
Differential operators
Congruences mod pm

p-adic modular forms
TCC (Spring 2021), Lecture 2

Pak-Hin Lee

28th January 2021

1 / 28



Differential operators
Congruences mod pm

Eisenstein series of weight 2

Recall the “fake” weight 2 Eisenstein series

P = E2 := 1− 24
∞∑

n=1
σ1(n)qn.

This is not a modular form: it is invariant under translation but
transforms under inversion as

P
(
−1
τ

)
= τ2P(τ) + 12τ

2πi .
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Theta operator

Definition
The Ramanujan (or Atkin–Serre) theta operator is

Θ = q d
dq .

On q-expansions, f =
∑

anqn is sent to Θf =
∑

nanqn.

In complex coordinates, Θ is given by 1
2πi

d
dτ , where

q = e2πiτ .
Although Θ does not preserve modularity, the discrepancy is a
simple expression involving P.
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Theta operator

Theorem (Ramanujan)

1 If f is a modular form of weight k, then

Θf − k
12Pf

is a modular form of weight k + 2.
2 Θ acts on P,Q,R by

ΘP = 1
12(P2 − Q),

ΘQ = 1
3(PQ − R),

ΘR = 1
2(PR − Q2).
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Theta operator

Corollary
Z(p)[P,Q,R] ⊂ Z(p)[[q]] is stable under Θ.

These are straightforward; note that ΘP requires a separate
calculation!
Example
For k = 12,

Θ∆− P∆ ∈ M14

which is one-dimensional and spanned by E14. But its constant
term is 0, so

Θ∆− P∆ = 0,

i.e. P is the logarithmic derivative of ∆.
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Theta operator on mod p modular forms

Next we pass to mod p modular forms.
Although Θ fails to preserve modularity in the classical setting, the
miracle is that it preserves the space of mod p modular forms!
First we recall some further facts about Bernoulli numbers.
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Bernoulli numbers

Theorem
1 (Clausen–von Staudt) If (p − 1) | k, then vp(Bk) = −1.
2 (Kummer) If (p − 1) - k, then Bk

k ∈ Z(p) and

Bk
k ≡

Bk′

k ′ (mod p) whenever k ≡ k ′ 6≡ 0 (mod p − 1).

Corollary
1 Ep−1 ∈ Mp−1,Z(p) with Ẽp−1 = 1.
2 Ep+1 ∈ Mp+1,Z(p) with Ẽp+1 = P̃. In particular, P̃ ∈ M̃ is a

mod p modular form.
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Bernoulli numbers

Proof.
We have already seen (1). For (2), we compare

Ep+1 = 1− 2(p + 1)
Bp+1

∑
σp(n)qn,

E2 = 1− 4
B2

∑
σ1(n)qn.

Kummer’s congruence gives Bp+1
p+1 ≡

B2
2 ≡

1
12 (mod p) which is

invertible (note: there is a typo in Equation (16) of
Swinnerton-Dyer), while Fermat’s little theorem gives
σp(n) ≡ σ1(n) (mod p). Hence

Ep+1 ≡ E2 (mod p).
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Theta operator on mod p modular forms

Corollary

The algebra M̃ of mod p modular forms is stable under Θ.

Proof.
If f ∈ M̃k , then

12Θf = ∂f + kP̃f = Ẽp−1∂f + kẼp+1f

where both summands belong to M̃k+p+1.

Θ will play an important role in the p-adic theory.
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A digression

In the classical setting, the Maass–Shimura operator

δk := 1
2πi

( d
dτ + k

τ − τ

)
transforms real-analytic modular forms of weight k into
real-analytic modular forms of weight k + 2.
We will see that the theta operator Θ takes p-adic modular
forms of weight k to p-adic modular forms of weight k + 2.
Indeed, there is a deep connection between them: they
coincide at CM points (Shimura, Katz, etc.).
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Derivation ∂ on modular forms

For k ≥ 4, set

∂ := 12Θ− kP : Mk → Mk+2.

Then ΘQ = 1
3 (PQ − R) and ΘR = 1

2 (PR − Q2) give:

Corollary
∂ defines a derivation on Z(p)[Q,R] with

∂Q = −4R, ∂R = −6Q2.

The same formulae define a derivation on Z(p)[X ,Y ], hence on
Fp[X ,Y ], with

∂X = −4Y , ∂Y = −6X 2.
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The polynomials A and B

We have defined A ∈ Z(p)[X ,Y ] to be the (unique) polynomial
such that

Ep−1 = A[Q,R].

Similarly, define B ∈ Z(p)[X ,Y ] such that

Ep+1 = B[Q,R].

