p-adic modular forms
 TCC (Spring 2021), Lecture 2

Pak-Hin Lee

28th January 2021

Eisenstein series of weight 2

Recall the "fake" weight 2 Eisenstein series

$$
P=E_{2}:=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n} .
$$

This is not a modular form: it is invariant under translation but transforms under inversion as

$$
P\left(-\frac{1}{\tau}\right)=\tau^{2} P(\tau)+\frac{12 \tau}{2 \pi i}
$$

Theta operator

Definition

The Ramanujan (or Atkin-Serre) theta operator is

$$
\Theta=q \frac{d}{d q} .
$$

- On q-expansions, $f=\sum a_{n} q^{n}$ is sent to $\Theta f=\sum n a_{n} q^{n}$.
- In complex coordinates, Θ is given by $\frac{1}{2 \pi i} \frac{d}{d \tau}$, where $q=e^{2 \pi i \tau}$.
- Although Θ does not preserve modularity, the discrepancy is a simple expression involving P.

Theta operator

Theorem (Ramanujan)

(1) If f is a modular form of weight k, then

$$
\Theta f-\frac{k}{12} P f
$$

is a modular form of weight $k+2$.
(2) Θ acts on P, Q, R by

$$
\begin{aligned}
& \Theta P=\frac{1}{12}\left(P^{2}-Q\right) \\
& \Theta Q=\frac{1}{3}(P Q-R) \\
& \Theta R=\frac{1}{2}\left(P R-Q^{2}\right)
\end{aligned}
$$

Theta operator

Corollary

$\mathbf{Z}_{(p)}[P, Q, R] \subset \mathbf{Z}_{(p)}[[q]]$ is stable under Θ.
These are straightforward; note that ΘP requires a separate calculation!

Example

For $k=12$,

$$
\Theta \Delta-P \Delta \in M_{14}
$$

which is one-dimensional and spanned by E_{14}. But its constant term is 0 , so

$$
\Theta \Delta-P \Delta=0,
$$

i.e. P is the logarithmic derivative of Δ.

Theta operator on mod p modular forms

Next we pass to mod p modular forms.
Although Θ fails to preserve modularity in the classical setting, the miracle is that it preserves the space of mod p modular forms!
First we recall some further facts about Bernoulli numbers.

Bernoulli numbers

Theorem

(1) (Clausen-von Staudt) If $(p-1) \mid k$, then $v_{p}\left(B_{k}\right)=-1$.
(2) (Kummer) If $(p-1) \nmid k$, then $\frac{B_{k}}{k} \in \mathbf{Z}_{(p)}$ and

$$
\frac{B_{k}}{k} \equiv \frac{B_{k^{\prime}}}{k^{\prime}} \quad(\bmod p) \quad \text { whenever } k \equiv k^{\prime} \not \equiv 0 \quad(\bmod p-1)
$$

Corollary

(1) $E_{p-1} \in M_{p-1, \mathbf{Z}_{(p)}}$ with $\widetilde{E}_{p-1}=1$.
(2) $E_{p+1} \in M_{p+1, \mathbf{Z}_{(p)}}$ with $\widetilde{E}_{p+1}=\widetilde{P}$. In particular, $\widetilde{P} \in \widetilde{M}$ is a $\bmod p$ modular form.

Bernoulli numbers

Proof.

We have already seen (1). For (2), we compare

$$
\begin{aligned}
E_{p+1} & =1-\frac{2(p+1)}{B_{p+1}} \sum \sigma_{p}(n) q^{n} \\
E_{2} & =1-\frac{4}{B_{2}} \sum \sigma_{1}(n) q^{n}
\end{aligned}
$$

Kummer's congruence gives $\frac{B_{p+1}}{p+1} \equiv \frac{B_{2}}{2} \equiv \frac{1}{12}(\bmod p)$ which is invertible (note: there is a typo in Equation (16) of Swinnerton-Dyer), while Fermat's little theorem gives $\sigma_{p}(n) \equiv \sigma_{1}(n)(\bmod p)$. Hence

$$
E_{p+1} \equiv E_{2} \quad(\bmod p)
$$

Theta operator on mod p modular forms

Corollary

The algebra \widetilde{M} of mod p modular forms is stable under Θ.

