = iw(f).
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Congruences mod p"™

Game plan

@ Finish the proof of main theorem (théoréme 1) concerning
higher congruences between classical modular forms
@ Basic ingredients:

@ structure of mod p modular forms
@ Clausen—von Staudt theorem

@ New ingredients:

@ filtration on M: introduced in both Swinnerton-Dyer [Antwerp]
and Serre [Bourbaki]
@ geometry of M: presented in Serre [Bourbaki] only

@ | will try to motivate each step and explain some details
omitted by Serre [Antwerp].
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Congruences mod p"™

Reduction of main theorem

Recall: By suitably scaling f and replacing f’ with f'Ejn1(, 1), we
have reduced the main theorem (théoréme 1) to:

Theorem

Let p > 5. Suppose f € Mk,Z(p) and f' € I\/Ikryz(p) satisfy:
° v(f)=0;
o f =1 (mod p™) for m>2;
 h:=k' —k >4 (known: h=0 (mod p—1)).
Then

r:=vp(h)+1>m.
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Congruences mod p"™

Proof of main theorem

Suppose for the sake of contradiction that r < m.

_

Match the weights of f and f'.

Consider the weight k' form
fEp—f = (f—f)+f(En—1),

where
e p™ | f — f’ by hypothesis
® p" || En—1by:

Corollary (Clausen—von Staudt)
Ex=1 (mod p") <= p"Yp—1) |k
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Congruences mod p"™

Proof of main theorem

@ r < mimplies

p~"(fEn — ') = p "f(E,—1) (mod p).

Focus on Ej, — 1, which has an explicit g-expansion.

o Write p™"(Es — 1) = A\¢ where ¢ = 3~ ~; op1(n)q" and
vp(A) = 0.
@ Then

p "(fEh—fY=Ff-p"(Ep—1)=f-Xp (mod p).
o Set g := \"1p~(fE, — f'), so that

g="rf¢ (mod p).
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Congruences mod p"™

Proof of main theorem

o Now ¢ =3, 1 0p-1(n)q" satisfies
g="1o
for some g € Mk’,z(p)y fe I\/lk7z(p).

@ Since k = k' (mod p — 1), this shows

qg € Frac M°.

MO s a Dedekind domain.

See Serre [Bourbaki]: Spec M0 = P}7Fp — {ss points} is a smooth
affine curve. (Question: Is there an “algebraic” proof?)
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Congruences mod p"™

Proof of main theorem

Show that ¢ is integral over M° (= ¢¢ MO).

Consider

¢ = ona(n)q",

n>1

P = Z on-1(n)q".

(n.p)=1

Q@ ¢— ¢ = (mod p).
QY= —%@”_Z(EPH) (mod p). In particular, 1 € MO,

Let me fill in the details, which are omitted by Serre [Antwerp].
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Congruences mod p"™

Proof of identity (1): extracting the prime-to-p terms

e Raising ¢ = 3_,~1 0n_1(n)q" to the p-th power gives

P = Z on-1(n)gP" (mod p) [Fermat’s little theorem]
n>1

=Y on1(pn)g”" (mod p)

n>1

= Zah_l(n)q” (mod p).
pln

@ Hence
¢—¢P = (mod p)

for

b= Y oni(n)g".

(n,p)=1
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Congruences mod p"™

Proof of identity (2): relating with E;

If (n,p) =1, then Fermat's little theorem with (p — 1) | h implies
nd=t  oy(n)

N L)

d|n d|n
Thus
Z oh—1(
(n,p)=1
oi(n) ,
15, >q -y
(n,p)=1

= i nP~251(n)g"  (mod p)

= QP2 <i Ul(n)q”> (mod p).

n=1
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Congruences mod p"™

Proof of identity (2): relating with E,.4

Recall B =1—243%, -, 01(n)q". Hence

)= —%@”4(5) (mod p)
1
= —ﬂepd(Epﬂ) (mod p).

Recall © : Mk — Mk+p+1 (note: k + p + 1 might not be the
optimal weight w(©f), but this doesn't matter for now), so

~ 1
b= 5,0 2(Ep)

belongs to M(p11)1(p+1)(p-2) = Mipt1)(p-1) C M-
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Congruences mod p"™

Proof of main theorem

Summary so far:
° (E— 5” :j;'
e ¢ € Frac M°.
o e M.
Since M? is a Dedekind domain, hence integrally closed, we

conclude o
e M°.
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Congruences mod p"™

Proof of main theorem: filtration degrees

Take filtration degrees on both sides of
- 1,0z
¢ — P = —ﬂ@ (Ep+1)'

LHS:
o w(¢P) = pw(9).
o Write ¢ = ®(Q, R) where At ®. Then ¢ — ¢P can be
represented by a homogeneous polynomial of the form
®A" — ®P, which is not divisible by A.
o Hence w(LHS) = pw().
RHS:
o w(RHS) < (p+1)+(p+1)(p—2)=(p+1)(p—1).
e Equality holds because (p + 1) + (p + 1)/ is never divisible by
pfori=0,1,---,p—2.
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Congruences mod p"™

Proof of main theorem: contradiction!

