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Let G be a connected reductive group over C. In the series of lectures, for each positive rational number
ν = d

m , we are going to construct some symplectic algebraic spacesMγ with Lagrangian Flγ ⊂ Mγ . They

are affine analogues of resolutions of Slodowy slices S̃e which admit Springer fibers Be ⊂ S̃e as conical
Lagrangians. In the end of the lectures, we will formulate a version of ramified geometric Langlands for P1

using the moduli spacesMγ and their non-abelian Hodge relatives.

1. Homogeneous elements

Analogues to the situation that Slodowy slices S̃e are parametrized by nilpotent elements e ∈ g, the
affine analoguesMγ are parametrized by homogeneous elements γ ∈ Lg = g(C((t))), which we are going to
introduce in this section.

1.1. Slodowy slices. We first recall the classical story of Slodowy slices.
Let g = LieG and N ⊂ g be the nilpotent cone. For each element e ∈ N , by Jacobson-Morosov theorem,

it extends uniquely to a sl2-triple (e, h, f) in g up to conjugation. The Slodowy slice is defined as Sge := e+gf

and Se = Sge ∩N .

Example 1.1. When e = 0, one has Sg
e = g and Se = N .
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Let B = {Borel subgroups of G} be the flag variety of G. For B ∈ B, let NB be the unipotent radical of B

and nB = LieNB . Let Ñ = {(x,B)|x ∈ N , B ∈ B, x ∈ nB}. One has Ñ ∼= T ∗B and the Springer resolution

π : Ñ → N defined by π(x,B) = x. Define the resolution of Slodowy slice S̃e := Se ×N Ñ and the Springer

fiber Be = Ñ ×N {e}. The construction above can be summarized into the diagram

Be S̃e Ñ

{e} Se N

πe π

in which the two squares are Cartesian.
The following are standard results for Slodowy slices:

Fact 1.2. The following are true:

• The map πe is a resolution of singularities.

• S̃e is a symplectic variety.

• Be is a Lagrangian in S̃e.

Example 1.3. Consider g = sln and e = diag(Jn−1, 1) where Jn−1 is the nilpotent Jordan block of size n− 1.
The element e lies in the subregular nilpotent orbit. The Springer fiber Be is a chain of P1 with dual graph

An−1. The symplectic surface S̃e is resolution of Se with An−1-surface singularity.

There is a Gm-action on objects constructed above. Regard h : Gm → Gad. On Sge = e+ gf , let s ∈ Gm
acts by s2 · Adh(s−1). Since e has weight 2 under the action of h(s) and gf has non-positive weights under
the action of h(s), the Gm-action preserves and contracts Sge to {e}.

Note that the Gm-action extends (induces) action on Se, S̃e. It contracts Se to {e} and contracts S̃e to

Be, making Be a conical Lagrangian of S̃e.

1.2. Affine analogue. Now we move to affine Lie algebras, which means changing from g to Lg = g⊗C((t))
and from e ∈ N to a topological nilpotent element γ ∈ Lg. The Springer fiber Be will be replaced by the
affine Springer fiber Flγ .

First, we would like to find an analogue of the sl2-triple (e, h, f), under which we can define a symplectic

varietyMγ which is an analogue of S̃e.

1.2.1. Topologically nilpotent element. Regardless of the sl2-triple, the role of nilpotent elements in g will be
replaced by topological nilpotent elements in Lg.

Example 1.4. When g = sln, topologically nilpotent elements are those elements γ ∈ Lg such that γN → 0
in the t-adic topology when N → ∞. Equivalently speaking, one require eigenvalues of γ to have positive
valuations (i.e. eigenvalues lie in ∪m≥1C((t1/m)) ). Examples include γ = diag(a1t

e1 , · · · , anten) with ei > 0

and γ =


t

1
. . .

1

.

This motivates the following general definition:

Definition 1.5. Let G be a semisimple algebraic group. An element γ ∈ Lg is called topologically nilpotent
if all eigenvalues of adγ : Lg→ Lg (as a linear map over C((t))) have positive valuations.

1.2.2. Homogeneous elements. We would like to find analogues of the triple (e, h, f) for γ ∈ Lg. From now
on, we assume γ is regular semisimple as an element of Lg over C((t)).