Proof.

If $f \in \widetilde{M}_{k}$, then

$$
12 \Theta f=\partial f+k \widetilde{P} f=\widetilde{E}_{p-1} \partial f+k \widetilde{E}_{p+1} f
$$

where both summands belong to \widetilde{M}_{k+p+1}.
Θ will play an important role in the p-adic theory.

A digression

- In the classical setting, the Maass-Shimura operator

$$
\delta_{k}:=\frac{1}{2 \pi i}\left(\frac{d}{d \tau}+\frac{k}{\tau-\bar{\tau}}\right)
$$

transforms real-analytic modular forms of weight k into real-analytic modular forms of weight $k+2$.

- We will see that the theta operator Θ takes p-adic modular forms of weight k to p-adic modular forms of weight $k+2$.
- Indeed, there is a deep connection between them: they coincide at CM points (Shimura, Katz, etc.).

Derivation ∂ on modular forms

For $k \geq 4$, set

$$
\partial:=12 \Theta-k P: M_{k} \rightarrow M_{k+2} .
$$

Then $\Theta Q=\frac{1}{3}(P Q-R)$ and $\Theta R=\frac{1}{2}\left(P R-Q^{2}\right)$ give:
Corollary
∂ defines a derivation on $\mathbf{Z}_{(p)}[Q, R]$ with

$$
\partial Q=-4 R, \quad \partial R=-6 Q^{2} .
$$

The same formulae define a derivation on $\mathbf{Z}_{(p)}[X, Y]$, hence on $\mathbf{F}_{p}[X, Y]$, with

$$
\partial X=-4 Y, \quad \partial Y=-6 X^{2}
$$

The polynomials A and B

We have defined $A \in \mathbf{Z}_{(p)}[X, Y]$ to be the (unique) polynomial such that

$$
E_{p-1}=A[Q, R] .
$$

Similarly, define $B \in \mathbf{Z}_{(p)}[X, Y]$ such that

$$
E_{p+1}=B[Q, R]
$$

The derivation ∂ acts on their mod p reductions by:

Lemma

$\partial \widetilde{A}=\widetilde{B}$ and $\partial \widetilde{B}=-\widetilde{Q} \tilde{A}$. Thus \widetilde{A} and \widetilde{B} satisfy the differential equation

$$
\left(\partial^{2}+\widetilde{Q}\right) \Phi=0 .
$$

Finish of proof

Finally, we are ready to finish the last step in the proof:

$$
\widetilde{M}=\mathbf{F}_{p}[X, Y] /(\widetilde{A}-1)
$$

$\widetilde{A}-1$ is irreducible介
\widetilde{A} has no repeated factors

Idea

Differential operators detect repeated factors, and ∂ has a particularly nice description in terms of \widetilde{A} and \widetilde{B}.

Proof: \tilde{A} has no repeated factors

Proposition

\widetilde{A} has no repeated factors in $\overline{F_{p}}[X, Y]$, and \widetilde{A} and \widetilde{B} are relatively prime.

- Recall that A is homogeneous of weight $p-1$, where X and Y have weights 4 and 6 respectively.
- Over an algebraic closure $\overline{\mathbf{F}_{p}}$, the irreducible factors of \widetilde{A} must be of the form X, Y or $X^{3}-c Y^{2}$.
- Note $c \neq 1$. Otherwise, $\widetilde{Q}^{3}-\widetilde{R}^{2} \in q \mathbf{F}_{p}[[q]]$ has no constant term, but $\widetilde{A}(\widetilde{Q}, \widetilde{R})=1$.
- Recall ∂ acts by

$$
\partial X=-4 Y, \quad \partial Y=-6 X^{2}
$$

and

$$
\partial \widetilde{A}=\widetilde{B}, \quad \partial \widetilde{B}=-X \widetilde{A}
$$

Proof: \tilde{A} has no repeated factors

Factors of the form $X^{3}-c Y^{2}($ where $c \neq 1)$:

- Suppose \widetilde{A} is exactly divisible by $\left(X^{3}-c Y^{2}\right)^{n}$ for some $n \geq 2$.
- Since

$$
\partial\left(X^{3}-c Y^{2}\right)=12(c-1) X^{2} Y
$$

is prime to $X^{3}-c Y^{2}$ (using $c \neq 1$), $\partial \widetilde{A}=\widetilde{B}$ is exactly divisible by $\left(X^{3}-c Y^{2}\right)^{n-1}$.

