p-adic modular forms TCC (Spring 2021), Lecture 3

Pak-Hin Lee

4th February 2021

Administrative issues

Slides:

• Lectures 1 and 2 available on webpage

Problem sheets:

- 3 sets for assessment
 - 19th February (Friday of Week 5)
 - 2 5th March (Friday of Week 7)
 - 19th March (Friday of Week 9)
- available two weeks before deadlines

Emails:

- Thank you all for your introductory email!
- Still working through responses...

Recap: Congruences between modular forms

• (Swinnerton-Dyer) Structure of mod *p* modular forms:

$$f \equiv f' \pmod{p} \implies k \equiv k' \pmod{p-1}.$$

• (Serre) Refinement for higher congruences:

Theorem (théorème 1, P.198 of Antwerp)

Suppose $f \in M_{k,\mathbf{Q}}$ and $f' \in M_{k',\mathbf{Q}}$ satisfy $f \neq 0$ and

$$v_p(f-f') \ge v_p(f) + m$$

for some $m \ge 1$. Then

$$\begin{cases} k \equiv k' \pmod{p^{m-1}(p-1)} & \text{if } p \geq 3, \\ k \equiv k' \pmod{2^{m-2}} & \text{if } p = 2. \end{cases}$$

Recap: Filtration degree

Recall that
$$\tilde{E}_{p-1} = 1$$
 gives

$$\widetilde{M}_k \subset \widetilde{M}_{k+p-1} \subset \widetilde{M}_{k+2(p-1)} \subset \cdots$$

Definition (Filtration degree)

For $\tilde{f} \in \widetilde{M}$,

$$w(\widetilde{f}) := \begin{cases} \min\{k \in \mathbf{Z}_{\geq 0} : \widetilde{f} \in \widetilde{M}_k\} & \text{if } \widetilde{f} \neq 0, \\ -\infty & \text{if } \widetilde{f} = 0. \end{cases}$$

Recap: Filtration degree

Proposition

Let $f \in M_{k,\mathbf{Z}_{(p)}}$ with $\tilde{f} \neq 0$. Then:

- $w(\tilde{f}) < k$ if and only if \tilde{A} divides $\tilde{\Phi}$, where $\Phi \in \mathbf{Z}_{(p)}[X, Y]$ is such that $f = \Phi(Q, R)$.
- $w(\Theta \tilde{f}) \le w(\tilde{f}) + p + 1$, with equality if and only if $w(\tilde{f}) \neq 0$ (mod p).

$$w(\widetilde{f}^i) = iw(\widetilde{f}).$$

Game plan

- Finish the proof of main theorem (théorème 1) concerning higher congruences between classical modular forms
- Basic ingredients:
 - structure of mod p modular forms
 - Clausen-von Staudt theorem
- New ingredients:
 - filtration on *M*: introduced in both Swinnerton-Dyer [Antwerp] and Serre [Bourbaki]
 - 2 geometry of \widetilde{M} : presented in Serre [Bourbaki] only
- I will try to motivate each step and explain some details omitted by Serre [Antwerp].

Reduction of main theorem

Recall: By suitably scaling f and replacing f' with $f'E_{p^{n-1}(p-1)}$, we have reduced the main theorem (théorème 1) to:

Theorem

Let
$$p \ge 5$$
. Suppose $f \in M_{k, Z_{(p)}}$ and $f' \in M_{k', Z_{(p)}}$ satisfy:

•
$$v_p(f) = 0;$$

•
$$f \equiv f' \pmod{p^m}$$
 for $m \ge 2$;

•
$$h := k' - k \ge 4$$
 (known: $h \equiv 0 \pmod{p-1}$).

Then

$$r:=v_p(h)+1\geq m.$$

Proof of main theorem

Suppose for the sake of contradiction that r < m.

Idea

Match the weights of f and f'.

