
The Macintosh
Programmer’s

Workshop

Richard J. M e y m and Jef f W. PaIrish, Apple Computer

me Macintosh
development

environment combines
a gPaphica1 intehce,

Unix-like command
IangUNe, and

immediate command
execution in any

window. Here’s how
it works.

May 1988

hen the Apple Macintosh was
introduced, i t was clear that W Apple needed to provide acom-

plete softwaredevelopmen t environment
for both itself and third-party developers.
The result was the Macintosh Program-
mer’s Workshop.’ MPW includes a com-
prehensive set of programming tools and
handles several languages. I t also com-
bines the graphical interface common to
all Macintosh applications, a command
language similar to the Unix shell lan-
guages, and Smalltalk’s immediate execu-
tion of commands in any window.

Innovative features include an inte-
grated command and editing language,
redirection of input and output to win-
dows and to selected text in windows, a
graphical interface for each command,
and userdefined menus, which associate
shell commands with menu items.

The supported languages include M o
torola 68xxx assembly, C, Apple Pascal
(which supports objectariented program-

0740-7459/88/0500/0059/$01 .00 @ 1988 IEEE

ming), a shell command language, and a
language for automating program builds.
Originally developed for the Macintosh
Plus, MPW now also runs on the Macin-
tosh SE and 11.

This article focuses on the programde-
velopment environment rather than on
the tools in that environment. Innovations
not covered here include C and Pascal ex-
tensions for extended-precision IEEE
floating-point numbers, tools to compile
and decompile Macintosh resources (data
structures used to describe menus, win-
dows, and dialogues), and the MacApp o b
ject-oriented generic application.

History
When the Macintosh was introduced in

January 1984, most software for i t was writ-
ten using the Lisa Workshop, acrossdevel-
opment system that ran on Apple’s Lisa
computer. The Lisa Workshop provided a
mousedriven editor, 68000 assembly lan-
guage, Pascal, a linker, and several utilities

59

running in an environment similar to
UCSD Pascal. A second alternative, the
MDS Macintosh development system, had
the advantage of running on the Macin-
tosh, but it provided only assembly lan-
guage and was merely a collection of sepa-
rate applications (including an editor,
assembler, and linker) that were executed
sequentially- it was not an integrated en-
vironmen t.

By summer 1984, it was clear that a more
complete development system running
on the Macintosh was needed as soon as
possible. The urgency of this need was un-
derscored by the prediction that the Lisa
would soon be superseded by the Macin-
tosh, bringing cross development to an
abrupt end.

The engineering team grew from three
to 15 during the first year of development.
At the end of that year, earlyversions of the
Macintosh Programmer’s Workshop were
being used todevelopMPWitself. Much of
Apple’s internal Macintosh software devel-
opment has been done with this software
since late 1985. In September 1986, Ver-
sion 1.0 was released through the Apple
Programmer’s and Developer’s Associa-
tion, a group based in Renton, Wash. -
just less than two years after the project
began. A major update, Version 2.0, was
completed and released in August 1987.

Goals
Four major design objectives helped

shaped the system:
The system had to be comprehensive,

meeting most needs of most developers.
Software developers inside Apple, as well
as third-party developers, expected MPW
to support development in 68000 as-
sembly, Pascal, and C. Because MPWwas to
be the development system that Apple s u p
plied, i t was difficult to cut corners: If
something was needed for software devel-
opment on Macintosh, itwasour responsi-
bility to provide it, whether minor or
major.

We preferred an integrated system
over the multiapplication Macintosh
Development System that was in use when
the design work began. The system should
be a Macintosh application, providing the
standard windows, menus, and dialogues.
Moreover, it had to appear as a single a p
plication rather than a set of disjoint utili-

ties. The various system components
should share a common set of windows,
both for reading and writing. This would
let the user view the input and output of
several development tools simultaneously.
And an integrated system would provide a
basis on which to build automated opera-
tion.

The system had to protide automated
operation for program builds. As the com-
plexity of Macintosh software grew in re-
sponse to increased hardware capabilities,
building software essentially by hand -
one step at a time -was rapidly becoming
unworkable. MPW had to provide a mech-
anism to automate program builds - and
it had to manage the dependencies be-
tween software components.

