p-adic modular forms
 TCC (Spring 2021), Lecture 3

Pak-Hin Lee

4th February 2021

Administrative issues

Slides:

- Lectures 1 and 2 available on webpage

Problem sheets:

- 3 sets for assessment
(1) 19th February (Friday of Week 5)
(2) 5th March (Friday of Week 7)
(3) 19th March (Friday of Week 9)
- available two weeks before deadlines

Emails:

- Thank you all for your introductory email!
- Still working through responses...

Recap: Congruences between modular forms

- (Swinnerton-Dyer) Structure of mod p modular forms:

$$
f \equiv f^{\prime} \quad(\bmod p) \Longrightarrow k \equiv k^{\prime} \quad(\bmod p-1)
$$

- (Serre) Refinement for higher congruences:

Theorem (théorème 1, P. 198 of Antwerp)

Suppose $f \in M_{k, \mathbf{Q}}$ and $f^{\prime} \in M_{k^{\prime}, \mathbf{Q}}$ satisfy $f \neq 0$ and

$$
v_{p}\left(f-f^{\prime}\right) \geq v_{p}(f)+m
$$

for some $m \geq 1$. Then

$$
\begin{cases}k \equiv k^{\prime} \quad\left(\bmod p^{m-1}(p-1)\right) & \text { if } p \geq 3 \\ k \equiv k^{\prime} \quad\left(\bmod 2^{m-2}\right) & \text { if } p=2\end{cases}
$$

Recap: Filtration degree

Recall that $\widetilde{E}_{p-1}=1$ gives

$$
\widetilde{M}_{k} \subset \widetilde{M}_{k+p-1} \subset \widetilde{M}_{k+2(p-1)} \subset \cdots
$$

Definition (Filtration degree)
For $\widetilde{f} \in \widetilde{M}$,

$$
w(\widetilde{f}):= \begin{cases}\min \left\{k \in \mathbf{Z}_{\geq 0}: \widetilde{f} \in \widetilde{M}_{k}\right\} & \text { if } \tilde{f} \neq 0 \\ -\infty & \text { if } \widetilde{f}=0\end{cases}
$$

Recap: Filtration degree

Proposition

Let $f \in M_{k, \mathbf{z}_{(p)}}$ with $\tilde{f} \neq 0$. Then:
(1) $w(\widetilde{f})<k$ if and only if \widetilde{A} divides $\widetilde{\Phi}$, where $\Phi \in \mathbf{Z}_{(p)}[X, Y]$ is such that $f=\Phi(Q, R)$.
(2) $w(\Theta \widetilde{f}) \leq w(\widetilde{f})+p+1$, with equality if and only if $w(\widetilde{f}) \not \equiv 0$ $(\bmod p)$.
(3) $w\left(\widetilde{f}^{i}\right)=i w(\widetilde{f})$.

Game plan

- Finish the proof of main theorem (théorème 1) concerning higher congruences between classical modular forms
- Basic ingredients:
(1) structure of mod p modular forms
(2) Clausen-von Staudt theorem
- New ingredients:
(1) filtration on \widetilde{M} : introduced in both Swinnerton-Dyer [Antwerp] and Serre [Bourbaki]
(2) geometry of \widetilde{M} : presented in Serre [Bourbaki] only
- I will try to motivate each step and explain some details omitted by Serre [Antwerp].

Reduction of main theorem

Recall: By suitably scaling f and replacing f^{\prime} with $f^{\prime} E_{p^{n-1}(p-1)}$, we have reduced the main theorem (théorème 1) to:

Theorem

Let $p \geq 5$. Suppose $f \in M_{k, \mathbf{z}_{(p)}}$ and $f^{\prime} \in M_{k^{\prime}, \mathbf{Z}_{(p)}}$ satisfy:

- $v_{p}(f)=0$;
- $f \equiv f^{\prime}\left(\bmod p^{m}\right)$ for $m \geq 2$;
- $h:=k^{\prime}-k \geq 4($ known: $h \equiv 0(\bmod p-1))$.