The derivation ∂ acts on their mod p reductions by:

Lemma
∂Ã = B̃ and ∂B̃ = −Q̃Ã. Thus Ã and B̃ satisfy the differential
equation

(∂2 + Q̃)Φ = 0.
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Finish of proof

Finally, we are ready to finish the last step in the proof:

M̃ = Fp[X ,Y ]/(Ã− 1)

Ã− 1 is irreducible

KS

Ã has no repeated factors

KS

Idea
Differential operators detect repeated factors, and ∂ has a
particularly nice description in terms of Ã and B̃.
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Proof: Ã has no repeated factors

Proposition

Ã has no repeated factors in Fp[X ,Y ], and Ã and B̃ are relatively
prime.

Recall that A is homogeneous of weight p − 1, where X and
Y have weights 4 and 6 respectively.
Over an algebraic closure Fp, the irreducible factors of Ã must
be of the form X , Y or X 3 − cY 2.
Note c 6= 1. Otherwise, Q̃3 − R̃2 ∈ qFp[[q]] has no constant
term, but Ã(Q̃, R̃) = 1.
Recall ∂ acts by

∂X = −4Y , ∂Y = −6X 2

and
∂Ã = B̃, ∂B̃ = −XÃ.
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Proof: Ã has no repeated factors

Factors of the form X 3 − cY 2 (where c 6= 1):
Suppose Ã is exactly divisible by (X 3 − cY 2)n for some n ≥ 2.
Since

∂(X 3 − cY 2) = 12(c − 1)X 2Y

is prime to X 3 − cY 2 (using c 6= 1), ∂Ã = B̃ is exactly
divisible by (X 3 − cY 2)n−1.
Applying ∂ once more, ∂B̃ = −XÃ is exactly divisible by
(X 3 − cY 2)n−2, which is a contradiction.

Factors of the form X or Y are treated similarly.
As a by-product, we see that every factor of Ã with multiplicity n
(necessarily 1) appears with multiplicity n − 1 (necessarily 0) in
∂Ã = B̃. Thus Ã and B̃ are co-prime.
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Grading on mod p modular forms

We have shown the Fp-algebra of mod p modular forms is
isomorphic to

M̃ ∼= Fp[X ,Y ]/(Ã− 1).

Since Ã is homogeneous of weight p − 1, we deduce

Corollary

M̃ has a natural grading with values in Z/(p − 1)Z, i.e.

M̃ =
⊕

a∈Z/(p−1)Z
M̃a

where M̃a =
∑

k≡a mod p−1 M̃k .

In particular, M̃0 is a subalgebra.
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Examples

Denote Y = Spec M̃ and Y 0 = Spec M̃0.

Example (p = 11)

E10 = QR, so the polynomial A is just XY .
M̃ = F11[X ,Y ]/(XY − 1), so Y = P1 − {0,∞}
M̃0 = F11[X 5,Y 5]/(X 5Y 5 − 1), so Y 0 = P1 − {0,∞}.

Example (p = 13)

E12 = 1
691(441Q3 + 250R2).

M̃ = F13[X ,Y ]/(X 3 + 10Y 2 − 11), so Y is (the affine part
of) an elliptic curve.
M̃0 = F13[X 3], so Y 0 = A1.
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Geometric interpretation

Very brief remarks (see Serre’s Bourbaki notes):
Y = Spec M̃ and Y 0 = Spec M̃0 are smooth affine curves (i.e.
M̃ and M̃0 are Dedekind domains).
Y 0 = P1

j,Fp
− {Ã = 0}.

More precisely, Y is the ordinary locus of X0(p)Fp , and Y 0 is
the ordinary locus of X0(1)Fp (genus 0).
The natural projection Y → Y 0 is a covering with Galois
group F×p /{±1}.
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Towards p-adic modular forms

Plans for Serre’s article:
Today: main theorem (théorème 1 on P.198) concerning
congruences mod pm between classical modular forms
The last step of the proof involves two ingredients:

1 filtration on M̃: introduced in both Swinnerton-Dyer’s article
and Serre’s Bourbaki notes

2 geometry of M̃: only presented in Serre’s Bourbaki notes
Next lecture: p-adic modular forms a là Serre

1 motivations: p-adic zeta functions, congruences of modular
forms

2 Serre’s theory: readily follows from main theorem
3 applications
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Main theorem on congruences mod pm

From the structure of mod p modular forms, we have

f ≡ f ′ (mod p) =⇒ k ≡ k ′ (mod p − 1).

Idea
This can be refined for congruences mod pm. Slogan: If f and f ′
are congruent mod a high power of p, then so are k and k ′ (in
addition to being congruent mod p − 1).