The system had to be easily extensible,
both by Apple and by other users. The tar-

Wehadfourm~ordes&b
oWectives=Make the

system comprehensive,
interne it with the

environment, provide
automated builds, and

make it easily extensible.

get audience for MPW was broad. It in-
cluded university students, software en-
thusiasts, professional application devel-
opers, and Apple engineers. It would be
impossible to satisfy the individual needs,
much less the preferences, ofall our users,
so the system had to be easy to customize
and extend. The goal was to let individual
userscustomize the system, making simple
modifications and additions, and let prw
fessionals add major new components,
such as additional programming lan-
guages, without our involvement.

Several systems already existed that met
many of our goals. Unix provided a com-
prehensive set of tools, automated opera-
tion, and some degree of extensibility, but
most versions lacked the window-based
user interface. Unix also placed demands
on the hardware that the Macintosh could
not satisfy at the time. Smalltalk provided
a user interface closer to our goals, integra-

tion to the point that system and user soft-
ware were difficult to distinguish, and
some automation and extensibility.
However, i t was difficult to use Smalltalk to
create stand-alone applications, and its
performance was not adequate.

Envisioning a system that met our goals
was not a problem: Acombination of Mac-
intosh’s user interface, Smalltalk’s interac-
tive nature, and Unix’s command lan-
guage was a good approximation. The
challenge was to engineer this vision on
the limited hardware and software avail-
able on early Macintosh systems: The Mac-
intosh Plus, which would be the high-end
machine when MPW was introduced, in-
cluded a Motorola 68000 running at 7.3
MHz and only IMbyte of main memory.
The maximum hard-disk capacity was 20
Mbytes.

Software constraints provided an even
bigger challenge: The system architec-
ture, encoded in ROM chips, would run
only asingle application in asingle address
space. Multiprocessing, multitasking, and
virtual memory were not provided. The
system d id , however, provide code
segmentation, resources (swappable data
structures, such as descriptions of menus
and windows), and a memory manager
that supports a heap with relocatable o b
jects.

Design
MPW is built around a single application

program that serves as a combined editor
and shell. Add-on components, called
tools, run in the same address space as the
primary application. A command lan-
guage automates operation, and a graphi-
cal interface helps construct and execute
commands.

Macintosh application. The central de-
velopment-system component is MPW
Shell. Because it is a Macintosh applica-
tion, i t can be run from Finder, which p r e
vides icon-and window-based file manipu-
lation, by opening any MPW document.
(Documents are files created by applica-
tions. Documents are opened to see their
contents.) You can also use MPW Shell as
the start-up application.

MPW Shell provides a multiwindow en-
vironment for editing text files (see Figure
1). Editing is done with the mouse (or cur-

60 IEEE Software

sor keys) and pull-down menus (with key-
board equivalents). You can select font
styles and sizes for each window. Because
the shell provides the user interface com-
mon to all Macintosh applications, the
users know the basic system operation.

Integrated editor and shell. MPW Shell
combines the functionalityofa traditional
editor and shell. Windows can contain
source code, documentation, scripts, and
so on; the shell provides general text-
editing capabilities. Editing is disk-based:
The entire document need not be in
memory, so you can edit very large files,
helping satisfy the comprehensiveness de-
sign goal. You can use menus to create,
open, and print files, to edit, to search and
replace text using literal or regular-expres
sion-based patterns, and to manipulate
windows.

The shell recognizes a command lan-
guage similar to the languages used by the
Bourne shell2 and C shell’ under Unix.
Shell commands may be entered in any
window. They are executed by pressing the
Enter key, an idea borrowed from the
Smalltalk Do-It button. Pressing Enter exe-
cutes the command or commands that are
selected in the topmost window. If no
selection exists, the line containing the in-
sertion point (the point where typed text
appears) isexecuted. Thus, using Enter in-
stead of Return lets you type and execute
commands immediately. You can correct
errors by editing the incorrect command
and reentering it.