Then

$$
r:=v_{p}(h)+1 \geq m
$$

Proof of main theorem

Suppose for the sake of contradiction that $r<m$.

Idea

Match the weights of f and f^{\prime}.
Consider the weight k^{\prime} form

$$
f E_{h}-f^{\prime}=\left(f-f^{\prime}\right)+f\left(E_{h}-1\right)
$$

where

- $p^{m} \mid f-f^{\prime}$ by hypothesis
- $p^{r} \| E_{h}-1$ by:

Corollary (Clausen-von Staudt)

$$
E_{k} \equiv 1\left(\bmod p^{n}\right) \Longleftrightarrow p^{n-1}(p-1) \mid k .
$$

Proof of main theorem

- $r<m$ implies

$$
p^{-r}\left(f E_{h}-f^{\prime}\right) \equiv p^{-r} f\left(E_{h}-1\right) \quad(\bmod p)
$$

Idea

Focus on $E_{h}-1$, which has an explicit q-expansion.

- Write $p^{-r}\left(E_{h}-1\right)=\lambda \phi$ where $\phi=\sum_{n \geq 1} \sigma_{h-1}(n) q^{n}$ and $v_{p}(\lambda)=0$.
- Then

$$
p^{-r}\left(f E_{h}-f^{\prime}\right) \equiv f \cdot p^{-r}\left(E_{h}-1\right) \equiv f \cdot \lambda \phi \quad(\bmod p)
$$

- Set $g:=\lambda^{-1} p^{-r}\left(f E_{h}-f^{\prime}\right)$, so that

$$
g \equiv f \phi \quad(\bmod p)
$$

Proof of main theorem

- Now $\phi=\sum_{n \geq 1} \sigma_{h-1}(n) q^{n}$ satisfies

$$
\tilde{g}=\tilde{f} \tilde{\phi}
$$

for some $g \in M_{k^{\prime}, \mathbf{z}_{(\rho)}}, f \in M_{k, \mathbf{z}_{(\rho)}}$.

- Since $k \equiv k^{\prime}(\bmod p-1)$, this shows

$$
\widetilde{\phi} \in \operatorname{Frac} \widetilde{M}^{0}
$$

Theorem

$\widetilde{M^{0}}$ is a Dedekind domain.
See Serre [Bourbaki]: Spec $\widetilde{M}^{0}=\mathbf{P}_{j, \mathbf{F}_{p}}^{1}-\{$ ss points $\}$ is a smooth affine curve. (Question: Is there an "algebraic" proof?)

Proof of main theorem

Idea

Show that $\widetilde{\phi}$ is integral over $\widetilde{M}^{0}\left(\Longrightarrow \widetilde{\phi} \in \widetilde{M}^{0}\right)$.
Consider

$$
\begin{aligned}
\phi & =\sum_{n \geq 1} \sigma_{h-1}(n) q^{n} \\
\psi & =\sum_{(n, p)=1} \sigma_{h-1}(n) q^{n}
\end{aligned}
$$

Lemma

(1) $\phi-\phi^{p} \equiv \psi(\bmod p)$.
(2) $\psi \equiv-\frac{1}{24} \Theta^{p-2}\left(E_{p+1}\right)(\bmod p)$. In particular, $\tilde{\psi} \in \widetilde{M}^{0}$.

Let me fill in the details, which are omitted by Serre [Antwerp].