We have shown _
pw(¢) = (p+1)(p—1)

which is a contradiction!

The equation 5— 5"’ = 1; defines an (irreducible) degree p cover of
Spec M® = Xo(1)g:¢.
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p-adic modular forms a |a Serre

Overview of Serre's theory

@ Classical modular forms exhibit natural p-adic properties:
f and f’ “p-adically close” = k and k" “p-adically close”.

@ Serre's idea:

"“p-adic limits" of g-expansions

p-adic modular forms = .
of classical modular forms.

@ This is elementary — as opposed to Katz's algebro-geometric
theory — but already quite powerful.
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p-adic modular forms a |a Serre

Motivation: p-adic zeta functions

By

@ Special values of the Riemann zeta function: (1 — k) = — =/

at the negative odd integers
e Kummer congruence: If k, k are even integers not divisible by
p— 1 with k =k’ (mod p™(p — 1)), then

By

1_ pk-1yBk

(1-p"")

@ Roughly speaking, (1 — p~°){(s) (with Euler factor at p
removed) is p-adically continuous.

=(1—-p" =2 (mod pmt?).

@ Leopoldt—Kubota: construction of the p-adic zeta function
interpolating these values

@ Serre: alternative construction as the constant term of p-adic
Eisenstein series

@ Slogan: the non-constant Fourier coefficients govern the

constant term.
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p-adic modular forms a |a Serre

Motivation: congruences of modular forms

@ Classical theory: combinatorial arguments for congruences
such as
7(n) = o11(n) (mod 691)

for A =302 7(n)q" (Ramanujan, 1916).
@ Mod p theory: Problem Sheet 1 will ask you to show
7(n) = nos(n) (mod 5),
7(n) = no3(n) (mod 7).

See Swinnerton-Dyer [Antwerp] and Serre [Bourbaki] for many
others.
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p-adic modular forms a |a Serre

Motivation: congruences of modular forms

@ p-adic theory: provides conceptual framework for
understanding congruences such as

c(2n) =0 (mod 23218),
c(3°n) =0 (mod 3%213),
c(5?°n) =0 (mod 571),
c(7?n) =0 (mod 79),
c(11?n) =0 (mod 117)

for the j-invariant j(7) = Y72 _; c(n)q" (Lehner, 1949; Atkin,
1966 — via intricate manipulations).

J. Lehner # D.H. Lehmer; both have worked on modular forms!

@ Slogan: contraction property of U,-operator
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p-adic modular forms a |a Serre

Notation

Consider the p-adic numbers Q,,, with

e valuation v, : Qp = Z U {00} given by v,(p) = 1;

@ absolute value | - |, : Q, — Q>0 given by |x|, = p~ ().
Extend the p-adic valuation to v, : Qp[[q]] = Z U {£o0} by

f= Z anq" — vp(f) = rgr;% Vp(an).
n=0 -

f has bounded coefficients <= f € Z,[[q]] ® Qp <=
Vp(f) > —o0; this includes all f € M q.

Z,[[q]] ® Qp is a p-adic Banach space with |f| := sup,>q|an|p-
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p-adic modular forms a |a Serre

Notation

o vp(f) >

0 means f € Z,[[q]], i.e. f has p-integral coefficients.
o If vp(f) > m, we write

f=0 (modp™).

o If (f;) is a sequence of elements in Q,[[q]], we say f; — f if
vp(f — f;) = 00, i.e. the coefficients of f; tend to those of f
uniformly.
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p-adic modular forms a |a Serre

Convergence in Q,[[q]]

fl:a((Jl)+a§1)q+-~-+a,(71)q”+---,
7‘2:3(()2)+a§2)q+--~+3$72)qn+ ,

f,.:a(()i)—I—agi)q—k---—l—a(i)q”—l—---

bl

f=a+aq+---+aq"+---

f; — f means af,') — ap uniformly in n.
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p-adic modular forms a |a Serre

p-adic modular forms

Definition (Serre)
A p-adic modular form is a formal power series f € Q,[[q]] such
that there exists a sequence of modular forms f; € M, q of weight

k; such that
fi — f.

Denote by MT C Q,[[q]] (in fact, C Z,[[q]] ® Qp) the space of
p-adic modular forms.

At first glance, the sequence f; might seem arbitrary. Recall
théoréme 1 (on congruences mod p™) imposes strong conditions
on the behavior of (k;) — this is remarkable!
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p-adic modular forms a |a Serre

Weights

Theorem (théoréme 1)

Suppose f € My q and f' € My, q satisfy f # 0 and
Vp(f = £') = vp(f) + m

for some m > 1. Then

k=K' (mod2m2) ifp=2.

