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Differential operators

Eisenstein series of weight 2

Recall the “fake” weight 2 Eisenstein series

o)
P=E:=1-24) o1(n)q".

n=1

This is not a modular form: it is invariant under translation but
transforms under inversion as

N 127
) = 2p(r) 4 2L
P( 7_) T°P(7) + ]
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Differential operators

Theta operator

Definition

The Ramanujan (or Atkin—Serre) theta operator is

d
©=qg—.
Idq
@ On g-expansions, f = > a,q" is sent to ©f = na,q".
d
@ In complex coordinates, © is given by — —, where
) 2mi dt
q= e27rrr_

@ Although © does not preserve modularity, the discrepancy is a
simple expression involving P.
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Differential operators
Theta operator

Theorem (Ramanujan)

Q Iff is a modular form of weight k, then

k
f— —Pf
ST

is @ modular form of weight k + 2.
Q@ O actson P, Q, R by

— 1 2 _
oP = (P* - Q).

1

OR = %(PR - Q).

4/28



Differential operators

Theta operator

Z)[P,Q,R] C Z(,)[[q]] is stable under ©.

These are straightforward; note that ©P requires a separate
calculation!

Example
For k = 12,

OA — PA € Mg

which is one-dimensional and spanned by Ej4. But its constant
term is 0, so
©A — PA =0,

i.e. P is the logarithmic derivative of A.

5/28



Differential operators

Theta operator on mod p modular forms

Next we pass to mod p modular forms.

Although © fails to preserve modularity in the classical setting, the
miracle is that it preserves the space of mod p modular forms!
First we recall some further facts about Bernoulli numbers.
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Differential operators

Bernoulli numbers

@ (Clausen—von Staudt) If (p — 1) | k, then vp(By) = —1.
@ (Kummer) If (p — 1) t k, then % € Z(,) and

(mod p) whenever k= k" #0 (mod p—1).

Corollary

@ E, 1€ Mgz, withE, 1=1.

Q Epi1 € Mpya 7, with Ep+1 = P. In particular, P € M is a
mod p modular form.
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Differential operators

Bernoulli numbers

Proof.

We have already seen (1). For (2), we compare

2(p+1)
Ejpqj=1———"72 E op(n)q”,

4
E2 =1- E Zal(n)q”.

Kummer's congruence gives B;’j:“ll = % = % (mod p) which is
invertible (note: there is a typo in Equation (16) of
Swinnerton-Dyer), while Fermat's little theorem gives

op(n) = o1(n) (mod p). Hence

Ep+1 = E2 (mod p). L]
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Differential operators

Theta operator on mod p modular forms

Corollary

The algebra M of mod p modular forms is stable under ©.

Proof.
If £ € My, then

| A

120f = Of + kPf = E,_19f + kEp 1 f

where both summands belong to Mk+p+1. O]

© will play an important role in the p-adic theory.
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Differential operators

A digression

@ In the classical setting, the Maass—Shimura operator

5, 1 ( d n k >
KT omi\dr T T -7
transforms real-analytic modular forms of weight k into
real-analytic modular forms of weight k + 2.

@ We will see that the theta operator © takes p-adic modular
forms of weight k to p-adic modular forms of weight k + 2.

@ Indeed, there is a deep connection between them: they
coincide at CM points (Shimura, Katz, etc.).
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Differential operators
Derivation 0 on modular forms

For k > 4, set
0:=120 — kP : Mk — Mk+2.

Then ©Q = (PQ — R) and OR = (PR — @) give:

O defines a derivation on Z,)[Q, R] with

0Q = —4R, OR = —6Q°.

The same formulae define a derivation on Z(,)[X, Y], hence on
Fo[X, Y], with

IX = —4Y, 9Y = —6X>.
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Differential operators
The polynomials A and B

We have defined A € Z,)[X, Y] to be the (unique) polynomial
such that
E,_1 = AlQ.R].

Similarly, define B € Z(,)[X, Y] such that

Epy1 = B[Q, R].