Proof of identity (1): extracting the prime-to-p terms

- Raising $\phi=\sum_{n \geq 1} \sigma_{h-1}(n) q^{n}$ to the p-th power gives

$$
\begin{aligned}
\phi^{p} & \equiv \sum_{n \geq 1} \sigma_{h-1}(n) q^{p n} \quad(\bmod p) \quad[\text { Fermat's little theorem }] \\
& \equiv \sum_{n \geq 1} \sigma_{h-1}(p n) q^{p n} \quad(\bmod p) \\
& \equiv \sum_{p \mid n} \sigma_{h-1}(n) q^{n} \quad(\bmod p) .
\end{aligned}
$$

- Hence

$$
\phi-\phi^{p} \equiv \psi \quad(\bmod p)
$$

for

$$
\psi=\sum_{(n, p)=1} \sigma_{h-1}(n) q^{n} .
$$

Proof of identity (2): relating with E_{2}

If $(n, p)=1$, then Fermat's little theorem with $(p-1) \mid h$ implies

$$
\sigma_{h-1}(n)=\sum_{d \mid n} d^{h-1} \equiv \sum_{d \mid n} d^{-1}=\sum_{d \mid n} \frac{n d^{-1}}{n}=\frac{\sigma_{1}(n)}{n} \quad(\bmod p)
$$

Thus

$$
\begin{aligned}
\psi & =\sum_{(n, p)=1} \sigma_{h-1}(n) q^{n} \\
& \equiv \sum_{(n, p)=1} \frac{\sigma_{1}(n)}{n} q^{n} \quad(\bmod p) \\
& \equiv \sum_{n=1}^{\infty} n^{p-2} \sigma_{1}(n) q^{n} \quad(\bmod p) \\
& \equiv \Theta^{p-2}\left(\sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}\right) \quad(\bmod p)
\end{aligned}
$$

Proof of identity (2): relating with E_{p+1}

Recall $E_{2}=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n}$. Hence

$$
\begin{aligned}
\psi & \equiv-\frac{1}{24} \Theta^{p-2}\left(E_{2}\right) \quad(\bmod p) \\
& \equiv-\frac{1}{24} \Theta^{p-2}\left(E_{p+1}\right) \quad(\bmod p)
\end{aligned}
$$

Recall $\Theta: \widetilde{M}_{k} \rightarrow \widetilde{M}_{k+p+1}$ (note: $k+p+1$ might not be the optimal weight $w(\Theta \widetilde{f})$, but this doesn't matter for now), so

$$
\tilde{\psi}=-\frac{1}{24} \Theta^{p-2}\left(\tilde{E}_{p+1}\right)
$$

belongs to $\widetilde{M}_{(p+1)+(p+1)(p-2)}=\widetilde{M}_{(p+1)(p-1)} \subset \widetilde{M}^{0}$.

Proof of main theorem

Summary so far:

- $\widetilde{\phi}-\widetilde{\phi}^{p}=\widetilde{\psi}$.
- $\widetilde{\phi} \in \operatorname{Frac} \widetilde{M}^{0}$.
- $\widetilde{\psi} \in \widetilde{M}^{0}$.

Since \widetilde{M}^{0} is a Dedekind domain, hence integrally closed, we conclude

$$
\widetilde{\phi} \in \widetilde{M}^{0}
$$

Proof of main theorem: filtration degrees

Take filtration degrees on both sides of

$$
\widetilde{\phi}-\widetilde{\phi}^{p}=-\frac{1}{24} \Theta^{p-2}\left(\widetilde{E}_{p+1}\right)
$$

LHS:

- $w\left(\widetilde{\phi}^{p}\right)=p w(\widetilde{\phi})$.
- Write $\widetilde{\phi}=\Phi(\widetilde{Q}, \widetilde{R})$ where $\widetilde{A} \nmid \Phi$. Then $\widetilde{\phi}-\widetilde{\phi}^{p}$ can be represented by a homogeneous polynomial of the form $\Phi \widetilde{A}^{n}-\Phi^{p}$, which is not divisible by \widetilde{A}.
- Hence $w(\mathrm{LHS})=p w(\widetilde{\phi})$.

RHS:

- $w(\mathrm{RHS}) \leq(p+1)+(p+1)(p-2)=(p+1)(p-1)$.
- Equality holds because $(p+1)+(p+1) i$ is never divisible by p for $i=0,1, \cdots, p-2$.

