PROBLEM SET

ZEYU WANG

Throughout the problem set, we use the following notations:

- G: semisimple algebraic group over \mathbb{C}
- $T \subset B$: a choice of maximal torus and Borel subgroup
- $W = N_G(T)/T$: Weyl group
- $\mathfrak{t} \subset \mathfrak{b} \subset \mathfrak{g}$: corresponding Lie algebras
- $\Phi \subset \mathfrak{t}^*$: roots
- $\chi: \mathfrak{t} \to \mathfrak{a} = \mathfrak{t} /\!\!/ W \cong \mathfrak{g} /\!\!/ G$: Chevalley quotient map
- $\mathfrak{g}^{rs} \subset \mathfrak{g}, \mathfrak{t}^{rs} \subset \mathfrak{t}, \mathfrak{a}^{rs} \subset \mathfrak{a}$: semisimple loci
- r = r(G): rank of G
- $f_1, \cdots, f_r \in \mathcal{O}(\mathfrak{a}) \cong \mathcal{O}(\mathfrak{t})^W \cong \mathcal{O}(\mathfrak{g})^G$: homogeneous generators
- $F = \mathbb{C}((t)), \mathcal{O} = \mathbb{C}[t]$
- $\mathbf{I} \subset G(F)$: Iwahori subgroup
- Fl = G(F)/I: affine flag variety
- W: extended affine Weyl group

1. Homogeneous elements

Exercise 1.1. In this exercise, we study regular elements in W.

For element $w \in W$ and $\zeta \in \mathbb{C}^{\times}$, define $V(w, \zeta) = \{t \in \mathfrak{t} | wt = \zeta t\} \subset \mathfrak{t}$.

- We say that w is regular (of order m) if $V(w,\zeta) \cap \mathfrak{t}^{rs} \neq \emptyset$ for some primitive m-th root of unity $\zeta \in \mu_m$.
- We say that w is *elliptic* if $\mathfrak{t}^w = 0$.
- We say that m is a regular number of W if there exists a regular element of order m.
- We say that m is a regular elliptic number if there exists a regular elliptic element of order m.

Fix $w \in W$ a regular element of order m and $\zeta \in \mu_m$ a primitive m-th root of unity.

- (1) Show that w has order m as an element of W, and it induces a free action of the cyclic group $\mathbb{Z}/m\mathbb{Z} \cong \langle w \rangle$ on Φ .
- (2) Show that there exists a choice of simple roots $S \subset \Phi$ under which $l(w) = |\Phi|/m$. Moreover, when w is elliptic, show that $l(w) \ge |\Phi|/m$ for any choice of S.
- (3) Consider $\mathfrak{a}_{1/m} = \bigcap_{i,m \nmid d_i} V(f_i) \subset \mathfrak{a}$ where $V(f_i) \subset \mathfrak{a}$ is the vanishing locus of $f_i \in \mathcal{O}(\mathfrak{a})$. Show that $\chi|_{\mathfrak{t}}^{-1}(\mathfrak{a}_{1/m}) = \bigcup_{w' \in W} V(w', \zeta)$.
- (4) Define $a(m) = |\{1 \le i \le r : m \mid d_i\}| = \dim \mathfrak{a}_{1/m}$. Show that $\chi|_{\mathfrak{t}}^{-1}(\mathfrak{a}_{1/m})$ is equi-dimensional of dimension a(m), and W acts transitively on the set of irreducible components of $\chi|_{\mathfrak{t}}^{-1}(\mathfrak{a}_{1/m})$.
- (5) Show that dim $V(w, \zeta) = a(m)$. Conclude that any two regular elements of order m are conjugate in W.
- (6) Show that the eigenvalues of w as an automorphism of \mathfrak{t} are $\{\zeta^{1-d_i}\}_{1\leq i\leq r}$. (Hint: Consider the basis $\{e_i\}_{1\leq i\leq r}$ of \mathfrak{t} consisting of eigenvectors of w. Assume $e_1 \in \mathfrak{t}^{rs}$. Consider the Jacobian $J = \det(\partial_{e_i}f_j)$. Show that $J(e_1) \neq 0$, which implies that there exists a permutation $\sigma \in S_r$ such that $(\partial_{e_i}f_{\sigma(i)})(e_1) \neq 0$ for any i.)
- (7) For Weyl groups of type A and C, determine the regular numbers and single out the elliptic ones.