In finite-dimensional case, the element h can be regarded as a map h : Gm → Gad such that Adh(s) ·e =
s2 · e. As a first attempt in the affine case, one can try to find θ : Gm → LGad under which Adθ(s) ·γ = sd · γ
for some d ∈ Z. However, such a map θ usually does not exist. For example, when g = sln, consider the
characteristic polynomial Pγ(x) of γ. If such θ exists, one has Pγ(x) = Psd·γ(x) = sndPγ(s

−dx). This forces
Pγ(x) = xn, hence, γ is nilpotent.
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One can remedy this as follows: Note that one has an extended action LGad ⋊ Grot
m on Lg in which the

second factor scales t (we denote this action by rot). We can look for θ : Gm → LGad ⋊ Grot
m and elements

γ satisfying θ(s) · γ = sd · γ instead.

Example 1.6. When g = sln, suppose θ = (λ,m) ∈ Hom(Gm, LGad)×X∗(Gm). The condition above implies
that Prot(sm)·γ(x) = sndPγ(s

−dx) for s ∈ Gm.
For the element

γ =


t

1
. . .

1

 ,

one has Pγ(x) = xn ± t. Note that Prot(sm)·γ(x) = xn ± smt and sndPγ(s−dx) = xn ± sndt. The condition

above reads as 1
n = d

m .

Definition 1.7. A regular semisimple element γ ∈ Lg is called homogeneous if there exists a group homo-
morphism θ = (λ,m) : Gm → LGad ⋊ Grot

m such that θ(s) · γ = sd · γ for any s ∈ Gm. We call ν = d
m the

slope of γ.

The following gives an easy criterion for homogeneous element:

Fact 1.8. Consider the Chevalley quotient c = g // G and the map χ : g → c. An element γ ∈ Lg is
homogeneous of slope γ = d

m if and only if χ(rot(sm) · γ) = sd · χ(γ). Here Gm-acts on c via the standard
weighted action such that χ : g→ c is Gm-equivariant.

Example 1.9. When g = sln, an element γ ∈ Lg is homogeneous of slope d
n if and only if Pγ(x) = xn + atd

for a ∈ C×.

We would like to address the following questions:

• How to construct homogeneous elements?
• How many homogeneous elements are there?

To do this, we restrict ourselves to consider θ : Gm → Tad ×Grot
m in which s 7→ (λ(s), sm) for λ ∈ X∗(Tad).

Note that θ induces an action fo Gm on Lg, hence, a weight decomposition Lg =
⊕̂

i∈Z(Lg)i/m in

which (Lg)i/m = {γ ∈ Lg|θ(s) · γ = si · γ}. We denote (Lg)rsi/m ⊂ (Lg)i/m to be the subset of regular

semisimple elements. To see these weight subspaces more concretely, consider the root space decomposition

Lg = h ⊕
⊕̂

α∈Φaff
gα where Φaff is the set of affine roots and h = LieT . For non-imaginary roots α =

α + nδ ∈ Φaff , we have (Lg)α = gα · tn. For imaginary roots α = nδ, we have (Lg)nδ = h · tn. This

gives us (Lg)i/m =
⊕̂

⟨λ/m,α⟩+n=i/m(Lg)α. Viewing α as an affine linear function on X∗(T )R, one can

write (Lg)i/m =
⊕̂

α(λ/m)=i/m(Lg)α. This gives explicit construction of (possibly not regular semisimple)

homogeneous elements of slope d
m .

Now we study the existence of (regular semisimple) homogeneous elements of slope ν. The answer will be
related to regular elements of the Weyl group W , which we introduce as follows:

Definition 1.10 ([Spr74]). Consider the action of Weyl group W on the Cartan subalgebra h. An element
w ∈ W is called regular if the action of w on h has an eigenvector in the regular semisimple locus hrs ⊂ h.
Moreover, the map

{regular conjugacy classes in W} → Z≥1

given by
[w] 7→ ord(w)

is an injection, and we call the image regular numbers for W .

Example 1.11. For g = sln, the regular elements are those conjugate to (12 · · ·n)d or (12 · · · (n − 1))d for
some d.

Example 1.12. When g is a simple Lie algebra with simple reflections {s1, · · · , sr}, the Coxeter element
wcox = s1 · · · sr (which is well-defined up to conjugacy) is regular of order hG (called the Coxeter number of
G). When G = E8, one has hG = 30, and there are 12 regular conjugacy classes in W .
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Theorem 1.13 ([RY14][OY16]). The following are true:

• Lg has a homogeneous element of slope ν = d
m if and only if m is a regular number of W .

• When m is a regular number of W , consider θ : Gm → Tad × Grot
m defined by s 7→ (ρ̌(s), sm) in

which ρ̌ = 1
2

∑
α̌∈Φ̌>0

α ∈ X∗(Tad). Then any homogeneous element of slope ν can be conjugated to

an element in (Lg)rsν .