Because you can execute commands
from any window, you can execute them
directly from program documentation or
comments in the source code. MPW users
often create files of frequently used com-
mands, some general-purpose and others
project-specific. Integrating the shell and
editor, coupled with the use of the Enter
key, minimizes the typing required to run
the system.

Commands. Syntactically, commands
consist of a name, parameters (often file
names), and options. Commands are im-
plemented four ways:

in the shell,
as scripts,
as integrated tools, and
as applications.

MPW provides many commands, such as
those for text editing, window manipula-
tion, file management, and compiling,
linking, and executing programs. Version
2.0 contains more than 100 commands.

Integrating the shell and editor lets us
use a single command language for both
editing and shell operations. This has sev-
eral obvious advantages - and some
advantages that surprised us. The major
ones are that:

Users learn a single command lan-
guage rather than separate languages for
editing and operating the system.

Selection expressions (an extension of
regular expressions) are used both to
match file names (normallya shell capabil-
ity) and to match text in find and replace
commands.

All the power of the command lan-
guage is available for editing operations,
including shell variables and command
substitution (using the output ofone com-
mand, such as a list of recently modified
files, as part of another command).

You can use the shell’s control con-
structs (like If, For, and Loop) to combine
editing operations.

Editing operations can be easily and

naturally included in scripts and Make
files; these commands have graphical in-
terfaces.

Commands are implemented four ways:
Built-in. Many commands are imple-

mented directly by MPW Shell. These
built-in commands provide the fastest exe-
cution and require the least amount of
disk space. However, because they are
linked with the shell program, they can
only be modified or replaced by rebuild-
ing the shell.

Command-language control constructs
(Begin, If, For, Loop, Break, Continue,
and Exit) are implemented in the shell as
part of the command interpreter. Most of
the file-handling commands (like Files,
Duplicate, Rename, and Delete) and
editing commands (like Align, Copy, Cut,
Paste, and Find) are also built in.

Scripts. A file of shell commands is
called a script. Scripts can have an un-
limited number of parameters that are
accessed individually or collectively as
shell variables. Scriptsare often developed
and tested by opening the script in a win-
dowand using the Enter key to execute the
commands, one at a time or in groups.

The command language and the ability

F i r e 1. MPW running concurrently with Multifinder. The windows and menus shown
were created by MPW. The disk and trash icons on the right belong to Finder.

May 1988 61

Figure 2. The dialogue box in the center of the screen provides a graphical interface to
the Date command. Every command has a similar interface. Options are selected with
the mouse, and context-sensitive help is available for each option. Once the parameters
and options have been selected, the command can be executed immediately or saved
in a window

to write scripts helps automate program
builds, one ofour major objectives. Scripts
are also one of the easiest ways to extend
the system because they allow new com-
mands that are combinations of existing
ones.

Tools. These are programs that are
compiled and linked independently from
the shell, but they run in an environment
provided by the shell. Compilers, the
linker, and the Make utility are typical
tools. Internally, tools are similar to pro-
grams that run under a Unix shell. The
command that invoked a tool is passed to
the tool as a vector of strings. Tools have
three files that are open by default: stan-
dard input, standard output, and diagnos-

Tools are the second major way to ex-
tend the system. Because tools take advan-
tage of the windows provided by the shell,
they are relatively easy to write. Most Unix-
style utilities can be ported to MPW with
little or no modification.

Because the Macintosh Plus originally
lacked multitasking and provided only a
single address space, creating the shell
support for tools was a major challenge.
Tools run concurrentlywith the shell, au-
tomatically perform 1 / 0 to windows using
the shell’s editing capabilities, and share
the shell’s address space - yet they are
written as independent programs. MPW
supports a single tool running concur-

tic output.

rentlywith the shelland cachesother tools
in memory between invocations.

Applications. Macintosh applications,
such as MacPaint and Hypercard, can also
be run from the shell. These applications
take over the machine and are run inde-
pendently from the shell. When the user
quits the application, MPW Shell is imme-
diately restarted. Special scripts (called
Suspend and Resume) are executed
before the application islaunched andjust
after the shell is restarted. They are often
used to automatically save the shell’s state
-including open windows, user-specified
menu items, aliases, and variables - and
restore the state after the shell is restarted.