Exercise 1.2. In this exercise, we study regular semisimple homogeneous elements in $\mathfrak{g}(F)$ of slope $\nu = \frac{d}{m}$. Here $d, m \in \mathbb{Z}_{\geq 1}$ and $\gcd(d, m) = 1$.

Consider the torus $\mathbb{G}_m^{\text{rot}} \times \mathbb{G}_m^{\text{dil}}$ acting on $\mathfrak{g}(F)$ by loop rotation on the first factor and dilation on the section factor, which induces also an action on $\mathfrak{a}(F)$. We use $\xi \in X_*(T_{\text{ad}})$ to denote the unique element such

that $x_m := \xi/m \in X_*(T_{ad})_{\mathbb{Q}}$ lies in the fundamental alcove and is conjugate to $\check{\rho}/m$ under the affine Weyl group. Consider the Moy-Prasad grading on $\mathfrak{g}(F)$ defined by x_m . Explicitly, it is the $\frac{1}{m}\mathbb{Z}$ -grading on $\mathfrak{g}(F)$:

$$\mathfrak{g}(F)_{i/m} = \{ X \in \mathfrak{g}(F) : \mathrm{Ad}(\xi(s)) X = (s^{-m}, s^i) \cdot X \text{ for all } s \in \mathbb{G}_m \}$$

This induces a $\frac{1}{m}\mathbb{Z}$ -grading on $\mathfrak{a}(F)$:

$$\mathfrak{a}(F)_{i/m} = \{ x \in \mathfrak{a} : (s^{-m}, s^i) \cdot x = x \text{ for all } s \in \mathbb{G}_m \}.$$

This gives rise to Moy-Prasad subgroups $\mathbf{P}(\frac{i}{m}) \subset G(F)$ such that $\operatorname{Lie} \mathbf{P}(\frac{i}{m}) = \mathfrak{g}(F)_{\geq i/m}$.

Note that classifying semisimple elements in $\mathfrak{g}(F)$ is equivalent to study elements in $\mathfrak{a}(F)$. More precisely, the map between sets $\mathfrak{g}(F)^{ss}/G(F) \to \mathfrak{a}(F)$ is bijective. The injectivity follows from [Ste75, Theorem 3.14] and [Ste65, Theorem 1.9]. The surjectivity follows from [Ste65, Theorem 1.7]. Therefore, we are reduced to study $\mathfrak{a}(F)^{rs}_{\nu}$.

Consider the $\frac{1}{m}\mathbb{Z}/\mathbb{Z}$ -grading on \mathfrak{g} defined by

$$\mathfrak{g}_{i/m} = \{X \in \mathfrak{g} : \operatorname{Ad}(\xi(s)) X = s^i \cdot_{\operatorname{dil}} X \text{ for all } s \in \mu_m \}$$

Define

$$\mathfrak{a}_{i/m} = \{ x \in \mathfrak{a} : s^i \cdot_{\mathrm{dil}} x = x \}.$$

Then the Chevalley quotient map restricts to $\chi : \mathfrak{g}_{i/m} \to \mathfrak{a}_{i/m}$ for any $i \in \mathbb{Z}$. Note that $\mathfrak{a}_{i/m} = \mathfrak{a}_{\gcd(i,m)/m}$. Define $\overline{\nu} = \nu + \mathbb{Z} \in \frac{1}{m}\mathbb{Z}/\mathbb{Z}$.

- (1) Show that evaluation at t = 1 induces isomorphisms $\operatorname{ev}_1 : \mathfrak{g}(F)_{i/m} \xrightarrow{\sim} \mathfrak{g}_{i/m}$ and $\operatorname{ev}_1 : \mathfrak{a}(F)_{i/m} \xrightarrow{\sim} \mathfrak{a}_{i/m}$ for any $i \in \mathbb{Z}$. Moreover, show that $\operatorname{ev}_1(\mathfrak{g}(F)_{i/m}^{\operatorname{rs}}) = \mathfrak{g}_{i/m}^{\operatorname{rs}}$ and $\operatorname{ev}_1(\mathfrak{a}(F)_{i/m}^{\operatorname{rs}}) = \mathfrak{a}_{i/m}^{\operatorname{rs}}$.
- (2) Show that $\mathfrak{a}_{1/m}^{rs}$ is non-empty if and only if m is a regular number of W. Therefore, a regular semisimple homogeneous element in $\mathfrak{g}(F)$ of slope ν exists if and only if m is a regular number of W.
- (3) Assume *m* is a regular number, show that the map $\mathfrak{g}_{\overline{\nu}} \to \mathfrak{a}_{1/m}$ is surjective. Therefore, any regular semisimple homogeneous element in $\mathfrak{g}(F)$ of slope ν can be conjugated to an element in $\mathfrak{g}(F)_{\nu}^{rs}$ by G(F).
- (4) For Weyl groups of type A and C, describe all possible homogeneous elements and the corresponding Moy-Prasad subgroups.

