Differential operators Congruences mod p^m

p-adic modular forms TCC (Spring 2021), Lecture 2

Pak-Hin Lee

28th January 2021

 Eisenstein series of weight 2

Recall the "fake" weight 2 Eisenstein series

$$P = E_2 := 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n.$$

This is not a modular form: it is invariant under translation but transforms under inversion as

$$P\left(-\frac{1}{\tau}\right) = \tau^2 P(\tau) + \frac{12\tau}{2\pi i}.$$

Theta operator

Definition

The Ramanujan (or Atkin–Serre) theta operator is

$$\Theta = q \frac{d}{dq}.$$

- On q-expansions, $f = \sum a_n q^n$ is sent to $\Theta f = \sum n a_n q^n$.
- In complex coordinates, Θ is given by $\frac{1}{2\pi i} \frac{d}{d\tau}$, where $q = e^{2\pi i \tau}$.
- Although Θ does not preserve modularity, the discrepancy is a simple expression involving P.

Theta operator

Theorem (Ramanujan)

If f is a modular form of weight k, then

$$\Theta f - \frac{k}{12} P f$$

is a modular form of weight k + 2. Θ acts on P, Q, R by

$$\Theta P = \frac{1}{12}(P^2 - Q),$$

$$\Theta Q = \frac{1}{3}(PQ - R),$$

$$\Theta R = \frac{1}{2}(PR - Q^2).$$

Theta operator

Corollary

$${\sf Z}_{(p)}[P,Q,R] \subset {\sf Z}_{(p)}[[q]]$$
 is stable under Θ .

These are straightforward; note that ΘP requires a separate calculation!

Example

For k = 12,

 $\Theta\Delta - P\Delta \in M_{14}$

which is one-dimensional and spanned by E_{14} . But its constant term is 0, so

$$\Theta\Delta-P\Delta=0,$$

i.e. P is the logarithmic derivative of Δ .

Theta operator on mod p modular forms

Next we pass to mod p modular forms.

Although Θ fails to preserve modularity in the classical setting, the miracle is that it preserves the space of mod p modular forms! First we recall some further facts about Bernoulli numbers.

Bernoulli numbers

Theorem

- (Clausen-von Staudt) If (p-1) | k, then $v_p(B_k) = -1$.
- 3 (Kummer) If $(p-1) \nmid k$, then $\frac{B_k}{k} \in \mathbf{Z}_{(p)}$ and

$$\frac{B_k}{k} \equiv \frac{B_{k'}}{k'} \pmod{p} \quad \text{whenever } k \equiv k' \not\equiv 0 \pmod{p-1}.$$

Corollary

1
$$E_{p-1} \in M_{p-1, \mathbf{Z}_{(p)}}$$
 with $\tilde{E}_{p-1} = 1$.

3 $E_{p+1} \in M_{p+1,\mathbb{Z}_{(p)}}$ with $\widetilde{E}_{p+1} = \widetilde{P}$. In particular, $\widetilde{P} \in \widetilde{M}$ is a mod p modular form.

Bernoulli numbers

Proof.

We have already seen (1). For (2), we compare

$$E_{p+1} = 1 - rac{2(p+1)}{B_{p+1}} \sum \sigma_p(n) q^n,$$

 $E_2 = 1 - rac{4}{B_2} \sum \sigma_1(n) q^n.$

Kummer's congruence gives $\frac{B_{p+1}}{p+1} \equiv \frac{B_2}{2} \equiv \frac{1}{12} \pmod{p}$ which is invertible (note: there is a typo in Equation (16) of Swinnerton-Dyer), while Fermat's little theorem gives $\sigma_p(n) \equiv \sigma_1(n) \pmod{p}$. Hence

$$E_{p+1} \equiv E_2 \pmod{p}.$$

イロト イボト イヨト イヨト

Theta operator on mod p modular forms

Corollary

The algebra \widetilde{M} of mod p modular forms is stable under Θ .

Proof.

If $f \in \widetilde{M}_k$, then

$$12\Theta f = \partial f + k\widetilde{P}f = \widetilde{E}_{p-1}\partial f + k\widetilde{E}_{p+1}f$$

where both summands belong to \widetilde{M}_{k+p+1} .

 Θ will play an important role in the *p*-adic theory.