Parameters to applications specify which
documents (files) to open or print. Be-
cause many programs developed under
MPW are applications, testing is often
done by running the application from the
shell. You can use scripts to build and exe-
cute applications automatically.

Multifinder, which became available in
late 1987, lets several applications run con-
currently in fixed-memory partitions.
Windows for each application appear on
the screen; you switch applications by
clicking the appropriate window. This lets
MPWrun concurrentlywith other applica-
tions, so you can run applications under
development while you examine and
modify their source code.

I/O. The command language includes
specifications for the source and destina-
tion of input and output. Input specifica-
tions can refer to a file, a window, selected
text in a window, or text entered interac-
tively. Output and diagnostics can replace
or be appended to files, windows, or selec-
tions in windows.

Tools can use 1 / 0 routines supplied
with the C and Paca1 libraries or use the
Macintosh’s own file-system routines. The
same calls are used regardless of the
source or destination of the I/O, be it a
file, window, or srlection. Tools are nor-
mallynotawareofthesourceoftheirinput
or the destination of their output; thissim-
plifies the design and implementation of
tools.

When a file and window have the same
name, 1 / 0 operations affect the window
rather than the file because windows have
priority over files. This is especially impor-
tant because the material in the window
(such as source code) may contain recent
changes not yet saved in the file. This also
avoids the added complexity of providing
separate mechanisms to access windows
and files.

Graphical interfaces. We introduced
graphical command interfaces in Version
2.0 to help users manage the many options
available in the MPW commands. While
the command language provides a rea-
sonable way to automate a sequence of
operations and to extend the develop-
ment environment by adding both tools
and scripts, remembering the various pa-
rameters and options used by a host of
commands is too burdensome.

To ease this burden, command names
are often English words. Options have the
same meaning in several related tools.
(For example, in many tools the option -p
causes progress information to be written
to standard output). An on-line help facil-
ity displays brief summaries of the parame-
ters and options for each command. But
even that is not always enough, so we
added graphical interfaces to the com-
mands.

Figure 2 shows the graphical interface
for the Date command. The tool that im-
plements these interfaces, called Com-
mando, presentsa graphical interface to a
command by interpreting a resource de-

62 IEEE Software

scriptionstoredwith thecommand. Ithan-
dles all user interactions and builds a com-
mand stringasparametersandoptionsare
chosen with the mouse. The completed
command can then be passed to the shell
for execution.

You select file-name parameterswith the
Macintosh's Standard File interface: You
scroll through a hierarchical list of files
and select the files to be supplied as param-
eters. You select options with check boxes
(nonexclusive options in a menu) and
radio buttons (exclusive options, named
after cat-radio pushbuttons). Context-sen-
sitive help is available for each parameter
and option by clicking the parameter or
option with the mouse. All the commands
supplied with MPW have graphical inter-
faces, and you can add similar interfaces to
your own scripts and tools.

CreateMake Count -Tool C0unt.c

Userdefied menus. MPW Shell pro-
vides an initial set of pull-down menu
items. The shell directly executes many of
these items, such as Cut, Copy, and Paste.
Other menu items, such as Open ... and
Print Window, execute commands and
thus may be implemented with both
scripts and tools. (An ellipsis at the end of
a menu item indicates that a dialogue will
appear, letting you specify additional in-
formation.) For example, the Print Win-
dow menu item executes the command

Print (PrintOptionst "(Active)" J
22 "(Worksheet/"

thatruns the Printtool. (Shellvariablesare
in braces. Using quotesallows spaces in file
names. The symbol 22 indicates that you
are appending to diagnostic output. The
symbol dcontinues the command onto the
next line.)