Exercise 1.3. This exercise studies invariant theory of $\mathfrak{g}_{\overline{\nu}}$ under the action of $G_0 = L_{\mathbf{P}} = \mathbf{P}(0)/\mathbf{P}(\frac{1}{m})$.

- (1) For an element $\overline{\psi} \in \mathfrak{g}_{\overline{\nu}}$, show that $\overline{\psi}$ is *polystable* (i.e. the orbit $G_0 \cdot \overline{\psi}$ is closed) if and only if $\overline{\psi}$ is semisimple as an element in \mathfrak{g} .
- (2) For an element $\overline{\psi} \in \mathfrak{g}_{\overline{\nu}}$, show that $\overline{\psi}$ is *stable* (i.e. $\overline{\psi}$ is polystable and $\operatorname{Stab}_{G_0}(\overline{\psi})$ is finite) if and only if $\overline{\psi} \in \mathfrak{g}_{\overline{\nu}}^{\mathrm{rs}}$ and m is elliptic.
- (3) From now on, fix an element $\overline{\psi} \in \mathfrak{g}_{\overline{\nu}}^{\mathrm{rs}}$, consider the centralizer

$$\mathfrak{c}_{\overline{\psi}} = \mathfrak{z}_{\mathfrak{g}}(\overline{\psi}) \subset \mathfrak{g}$$

Define the *Cartan* subspace $\mathfrak{c}_{\overline{\psi},\overline{\nu}} = \mathfrak{c}_{\overline{\psi}} \cap \mathfrak{g}_{\overline{\nu}}$. Show that $\mathfrak{g}_{\overline{\nu}}^{rs} \subset G_0 \cdot \mathfrak{c}_{\overline{\psi},\overline{\nu}}$.

- (4) Define the *little Weyl group* $W_m = N_{G_0}(\mathbf{c}_{\overline{\psi},\overline{\nu}}) / \operatorname{Stab}_{G_0}(\overline{\psi})$. Show that W_m naturally embeds into W. Moreover, the Chevalley quotient map induces a finite surjective map $\mathbf{c}_{\overline{\psi},\overline{\nu}} / W_m \to \mathfrak{a}_{\overline{\nu}}$.
- (5) Show that the natural map $\mathfrak{c}_{\overline{\psi},\overline{\nu}} /\!\!/ W_m \to \mathfrak{g}_{\overline{\nu}} /\!\!/ G_0$ is an isomorphism.
- (6) For each regular number m associated to a Weyl group of type A and C, describe the Cartan subspace and little Weyl group W_m .

¹Note that the distinction between ξ and $\check{\rho}$ results in conjugate Moy-Prasad subgroups. We choose ξ instead of $\check{\rho}$ to make sure that $\mathbf{I} \subset \mathbf{P}(0)$ and keep our notation consistent with [BAMY22]. Although it does not really help, this distinction can be mostly ignored in the problem set.

PROBLEM SET

2. Affine Springer fibers

For each regular semisimple topologically nilpotent element $\psi \in \mathfrak{g}(F)^{rs}$, define the affine Springer fiber

$$\mathrm{Fl}_{\psi} = \{ g\mathbf{I}/\mathbf{I} \in \mathrm{Fl} \, | \, \mathrm{Ad}_{g^{-1}}(\psi) \in \mathrm{Lie}\,\mathbf{I} \}.$$

When ψ is homogeneous of slope ν , we assume $\psi \in \mathfrak{g}(F)_{\nu}^{rs}$ by conjugation. Define the \mathbb{G}_m -action on Fl_{ψ} by

$$s \cdot g\mathbf{I}/\mathbf{I} = s^m \cdot_{\mathrm{rot}} \xi(s)g\mathbf{I}/\mathbf{I}$$

for $s \in \mathbb{G}_m$.