Extend the p-adic valuation vp : Qp → Z ∪ {∞} (with vp(p) = 1)
to Qp[[q]]→ Z ∪ {±∞} by

f =
∑

anqn 7→ vp(f ) = inf
n

vp(an).

If f has bounded coefficients (e.g. f ∈ Mk,Q), then vp(f ) > −∞.
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Main theorem on congruences mod pm

Theorem (théorème 1 on P.198)
Suppose f ∈ Mk,Q and f ′ ∈ Mk′,Q satisfy f 6= 0 and

vp(f − f ′) ≥ vp(f ) + m

for some m ≥ 1. Then{
k ≡ k ′ (mod pm−1(p − 1)) if p ≥ 3,
k ≡ k ′ (mod 2m−2) if p = 2.

First reduction:
Scaling f and f ′ by p−vp(f ), we may assume vp(f ) = 0.
The condition becomes f ≡ f ′ (mod pm); in particular, both
have p-integral coefficients.

21 / 28



Differential operators
Congruences mod pm

Main theorem on congruences mod pm

Theorem
Suppose f ∈ Mk,Z(p) and f ′ ∈ Mk′,Z(p) satisfy vp(f ) = 0 and

f ≡ f ′ (mod pm)

Then {
k ≡ k ′ (mod pm−1(p − 1)) if p ≥ 3,
k ≡ k ′ (mod 2m−2) if p = 2.

As usual, we will focus on the case p ≥ 5.
For m = 1, this follows from our previous result on the
structure of mod p modular forms.
For general m, this requires the notion of filtration degree.
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Filtration degree

Definition
For f̃ ∈ M̃ nonzero, define its filtration degree

w(f̃ ) := min{k ∈ Z≥0 : f̃ ∈ M̃k}.

By convention, w(0) = −∞.

Thus w(f̃ ) is the smallest k such that there exists a classical form
of weight k reducing to f̃ mod p.

Idea
Filtration degree (∈ Z) refines the weight (∈ Z/(p − 1)Z) of mod
p modular forms.
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Filtration degree

Proposition
Let f ∈ Mk,Z(p) be such that f = Φ(Q,R) for some
Φ ∈ Z(p)[X ,Y ], and suppose f̃ 6= 0. Then:

1 w(f̃ ) < k if and only if Ã divides Φ̃.
2 w(Θf̃ ) ≤ w(f̃ ) + p + 1, with equality if and only if w(f̃ ) 6≡ 0

(mod p).
3 w(f̃ i ) = iw(f̃ ).

Remark
Later we will study the effect of Hecke operators on w(f̃ ).
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Filtration degree

(1) is clear, since M̃ = Fp[X ,Y ]/(Ã− 1).
Now assume f has been chosen so that k = w(f̃ ) (thus Ã - Φ̃).
To prove (2), recall that 12Θ = ∂ + kP, so

12Θf̃ = ∂ f̃ + kP̃f̃ = Ẽp−1∂ f̃ + kẼp+1f̃
= Ã(Q̃, R̃)∂Φ̃(Q̃, R̃) + kB̃(Q̃, R̃)Φ̃(Q̃, R̃).

Both Ep−1∂f and Ep+1f belong to Mk+p+1,Z(p) , so

w(Θf̃ ) ≤ k + p + 1.

By (1), equality ⇐⇒ Ã - Ã∂Φ̃ + kB̃Φ̃ ⇐⇒ Ã - kB̃Φ̃. But Ã and
B̃ are co-prime and Ã - Φ̃, so this amounts to k 6≡ 0 (mod p).
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Filtration degree

To prove (3),

f = Φ(Q,R) =⇒ f i = Φi (Q,R).

Because Ã has no repeated factors, Ã - Φ̃ implies Ã - Φ̃i .
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Proof of main theorem

Goal

f ≡ f ′ (mod pm) =⇒ k ≡ k ′ (mod pm−1(p − 1)).

k ≡ k ′ (mod p − 1) simply follows from f ≡ f ′ (mod p).
If m = 1, there is nothing else to show, so suppose m ≥ 2.
Recall the Eisenstein series

Ek = 1− 2k
Bk

∞∑
n=1

σk−1(n)qn

and Clausen–von Staudt theorem

(p − 1) | k =⇒ vp

(2k
Bk

)
= 1 + vp(k).
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Proof of main theorem

Ek ≡ 1 (mod pn) ⇐⇒ pn−1(p − 1) | k.
Replacing f ′ with f ′Epn−1(p−1) for n large enough (so that
none of the congruences above is affected), we may assume
h := k ′ − k ≥ 4.
Let r := vp(h) + 1.

Goal
Show r ≥ m.
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