You can create additional menu items by
associating a list of commands with the
name of a menu and the item in that
menu. For example, the command

AddMenu File Restart ' Shutdown -r'

adds the menu item Restart to the File
menu. It executes the command
Shutdown -r, which restarts the computer
(the -r option indicates restart). Userde-
fined menu items can be added to existing
menus or be used to create new menus.
Keyboard equivalents can also be associ-
ated with userdefined menu items. MPW

-Help* (Cancel ,
Crcate a simple makcfile for building an application, tool, or desk
acccssory . Thc makefilc is for usc by thc Build mcnu.

rCreateMake Options I
Program Name
I Count 1
Source Files

Files... 1

.-Program Type- ..i
0 Application i
@Tool

0 DA
....

Figure 3. The CreateMake script creates simple Make files for applications, tools, and
desk accessories written in assembly language, C, Pascal, and Rez. The user enters the
program name, selects it source files from a list displayed when the Files.. . option is
selected, and selects the program type.

includes several example user-defined
menus.

Buildmenu.The Make tool is frequently
used to automate program builds. Make
takes as input a list of file dependencies
(such as the dependence of object files on
source files) and the shell commands
needed to satisfy these dependencies. It
uses the dependencies and the modifica-
tion datesoffiles to determine which com-
mands must be executed to bring the pro-
gram u p to date. Because the shell
executes only one tool at a time, Make can-
not execute other commands directly. In-
stead, it writes the commands to standard
output. Asimple script, such as

Make target > Makeout
Makeout

can run Make, direct its output to file
Makeout, and then execute the com-
mands generated by Make.

Constructing the input to Make is diffi-
cult for new users and is tedious for expe-
rienced users. MPW Version 2.0 includes a
script, called CreateMake, that creates a
simple Make file for programs written in
assembly language, C, Pascal, and Rez (a
language for describing Macintosh re-
sources; resources are swappable data or
code). Parameters toCreateMake indicate
the name of the program and its source
files. An option indicates the type of pro-
gram to construct: an application, tool, or
desk accessory. CreateMake uses these pa-
rameters to construct Make input that
specifies the commands needed to build
the program, including the appropriate
link options and a list of libraries based on
the languages used in the program. Figure
3 shows the graphical interface to
CreateMake.

CreateMake is executed by the first

menu item in the Build menu, Create
Build Commands.. . . Figure 4 shows the
Build menu. Other items in the menu
build the program based on recent
changes, completely rebuild the program,
and display the build and complete build
commands in awindow. Each Build menu
item uses Make to create the list of build
commands. You can use the Make file
created by CreateMake, modify it, or
create a new Make file.

The Build menu is composed of a series
of userdefined menu items, so it is both
optional and easily extended. In addition,
CreateMake is implemented as a script,
making it easy to modify for other lan-
guages. The Build menu and CreateMake
illustrate the system's extensibility: While
Apple supplies these scripts, any user
could have created them.

Internals
To provide tight integration among the

shell, editor, and tools, we had to imple-
ment some services normally considered
to be the operating system's responsibility.
For example, to share memory efficiently,

Figure 4. The Build menu provide an easy
way to build most programs. The Create
Build Commands ... menu item runs
CreateMake toconstwct a Make file forthe
program. The remaining items automati-
cally build the program using Make.

May 1988 63

I

Shell command interpreter

Language libraries - I
Editor’s menu management I

Wlndow 1/0 system

Virtual edit memory

File system

Figure 5. I10 organization. MPW Shell uses the standard language libraries for all its I/O.
When the shell is reading from the consoledevice, thedata it receives may originate from
several sources, including windows and menu items.

we had to implement our own code cach-
ing and garbage collection.

Editor/shelt integration. Although they
are highly integrated at the user level, the
shell and editor are conceptually two d is
tinct programs that are only loosely
coupled. The shell is responsible for com-
mand processing, resource management,
and memory management. The editor is
responsible for editing and 1 / 0 manage-
ment.

Command processing in the shell is de-
signed much like any tool. The command
interpreter reads a line of text from stan-
dard input, processes the line, reads the
next line of text to process, and so on until
a terminating condition occurs. The com-
mand interpreter uses the standard C li-
brary routines for all 1 / 0 instead of ac-
cessing theeditor’sdatastructures directly
(see Figure 5) . Using the standard 1 / 0
routines gives the shell the same flexibility
as any other tool to read or write files, win-
dows, or selections in windows without ex-
plicitly specifying the type of object for
which the I/O is intended.