Consider the weight k' form

$$fE_h - f' = (f - f') + f(E_h - 1),$$

where

p^m | *f* - *f'* by hypothesis
 p^r || *E_h* - 1 by:

Corollary (Clausen-von Staudt)

$$E_k \equiv 1 \pmod{p^n} \iff p^{n-1}(p-1) \mid k.$$

Proof of main theorem

• *r* < *m* implies

$$p^{-r}(fE_h-f')\equiv p^{-r}f(E_h-1)\pmod{p}.$$

Idea

Focus on $E_h - 1$, which has an explicit *q*-expansion.

- Write $p^{-r}(E_h 1) = \lambda \phi$ where $\phi = \sum_{n \ge 1} \sigma_{h-1}(n)q^n$ and $v_p(\lambda) = 0$.
- Then

$$p^{-r}(fE_h - f') \equiv f \cdot p^{-r}(E_h - 1) \equiv f \cdot \lambda \phi \pmod{p}.$$

• Set $g := \lambda^{-1} p^{-r} (fE_h - f')$, so that

$$g \equiv f \phi \pmod{p}.$$

9 / 35

イロト 不得 トイヨト イヨト ヨー ろくで

Proof of main theorem

• Now
$$\phi = \sum_{n \ge 1} \sigma_{h-1}(n) q^n$$
 satisfies

$$\widetilde{g} = \widetilde{f}\widetilde{\phi}$$

for some
$$g \in M_{k', Z_{(p)}}$$
, $f \in M_{k, Z_{(p)}}$.
• Since $k \equiv k' \pmod{p-1}$, this shows
 $\widetilde{\phi} \in \operatorname{Frac} \widetilde{M}^0$.

Theorem

 M^0 is a Dedekind domain.

See Serre [Bourbaki]: Spec $\widetilde{M}^0 = \mathbf{P}_{j,\mathbf{F}_p}^1 - \{\text{ss points}\}\$ is a smooth affine curve. (Question: Is there an "algebraic" proof?)

イロン 不得 とうほう イロン 二日

Proof of main theorem

Idea

Show that
$$\widetilde{\phi}$$
 is integral over \widetilde{M}^0 ($\implies \ \widetilde{\phi} \in \widetilde{M}^0$).

Consider

$$\phi = \sum_{n \ge 1} \sigma_{h-1}(n) q^n,$$

$$\psi = \sum_{(n,p)=1} \sigma_{h-1}(n) q^n.$$

Lemma

Let me fill in the details, which are omitted by Serre [Antwerp].

Proof of identity (1): extracting the prime-to-p terms

• Raising
$$\phi = \sum_{n \ge 1} \sigma_{h-1}(n) q^n$$
 to the *p*-th power gives

$$\begin{split} \phi^{p} &\equiv \sum_{n \geq 1} \sigma_{h-1}(n) q^{pn} \pmod{p} \quad \text{[Fermat's little theorem]} \\ &\equiv \sum_{n \geq 1} \sigma_{h-1}(pn) q^{pn} \pmod{p} \\ &\equiv \sum_{p|n} \sigma_{h-1}(n) q^{n} \pmod{p}. \end{split}$$

Hence

$$\phi - \phi^{p} \equiv \psi \pmod{p}$$

for

$$\psi = \sum_{(n,p)=1} \sigma_{h-1}(n)q^n.$$

12 / 35

э

イロト イヨト イヨト イヨト

Proof of identity (2): relating with E_2

If (n, p) = 1, then Fermat's little theorem with $(p - 1) \mid h$ implies

$$\sigma_{h-1}(n) = \sum_{d|n} d^{h-1} \equiv \sum_{d|n} d^{-1} = \sum_{d|n} \frac{nd^{-1}}{n} = \frac{\sigma_1(n)}{n} \pmod{p}.$$