In the theorem above, the relation between the homogeneous element γ ∈ Lg and the regular element
w ∈W can be seen as follows: For γ ∈ Lg, consider Tγ = CG(γ) which is a maximal torus of G defined over
F = C((t)). By a standard Galois cohomology calculation, conjugacy classes of maximal tori of G defined
over F are in one-to-one correspondence with conjugacy classes in W . One takes associated conjugacy class
[w] ⊂W to be the conjugacy class corresponding to the maximal torus Tγ .

Example 1.14. When G = Sp2n = Sp(V, ω) and consider slope ν = 1
2 , the corresponding regular element is

the longest element w0 ∈ W . Assume V = Span(e1, · · · , en, fn, · · · , f1) in which ω(ei, fi) = 1, ω(ei, ej) =
ω(fi, fj) = 0. The theorem above tells us that regular elements of slope 1

2 can be conjugated to have the

form γ =

(
P

tQ

)
in which P,Q are symmetric matrices in C in general position.

Homogeneous elements can be understood via finite-dimensional data as follows: For θ = (λ,m) ∈
X∗(Tad × Grot

m ), consider the evaluation map
⊕

i∈Z(Lg)i/m = g(C[t, t−1])
ev1−−→ g. Consider the Z/mZ-

grading on g defined by gi/m = {X ∈ g : Adλ(ζ) ·X = ζ ·X, ζ ∈ µm}. The evaluation map above restricts to

a map (Lg)i/m
ev1−−→ gi/m which turns out to be an isomorphism. Then γ ∈ (Lg)i/m is regular semisimple if

and only if γ := ev1(γ) is regular semisimple.

Example 1.15. Continuing with Example 1.14. In this case, one can take λ with dλ = diag(1, · · · , 1,−1, · · · ,−1).
Then g = g0 ⊕ g1/2. One has g0 ∼= gln and g1/2 ∼= Sym2(Stdn)⊕ Sym2(Std∗n) as a representation of g0.

To correspondence between homogeneous elements and regular elements in W can also be seen from finite
dimensional data as follows: Consider the maximal torus Tγ = CG(γ), then the Z/mZ-grading on g induces
a Z/mZ-grading h ∼= tγ = LieTγ =

⊕
i∈Z/mZ hi/m. This grading corresponds to an automorphism of h of

order m, which is given by the action of w ∈W .

Definition 1.16. An homogeneous element γ (or a regular element w ∈W ) is called elliptic if hw = 0.

1.3. Exercises.

Exercise 1.17. In this exercise, we study regular elements in W .
For element w ∈W and ζ ∈ C×, define V (w, ζ) = {t ∈ h|wt = ζt} ⊂ h. Recall the following definitions:

• We say that w is regular (of order m) if V (w, ζ) ∩ hrs ̸= ∅ for some primitive m-th root of unity
ζ ∈ µm.

• We say that w is elliptic if hw = 0.
• We say that m is a regular number of W if there exists a regular element of order m.
• We say that m is a regular elliptic number if there exists a regular elliptic element of order m.

Fix w ∈W a regular element of order m and ζ ∈ µm a primitive m-th root of unity.

(1) Show that w has order m as an element of W , and it induces a free action of the cyclic group
Z/mZ ∼= ⟨w⟩ on Φ.

(2) When m > 1, show that there exists a choice of simple roots S ⊂ Φ under which l(w) = |Φ|/m.
Moreover, when w is elliptic, show that l(w) ≥ |Φ|/m for any choice of S.

(3) Let fi ∈ O(c) be the homogeneous generators such that deg fi = di. Consider c1/m = ∩i,m∤diV (fi) ⊂
c where V (fi) ⊂ c is the vanishing locus of fi ∈ O(c). Show that χ|−1

h (c1/m) = ∪w′∈WV (w′, ζ).

(4) Define a(m) = |{1 ≤ i ≤ r : m | di}| = dim c1/m. Show that χ|−1
h (c1/m) is equi-dimensional of

dimension a(m), and W acts transitively on the set of irreducible components of χ|−1
h (c1/m).

(5) Show that dimV (w, ζ) = a(m). Conclude that any two regular elements of order m are conjugate
in W .

(6) Show that the eigenvalues of w as an automorphism of h are {ζ1−di}1≤i≤r. (Hint: Consider the
basis {ei}1≤i≤r of h consisting of eigenvectors of w. Assume e1 ∈ hrs. Consider the Jacobian
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J = det(∂eifj). Show that J(e1) ̸= 0, which implies that there exists a permutation σ ∈ Sr such
that (∂eifσ(i))(e1) ̸= 0 for any i.)