MPW provides a simple, generic con-
soledevice interface to the language li-
braries. The console is an on-screen com-
mand interface; in the simplest case, i t is
like awindow-based teletype. By supplying
a generic console-device interface to the
language libraries, the editor gives you
control over where the console data origi-
nates. For example, in addition to return-
ing the contents of a window or the con-
tents of the selection in a window. the

console can also return text strings that
have been associated with user-defined
menu items.

User-defined menu items are a good ex-
ample of how the editor was designed to
use Macintosh features to help users cus-
tomize their environments. For example,
you can create command macros that can
be invoked from the keyboard by combin-
ing the editor’s userdefined menu items
with the facility that lets you associate any
key on the keyboard with any menu item.

Tools. Workshop tools are closely pat-
terned after the programs that execute
from a Unix shell. They are compiled and
linked independently of the shell. Before
a tool is executed, the shell sets up the
tool’s parameters and opens the three
files, standard input, standardoutput, and
diagnostic output.

Because the Macintosh Plus lacks multi-
tasking, the shell must explicitly give up
control to begin tool execution. The tool
will retain control until i t requiresaservice
managed by the shell, such as window 1 / 0
and tool-segment loading. After the shell
services the tool’s request, it returns con-
trol to the tool. When the tool terminates,
whether successfully or after an error, the
shell ensures that all the files opened by
the tool areclosedand thatanymemoryal-
located by the tool is reclaimed.

You can write tools in any combination
of the languages supported by MPU’: as-
sembly, C, and Pascal. We have developed
runtime library interfaces for assembly
language and Pascal to offer the same

capabilities as C (such as standard input
and standard output).

Sharedmemory. The Macintosh operat-
ing system was originally designed to run
one program at a time. An application’s
global data, stack, and heap occupied
most of the available memory. When i t ter-
minated, another application - usually
Finder - would overlay the space oc-
cupied by the application. Running a new
program always implied a complete purge
of the old program, regardless of the new
program’s memory requirements.

Some programs, notably Multifinder
and Switcher (which let multiple applica-
tions share memory and.which let the user
quickly switch among t h e m) , use a
memory-partitioning scheme that creates
separate application a r e a so more than
one program can exist in memory. This
scheme has the benefit of having well-de-
fined boundaries between applications
and makes it relatively simple to clean up
memory after an application has termi-
nated. But its major disadvantage is that
memoryiseasilyfragmented,~~ amemory
request by an application often cannot be
satisfied even though the space is available
in another partition.

To maximize memory use, MPW Shell
uses a shared-partition scheme where the
shell and tools share a common heap and
stack (see Figure 6). When the shell starts
a tool, it allocates a global area for the tool
in the common heap (which contains
both code and data), adjusts the global
register accordingly, seb up the tool’s in-
tersegmentjump table, and then calls the
tool.

The shell tracks some system resources
allocated to tools, such as files and
memory, to reclaim the resources when
the tool terminates. The shell tracks these
resources by overriding several ROM
operating-system routines. It monitors
heap allocation by intercepting the
memory-allocation routines and using a
block- tagging scheme to differentiate
shell and tool blocks. By monitoring the
appropriate file-system calls, the shell re-
cords in ashell data structure the namesof
files opened by a tool and removes the
name when the files are closed. The shell
determines if a memory-manager or file-
system call came from a tool (or from

64 IEEE Software

ROM on behalf of a tool) by comparing
the current global context to the tool’s
global context.

When a tool terminates, it returns to the
shell. The shell then cleans the heap by re-
moving all tagged blocks. It also closes any
remaining files left open by the tool.

To improve the time to reexecute a tool,
the shell postpones closing the tool’s re-
source file and removing any of the tool’s
resource blocks in memory (most notably,
code segments). Instead, it marks these
memory blocks as relocatable and purge-
able so the memory manager may later
move the blocks around to consolidate
free space or reclaim the space completely
if needed. The next time the tool is run,
any resourcvs still in memory are used
without reloading them from disk.