The derivation 9 acts on their mod p reductions by:

OA = B and OB = —QA. Thus A and B satisfy the differential
equation

(9> + Q) = 0.
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Differential operators

Finish of proof

Finally, we are ready to finish the last step in the proof:

M =F,[X, Y]/(A-1)

ﬂ

A — 1 is irreducible

ﬂ

A has no repeated factors

Differential operators detect repeated factors, and d has a
particularly nice description in terms of A and B.

13/28



Differential operators

Proof: A has no repeated factors

Proposition

A has no repeated factors in F,[X, Y], and A and B are relatively
prime.

@ Recall that A is homogeneous of weight p — 1, where X and
Y have weights 4 and 6 respectively.

@ Over an algebraic closure F, the irreducible factors of A must
be of the form X, Y or X3 — cYZ2.

o Note ¢ # 1. Otherwise, Q3 — R? € qF,[[q]] has no constant
term, but A(Q, R) = 1.

@ Recall 9 acts by

OX = —4Y, 9Y = —6X>

and L N ~
0A=B, 0B=-XA.
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Differential operators

Proof: A has no repeated factors

Factors of the form X3 — cY? (where ¢ # 1):
e Suppose A is exactly divisible by (X3 — cY?2)" for some n > 2.
@ Since
(X3 —cY?) =12(c — 1)X?Y
is prime to X3 — cY?2 (using ¢ # 1), DA = B is exactly
divisible by (X3 — cY?)n—1,
@ Applying 0 once more, OB=—-XA'is exactly divisible by
(X3 — cY?)"2, which is a contradiction.

Factors of the form X or Y are treated similarly.

As a by-product, we see that every factor of A with multiplicity n
(necessarily 1) appears with multiplicity n — 1 (necessarily 0) in
OA = B. Thus A and B are co-prime.
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Differential operators

Grading on mod p modular forms

We have shown the F-algebra of mod p modular forms is

isomorphic to - N
M= F[X, Y]/(A—1).

Since A is homogeneous of weight p — 1, we deduce

Corollary

M has a natural grading with values in Z/(p — 1)Z, i.e.

M= @ wm

acZ/(p—1)Z

where M? = ZkEa mod p—1 Mk'

In particular, MO is a subalgebra.
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Differential operators
Examples

Denote Y = SpecM and Y = Spec MO,

Example (p = 11)

@ Fip = QR, so the polynomial A is just XY.
o M=Fy[X,Y]/(XY ~1),50 Y = P! — {0, 00}
o M= Fy[X®, Y°]/(X°Y® — 1), s0 Y® = P! — {0, 00}.

Example (p = 13)

1
° Epp = @(44103 + 250R?).

o M =F3[X, Y]/(X3+10Y2—11), so Y is (the affine part
of) an elliptic curve.
o MY = Fy3[X3], so YO = AL
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Differential operators

Geometric interpretation

Very brief remarks (see Serre’s Bourbaki notes):

oY= Specm and Y? = Spec MO are smooth affine curves (i.e.

M and MP° are Dedekind domains).

o YO=Pl. —{A=0}.

@ More precisely, Y is the ordinary locus of Xo(p)f,, and YO is
the ordinary locus of Xp(1)f, (genus 0).

@ The natural projection Y — Y9 is a covering with Galois
group F /{£1}.
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Congruences mod p"™

Towards p-adic modular forms

Plans for Serre’s article:

e Today: main theorem (théoréme 1 on P.198) concerning
congruences mod p™ between classical modular forms
@ The last step of the proof involves two ingredients:

@ filtration on M: introduced in both Swinnerton-Dyer’s article
and Serre's Bourbaki notes
@ geometry of M: only presented in Serre's Bourbaki notes

@ Next lecture: p-adic modular forms a la Serre

@ motivations: p-adic zeta functions, congruences of modular
forms

@ Serre's theory: readily follows from main theorem

© applications
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Congruences mod p"™

Main theorem on congruences mod p™

From the structure of mod p modular forms, we have

f=f (modp) = k=k (modp—1).