Thus

$$\psi = \sum_{(n,p)=1} \sigma_{h-1}(n)q^n$$

$$\equiv \sum_{(n,p)=1} \frac{\sigma_1(n)}{n}q^n \pmod{p}$$

$$\equiv \sum_{n=1}^{\infty} n^{p-2}\sigma_1(n)q^n \pmod{p}$$

$$\equiv \Theta^{p-2}\left(\sum_{n=1}^{\infty} \sigma_1(n)q^n\right) \pmod{p}.$$

13 / 35

Proof of identity (2): relating with E_{p+1}

Recall $E_2 = 1 - 24 \sum_{n \ge 1} \sigma_1(n) q^n$. Hence

$$\psi \equiv -\frac{1}{24} \Theta^{p-2}(E_2) \pmod{p}$$
$$\equiv -\frac{1}{24} \Theta^{p-2}(E_{p+1}) \pmod{p}$$

Recall $\Theta: \widetilde{M}_k \to \widetilde{M}_{k+p+1}$ (note: k + p + 1 might not be the optimal weight $w(\Theta \widetilde{f})$, but this doesn't matter for now), so

$$\widetilde{\psi} = -rac{1}{24} \Theta^{p-2} (\widetilde{E}_{p+1})$$

belongs to $\widetilde{M}_{(\rho+1)+(\rho+1)(\rho-2)} = \widetilde{M}_{(\rho+1)(\rho-1)} \subset \widetilde{M}^0.$

Proof of main theorem

Summary so far:

- $\tilde{\phi} \tilde{\phi}^{p} = \tilde{\psi}.$
- $\widetilde{\phi} \in \operatorname{Frac} \widetilde{M}^0$.
- $\widetilde{\psi} \in \widetilde{M}^0$.

Since \widetilde{M}^0 is a Dedekind domain, hence integrally closed, we conclude

 $\widetilde{\phi} \in \widetilde{M}^0.$

Proof of main theorem: filtration degrees

Take filtration degrees on both sides of

$$\widetilde{\phi} - \widetilde{\phi}^{p} = -\frac{1}{24}\Theta^{p-2}(\widetilde{E}_{p+1}).$$

LHS:

- $w(\widetilde{\phi}^p) = pw(\widetilde{\phi}).$
- Write $\tilde{\phi} = \Phi(\tilde{Q}, \tilde{R})$ where $\tilde{A} \nmid \Phi$. Then $\tilde{\phi} \tilde{\phi}^p$ can be represented by a homogeneous polynomial of the form $\Phi \tilde{A}^n \Phi^p$, which is not divisible by \tilde{A} .

• Hence
$$w(LHS) = pw(\widetilde{\phi}).$$

RHS:

•
$$w(\mathsf{RHS}) \le (p+1) + (p+1)(p-2) = (p+1)(p-1).$$

• Equality holds because (p + 1) + (p + 1)i is never divisible by p for $i = 0, 1, \dots, p - 2$.

Proof of main theorem: contradiction!

We have shown

$$\mathsf{pw}(\widetilde{\phi}) = (p+1)(p-1)$$

which is a contradiction!

Remark

The equation $\widetilde{\phi} - \widetilde{\phi}^p = \widetilde{\psi}$ defines an (irreducible) degree p cover of Spec $\widetilde{M}^0 = X_0(1)_{\mathbf{F}_p}^{\mathrm{ord}}$.

Overview of Serre's theory

• Classical modular forms exhibit natural *p*-adic properties:

f and f' "p-adically close" \implies k and k' "p-adically close".

• Serre's idea:

p-adic modular forms = ${padic limits}$ of q-expansions of classical modular forms.

 This is elementary – as opposed to Katz's algebro-geometric theory – but already quite powerful.

Motivation: *p*-adic zeta functions

- Special values of the Riemann zeta function: $\zeta(1-k) = -\frac{B_k}{k}$ at the negative odd integers
- Kummer congruence: If k, k' are even integers not divisible by p-1 with $k \equiv k' \pmod{p^m(p-1)}$, then

$$(1-p^{k-1})rac{B_k}{k}\equiv (1-p^{k'-1})rac{B_{k'}}{k'} \pmod{p^{m+1}}.$$

- Roughly speaking, $(1 p^{-s})\zeta(s)$ (with Euler factor at p removed) is p-adically continuous.
- Leopoldt–Kubota: construction of the *p*-adic zeta function interpolating these values
- Serre: alternative construction as the constant term of *p*-adic Eisenstein series
- Slogan: the non-constant Fourier coefficients govern the constant term.