In many cases, the code segments of sev-
eral tools can remain memory-resident
simultaneously. However, when a tool’s
memory requirements are large, the shell
does its best to free up memory as needed.
Before starting a tool, the shell makes
many of its own heap objects relocatable
and purgeable so they may be moved or
deleted as needed. As the heap fills up, the
shell will dispose memory allocated by in-
active tools and write the modified por-
tions of all files opened as windows to its
scratch file on disk.

By sharing the shell’s memory this way, a
compiler, for example, that requires 1
Mbyte to run efficiently by itself will re-
quire just alittle more than that 1 Mbyte to
run - including the space for the shell.
This allocation strategy takes less memory
than the total memory requirements to
run the compiler in a separate partition
where the maximum memory require-
ments of both the shell and compiler
would have to be met simultaneously.

Because both the shell and the tool have
separate global environments, some form
of context switch must occur during a call
between the two environments (such as a
tOOl’ShbrdrieS calling some part ofwindow
I/O). We devised a context-switching sys-
tem, called Export, to do this. A routine
that may be called from another context
can be registered via Export to provide the
automatic switching. Export works by re-
cording the proper context at the time of
the export and returning a new address to
be used for the exported routine. When

High memory

Globals ---$

Stack base _+

Stack pointer --+

Low memory

Screen memory,
drivers

Application jump table

Application parameters

Application globals

Application stack

t

Application heap

Syslem globals

Old tool code segment

Free memory
Old tool resource I

I Tool code seament 4 I
I TOOI resource I

I I Tool data

Window data
Tool dala I

Free memory

Shell code segment 2

I
~~ r Shell co;;;pment i

F i r e 6. Memory organization. MPW Shell shares its stack with an executing tool. The
application heap is shared between the shell, the executing tool, and one or more previ-
ously executed tools.

the new address is called, an intermediary
ensures that the context is correct and
then calls the real routine as if it were a
local call. On return, the intermediary re-
stores the context to the previous state.

Window I/O. The editor supports win-
dow 1 / 0 at two levels: by overriding device
handlers in the runtime libraries and by
overriding the file system. Overriding the
runtime libraries’ device handlersis neces-
sary to give tools access to information,
such as the tab setting of a window, that
cannot be accessed through ROM rou-
tines.

MPW runtime libraries’ device handlers
closely resemble Unix device handlers.
There are three standard handlers: the

console device, file device, and system dev-
ice. Each handler contains five standard
entries: read, write, close, ioctl, and
faccess. At initialization, the editor re-
places the shell’s entire console handler
and the faccess and ioctl entries of the tile
handlerwith itsown exportedfunctions.A
tool’s device handlers are copied by its
runtime libraries at initialization from the
table of device handlers associated with
the shell.

Tools can also use ROM calls for 1 / 0 and
still benefit from the window 1 / 0 supplied
by the editor. By overriding the file system,
the editor can watch all ROM filesystem
calls and either process the call itself or let
the ROM handle the call.

For example, when a tool tries to open a

May 1988 65

file, the editoi- detects the call and searches
its list ofwindows for one whose complete
path name matches the complete path
name specified. If there is no match, the
editor lets the file system handle the re-
quest. Ifawindowmatches the request, the
editor creates a data structure that will
satisfy future I/O requests for thatwindow
and then returns a window-reference
number that is outside the domain of all
file-system reference numbers.

When a tool makes 1 / 0 requests other
than opening a file, determining whether
the request is for a window or file is done
by testing whether the reference number
in the request is a window-reference num-
ber

To extend the more conventional n u
tion of 1 / 0 redirection (such as in a Unix
environment) to include redirecting 1 / 0
to and from selections in windows, we
needed a mechanism to differentiate the
name of a window (or file) and the name
of the selected text in that window, so we
use the special suffix .# to mean the selec-
tion in the file.