A digression

• In the classical setting, the Maass-Shimura operator

$$\delta_k := \frac{1}{2\pi i} \left(\frac{d}{d\tau} + \frac{k}{\tau - \overline{\tau}} \right)$$

transforms *real-analytic* modular forms of weight k into *real-analytic* modular forms of weight k + 2.

- We will see that the theta operator ⊖ takes *p*-adic modular forms of weight k to *p*-adic modular forms of weight k + 2.
- Indeed, there is a deep connection between them: they coincide at CM points (Shimura, Katz, etc.).

Derivation ∂ on modular forms

For $k \ge 4$, set

$$\partial := 12\Theta - kP : M_k \to M_{k+2}.$$

Then $\Theta Q = \frac{1}{3}(PQ - R)$ and $\Theta R = \frac{1}{2}(PR - Q^2)$ give:

Corollary

 ∂ defines a derivation on $\mathbf{Z}_{(p)}[Q,R]$ with

$$\partial Q = -4R, \quad \partial R = -6Q^2.$$

The same formulae define a derivation on $Z_{(p)}[X, Y]$, hence on $F_p[X, Y]$, with

$$\partial X = -4Y, \quad \partial Y = -6X^2.$$

The polynomials A and B

We have defined $A \in \mathbf{Z}_{(p)}[X, Y]$ to be the (unique) polynomial such that

$$E_{p-1}=A[Q,R].$$

Similarly, define $B \in \mathbf{Z}_{(p)}[X,Y]$ such that

$$E_{p+1}=B[Q,R].$$

The derivation ∂ acts on their mod *p* reductions by:

Lemma

 $\partial \widetilde{A} = \widetilde{B}$ and $\partial \widetilde{B} = -\widetilde{Q}\widetilde{A}$. Thus \widetilde{A} and \widetilde{B} satisfy the differential equation

$$(\partial^2 + \widetilde{Q})\Phi = 0.$$

Finish of proof

Finally, we are ready to finish the last step in the proof:

$$\widetilde{M} = \mathbf{F}_{\rho}[X, Y] / (\widetilde{A} - 1)$$

$$\widehat{A} - 1 \text{ is irreducible}$$

$$\widehat{A} \text{ has no repeated factors}$$

Idea

Differential operators detect repeated factors, and ∂ has a particularly nice description in terms of \widetilde{A} and \widetilde{B} .

Proof: \tilde{A} has no repeated factors

Proposition

 \widetilde{A} has no repeated factors in $\overline{\mathbf{F}_p}[X, Y]$, and \widetilde{A} and \widetilde{B} are relatively prime.

- Recall that A is homogeneous of weight p 1, where X and Y have weights 4 and 6 respectively.
- Over an algebraic closure $\overline{\mathbf{F}_p}$, the irreducible factors of \widetilde{A} must be of the form X, Y or $X^3 cY^2$.
- Note $c \neq 1$. Otherwise, $\widetilde{Q}^3 \widetilde{R}^2 \in q\mathbf{F}_p[[q]]$ has no constant term, but $\widetilde{A}(\widetilde{Q}, \widetilde{R}) = 1$.
- Recall ∂ acts by

$$\partial X = -4Y, \quad \partial Y = -6X^2$$

and

$$\partial \widetilde{A} = \widetilde{B}, \quad \partial \widetilde{B} = -X\widetilde{A}.$$

Proof: \tilde{A} has no repeated factors

Factors of the form $X^3 - cY^2$ (where $c \neq 1$):

- Suppose \widetilde{A} is exactly divisible by $(X^3 cY^2)^n$ for some $n \ge 2$.
- Since

$$\partial(X^3-cY^2)=12(c-1)X^2Y$$

is prime to $X^3 - cY^2$ (using $c \neq 1$), $\partial \tilde{A} = \tilde{B}$ is exactly divisible by $(X^3 - cY^2)^{n-1}$.

• Applying ∂ once more, $\partial \tilde{B} = -X\tilde{A}$ is exactly divisible by $(X^3 - cY^2)^{n-2}$, which is a contradiction.

Factors of the form X or Y are treated similarly. As a by-product, we see that every factor of \widetilde{A} with multiplicity n (necessarily 1) appears with multiplicity n-1 (necessarily 0) in $\partial \widetilde{A} = \widetilde{B}$. Thus \widetilde{A} and \widetilde{B} are co-prime.