- Applying ∂ once more, $\partial \widetilde{B}=-X \widetilde{A}$ is exactly divisible by $\left(X^{3}-c Y^{2}\right)^{n-2}$, which is a contradiction.
Factors of the form X or Y are treated similarly.
As a by-product, we see that every factor of \widetilde{A} with multiplicity n (necessarily 1) appears with multiplicity $n-1$ (necessarily 0) in $\partial \widetilde{A}=\widetilde{B}$. Thus \widetilde{A} and \widetilde{B} are co-prime.

Grading on $\bmod p$ modular forms

We have shown the \mathbf{F}_{p}-algebra of $\bmod p$ modular forms is isomorphic to

$$
\widetilde{M} \cong \mathbf{F}_{p}[X, Y] /(\widetilde{A}-1)
$$

Since \widetilde{A} is homogeneous of weight $p-1$, we deduce

Corollary

\widetilde{M} has a natural grading with values in $\mathbf{Z} /(p-1) \mathbf{Z}$, i.e.

$$
\widetilde{M}=\bigoplus_{a \in \mathbf{Z} /(p-1) \mathbf{Z}} \widetilde{M}^{a}
$$

where $\widetilde{M}^{a}=\sum_{k \equiv a \bmod p-1} \widetilde{M}_{k}$.
In particular, \widetilde{M}^{0} is a subalgebra.

Examples

Denote $Y=\operatorname{Spec} \widetilde{M}$ and $Y^{0}=\operatorname{Spec} \widetilde{M}^{0}$.

Example ($p=11$)

- $E_{10}=Q R$, so the polynomial A is just $X Y$.
- $\widetilde{M}=\mathbf{F}_{11}[X, Y] /(X Y-1)$, so $Y=\mathbf{P}^{1}-\{0, \infty\}$
- $\widetilde{M}^{0}=\mathbf{F}_{11}\left[X^{5}, Y^{5}\right] /\left(X^{5} Y^{5}-1\right)$, so $Y^{0}=\mathbf{P}^{1}-\{0, \infty\}$.

Example ($p=13$)

- $E_{12}=\frac{1}{691}\left(441 Q^{3}+250 R^{2}\right)$.
- $\widetilde{M}=\mathbf{F}_{13}[X, Y] /\left(X^{3}+10 Y^{2}-11\right)$, so Y is (the affine part of) an elliptic curve.
- $\widetilde{M}^{0}=\mathbf{F}_{13}\left[X^{3}\right]$, so $Y^{0}=\mathbf{A}^{1}$.

Geometric interpretation

Very brief remarks (see Serre's Bourbaki notes):

- $Y=\operatorname{Spec} \widetilde{M}$ and $Y^{0}=\operatorname{Spec} \widetilde{M}^{0}$ are smooth affine curves (i.e. \widetilde{M} and \widetilde{M}^{0} are Dedekind domains).
- $Y^{0}=\mathbf{P}_{j, \mathbf{F}_{p}}^{1}-\{\widetilde{A}=0\}$.
- More precisely, Y is the ordinary locus of $X_{0}(p)_{\mathbf{F}_{p}}$, and Y^{0} is the ordinary locus of $X_{0}(1) \mathbf{F}_{p}$ (genus 0).
- The natural projection $Y \rightarrow Y^{0}$ is a covering with Galois group $\mathbf{F}_{p}^{\times} /\{ \pm 1\}$.