Proof of main theorem: contradiction!

We have shown

$$
p w(\tilde{\phi})=(p+1)(p-1)
$$

which is a contradiction!
Remark
The equation $\widetilde{\phi}-\widetilde{\phi}^{p}=\widetilde{\psi}$ defines an (irreducible) degree p cover of Spec $\widetilde{M}^{0}=X_{0}(1)_{\mathbf{F}_{p}}^{\text {ord }}$.

Overview of Serre's theory

- Classical modular forms exhibit natural p-adic properties:
f and f^{\prime} " p-adically close" $\Longrightarrow k$ and k^{\prime} " p-adically close".
- Serre's idea:

$$
p \text {-adic modular forms }=\begin{gathered}
\text { " } p \text {-adic limits" of } q \text {-expansions } \\
\text { of classical modular forms. }
\end{gathered}
$$

- This is elementary - as opposed to Katz's algebro-geometric theory - but already quite powerful.

Motivation: p-adic zeta functions

- Special values of the Riemann zeta function: $\zeta(1-k)=-\frac{B_{k}}{k}$ at the negative odd integers
- Kummer congruence: If k, k^{\prime} are even integers not divisible by $p-1$ with $k \equiv k^{\prime}\left(\bmod p^{m}(p-1)\right)$, then

$$
\left(1-p^{k-1}\right) \frac{B_{k}}{k} \equiv\left(1-p^{k^{\prime}-1}\right) \frac{B_{k^{\prime}}}{k^{\prime}} \quad\left(\bmod p^{m+1}\right)
$$

- Roughly speaking, $\left(1-p^{-s}\right) \zeta(s)$ (with Euler factor at p removed) is p-adically continuous.
- Leopoldt-Kubota: construction of the p-adic zeta function interpolating these values
- Serre: alternative construction as the constant term of p-adic Eisenstein series
- Slogan: the non-constant Fourier coefficients govern the constant term.

Motivation: congruences of modular forms

- Classical theory: combinatorial arguments for congruences such as

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

for $\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$ (Ramanujan, 1916).

- Mod p theory: Problem Sheet 1 will ask you to show

$$
\begin{aligned}
& \tau(n) \equiv n \sigma_{5}(n) \quad(\bmod 5), \\
& \tau(n) \equiv n \sigma_{3}(n) \quad(\bmod 7) .
\end{aligned}
$$

See Swinnerton-Dyer [Antwerp] and Serre [Bourbaki] for many others.

Motivation: congruences of modular forms

- p-adic theory: provides conceptual framework for understanding congruences such as

$$
\begin{aligned}
c\left(2^{a} n\right) & \equiv 0 \quad\left(\bmod 2^{3 a+8}\right), \\
c\left(3^{a} n\right) & \equiv 0 \quad\left(\bmod 3^{2 a+3}\right), \\
c\left(5^{a} n\right) & \equiv 0 \quad\left(\bmod 5^{a+1}\right), \\
c\left(7^{a} n\right) & \equiv 0 \quad\left(\bmod 7^{a}\right), \\
c\left(11^{a} n\right) & \equiv 0 \quad\left(\bmod 11^{a}\right)
\end{aligned}
$$

for the j-invariant $j(\tau)=\sum_{n=-1}^{\infty} c(n) q^{n}$ (Lehner, 1949; Atkin, 1966 - via intricate manipulations).

Remark

J. Lehner \neq D.H. Lehmer; both have worked on modular forms!

- Slogan: contraction property of U_{p}-operator

Notation

Consider the p-adic numbers \mathbf{Q}_{p}, with

- valuation $v_{p}: \mathbf{Q}_{p} \rightarrow \mathbf{Z} \cup\{\infty\}$ given by $v_{p}(p)=1$;
- absolute value $|\cdot|_{p}: \mathbf{Q}_{p} \rightarrow \mathbf{Q}_{\geq 0}$ given by $|x|_{p}=p^{-v_{p}(x)}$.