This can be refined for congruences mod p™. Slogan: If f and f’
are congruent mod a high power of p, then so are k and k’ (in
addition to being congruent mod p — 1).

Extend the p-adic valuation v, : Qp — Z U {oo} (with v,(p) = 1)
t0 Qpllal] - ZU {00} by

f= Za,,q” = vp(f) = inf Vp(an).

If f has bounded coefficients (e.g. f € My q), then v,(f) > —o0.
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Congruences mod p"™

Main theorem on congruences mod p™

Theorem (théoréme 1 on P.198)
Suppose f € My q and f' € My q satisfy f # 0 and

vp(F = ') > vp(f)+ m
for some m > 1. Then

k=k' (mod p™1(p—1)) ifp>3,
k= k' (mod 2m2) ifp=2.

First reduction:
o Scaling f and ' by p~**(f), we may assume v,(f) = 0.
@ The condition becomes f = f’ (mod p™); in particular, both
have p-integral coefficients.
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Congruences mod p"™

Main theorem on congruences mod p™

Suppose f € My z, . and f' € My z, . satisfy v,(f) =0 and
14 (p) £(p) P

f=f (modp™)

Then
k=k' (mod p™1(p—1)) ifp>3,
k= k' (mod 2m2) ifp=2.

As usual, we will focus on the case p > 5.

@ For m =1, this follows from our previous result on the
structure of mod p modular forms.

@ For general m, this requires the notion of filtration degree.
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Congruences mod p"™
Filtration degree

Definition

For f e M nonzero, define its filtration degree
w(f) :==min{k € Z>g: f € My}

By convention, w(0) = —oc.

Thus w(f) is the smallest k such that there exists a classical form
of weight k reducing to f mod p.

Filtration degree (€ Z) refines the weight (€ Z/(p — 1)Z) of mod
p modular forms.
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Congruences mod p"™
Filtration degree

Let f € Mz, be such that f = ®(Q, R) for some
® € Z,)[X, Y], and suppose f # 0. Then:
Q@ w(f) < k if and only if A divides ®.
@ w(OF) < w(f) + p + 1, with equality if and only if w(f) # 0
(mod p).
Q@ w(f’) = iw(f).

Remark

Later we will study the effect of Hecke operators on w(f).
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Congruences mod p"™
Filtration degree

(1) is clear, since M = Fo[X, Y]/(A - 1).
Now assume f has been chosen so that k = w(f) (thus At ®).
To prove (2), recall that 120 = 0 + kP, so

1967 — OF + kBF = Ey 107 + KEy 17

= A(Q,R)9(Q, R) + kB(Q, R)®(Q, R).

Both E,_10f and E,1f belong to Mk+p+1,z(p), o)

w(Of) < k+p+1.
By (1), equality <= A{AJ® + kB <= A} kBd. But A and

B are co-prime and A { ®, so this amounts to k # 0 (mod p).
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Congruences mod p"™
Filtration degree

To prove (3),
f=0(Q,R) = f =0d'(Q,R).

Because A has no repeated factors, At ® implies A} ®'.
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Congruences mod p"™

Proof of main theorem

f=f" (modp™) = k=K (mod p™ }(p—1)).

e k= k' (mod p— 1) simply follows from f = f' (mod p).
o If m =1, there is nothing else to show, so suppose m > 2.

@ Recall the Eisenstein series
2k &
Ex=1- Ek Zak—l(”)qn

n=1

and Clausen—von Staudt theorem
2k
(b-1) 1k = v (5 ) =1+ vo(k)
k
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Congruences mod p"™

Proof of main theorem

o £, =1 (mod p") <= p"L(p—1) |k
o Replacing f" with f'E n-1(,_1) for n large enough (so that

none of the congruences above is affected), we may assume
h:=k —k>4.

o Let r:=vy(h)+ 1.

Show r > m.
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