Exercise 2.1. Classify regular semisimple homogeneous elements ψ for semisimple algebraic groups such that dim $\operatorname{Fl}_{\psi} = 1$. You may want to use the dimension formula dim $\operatorname{Fl}_{\psi} = (\nu |\Phi| - \dim(\mathfrak{t}/\mathfrak{t}^w))/2$ where $w \in W$ is any regular element of order m. You can find the list of regular numbers for Weyl groups of exceptional type in [Spr74, §5.4].

Exercise 2.2. This exercise proves that Hessenberg varieties arsing as connected components of $\operatorname{Fl}_{\psi}^{\mathbb{G}_m}$ are smooth projective.

Consider a reductive group L and a finite dimension representation $V \in \text{Rep}(L)$. Fix a vector $v \in V_0$, a subspace $V_0 \subset V$, and a parabolic subgroup $Q \subset L$ which stabilizes $V_0 \subset V$. Define the associated Hessenberg variety to be

$$\mathcal{H}_v(Q \subset L, V_0 \subset V) = \{ lQ/Q \in L/Q : l^{-1}v \in V_0 \}.$$

For $\psi \in \mathfrak{g}(F)_{\nu}^{\mathrm{rs}}$, recall that $\mathrm{Fl}_{\psi}^{\mathbb{G}_m} = \coprod_{w \in W_{\mathbf{P}} \setminus \widetilde{W}} \mathcal{H}_{\psi}(w)$ where $\mathcal{H}_{\psi}(w) = (L_{\mathbf{P}}w\mathbf{I}/\mathbf{I}) \cap \mathrm{Fl}_{\psi}$. Note that $\mathcal{H}_{\psi}(w) = \mathcal{H}_{\psi}(L_{\mathbf{P}} \cap \mathrm{Ad}(w)\mathbf{I} \subset L_{\mathbf{P}}, \mathfrak{g}(F)_{\nu} \cap \mathrm{Ad}(w) \operatorname{Lie} \mathbf{I} \subset \mathfrak{g}(F)_{\nu}).$

- (1) Show that $\mathcal{H}_v(Q \subset L, V_0 \subset V)$ is smooth if the following condition is satisfied: For any $v' \in L \cdot v \cap V_0$, one has $\mathfrak{l} \cdot v' + V_0 = V$.
- (2) For any $\psi' \in \mathfrak{g}(F)_{\nu}^{\mathrm{rs}} \cap \mathrm{Ad}(w)$ Lie **I**, show that $[\mathfrak{g}(F)_{0}, \psi'] + \mathfrak{g}(F)_{\nu} \cap \mathrm{Ad}(w)$ Lie $\mathbf{I} = \mathfrak{g}(F)_{\nu}$. Conclude that $\mathcal{H}_{\psi}(w)$ is smooth projective for any $w \in W_{\mathbf{P}_{\nu}} \setminus W$. (Hint: You may first show the following: For any $\mathbb{G}_{m} \subset G_{0}$ and $\overline{\psi} \in \mathfrak{g}_{\overline{\nu}}^{\mathrm{rs}}$, one has $[\mathfrak{g}_{0}, \overline{\psi}] + \mathfrak{g}_{\overline{\nu}}^{\geq 0} = \mathfrak{g}_{\overline{\nu}}$. Here $\mathfrak{g}_{\overline{\nu}}^{\geq 0}$ is the part with non-negative weight with respect to the action of \mathbb{G}_{m} .)

Exercise 2.3. Consider $G = \operatorname{SL}_2$ with slope $\nu = \frac{1}{2} + k$ where $k \in \mathbb{Z}_{\geq 0}$. Take the homogeneous element $\psi = \begin{pmatrix} t^k \\ t^{k+1} \end{pmatrix} \in \mathfrak{sl}_2(F)$.

- (1) Describe the fixed point locus $\operatorname{Fl}_{\psi}^{\mathbb{G}_m}$.
- (2) For each connected component of $\operatorname{Fl}_{\psi}^{\mathbb{G}_m}$, describe the corresponding attracting locus.
- (3) Describe the affine Springer fiber Fl_{ψ} .