Motivation: congruences of modular forms

• Classical theory: combinatorial arguments for congruences such as

$$au(n) \equiv \sigma_{11}(n) \pmod{691}$$

for $\Delta = \sum_{n=1}^{\infty} \tau(n) q^n$ (Ramanujan, 1916).

• Mod p theory: Problem Sheet 1 will ask you to show

$$\tau(n) \equiv n\sigma_5(n) \pmod{5},$$

 $\tau(n) \equiv n\sigma_3(n) \pmod{7}.$

See Swinnerton-Dyer [Antwerp] and Serre [Bourbaki] for many others.

Motivation: congruences of modular forms

• *p*-adic theory: provides conceptual framework for understanding congruences such as

$$c(2^{a}n) \equiv 0 \pmod{2^{3a+8}},$$

$$c(3^{a}n) \equiv 0 \pmod{3^{2a+3}},$$

$$c(5^{a}n) \equiv 0 \pmod{5^{a+1}},$$

$$c(7^{a}n) \equiv 0 \pmod{7^{a}},$$

$$c(11^{a}n) \equiv 0 \pmod{11^{a}}$$

for the *j*-invariant $j(\tau) = \sum_{n=-1}^{\infty} c(n)q^n$ (Lehner, 1949; Atkin, 1966 – via intricate manipulations).

Remark

J. Lehner \neq D.H. Lehmer; both have worked on modular forms!

• Slogan: contraction property of U_p -operator

Notation

Consider the *p*-adic numbers \mathbf{Q}_p , with

- valuation $v_p: \mathbf{Q}_p \to \mathbf{Z} \cup \{\infty\}$ given by $v_p(p) = 1;$
- absolute value $|\cdot|_p: \mathbf{Q}_p \to \mathbf{Q}_{\geq 0}$ given by $|x|_p = p^{-v_p(x)}$.

Extend the *p*-adic valuation to $v_p: \mathbf{Q}_p[[q]] \to \mathbf{Z} \cup \{\pm \infty\}$ by

$$f = \sum_{n=0}^{\infty} a_n q^n \mapsto v_p(f) := \inf_{n \ge 0} v_p(a_n).$$

f has bounded coefficients $\iff f \in \mathbf{Z}_p[[q]] \otimes \mathbf{Q}_p \iff v_p(f) > -\infty$; this includes all $f \in M_{k,\mathbf{Q}}$.

Remark

 $Z_p[[q]] \otimes Q_p$ is a *p*-adic Banach space with $|f| := \sup_{n \ge 0} |a_n|_p$.

Notation

- $v_p(f) \ge 0$ means $f \in \mathbf{Z}_p[[q]]$, i.e. f has p-integral coefficients.
- If $v_p(f) \geq m$, we write

$$f \equiv 0 \pmod{p^m}.$$

If (f_i) is a sequence of elements in Q_p[[q]], we say f_i → f if v_p(f - f_i) → ∞, i.e. the coefficients of f_i tend to those of f uniformly.

Convergence in $\mathbf{Q}_{p}[[q]]$

$$f_{1} = a_{0}^{(1)} + a_{1}^{(1)}q + \dots + a_{n}^{(1)}q^{n} + \dots ,$$

$$f_{2} = a_{0}^{(2)} + a_{1}^{(2)}q + \dots + a_{n}^{(2)}q^{n} + \dots ,$$

$$\vdots$$

$$f_{i} = a_{0}^{(i)} + a_{1}^{(i)}q + \dots + a_{n}^{(i)}q^{n} + \dots ,$$

$$\vdots$$

$$f = a_{0} + a_{1}q + \dots + a_{n}q^{n} + \dots$$

 $f_i \to f$ means $a_n^{(i)} \to a_n$ uniformly in n.

p-adic modular forms

Definition (Serre)

A *p*-adic modular form is a formal power series $f \in \mathbf{Q}_p[[q]]$ such that there exists a sequence of modular forms $f_i \in M_{k_i,\mathbf{Q}}$ of weight k_i such that

$$f_i \to f$$
.