Extend the p-adic valuation to $v_{p}: \mathbf{Q}_{p}[[q]] \rightarrow \mathbf{Z} \cup\{ \pm \infty\}$ by

$$
f=\sum_{n=0}^{\infty} a_{n} q^{n} \mapsto v_{p}(f):=\inf _{n \geq 0} v_{p}\left(a_{n}\right)
$$

f has bounded coefficients $\Longleftrightarrow f \in \mathbf{Z}_{p}[[q]] \otimes \mathbf{Q}_{p} \Longleftrightarrow$
$v_{p}(f)>-\infty$; this includes all $f \in M_{k, \mathbf{Q}}$.

Remark

$\mathbf{Z}_{p}[[q]] \otimes \mathbf{Q}_{p}$ is a p-adic Banach space with $|f|:=\sup _{n \geq 0}\left|a_{n}\right|_{p}$.

Notation

- $v_{p}(f) \geq 0$ means $f \in \mathbf{Z}_{p}[[q]]$, i.e. f has p-integral coefficients.
- If $v_{p}(f) \geq m$, we write

$$
f \equiv 0 \quad\left(\bmod p^{m}\right)
$$

- If $\left(f_{i}\right)$ is a sequence of elements in $\mathbf{Q}_{p}[[q]]$, we say $f_{i} \rightarrow f$ if $v_{p}\left(f-f_{i}\right) \rightarrow \infty$, i.e. the coefficients of f_{i} tend to those of f uniformly.

Convergence in $\mathbf{Q}_{p}[$ [q]]

$$
\begin{aligned}
& f_{1}=a_{0}^{(1)}+a_{1}^{(1)} q+\cdots+a_{n}^{(1)} q^{n}+\cdots, \\
& f_{2}=a_{0}^{(2)}+a_{1}^{(2)} q+\cdots+a_{n}^{(2)} q^{n}+\cdots, \\
& \vdots \\
& f_{i}=a_{0}^{(i)}+a_{1}^{(i)} q+\cdots+a_{n}^{(i)} q^{n}+\cdots, \\
& \vdots \\
& f=a_{0}+a_{1} q+\cdots+a_{n} q^{n}+\cdots
\end{aligned}
$$

$f_{i} \rightarrow f$ means $a_{n}^{(i)} \rightarrow a_{n}$ uniformly in n.

p-adic modular forms

Definition (Serre)

A p-adic modular form is a formal power series $f \in \mathbf{Q}_{p}[[q]]$ such that there exists a sequence of modular forms $f_{i} \in M_{k_{i}, \mathbf{Q}}$ of weight k_{i} such that

$$
f_{i} \rightarrow f .
$$

Denote by $M^{\dagger} \subset \mathbf{Q}_{p}[[q]]$ (in fact, $\subset \mathbf{Z}_{p}[[q]] \otimes \mathbf{Q}_{p}$) the space of p-adic modular forms.

At first glance, the sequence f_{i} might seem arbitrary. Recall théorème 1 (on congruences mod p^{m}) imposes strong conditions on the behavior of $\left(k_{i}\right)$ - this is remarkable!

Weights

Theorem (théorème 1)

Suppose $f \in M_{k, \mathbf{Q}}$ and $f^{\prime} \in M_{k^{\prime}, \mathbf{Q}}$ satisfy $f \neq 0$ and

$$
v_{p}\left(f-f^{\prime}\right) \geq v_{p}(f)+m
$$

for some $m \geq 1$. Then

$$
\begin{cases}k \equiv k^{\prime} \quad\left(\bmod p^{m-1}(p-1)\right) & \text { if } p \geq 3 \\ k \equiv k^{\prime} \quad\left(\bmod 2^{m-2}\right) & \text { if } p=2\end{cases}
$$

This suggests looking at the inverse limit of $\mathbf{Z} /\left(p^{m-1}(p-1)\right) \mathbf{Z}$ (resp. $\mathbf{Z} / 2^{m-2} \mathbf{Z}$).