Exercise 2.4. Consider $G = \text{Sp}_4 = \text{Sp}(V)$ and $\nu = \frac{1}{2}$. Fix a polarization $V = V_0 \oplus V_0^*$. Take the homogeneous element $\psi = \begin{pmatrix} P \\ tQ \end{pmatrix} \in \mathfrak{sp}_4(F)$ in which $P: V_0^* \xrightarrow{\sim} V_0$ and $Q: V_0 \xrightarrow{\sim} V_0^*$ are two non-degenerate quadratic forms on V_0 in general position.

- (1) Show that Fl_{ψ} can be identified with \mathbb{P}^1 's with dual graph D_4 .
- (2) Determine the cross-ratio of the four points on the central \mathbb{P}^1 . (The answer should depend on P, Q)

Exercise 2.5. Consider $G = \text{Sp}_6$ and $\nu = \frac{1}{2}$. Take the homogeneous element as in the previous exercise.

- (1) Show that there exists a unique non-rational connected component $E_{\psi} \subset \operatorname{Fl}_{\psi}^{\mathbb{G}_m}$, which is an elliptic curve.
- (2) Compute the *j*-invariant of E_{ψ} . (The answer should depend on P, Q)
- (3) Show that there exists a unique non-rational irreducible component of Fl_{ψ} , which is a $\mathbb{P}^1 \times \mathbb{P}^1$ -fibration over E_{ψ} .

3. HITCHIN MODULI SPACES FOR HOMOGENEOUS ELEMENTS

Define $F_0 = F = \mathbb{C}((t))$ and $F_{\infty} = \mathbb{C}((t^{-1}))$. Let D_0, D_{∞} be the formal disc around $0, \infty \in \mathbb{P}^1$. Fix $\psi \in \mathfrak{g}(F)^{\mathrm{rs}}_{\nu}$, which automatically lies in $\mathfrak{g}(\mathbb{C}[t, t^{-1}])_{\nu}$. Take $\mathbf{I}_0 \subset G(F_0)$ to be the standard Iwahori subgroup. Take $\mathbf{P}_{\infty} \subset G(F_{\infty})$ to be standard parahoric subgroup such that Lie $\mathbf{P}_{\infty} = \mathfrak{g}(F_{\infty})_{\leq 0}$. It is equipped

ZEYU WANG

with a filtration by Moy-Prasad subgroup $\mathbf{P}_{\infty}(\frac{i}{m}) \subset \mathbf{P}_{\infty}$ such that $\operatorname{Lie} \mathbf{P}_{\infty}(\frac{i}{m}) = \mathfrak{g}(F_{\infty})_{\leq -i/m}$. Define $\mathbf{C}_{\infty}^{+} \subset \mathbf{P}_{\infty}(\frac{1}{m})$ to be the connected subgroup such that $\operatorname{Lie} \mathbf{C}_{\infty}^{+} = \mathfrak{z}_{\mathfrak{g}(F_{\infty})}(\psi)_{\leq -1/m}$. Take $\mathbf{K}_{\infty} = \mathbf{P}_{\infty}(\nu) \cdot \mathbf{C}_{\infty}^{+}$. Identify $\mathfrak{g} \cong \mathfrak{g}^{*}$.

Consider the Hitchin moduli space \mathcal{M}_{ψ} defined as moduli of (\mathcal{E}, φ) where

- \mathcal{E} is a *G*-bundle on \mathbb{P}^1 with \mathbf{K}_{∞} -level structure at ∞ and \mathbf{I}_0 -level structure at 0. Define $\mathrm{Ad}(\mathcal{E})$ to be the adjoint vector bundle.
- $\varphi \in H^0(\mathbb{P}^1 \setminus \{0, \infty\}, \mathrm{Ad}(\mathcal{E}) \otimes \omega_{\mathbb{P}^1})$ such that
 - (1) Under any trivialization of $\mathcal{E}|_{D_{\infty}}$ with \mathbf{K}_{∞} -level structure, we require

$$\varphi|_{D_{\infty}^{\times}} \in (-\psi + \mathfrak{g}(F_{\infty})_{\leq 0})dt/t$$