Denote by $M^{\dagger} \subset \mathbf{Q}_p[[q]]$ (in fact, $\subset \mathbf{Z}_p[[q]] \otimes \mathbf{Q}_p$) the space of *p*-adic modular forms.

At first glance, the sequence f_i might seem arbitrary. Recall théorème 1 (on congruences mod p^m) imposes strong conditions on the behavior of (k_i) – this is remarkable!

Weights

Theorem (théorème 1)

Suppose $f \in M_{k,\mathbf{Q}}$ and $f' \in M_{k',\mathbf{Q}}$ satisfy $f \neq 0$ and

 $v_p(f-f') \ge v_p(f) + m$

for some $m \ge 1$. Then

$$\begin{cases} k \equiv k' \pmod{p^{m-1}(p-1)} & \text{if } p \ge 3, \\ k \equiv k' \pmod{2^{m-2}} & \text{if } p = 2. \end{cases}$$

This suggests looking at the inverse limit of $Z/(p^{m-1}(p-1))Z$ (resp. $Z/2^{m-2}Z$).

・ロ 、 ・ 日 、 ・ 1 = 、 ・ 1 = うへで 26 / 35

Weight space

Definition (Weight space)

For $m \geq 1$, set

$$\mathfrak{X}_m := \begin{cases} \mathbf{Z}/\left(p^{m-1}(p-1)\right)\mathbf{Z} & \text{if } p \neq 2, \\ \mathbf{Z}/2^{m-2}\mathbf{Z} & \text{if } p = 2, \end{cases}$$

and

$$\mathfrak{X} := \varprojlim_{m} \mathfrak{X}_{m} = \begin{cases} \mathbf{Z}_{p} \times \mathbf{Z}/(p-1)\mathbf{Z} & \text{if } p \neq 2, \\ \mathbf{Z}_{2} & \text{if } p = 2. \end{cases}$$

Remark

The natural projection maps $\mathbf{Z} \to \mathfrak{X}_m$ induce an injection $\mathbf{Z} \to \mathfrak{X}$ with dense image.

Weights as characters of \mathbf{Z}_{p}^{\times}

 $\mathfrak{X} = \mathbf{Z}_p \times \mathbf{Z}/(p-1)\mathbf{Z}$ (resp. \mathbf{Z}_2) can be identified as the group of continuous characters $\mathbf{Z}_p^{\times} \to \mathbf{C}_p^{\times}$.

- Suppose $p \geq 3$. Then $\mathbf{Z}_p^{\times} \cong (1 + p\mathbf{Z}_p) \times \mu_{p-1}$.
- 1 + pZ_p is isomorphic to the additive group of Z_p (via p-adic logarithm); its continuous characters are given by γ → γ^s for any s ∈ Z_p.
- μ_{p-1} is the group of (p − 1)-st roots of unity (via Teichmüller character); its characters are given by ζ → ζ^u for any u ∈ Z/(p − 1)Z.
- Hence, the continuous characters of Z_p^{\times} are given by pairs $k = (s, u) \in Z_p \times Z/(p-1)Z$ sending

$$x = (\gamma, \zeta) \mapsto x^k := (\gamma^s, \zeta^u).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Weights as characters of \mathbf{Z}_{p}^{\times}

- The (dense) image of Z → X corresponds to characters x → x^k for k ∈ Z, also called the integral weights.
- The case for p = 2 can be analyzed similarly.

Definition

We say that $k \in \mathfrak{X}$ is **even** if $k \in 2\mathfrak{X}$, or equivalently $(-1)^k = 1$.

When $p \neq 2$, this means $k = (s, u) \in \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$ with u even (and s arbitrary – it is always possible to divide by 2 in \mathbb{Z}_p).