Weight space

Definition (Weight space)

For $m \geq 1$, set

$$
\mathfrak{X}_{m}:= \begin{cases}\mathbf{Z} /\left(p^{m-1}(p-1)\right) \mathbf{Z} & \text { if } p \neq 2 \\ \mathbf{Z} / 2^{m-2} \mathbf{Z} & \text { if } p=2\end{cases}
$$

and

Remark

The natural projection maps $\mathbf{Z} \rightarrow \mathfrak{X}_{m}$ induce an injection $\mathbf{Z} \rightarrow \mathfrak{X}$ with dense image.

Weights as characters of \mathbf{Z}_{p}^{\times}

$\mathfrak{X}=\mathbf{Z}_{p} \times \mathbf{Z} /(p-1) \mathbf{Z}$ (resp. $\left.\mathbf{Z}_{2}\right)$ can be identified as the group of continuous characters $\mathbf{Z}_{p}^{\times} \rightarrow \mathbf{C}_{p}^{\times}$.

- Suppose $p \geq 3$. Then $\mathbf{Z}_{p}^{\times} \cong\left(1+p \mathbf{Z}_{p}\right) \times \mu_{p-1}$.
- $1+p \mathbf{Z}_{p}$ is isomorphic to the additive group of \mathbf{Z}_{p} (via p-adic logarithm); its continuous characters are given by $\gamma \mapsto \gamma^{s}$ for any $s \in \mathbf{Z}_{p}$.
- μ_{p-1} is the group of ($p-1$)-st roots of unity (via Teichmüller character); its characters are given by $\zeta \mapsto \zeta^{u}$ for any $u \in \mathbf{Z} /(p-1) \mathbf{Z}$.
- Hence, the continuous characters of \mathbf{Z}_{p}^{\times}are given by pairs $k=(s, u) \in \mathbf{Z}_{p} \times \mathbf{Z} /(p-1) \mathbf{Z}$ sending

$$
x=(\gamma, \zeta) \mapsto x^{k}:=\left(\gamma^{s}, \zeta^{u}\right)
$$

Weights as characters of \mathbf{Z}_{p}^{\times}

- The (dense) image of $\mathbf{Z} \rightarrow \mathfrak{X}$ corresponds to characters $x \mapsto x^{k}$ for $k \in \mathbf{Z}$, also called the integral weights.
- The case for $p=2$ can be analyzed similarly.

Definition

We say that $k \in \mathfrak{X}$ is even if $k \in 2 \mathfrak{X}$, or equivalently $(-1)^{k}=1$.
When $p \neq 2$, this means $k=(s, u) \in \mathbf{Z}_{p} \times \mathbf{Z} /(p-1) \mathbf{Z}$ with u even (and s arbitrary - it is always possible to divide by 2 in \mathbf{Z}_{p}).

Convergence of weights in \mathfrak{X}

Theorem

Let $f \neq 0$ be a p-adic modular form, and $f_{i} \in M_{k_{i}, \mathbf{Q}}$ be a sequence with $f_{i} \rightarrow f$. Then:
(1) k_{i} converges to some $k \in \mathfrak{X}=\lim _{m} \mathfrak{X}_{m}$.
(2) The limit k depends only on f but not the choice of the sequence $\left(f_{i}\right)$.

- By convergence $f_{i} \rightarrow f$ (uniformly in n), we have

$$
v_{p}\left(f_{i}\right)=v_{p}(f)
$$

for $i \gg 0$.

- This is in \mathbf{Z} (and not ∞) since $f \neq 0$.

Convergence of weights in \mathfrak{X}

- For each $m \geq 1$, we have for $j \geq i \gg 0$

$$
v_{p}\left(f_{j}-f_{i}\right) \geq v_{p}(f)+m=v_{p}\left(f_{i}\right)+m .
$$

- By Serre's théorème 1 ,

$$
k_{i} \equiv k_{j} \quad\left(\bmod p^{m-1}(p-1)\right)
$$

for all sufficiently large i and j, i.e. $k_{i} \in \mathfrak{X}_{m}$ is stationary in i.