Acknowledgments
We thank Bud Tribble, who gave us the orig-

inal charter to develop MPW, Jim Thomas,
who has managed the engineering effort since
eai-ly 1986, and Daniel Smith, a key designer
and implementerwho really should have been
a coauthor. ‘4 hard-working team of IS engi-
neers designed aiid built the tools and lan-
guage$ includedwith MPM’; another IS writers
and testcrs contributed theii- talents. Finally,
our fans and critics both at Apple and in the
Macintosh development community continu-
ally encourage us to try harder and find a bet-
ter way.

References
iMnrintosh I+oLgrnmmrri Workshop Kp/brpnrp ,

Version 2, Apple Programmer’s and
Developer’s Assn., Reiiton, Wash., 1987.
Systnn V In ln jkQ I)~filiitzon, ISSUP 2, Vol. 2,
ATTg-T, Murray Hill, NJ. , 1986.
W. Joy, “Introduction to the <; Shell,” Unix
C’swi Su@lmwntq Ilontmmts, 4.2 L k h ~ l q
So/hiinr~ Ihstn‘/nction, Univ. of Oalifornia,
Berkeley, Calif., Nov. 1980.
D.B. Garlan and P.1.. Miller, “Gnome: An I n -
troductory Programming Environment
Based on a Family of Structure Edtors,”
Proc. %JhilnrQ Eng Symp. Prnrtirnl .%Ihum-
Dpuelqbmm! E n ~ n r m m ~ n l s , ACM. New York,
1984.

PW was a product-development
effort, not a research project. M The goal was to produce the bes t

possible product using well-understood
technology. The major challenge was to
design and implement such a system given
the limited hardware and system-software
resources. We believe we have done so. But
we intend to do more.

Our short-term objectives are to add
source-code version control and source-
level symbolic debugging. The source-
code control system will make it easier for
several people to work together on a coni-
mon project. It will support all files related
to a project, notjust source code. In addi-
tion, projects may be nested in other proj-
ects, letting large projects be broken into
subunits. The symbolic debugger will
allow source-level debugging of programs
written in any combination of MPW-sup
ported languages. The debugger will run
as an independent application under Mul-
tifinder, where it will be used to debug
both tools and applications. These two en-
hancements should be completed this
summer.

Richard J. Meyers is a principal engineer at
Apple Computer. He implemented Smalltalk-
80 on Apple’s Lisa computer and has coli-
tributed tothe system softwareon both theLisa
aiid Macintosh computers. He served as the
engineering manager for the development
and initial release of the Macintosh Program-
mer’s Workshop.

Meyers received a BA summa cum laude i n
physics and mathematics from Hope College
in Michigan and an MS in electrical engi-
neering and computer science from the Uni-
versity of California at Berkeley.

Our long-term objectives are to increase
the levelofintegration in MPW. Each time
we have increased the level of integration,
we have been pleasantly surprised by unex-
pected benefits. For example, combining
the shell and editor languages makes the
system easier to learn and letsyou use shell
variables, command substitution, and con-
trol constructs when editing scripts.

We are considering languageurien ted
editing, incremental compilation, and
closer coupling between the editor, com-
pilers, and other tools. Expected benefits
include an increase in system perfor-
mance, easier navigation through source
code and documentation, and simpler
coordination ofmultiple filesand their de-
pendencies.

The design of a fully integrated system
supporting several languages is a signifi-
cantchallenge.MPWisafirststepinmeet-
ing that challenge. Although there are al-
ready several systems with the level of
integration we seek, such as Smalltalk and
Gnome,.’we know of no system that is both
highly integrated and provides equal s u p
port for multiple languages. .:.

Jeff W. Parrish is a staffenginerr at Apple Com-
puter. He designed and implemented Mac-
Works on Apple’s I.isa computer and has con-
tributed to the system software on both the Lisa
and Macintosh computers. He is engineering
manager for the development of the Macin-
tosh Programmer’s Workshop shell enviroii-
ment.

Parrish received a BA and MS i n physics and
an MSin coinputer science from the University
of Oregon.

Address questions about this article to the authors at Apple Computer, 20525 Mariani Ave., MS
27-E, Cupertino, CA95014.

66 IEEE Software