(2) Under any trivialization of $\mathcal{E}|_{D_0}$ with \mathbf{I}_0 -level structure, we require

$$\varphi|_{D_0^{\times}} \in \operatorname{Lie} \mathbf{I}_0^+ dt/t.$$

The usual Hitchin map construction gives a map $\mathcal{M}_{\psi} \to \bigoplus_{i=1}^{r} H^{0}(\mathbb{P}^{1} \setminus \{0, \infty\}, \omega_{\mathbb{P}^{1}}^{d_{i}})$. We use \mathcal{A}_{ψ} to denote the image of this map. This gives the Hitchin map $f_{\psi} : \mathcal{M}_{\psi} \to \mathcal{A}_{\psi}$. Define $a_{\psi} = f_{\psi}(\mathcal{E}_{\mathrm{triv}}, -\psi dt/t) \in \mathcal{A}_{\psi}$.

Exercise 3.1. Consider $G = SL_2$ with homogeneous element $\psi = \begin{pmatrix} t \\ -t \end{pmatrix}$ of slope 1.

- (1) Describe \mathcal{A}_{ψ} .
- (2) Show that $f_{\psi}^{-1}(a_{\psi})$ is isomorphic to an infinite chain of \mathbb{P}^1 .
- (3) Show that the generic fiber of f_{ψ} is isomorphic to \mathbb{G}_m .

Exercise 3.2. Consider $G = SL_2$ with homogeneous element $\psi = \begin{pmatrix} t \\ t^2 \end{pmatrix}$ of slope $\frac{3}{2}$.

- (1) Describe \mathcal{A}_{ψ} .
- (2) Show that $f_{\psi}^{-1}(a_{\psi})$ is isomorphic to two \mathbb{P}^1 's tangent at a point (i.e. has equation $(y x^2)y = 0$ locally around the intersection point).
- (3) Show that the generic fiber of f_{ψ} is isomorphic to the elliptic curve with complex multiplication by $\mathbb{Z}[i]$.

Exercise 3.3. Consider $G = SL_3$ with homogeneous element $\psi = \begin{pmatrix} t & 1 \\ t & \\ t & \end{pmatrix}$ of slope $\frac{2}{3}$.

- (1) Describe \mathcal{A}_{ψ} .
- (2) Show that $f_{\psi}^{-1}(a_{\psi})$ is isomorphic to three \mathbb{P}^1 's intersect pairwise-transversally at a single point (i.e. has equation (y x)xy = 0 locally at the intersection point).
- (3) Show that the generic fiber of f_{ψ} is isomorphic to the elliptic curve with complex multiplication by $\mathbb{Z}[\omega]$.

Exercise 3.4. Consider $G = \text{Sp}_4$ with homogeneous element $\psi = \begin{pmatrix} P \\ tQ \end{pmatrix}$ of slope $\frac{1}{2}$ as in Exercise 2.4. Show that the generic fiber of f_{ψ} is isomorphic to the elliptic curve which is the double cover of the central \mathbb{P}^1 ramified at the four points in Exercise 2.4(2).

Exercise 3.5. Repeat Exercise 3.4 for $G = SO_8$ with homogeneous element of slope $\frac{1}{4}$.

4. Stokes data and Betti moduli spaces

We use Br_W^+ to denote the semigroup of positive braids. For each $\psi \in \mathfrak{g}(F)_{\nu}^{\operatorname{rs}}$, we use $\beta_{\nu} = \beta_{\psi} \in \operatorname{Br}_W^+$ to denote the associated braid, which is well-defined up to a cyclic shift and only depends on the slope ν . We refer to [BAMY22, §4.3] for the definition of β_{ν} . See also [BAMY22, §4] for the definition of braid variety $\mathcal{M}(\beta)$ and Betti moduli space $\mathcal{M}_{\operatorname{Bet},\psi}$.

Exercise 4.1. Consider $G = SL_n$ with homogeneous element

$$\psi = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \\ t & & 1 \end{pmatrix}^d$$

of slope $\nu = \frac{d}{n}$ for $d \in \mathbb{Z}_{\geq 1}$ such that gcd(d, n) = 1.