(7) For Weyl groups of type A and C, determine the regular numbers and single out the elliptic ones.

Exercise 1.18. Let F = C((t)). In this exercise, we study regular semisimple homogeneous elements in g(F )
of slope ν = d

m . Here d,m ∈ Z≥1 and gcd(d,m) = 1.
Consider θ = (ρ̌,m) ∈ X∗(Tad ×Grot

m ). Recall the Moy-Prasad grading on g(F ):

g(F )i/m = {X ∈ g(F ) : θ(s) ·X = si ·X for all s ∈ Gm}.

This induces a 1
mZ-grading on c(F ):

c(F )i/m = {x ∈ c : si · rot(s−m)x = x for all s ∈ Gm}.

This gives rise to Moy-Prasad subgroups Pi/m ⊂ LG such that LiePi/m = g(F )≥i/m.
Note that classifying semisimple elements in g(F ) is equivalent to study elements in c(F ). More precisely,

the map between sets g(F )ss/G(F ) → c(F ) is bijective. The injectivity follows from [Ste75, Theorem3.14]
and [Ste65, Theorem1.9]. The surjectivity follows from [Ste65, Theorem1.7]. Therefore, we are reduced to
study c(F )rsν .

Recall the 1
mZ/Z-grading on g defined by

gi/m = {X ∈ g : θ(s) ·X = si ·X for all s ∈ µm}.

Define

ci/m = {x ∈ c : si · x = x}.
Then the Chevalley quotient map restricts to χ : gi/m → ci/m for any i ∈ Z. Note that ci/m = cgcd(i,m)/m.

Define ν = ν + Z ∈ 1
mZ/Z.

(1) Show that evaluation at t = 1 induces isomorphisms ev1 : g(F )i/m
∼→ gi/m and ev1 : c(F )i/m

∼→ ci/m
for any i ∈ Z. Moreover, show that ev1(g(F )

rs
i/m) = grsi/m and ev1(c(F )

rs
i/m) = crsi/m.

(2) Show that crs1/m is non-empty if and only if m is a regular number of W . Therefore, a regular

semisimple homogeneous element in g(F ) of slope ν exists if and only if m is a regular number of
W .

(3) Assume m is a regular number, show that the map gν → c1/m is surjective. Therefore, any regular
semisimple homogeneous element in g(F ) of slope ν can be conjugated to an element in g(F )rsν by
G(F ).

(4) For Weyl groups of type A and C, describe all possible homogeneous elements and the corresponding
Moy-Prasad subgroups.

Exercise 1.19. This exercise studies invariant theory of gν under the action of G0 = LP = P0/Pi/m.

(1) For an element γ ∈ gν , show that γ is polystable (i.e. the orbit G0 · γ is closed) if and only if γ is
semisimple as an element in g.

(2) For an element γ ∈ gν , show that γ is stable (i.e. γ is polystable and StabG0
(γ) is finite) if and only

if γ ∈ grsν and m is elliptic.
(3) From now on, fix an element γ ∈ grsν , consider the centralizer

tγ = zg(γ) ⊂ g.

Define the Cartan subspace tγ,ν = tγ ∩ gν . Show that grsν ⊂ G0 · tγ,ν .
(4) Define the little Weyl group Wm = NG0

(tγ,ν)/ StabG0
(γ). Show that Wm naturally embeds into W .

Moreover, the Chevalley quotient map induces a finite surjective map tγ,ν // Wm → cν .
(5) Show that the natural map tγ,ν // Wm → gν // G0 is an isomorphism.
(6) For each regular numberm associated to a Weyl group of type A and C, describe the Cartan subspace

and little Weyl group Wm.

2. Affine Springer fibers

The theory of affine Springer fibers was introduced by Kazhdan–Lusztig in [KL88]. We now recall their
definition.
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2.1. Generalities on affine Springer fibers. Consider I ⊂ L+G ⊂ LG in which I is the Iwahori subgroup
and L+G is the jet group. One can consider the affine flag variety Fl = LG/I which can be equipped
with structure of an ind-scheme. This is the affine analogue of the flag variety B = G/B. When G is
simply connected, one has Fl = {Iwahori subgroups of LG}. Recall the Springer fibers Be = {gB ∈ G/B :
Adg−1(e) ∈ nB}, as an affine analogue, one makes the following definition:

Definition 2.1. The affine Springer fiber over γ ∈ Lg is

Flγ = {gI : Adg−1(γ) ∈ Lie I+}.
Here I+ = Ker(I→ T ) is the pro-unipotent radical of I.