Grading on mod *p* modular forms

We have shown the \mathbf{F}_{p} -algebra of mod p modular forms is isomorphic to

$$\widetilde{M} \cong \mathbf{F}_p[X, Y]/(\widetilde{A} - 1).$$

Since \widetilde{A} is homogeneous of weight p-1, we deduce

Corollary

 \widetilde{M} has a natural grading with values in ${f Z}/(p-1){f Z}$, i.e.

$$\widetilde{M} = igoplus_{a \in \mathbf{Z}/(p-1)\mathbf{Z}} \widetilde{M}^{a}$$

where
$$\widetilde{M}^{a} = \sum_{k \equiv a \mod p-1} \widetilde{M}_{k}$$
.

In particular, \widetilde{M}^0 is a subalgebra.

Examples

Denote
$$Y = \operatorname{Spec} \widetilde{M}$$
 and $Y^0 = \operatorname{Spec} \widetilde{M}^0$.

Example (p = 11)

Example (p = 13)

Geometric interpretation

Very brief remarks (see Serre's Bourbaki notes):

• $Y = \operatorname{Spec} \widetilde{M}$ and $Y^0 = \operatorname{Spec} \widetilde{M}^0$ are smooth affine curves (i.e. \widetilde{M} and \widetilde{M}^0 are Dedekind domains).

•
$$Y^0 = \mathbf{P}^1_{j,\mathbf{F}_p} - \{\widetilde{A} = 0\}.$$

- More precisely, Y is the ordinary locus of X₀(p)_{F_p}, and Y⁰ is the ordinary locus of X₀(1)_{F_p} (genus 0).
- The natural projection $Y \to Y^0$ is a covering with Galois group $\mathbf{F}_p^{\times}/\{\pm 1\}$.

Towards *p*-adic modular forms

Plans for Serre's article:

- Today: main theorem (théorème 1 on P.198) concerning congruences mod p^m between classical modular forms
- The last step of the proof involves two ingredients:
 - filtration on M: introduced in both Swinnerton-Dyer's article and Serre's Bourbaki notes
 - 2 geometry of M: only presented in Serre's Bourbaki notes
- Next lecture: p-adic modular forms a là Serre
 - Motivations: p-adic zeta functions, congruences of modular forms
 - Serre's theory: readily follows from main theorem
 - applications

Main theorem on congruences mod p^m

From the structure of mod p modular forms, we have

$$f \equiv f' \pmod{p} \implies k \equiv k' \pmod{p-1}.$$

Idea

This can be refined for congruences mod p^m . **Slogan:** If f and f' are congruent mod a high power of p, then so are k and k' (in addition to being congruent mod p - 1).

Extend the *p*-adic valuation $v_p : \mathbf{Q}_p \to \mathbf{Z} \cup \{\infty\}$ (with $v_p(p) = 1$) to $\mathbf{Q}_p[[q]] \to \mathbf{Z} \cup \{\pm \infty\}$ by

$$f = \sum a_n q^n \mapsto v_p(f) = \inf_n v_p(a_n).$$

If f has bounded coefficients (e.g. $f \in M_{k,\mathbf{Q}}$), then $v_p(f) > -\infty$.

Main theorem on congruences mod p^m

Theorem (théorème 1 on P.198)

Suppose $f \in M_{k,\mathbf{Q}}$ and $f' \in M_{k',\mathbf{Q}}$ satisfy $f \neq 0$ and

$$v_p(f-f') \ge v_p(f) + m$$

for some $m \ge 1$. Then

$$\begin{cases} k \equiv k' \pmod{p^{m-1}(p-1)} & \text{if } p \geq 3, \\ k \equiv k' \pmod{2^{m-2}} & \text{if } p = 2. \end{cases}$$

First reduction:

- Scaling f and f' by $p^{-v_p(f)}$, we may assume $v_p(f) = 0$.
- The condition becomes f ≡ f' (mod p^m); in particular, both have p-integral coefficients.

Main theorem on congruences mod p^m

Theorem

Suppose
$$f \in M_{k,\mathbf{Z}_{(p)}}$$
 and $f' \in M_{k',\mathbf{Z}_{(p)}}$ satisfy $v_p(f) = 0$ and

 $f \equiv f' \pmod{p^m}$

Then

$$\begin{cases} k \equiv k' \pmod{p^{m-1}(p-1)} & \text{if } p \ge 3, \\ k \equiv k' \pmod{2^{m-2}} & \text{if } p = 2. \end{cases}$$

As usual, we will focus on the case $p \ge 5$.

