PROBLEM SET 1

 $G = \mathbb{G}_{\mathsf{m}}.$

Problem 1. Show that χ_{σ} defined in the first contruction in the lecture satisfies the Hecke property.

Problem 2. Compare the two constructions of χ_{σ} in the lecture².

 $G = \mathsf{PGL}_2.$

Problem 3. Show that for $d \ge 1$ the map $\operatorname{Bun}_B^d \to \operatorname{Bun}_G$ is injective on k-points.

Problem 4. Show that Bun_G^{even} is connected.

Problem 5. Find the dimension of Bun_G . Find the dimension of Bun_B^d for any $d \in \mathbb{Z}$. Deduce that there exists sd odd semistable *G*-bundles on *X*.

Problem 6. For $d \ll 0$, show that the map $Bun_B \rightarrow Bun_G$ is smooth.

$$\mathsf{H}_1(X)^{\mathsf{ab}} \simeq \mathsf{H}^1(X,\mathbb{Z}) \to \mathsf{e}^{\times},$$

where the first isomorphism is due to Poincaré duality. Via the isomorphism

τ

$$\pi_1(\operatorname{Jac}(X)) \simeq \operatorname{H}^1(X,\mathbb{Z}),$$

²We recall the second construction as follows. For d >> 0, consider the map $\mathsf{add}_d : X^d \to \mathsf{Sym}^d(X)$ and define

$$\sigma^{(d)} \coloneqq \mathsf{add}_{d,*}(\sigma \boxtimes \cdots \boxtimes \sigma)^{S_d},$$

which is a local system on $\operatorname{Sym}^d(X)$. Since the fibers of the Abel–Jacobi map $\operatorname{Sym}^d(X) \to \operatorname{Bun}^d_{\mathbb{G}_m}$ is simply connected, this local system descends to a local system on $\operatorname{Bun}^d_{\mathbb{G}_m}$. Then we use Hecke property to extend this local system to the entire $\operatorname{Bun}_{\mathbb{G}_m}$.

¹Recall in the lecture, we work in the Betti setting and identify the given rank 1 local system σ with a homomorphism

we obtain a local system on $\operatorname{Jac}(X)$, which gives the desired local system χ_{σ} on $\operatorname{Bun}_{\mathbb{G}_m} \simeq \operatorname{Jac}(X) \times \mathbb{Z} \times \mathbb{B}_m$ by taking external product with the constant sheaves.

³Challenge: can you write down such a bundle?