Note that Flγ is non-empty if and only if γ is topologically nilpotent.

Fact 2.2. When γ ∈ Lg is regular semisimple and topologically nilpotent, the affine Springer fiber Flγ is
finite-dimensional.

Example 2.3. Consider the case g = sl2. The element γ =

(
t
−t

)
has slope 1. In this case, the affine

Springer fiber Flγ is an infinite-chain of P1’s with dual graph equal to the universal covering of the affine

Dynkin graph Ãn−1.

Example 2.4. For γ =

(
t2

t

)
which has slope 3

2 , one can show that Flγ is a union of two P1’s intersecting

as a point (with dual graph A2).

Example 2.5. When g = sl3, the element γ =

 1
t

t

 has slope 2
3 . In this case, Flγ is a union of three

P1’s intersecting at a common single point.

Example 2.6. For a simple Lie algebra g, consider slope ν = 1
hG

. One can take homogeneous element

γ =
∑r
i=0 xi where 0 ̸= xi ∈ gαi for i ̸= 0 and 0 ̸= x0 ∈ tg−θ where θ ∈ Φ>0 is the highest root. Then

Flγ ∼= π0(Fl).

Theorem 2.7 (Special case of [Bez96], conjectured by [KL88]). When γ is homogeneous of slope ν, one has

dimFlγ =
ν|Φ| − cw

2

where ν = d
m for gcd(d,m) = 1, w ∈W is a regular element of order m, cw = dim h/hw.

An open locus of Flγ is controlled by the action of LTγ . Here one considers the maximal torus Tγ =
CG(γ) ⊂ G defined over F .

Example 2.8. Assuming gcd(d, n) = 1, consider γ =


t

1
. . .

1


d

∈ sln. Let E = F (γ) which is a

degree n extension of F . One has Tγ(F ) = E× ∩ SLn(F ).

There is a natural action of LTγ on Flγ by conjugation. It has an open orbit dense in all irreducible com-
ponents. Moreover, this action induces an action of π0(LTγ) = X∗(T )w on the set of irreducible components
of Flγ , which is a free action with finitely many orbits.

2.2. Torus action. When γ is homogeneous of slope ν = d
m , the affine Springer fiber Flγ admits a Gm-

action: Consider the Gm-action on LG by g 7→ Adλ(s)(rot(s
m) · g). This action preserves I, hence, induces

an action on Fl, which further preserves Flγ ⊂ Fl and gives the desired action.
We study the fixed point and contracting locus of this Gm-action. Recall the Bruhat decomposition

Fl = ∪
w∈W̃=X∗(T )⋊W IwI/I. Let P ⊂ LG be the connected subgroup with LieP = (Lg)≥0 (called a parahoric

subgroup). Moreover, one has subgroups Pi/m ⊂ P where LiePi/m = (Lg)≥i/m for i ∈ Z≥0. Note that
the Gm-action on LG contracts P to a Levi subgroup LP which satisfies LieLP = (Lg)0. In the parahoric
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version of Bruhat decomposition Fl = ∪
w∈WP\W̃PwI/I, one sees that the Gm-action contracts each strata

PwI/I to LPwI/I = LP/LP ∩w I, which is a partial flag variety of LP. Therefore, the decomposition of
Flγ into attracting loci is Flγ = ∪

w∈WP\W̃ Flγ ∩(PwI)/I, in which the stratum Flγ ∩(PwI)/I contracts to

Flγ ∩(LPwI)/I. We define Hessγ(w) := Flγ ∩(LPwI)/I. These are called Hessenberg varieties.
Hessenberg varieties can be understood from the Z/mZ-grading on g. Indeed, Hessγ(w) = {lLP ∈

LP/LP ∩w I : Adl−1(γ) ∈ gν ∩w Lie I+}. These are like generalizations of Springer fibers, with the adjoint
representation replaced by a general representation of G.

Remark 2.9. It is expected that the Springer fibers Be can be paved by affine spaces. In contrast, this fails
for affine Springer fibers. There is a famous example given by Bernstein in [KL88, Appendix] (see Exercise
2.14).

2.3. Exercises.

Exercise 2.10. Classify regular semisimple homogeneous elements γ for semisimple algebraic groups such
that dimFlγ = 1. You may want to use the dimension formula 2.7. You can find the list of regular numbers
for Weyl groups of exceptional type in [Spr74, §5.4].