Towards p-adic modular forms

Plans for Serre's article:

- Today: main theorem (théorème 1 on P.198) concerning congruences mod p^{m} between classical modular forms
- The last step of the proof involves two ingredients:
(1) filtration on \widetilde{M} : introduced in both Swinnerton-Dyer's article and Serre's Bourbaki notes
(2) geometry of \widetilde{M} : only presented in Serre's Bourbaki notes
- Next lecture: p-adic modular forms a là Serre
(1) motivations: p-adic zeta functions, congruences of modular forms
(2) Serre's theory: readily follows from main theorem
(3) applications

Main theorem on congruences mod p^{m}

From the structure of $\bmod p$ modular forms, we have

$$
f \equiv f^{\prime} \quad(\bmod p) \Longrightarrow k \equiv k^{\prime} \quad(\bmod p-1)
$$

Idea

This can be refined for congruences mod p^{m}. Slogan: If f and f^{\prime} are congruent mod a high power of p, then so are k and k^{\prime} (in addition to being congruent $\bmod p-1$).

Extend the p-adic valuation $v_{p}: \mathbf{Q}_{p} \rightarrow \mathbf{Z} \cup\{\infty\}$ (with $v_{p}(p)=1$) to $\mathbf{Q}_{p}[[q]] \rightarrow \mathbf{Z} \cup\{ \pm \infty\}$ by

$$
f=\sum a_{n} q^{n} \mapsto v_{p}(f)=\inf _{n} v_{p}\left(a_{n}\right) .
$$

If f has bounded coefficients (e.g. $f \in M_{k, \mathbf{Q}}$), then $v_{p}(f)>-\infty$.

Main theorem on congruences mod p^{m}

Theorem (théorème 1 on P.198)

Suppose $f \in M_{k, \mathbf{Q}}$ and $f^{\prime} \in M_{k^{\prime}, \mathbf{Q}}$ satisfy $f \neq 0$ and

$$
v_{p}\left(f-f^{\prime}\right) \geq v_{p}(f)+m
$$

for some $m \geq 1$. Then

$$
\begin{cases}k \equiv k^{\prime} \quad\left(\bmod p^{m-1}(p-1)\right) & \text { if } p \geq 3 \\ k \equiv k^{\prime} \quad\left(\bmod 2^{m-2}\right) & \text { if } p=2\end{cases}
$$

First reduction:

- Scaling f and f^{\prime} by $p^{-v_{p}(f)}$, we may assume $v_{p}(f)=0$.
- The condition becomes $f \equiv f^{\prime}\left(\bmod p^{m}\right)$; in particular, both have p-integral coefficients.

Main theorem on congruences mod p^{m}

Theorem

Suppose $f \in M_{k, \mathbf{z}_{(p)}}$ and $f^{\prime} \in M_{k^{\prime}, \mathbf{Z}_{(p)}}$ satisfy $v_{p}(f)=0$ and

$$
f \equiv f^{\prime} \quad\left(\bmod p^{m}\right)
$$

Then

$$
\begin{cases}k \equiv k^{\prime} \quad\left(\bmod p^{m-1}(p-1)\right) & \text { if } p \geq 3 \\ k \equiv k^{\prime} \quad\left(\bmod 2^{m-2}\right) & \text { if } p=2\end{cases}
$$

As usual, we will focus on the case $p \geq 5$.

- For $m=1$, this follows from our previous result on the structure of $\bmod p$ modular forms.
- For general m, this requires the notion of filtration degree.

Filtration degree

Definition

For $\widetilde{f} \in \widetilde{M}$ nonzero, define its filtration degree

$$
w(\widetilde{f}):=\min \left\{k \in \mathbf{Z}_{\geq 0}: \widetilde{f} \in \widetilde{M}_{k}\right\}
$$

By convention, $w(0)=-\infty$.
Thus $w(\widetilde{f})$ is the smallest k such that there exists a classical form of weight k reducing to $\widetilde{f} \bmod p$.

Idea

Filtration degree $(\in \mathbf{Z})$ refines the weight $(\in \mathbf{Z} /(p-1) \mathbf{Z})$ of mod p modular forms.