Convergence of weights in $\mathfrak X$

Theorem

Let $f \neq 0$ be a p-adic modular form, and $f_i \in M_{k_i,\mathbf{Q}}$ be a sequence with $f_i \rightarrow f$. Then:

- k_i converges to some $k \in \mathfrak{X} = \lim_{m \to \infty} \mathfrak{X}_m$.
- The limit k depends only on f but not the choice of the sequence (f_i).
 - By convergence $f_i \rightarrow f$ (uniformly in n), we have

$$v_p(f_i) = v_p(f)$$

for $i \gg 0$.

• This is in **Z** (and not ∞) since $f \neq 0$.

Convergence of weights in $\mathfrak X$

• For each $m \ge 1$, we have for $j \ge i \gg 0$

$$v_p(f_j-f_i) \geq v_p(f) + m = v_p(f_i) + m.$$

By Serre's théorème 1,

$$k_i \equiv k_j \pmod{p^{m-1}(p-1)}$$

for all sufficiently large *i* and *j*, i.e. $k_i \in \mathfrak{X}_m$ is stationary in *i*.

- Therefore $k = \lim k_i \in \mathfrak{X}$ exists.
- To prove (2): If (f_i') is another sequence with f_i' → f, consider the new sequence

$$f_1, f_1', f_2, f_2', \cdots, f_i, f_i', \cdots$$

イロト 不得 トイヨト イヨト 二日

Weights of *p*-adic modular forms

Definition

We call $k \in \mathfrak{X}$ the **weight** of the *p*-adic modular form *f*, and denote by M_k^{\dagger} the space of *p*-adic modular forms of weight *k*.

- k is in general not an integer (∈ Z) not even a p-adic integer (∈ Z_p)!
- $k \in \mathfrak{X}$ is necessarily even, being a limit of even weights $k_i \in \mathbf{Z}$.
- $M_0^{\dagger} \subset M^{\dagger}$ is a subalgebra, and M_k^{\dagger} is an M_0^{\dagger} -module.

Examples

Example (Trivial)

Since $E_{p-1} \equiv 1 \pmod{p}$,

$$E_{p-1}^{p^m} \equiv 1 \pmod{p^{m+1}}.$$

Thus $E_{p-1}^{p^m} \in M_{(p-1)p^m,\mathbf{Q}}$ with limit 1, so 1 is a *p*-adic modular form of weight $\lim (p-1)p^m = 0 \in \mathfrak{X}$.

Example

The same argument shows

$$\frac{1}{\mathsf{E}_{p-1}} = \lim \mathsf{E}_{p-1}^{p^m - 1}$$

is a *p*-adic modular form of weight $\lim(p-1)(p^m-1) = 1 - p$.

33 / 35

Examples

Example

For p = 5 and $Q = E_4$, this shows

$$rac{1}{Q}\in M_{-4}^{\dagger} \hspace{0.1in} ext{and} \hspace{0.1in} rac{1}{j}=rac{\Delta}{Q^3}\in M_0^{\dagger}.$$

Problem Sheet 1:

$$M_0^{\dagger} = \mathbf{Q}_5 \left\langle \frac{1}{j} \right\rangle$$

where $\mathbf{Q}_p \langle T \rangle = \{\sum_{n=0}^{\infty} c_n T^n : c_n \in \mathbf{Q}_p, v_p(c_n) \to \infty\}$ is the Tate algebra.

Properties of *p*-adic modular forms

Our previous results on congruences and convergence carry over to *p*-adic modular forms, by a basic limiting argument:

Theorem

① Suppose
$$f \in M_k^\dagger$$
 and $f' \in M_{k'}^\dagger$ satisfy $f
eq 0$ and

$$v_p(f-f') \ge v_p(f) + m$$

for some m ≥ 1. Then k and k' have the same image in X_m.
If f_i ∈ M[†]_{ki} is a sequence of p-adic modular forms of weight k_i ∈ X with f_i → f ∈ Q_p[[q]], then f is a p-adic modular form of weight k = lim k_i.

Thus M^{\dagger} is a *p*-adic Banach space (as a closed subspace of $\mathbf{Z}_p[[q]] \otimes \mathbf{Q}_p$), equipped with a continuous map $M^{\dagger} \to \mathfrak{X}$ (weight map).