- (1) Describe the braid $\beta_{\nu} \in \operatorname{Br}_{S^n}^+$. Identify the braid closure $\widehat{\beta}_{\nu}$ which is the link obtained from β_{ν} by connecting startpoints with endpoints in order ².
- (2) For an algebraic curve $C \subset \mathbb{C}^2$ passing through the origin $0 \in \mathbb{C}^2$, the algebraic link associated to C is defined as $C \cap S^3_{\epsilon} \subset S^3_{\epsilon} = \{(x, y) \in \mathbb{C}^2 | |x|^2 + |y|^2 = \epsilon\}$ for sufficiently small $\epsilon > 0$. Show that the algebraic link associated to $V(x^n y^d)$ is equivalent to the link $\hat{\beta}_{\nu}$.

Exercise 4.2. Consider $G = SL_n$ with homogeneous element

$$\psi = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ t & & & 0 \end{pmatrix}^d$$

of slope $\nu = \frac{d}{n-1}$ for $d \in \mathbb{Z}_{\geq 1}$ such that gcd(d, n-1) = 1.

- (1) Describe the braid $\beta_{\nu} \in \operatorname{Br}_{S^n}^+$. Identify the braid closure $\widehat{\beta}_{\nu}$.
- (2) Show that the algebraic link associated to $V(x^n xy^d)$ is equivalent to the link $\hat{\beta}_{\nu}$.

Exercise 4.3. This exercise studies the Betti moduli space $\mathcal{M}_{\text{Bet},\psi}$ with slope $\nu = \frac{1}{m}$ where m is a regular elliptic number of W.

For each elliptic element $w \in W$ with minimal length in its conjugacy class, consider $Z_w = \langle T^w, U_\alpha : w\alpha = \alpha, \alpha \in \Phi \rangle$ and $U_w = U \cap wU^-w^{-1}$. Here U_α is the root subgroup of α , U is the unipotent radical of B, and U^- is the opposite of U. Define the *multiplicative transversal slice* $\Sigma_w = U_w Z_w w$, which satisfies the following properties:

• The map

$$U \times \Sigma_w \to U Z_w w U$$
$$(u, s) \mapsto u s u^{-1}$$

is an isomorphism.

• Σ_w is transversal to conjugacy classes in G.

The result above is proved in [HL12]. See [Dua24] for a generalization to non-elliptic case.

- (1) Show that $\beta_{1/m} \in \operatorname{Br}_W^+$ is a minimal length representative of a regular elliptic element of order m in W.
- (2) Choose $w \in W$ a minimal length representative of a regular elliptic element of order m. Consider $\Sigma_w^{\circ} = U_w w$. Show that $\mathcal{M}_{\text{Bet},\psi} \cong \Sigma_w^{\circ} \times_G \tilde{\mathcal{U}}$ where $\tilde{\mathcal{U}} \to \mathcal{U}$ is the Springer resolution. Conclude that $\mathcal{M}_{\text{Bet},\psi}$ is a classical smooth algebraic variety.
- (3) Show that $\mathcal{M}_{\text{Bet},\psi}$ is a point when m = h is the Coxeter number.
- (4) For $G = \text{Sp}_4$ and $\nu = \frac{1}{2}$, show that $\mathcal{M}_{\text{Bet},\psi}$ can be identified with a resolution of $V(x^2 + (y+z)^2 + xyz) \subset \mathbb{A}^3$. Note that the later has A_3 -singularity at the origin as its only singular point.

²You may find more background on links and link invariants in [GKS21].

ZEYU WANG

References

- [BAMY22] Roman Bezrukavnikov, Pablo Boixeda Alvarez, Michael McBreen, and Zhiwei Yun, Non-abelian hodge moduli spaces and homogeneous affine springer fibers, 2022.
- [Dua24] Chengze Duan, Good position braid representatives and transversal slices of unipotent orbits, 2024.
- [GKS21] Eugene Gorsky, Oscar Kivinen, and José Simental, Algebra and geometry of link homology, 2021.
- [HL12] Xuhua He and George Lusztig, A generalization of steinberg's cross section, Journal of the American Mathematical Society **25** (2012), no. 3, 739–757.
- [Spr74] Tonny Albert Springer, Regular elements of finite reflection groups, Inventiones mathematicae 25 (1974), no. 2, 159–198.
- [Ste65] Robert Steinberg, Regular elements of semi-simple algebraic groups, Publications Mathématiques de l'IHÉS 25 (1965), 49–80.
- [Ste75] , Torsion in reductive groups, Advances in Mathematics 15 (1975), no. 1, 63–92.