Exercise 2.11. This exercise proves that Hessenberg varieties arsing as connected components of FlGmγ are
smooth projective.

Consider a reductive group L and a finite dimension representation V ∈ Rep(L). Fix a vector v ∈ V0, a
subspace V0 ⊂ V , and a parabolic subgroup Q ⊂ L which stabilizes V0 ⊂ V . Define the associated Hessenberg
variety to be

Hessv(Q ⊂ L, V0 ⊂ V ) = {lQ/Q ∈ L/Q : l−1v ∈ V0}.
For γ ∈ g(F )rsν , recall that FlGmγ =

∐
w∈WP\W̃ Hessγ(w) where Hessγ(w) = (LPwI/I) ∩ Flγ . Note that

Hessγ(w) = Hessγ(LP ∩Adw I ⊂ LP, g(F )ν ∩Adw Lie I ⊂ g(F )ν).

(1) Show that Hessv(Q ⊂ L, V0 ⊂ V ) is smooth if the following condition is satisfied: For any v′ ∈
L · v ∩ V0, one has l · v′ + V0 = V .

(2) For any γ′ ∈ g(F )rsν ∩ Adw Lie I, show that [g(F )0, γ
′] + g(F )ν ∩ Adw Lie I = g(F )ν . Conclude that

Hessγ(w) is smooth projective for any w ∈ WPν\W . (Hint: You may first show the following: For

any Gm ⊂ G0 and γ ∈ grsν , one has [g0, γ] + g≥0
ν = gν . Here g≥0

ν is the part with non-negative weight
with respect to the action of Gm.)

Exercise 2.12. Consider G = SL2 with slope ν = 1
2 + k where k ∈ Z≥0. Take the homogeneous element

γ =

(
tk

tk+1

)
∈ sl2(F ).

(1) Describe the fixed point locus FlGmγ .

(2) For each connected component of FlGmγ , describe the corresponding attracting locus.
(3) Describe the affine Springer fiber Flγ .

Exercise 2.13. Consider G = Sp4 and ν = 1
2 . Take the homogeneous element in Example 1.14.

(1) Show that Flγ can be identified with P1’s with dual graph D̃4.
(2) Determine the cross-ratio of the four points on the central P1. (The answer should depend on P,Q)

Exercise 2.14. Consider G = Sp6 and ν = 1
2 . Take the homogeneous element as in the previous exercise.

(1) Show that there exists a unique non-rational connected component Eγ ⊂ FlGmγ , which is an elliptic
curve.

(2) Compute the j-invariant of Eγ . (The answer should depend on P,Q)
(3) Show that there exists a unique non-rational irreducible component of Flγ , which is a P1×P1-fibration

over Eγ .

3. Hitchin moduli spaces

In this section, we work over a complete smooth algebraic curve X over C. We introduce the Hitchin
moduli spaces Mγ attached to a homogeneous element γ ∈ Lg which are the main players in this lecture
series.
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3.1. Classical story. We first recall the classical story of Hitchin moduli spaces.
The standard Hitchin moduli stack is M = T ∗ BunG. Here, BunG is the moduli stack of (principal)

G-bundles over X, which is a smooth Artin stack with dimBunG = (g − 1) dimG. Let g be the genus of X.
For a point [E ] ∈ BunG, deformation theory tells us

T[E] BunG = H1(X,Ad(E))

in which Ad(E) = E ×G g is the adjoint vector bundle associated to E . By Serre duality, one has

T ∗
[E] BunG = H0(X,Ad∗(E)⊗ ωX)

in which Ad∗(E) = E ×G g∗ is the coadjoint vector bundle.
When G is semisimple, one can identify g ∼= g∗ via the Killing form. In this case, a point inM is given

by a pair (E , φ) where
• E ∈ BunG,
• φ ∈ H0(X,Ad(E)⊗ ωX).

Such a pair is called a G-Higgs bundle, and φ is called a G-Higgs field.
The Hitchin moduli spacesM are some global avatars of affine Springer fibers Flγ . To see this relation,

consider the affine Grassmanian Gr = LG/L+G. It admits a moduli interpretation

Gr = {(E , τ) : E is a G-bundle on D = Spec C[[t]], τ is a trivialization of E on D× = Spec C((t))}.

In the affine Grassmanian, one has the variant of affine Springer fiber Grγ = {gL+G ∈ LG/L+G :
Adg−1(γ) ∈ L+g} which has moduli interpretation

Grγ = {(E , τ) ∈ Gr : τ transforms γ to a section of Ad(E) on D}.