Filtration degree

Proposition

Let $f \in M_{k, \mathbf{Z}_{(p)}}$ be such that $f=\Phi(Q, R)$ for some $\Phi \in \mathbf{Z}_{(p)}[X, Y]$, and suppose $\widetilde{f} \neq 0$. Then:
(1) $w(\widetilde{f})<k$ if and only if \tilde{A} divides $\widetilde{\Phi}$.
(2) $w(\Theta \widetilde{f}) \leq w(\widetilde{f})+p+1$, with equality if and only if $w(\widetilde{f}) \not \equiv 0$ $(\bmod p)$.
(3) $w\left(\widetilde{f}^{i}\right)=i w(\widetilde{f})$.

Remark

Later we will study the effect of Hecke operators on $w(\widetilde{f})$.

Filtration degree

(1) is clear, since $\widetilde{M}=\mathbf{F}_{p}[X, Y] /(\widetilde{A}-1)$.

Now assume f has been chosen so that $k=w(\widetilde{f})$ (thus $\widetilde{A} \nmid \widetilde{\Phi})$. To prove (2), recall that $12 \Theta=\partial+k P$, so

$$
\begin{aligned}
12 \Theta \tilde{f} & =\partial \widetilde{f}+k \widetilde{P} \tilde{f}=\widetilde{E}_{p-1} \partial \widetilde{f}+k \widetilde{E}_{p+1} \widetilde{f} \\
& =\widetilde{A}(\widetilde{Q}, \widetilde{R}) \partial \widetilde{\Phi}(\widetilde{Q}, \widetilde{R})+k \widetilde{B}(\widetilde{Q}, \widetilde{R}) \widetilde{\Phi}(\widetilde{Q}, \widetilde{R})
\end{aligned}
$$

Both $E_{p-1} \partial f$ and $E_{p+1} f$ belong to $M_{k+p+1, \mathbf{Z}_{(p)}}$, so

$$
w(\Theta \widetilde{f}) \leq k+p+1
$$

By (1), equality $\Longleftrightarrow \widetilde{A} \nmid \widetilde{A} \partial \widetilde{\Phi}+k \widetilde{B} \widetilde{\Phi} \Longleftrightarrow \widetilde{A} \nmid k \widetilde{B} \widetilde{\Phi}$. But \widetilde{A} and \widetilde{B} are co-prime and $\widetilde{A} \nmid \widetilde{\Phi}$, so this amounts to $k \not \equiv 0(\bmod p)$.

Filtration degree

To prove (3),

$$
f=\Phi(Q, R) \Longrightarrow f^{i}=\Phi^{i}(Q, R) .
$$

Because \widetilde{A} has no repeated factors, $\widetilde{A} \nmid \widetilde{\Phi}$ implies $\widetilde{A} \nmid \widetilde{\Phi}^{j}$.

Proof of main theorem

Goal

$$
f \equiv f^{\prime} \quad\left(\bmod p^{m}\right) \Longrightarrow k \equiv k^{\prime} \quad\left(\bmod p^{m-1}(p-1)\right)
$$

- $k \equiv k^{\prime}(\bmod p-1)$ simply follows from $f \equiv f^{\prime}(\bmod p)$.
- If $m=1$, there is nothing else to show, so suppose $m \geq 2$.
- Recall the Eisenstein series

$$
E_{k}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

and Clausen-von Staudt theorem

$$
(p-1) \left\lvert\, k \Longrightarrow v_{p}\left(\frac{2 k}{B_{k}}\right)=1+v_{p}(k)\right.
$$

Proof of main theorem

- $E_{k} \equiv 1\left(\bmod p^{n}\right) \Longleftrightarrow p^{n-1}(p-1) \mid k$.
- Replacing f^{\prime} with $f^{\prime} E_{p^{n-1}(p-1)}$ for n large enough (so that none of the congruences above is affected), we may assume $h:=k^{\prime}-k \geq 4$.
- Let $r:=v_{p}(h)+1$.

Goal

Show $r \geq m$.