- For *m* = 1, this follows from our previous result on the structure of mod *p* modular forms.
- For general *m*, this requires the notion of *filtration degree*.

Definition

For $\tilde{f} \in \widetilde{M}$ nonzero, define its *filtration degree*

$$w(\widetilde{f}) := \min\{k \in \mathbf{Z}_{\geq 0} : \widetilde{f} \in \widetilde{M}_k\}.$$

By convention,
$$w(0) = -\infty$$
.

Thus $w(\tilde{f})$ is the smallest k such that there exists a classical form of weight k reducing to $\tilde{f} \mod p$.

Idea

Filtration degree ($\in \mathbf{Z}$) refines the weight ($\in \mathbf{Z}/(p-1)\mathbf{Z}$) of mod p modular forms.

Proposition

Let $f \in M_{k,\mathbf{Z}_{(p)}}$ be such that $f = \Phi(Q,R)$ for some

$$\Phi \in \mathbf{Z}_{(p)}[X,Y]$$
, and suppose $\widetilde{f}
eq 0$. Then:

•
$$w(\tilde{f}) < k$$
 if and only if \tilde{A} divides $\tilde{\Phi}$.

• $w(\Theta \tilde{f}) \le w(\tilde{f}) + p + 1$, with equality if and only if $w(\tilde{f}) \neq 0$ (mod p).

$$w(\tilde{f}^i) = iw(\tilde{f}).$$

Remark

Later we will study the effect of Hecke operators on w(f).

(1) is clear, since $\widetilde{M} = \mathbf{F}_p[X, Y]/(\widetilde{A} - 1)$. Now assume f has been chosen so that $k = w(\widetilde{f})$ (thus $\widetilde{A} \nmid \widetilde{\Phi}$). To prove (2), recall that $12\Theta = \partial + kP$, so

$$12\Theta \tilde{f} = \partial \tilde{f} + k \tilde{P} \tilde{f} = \tilde{E}_{p-1} \partial \tilde{f} + k \tilde{E}_{p+1} \tilde{f}$$
$$= \tilde{A}(\tilde{Q}, \tilde{R}) \partial \tilde{\Phi}(\tilde{Q}, \tilde{R}) + k \tilde{B}(\tilde{Q}, \tilde{R}) \tilde{\Phi}(\tilde{Q}, \tilde{R}).$$

Both $E_{p-1}\partial f$ and $E_{p+1}f$ belong to $M_{k+p+1,\mathbf{Z}_{(p)}}$, so

$$w(\Theta \widetilde{f}) \leq k + p + 1.$$

By (1), equality $\iff \widetilde{A} \nmid \widetilde{A} \partial \widetilde{\Phi} + k \widetilde{B} \widetilde{\Phi} \iff \widetilde{A} \nmid k \widetilde{B} \widetilde{\Phi}$. But \widetilde{A} and \widetilde{B} are co-prime and $\widetilde{A} \nmid \widetilde{\Phi}$, so this amounts to $k \neq 0 \pmod{p}$.

To prove (3),

$$f = \Phi(Q, R) \implies f^i = \Phi^i(Q, R).$$

Because \widetilde{A} has no repeated factors, $\widetilde{A} \nmid \widetilde{\Phi}$ implies $\widetilde{A} \nmid \widetilde{\Phi}^i$.

Proof of main theorem

Goal

$$f \equiv f' \pmod{p^m} \implies k \equiv k' \pmod{p^{m-1}(p-1)}.$$

- $k \equiv k' \pmod{p-1}$ simply follows from $f \equiv f' \pmod{p}$.
- If m = 1, there is nothing else to show, so suppose $m \ge 2$.

• Recall the Eisenstein series

$$E_k = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

and Clausen-von Staudt theorem

$$(p-1) \mid k \implies v_p\left(\frac{2k}{B_k}\right) = 1 + v_p(k).$$

27 / 28

イロト 不得 トイヨト イヨト 二日

Proof of main theorem

•
$$E_k \equiv 1 \pmod{p^n} \iff p^{n-1}(p-1) \mid k.$$

 Replacing f' with f'E_{pⁿ⁻¹(p-1)} for n large enough (so that none of the congruences above is affected), we may assume h := k' − k ≥ 4.

• Let
$$r := v_p(h) + 1$$
.

Goal

Show $r \geq m$.