Note that LTγ acts on Grγ by conjugation on LG. We have a map

Grγ → {(E , φ) : E is a G-bundle on D, φ ∈ H0(D,Ad(E))}

which realizes the former as a LTγ-torsor over a substack of the later. This identifies the stack [Grγ /LTγ ]
with the moduli of local Higgs bundles with the same characteristic polynomial as γ.

3.1.1. Hitchin fibration. An important feature of the Hitchin moduli space is that it is equipped with a map
f :M→A, where A is called the Hitchin base and f :M→A is called the Hitchin fibration.

Example 3.1. When G = GLn, the Hitchin base is A =
⊕n

i=1H
0(X,ω⊗i

X ) and the Hitchin map f :M→A
is given by (E , φ) 7→ characteristic polynomial of φ. More precisely, under the correspondence between GLn-
torsors and vector bundles, the pair (E , φ) corresponds to (V, φ : V → V ⊗ ωX) where V is a rank n vector
bundle on X. Suppose the characteristic polynomial of φ is yn + a1y

n−1 + · · ·+ an where ai = ± tr(∧iφ) ∈
H0(X,ω⊗i

X ), one defines f(V, φ) = (a1, · · · , an) ∈ A.

For a general semisimple group G, the Chevalley quotient has the form O(g//G) ∼= O(g)G = C[f1, · · · , fr]
where fi is of degree di and are homogeneous generators of O(g //G). Here r is the rank of G. We define the

Hitchin base A =
∏r
i=1H

0(X,ω⊗di
X ). The Hitchin map f :M→A is given by (E , φ) 7→ (f1(φ), · · · , fr(φ)).

Fact 3.2. The map f :M→A is a Lagrangian fibration.

In particular, this implies that dimA = dimM/2 = dimBunG = (g − 1) dimG.

Exercise 3.3. Check the above identity directly.

3.2. Hitchin moduli space for homogeneous elements. Now we consider Hitchin moduli spaces at-
tached to homogeneous elements γ ∈ Lg, which are moduli spaces of Higgs bundles over P1 with Iwahori
level structure at 0 and deeper level structure ∞.
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3.2.1. Level at zero. Given a curve X together with a point 0 ∈ X, consider

BunG(I0) = {(E , EB0 ) : E ∈ BunG, EB0 is a B-reduction of E0}.
Then T ∗ BunG(I0) is the moduli space of triples (E , EB0 , φ) in which:

• (E , EB0 ) ∈ BunG(I0)
• φ ∈ H0(X,Ad(E)⊗ ωX(0)) such that res0(φ) ∈ EB0 ×B nB .

Example 3.4. When G = GLn, giving a B-reduction of V0 is equivalent to choosing a full flag in V0. The
condition res0(φ) ∈ EB0 ×B nB amounts to requiring the residue of φ to be strictly upper triangular with
respect to the flag.

3.2.2. Level at ∞. We motivate our choice of level structure at ∞ by looking back to the construction of
Slodowy slices. Recall the Slodowy slice can be constructed as Sge = e + gf ∼= (e + g≤0)/G≤−2. Here the
element h in the sl2-triple induces a Z-grading on g and LieG≤−2 = g≤−2. As an affine analogue, for a
homogeneous element γ ∈ Lg of slope ν, one considers (γ + (L∞g)≤0)/Kγ in which Kγ = (L∞G)≤−ν ·
(L∞Tγ)<0. Here, L∞ is the loop construction with C((t)) replaced by C((t−1)), the subgroups (L∞G)≤−ν
and (L∞Tγ)<0 are defined by the Gm-grading on Lg. This suggests us to choose Kγ-level structure at ∞.

In classical story, one has a Cartesian square

S̃e Ñ

Sge g

.

In the affine setting, we have analogue of part of the square

Mγ nB/B

(γ + (L∞g)≤0)/Kγ

res0

ev∞ .

Definition 3.5. We define Hitchin moduli spaceMγ attached to a homogeneous element γ ∈ Lg of slope ν

to be the moduli stack of quadruples (E , EB0 , E
Kγ
∞ , φ) in which:

• E is a G-bundle on P1,
• EB0 is a B-reduction of E0,
• EKγ

∞ is a Kγ-level structure of E at ∞ ∈ P1,
• φ ∈ H0(P1\{0,∞},Ad(E)⊗ ωX) satisfies:

– φ has simple pole at 0 ∈ P1 with res0(φ) ∈ EB0 ×B nB ,

– Under a (or equivalently, any) trivialization of E together with the level structure EKγ
∞ , we have

φ|D×
∞
∈ (γ + (L∞g)≤0)dt/t.