- Therefore $k=\lim k_{i} \in \mathfrak{X}$ exists.
- To prove (2): If $\left(f_{i}^{\prime}\right)$ is another sequence with $f_{i}^{\prime} \rightarrow f$, consider the new sequence

$$
f_{1}, f_{1}^{\prime}, f_{2}, f_{2}^{\prime}, \cdots, f_{i}, f_{i}^{\prime}, \cdots
$$

Weights of p-adic modular forms

Definition

We call $k \in \mathfrak{X}$ the weight of the p-adic modular form f, and denote by M_{k}^{\dagger} the space of p-adic modular forms of weight k.

- k is in general not an integer $(\in \mathbf{Z})$ - not even a p-adic integer $\left(\in \mathbf{Z}_{p}\right)$!
- $k \in \mathfrak{X}$ is necessarily even, being a limit of even weights $k_{i} \in \mathbf{Z}$.
- $M_{0}^{\dagger} \subset M^{\dagger}$ is a subalgebra, and M_{k}^{\dagger} is an M_{0}^{\dagger}-module.

Examples

Example (Trivial)

Since $E_{p-1} \equiv 1(\bmod p)$,

$$
E_{p-1}^{p^{m}} \equiv 1 \quad\left(\bmod p^{m+1}\right)
$$

Thus $E_{p-1}^{p^{m}} \in M_{(p-1) p^{m}, \mathbf{Q}}$ with limit 1 , so 1 is a p-adic modular form of weight $\lim (p-1) p^{m}=0 \in \mathfrak{X}$.

Example

The same argument shows

$$
\frac{1}{E_{p-1}}=\lim E_{p-1}^{p^{m}-1}
$$

is a p-adic modular form of weight $\lim (p-1)\left(p^{m}-1\right)=1-p$.

Examples

Example

For $p=5$ and $Q=E_{4}$, this shows

$$
\frac{1}{Q} \in M_{-4}^{\dagger} \quad \text { and } \quad \frac{1}{j}=\frac{\Delta}{Q^{3}} \in M_{0}^{\dagger} .
$$

Problem Sheet 1:

$$
M_{0}^{\dagger}=\mathbf{Q}_{5}\left\langle\frac{1}{j}\right\rangle
$$

where $\mathbf{Q}_{p}\langle T\rangle=\left\{\sum_{n=0}^{\infty} c_{n} T^{n}: c_{n} \in \mathbf{Q}_{p}, v_{p}\left(c_{n}\right) \rightarrow \infty\right\}$ is the Tate algebra.

Properties of p-adic modular forms

Our previous results on congruences and convergence carry over to p-adic modular forms, by a basic limiting argument:

Theorem

(1) Suppose $f \in M_{k}^{\dagger}$ and $f^{\prime} \in M_{k^{\prime}}^{\dagger}$ satisfy $f \neq 0$ and

$$
v_{p}\left(f-f^{\prime}\right) \geq v_{p}(f)+m
$$

for some $m \geq 1$. Then k and k^{\prime} have the same image in \mathfrak{X}_{m}.
(2) If $f_{i} \in M_{k_{i}}^{\dagger}$ is a sequence of p-adic modular forms of weight $k_{i} \in \mathfrak{X}$ with $f_{i} \rightarrow f \in \mathbf{Q}_{p}[[q]]$, then f is a p-adic modular form of weight $k=\lim k_{i}$.

Thus M^{\dagger} is a p-adic Banach space (as a closed subspace of $\mathbf{Z}_{p}[[q]] \otimes \mathbf{Q}_{p}$), equipped with a continuous map $M^{\dagger} \rightarrow \mathfrak{X}$ (weight map).