{k =k’ (mod p"Y(p—1)) ifp>3,

This suggests looking at the inverse limit of Z/ (p™~1(p — 1)) Z
(resp. Z/2m2Z).
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p-adic modular forms a |a Serre

Weight space

Definition (Weight space)

For m > 1, set
Z/(pmp—1)Z ifp#2
%m = P p T p ,
z/2m2Z if p =2,
and
X =limX, = Z,xZ/(p-1)Z ifp#2,

The natural projection maps Z — X, induce an injection Z — X
with dense image.
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p-adic modular forms a |a Serre

Weights as characters of Z]

X=12Z,xZ/(p—1)Z (resp. Z3) can be identified as the group of
continuous characters ZJ — CJ.
® Suppose p > 3. Then ZJ = (1+ pZ,) X pp-1.
e 1+ pZ, is isomorphic to the additive group of Z, (via p-adic
logarithm); its continuous characters are given by v — ~° for
any s € Z,.
® /ip—1 is the group of (p — 1)-st roots of unity (via Teichmiiller
character); its characters are given by ¢ — (Y for any
uelZ/(p—1)Z.
@ Hence, the continuous characters of Z; are given by pairs
k= (s,u) € Z, x Z/(p — 1)Z sending

x = (7,0) = x = (97,¢Y).
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p-adic modular forms a |a Serre

Weights as characters of Z]

@ The (dense) image of Z — X corresponds to characters
x — xk for k € Z, also called the integral weights.

@ The case for p = 2 can be analyzed similarly.

Definition

We say that k € X is even if k € 2X, or equivalently (—1)% = 1.

When p # 2, this means k = (s,u) € Z, x Z/(p — 1)Z with u
even (and s arbitrary — it is always possible to divide by 2 in Z,).
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p-adic modular forms a |a Serre

Convergence of weights in X

Let f # 0 be a p-adic modular form, and f; € My, q be a sequence
with f; — f. Then:

©Q k; converges to some k € X = |i<_mm Xm.

@ The limit k depends only on f but not the choice of the
sequence (f;).

@ By convergence f; — f (uniformly in n), we have

for i > 0.
@ This is in Z (and not co) since f # 0.
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p-adic modular forms a |a Serre

Convergence of weights in X

@ For each m > 1, we have for j > i >0
Vp(fj — i) = vp(f) + m = vp(f;) + m.
@ By Serre's théoréme 1,
ki=kj (mod p™ '(p—1))

for all sufficiently large i and j, i.e. k; € X, is stationary in /.
@ Therefore k = lim k; € X exists.
e To prove (2): If (f/) is another sequence with f/ — f,
consider the new sequence

f17q3f27f2,7"'7f}7f;'/a"'
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p-adic modular forms a |a Serre

Weights of p-adic modular forms

Definition
We call kK € X the weight of the p-adic modular form f, and
denote by MI the space of p-adic modular forms of weight k.

@ k is in general not an integer (€ Z) — not even a p-adic
integer (€ Z,)!

@ k € X is necessarily even, being a limit of even weights k; € Z.

° I\/Ig C M is a subalgebra, and M,t is an I\/lg—module.
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p-adic modular forms a |a Serre

Examples

Example (Trivial)
Since E,—1 =1 (mod p),

E,fjl =1 (mod p™t).
Thus E,’J’Tl € M(p_1)pm q With limit 1, so 1 is a p-adic modular
form of weight lim(p —1)p™ =0 € X.

Example

The same argument shows

— i pm—1
= |im Ep_1

[

is a p-adic modular form of weight lim(p —1)(p™ —1) =1 — p.
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p-adic modular forms a |a Serre

Examples

For p =5 and Q = E4, this shows

1 1 A
—EI\/IT and f_*—el\/lT
Q- i @

Problem Sheet 1: )
=0
J

where Qp(T) = {> 2o cnT": cn € Qp, vp(cn) — o0} is the Tate
algebra.
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p-adic modular forms a |a Serre

Properties of p-adic modular forms

Our previous results on congruences and convergence carry over to
p-adic modular forms, by a basic limiting argument:

@ Suppose f € M): and f' € M}, satisfy f # 0 and
volF = 1) = vp(F) + m

for some m > 1. Then k and k' have the same image in X,.

Q Iffie I\/I,L is a sequence of p-adic modular forms of weight
ki € X with f; — f € Qp[[q]], then f is a p-adic modular form
of weight k = lim k;.

Thus M' is a p-adic Banach space (as a closed subspace of
Z,[[q]] ® Qp), equipped with a continuous map MT — X (weight

map).
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