Example 3.6. When ν = 1, one can take γ = γ0 ·t for γ ∈ hrs. In this case, one has Kγ = Ker(G(C[[t−1]])
ev∞−−−→

G). The Hitchin moduliMγ classifies quadruples (E , EB0 , τ∞, φ) in which

• (E , EB0 ) is the same as before,
• τ∞ is a trivialization of E∞,
• φ ∈ H0(P1,Ad(E)⊗ ωP1(0 + 2∞) such that:

– res0(φ) satisfies the same condition as before,
– Under the trivialization τ∞, one has

φ = (γ0t+ higher order terms)dt/t.

3.3. Properties of the Hitchin moduli. We would like to address the following questions concerning
Mγ :

(1) The Hitchin fibration ofMγ ,
(2) The Gm-action onMγ ,
(3) The relation between Flγ andMγ ,
(4) The symplectic structure onMγ .
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3.3.1. Slope one case. Now we consider the case ν = 1.
We start from studying the Hitchin fibration. In this case,

fi(φ) ∈ H0(P1, ωP1(2∞+ 0)⊗di) ∼= H0(P1,O(∞)⊗di) = H0(P1,O(di)).
Here we are using the trivialization of ωP1(0 +∞) given by the section dt/t. In other word, one can regard
fi(φ) ∈ C[t]deg≤d. Moreover, the condition at 0 implies that the constant term of fi(φ) is zero, while the
condition at ∞ implies that the leading coefficient of fi(φ) is fi(γ0). Therefore, we can define the Hitchin
base to be

Aγ =

r∏
i=1

C[t]deg ≤ di, leading coefficient = fi(γ0), constant coefficient = 0.

The space Aγ is an affine space of dimension
∑r
i=1(di − 1) = dimB. We get the desired Hitchin fibration

fγ :Mγ → Aγ .

Example 3.7. When G = GLn, Hitchin fibrations can be understood via spectral curves. In this case, the
moduli stackMγ classifies quadruples (V, F•, τ∞, φ) in which

• V is a rank n vector bundle on P1,
• F• is a full flag of V0,
• τ∞ is a trivialization of V∞,
• φ : V → V ⊗ ωP1(2 · ∞+ 0) ∼= V(∞).

Fix a point a = (a1, · · · , an) ∈ Aγ where ai ∈ H0(P1,O(di)). The equation yn + a1y
n−1 + · · · an = 0

defines a curve Ya ⊂ Tot(O(1)) equipped with the natural projection pa : Ya → P1. The reduced structure
of the fiber p−1

a (0) is a single point, and around ∞ the curve Ya is cut out by the charcteristic polynomial
of γ0. In this case, f−1

γ (a) is the moduli space of triples (L, F•, τ∞) in which:

• L ∈ Pic(Ya). Here Pic(Ya) is the compactified Jacobian of Ya which classifies torsion-free sheaves on
Ya generically of rank 1.

• F• is a complete flag of (pa,∗L)0.
• τ∞ is a system of basis of L|∞′ where ∞′ runs over points above ∞.

Here, for each triple (L, F•, τ∞), the corresponding Higgs bundle is (V = pa,∗L, φ = y · −, F•, τ∞).
For G = SLn, one further adds the data of a trivialization detV ∼= O compatible with τ∞ under which

tr(φ) = 0.

Now we study the Gm-action on the Hitchin moduli space Mγ . Note that there is special point aγ =
(f1(γ0)t

d1 , · · · , fr(γ0)tdr ) ∈ Aγ . There is a Gm-action on Aγ contracting the entire space to aγ ∈ Aγ defined
such that s ∈ Gm acts by s · rot(s−1). There is a compatible Gm-action on Mγ by rotation via s−1 and
scaling the Higgs field by (φ 7→ s · φ).

In this case, one can construct a map Flγ →Mγ , which we spell out explicitly in the following example:

Example 3.8. Continuing the Example 3.7, the spectral curve Yaγ is a union of n-copies of P1 intersecting at

a point (this point lies over 0 ∈ P1). There is a natural map Flγ → f−1
γ (aγ) which is a bijection on C-points

defined as follows: Recall that Flγ classifies a periodic chain of OF -lattices {Λ•} in Fn with γ · Λi ⊂ Λi−1.
Given a point {Λ•} ∈ Flγ , one can glue Λ• with OYaγ |P1\{0} and equip it with the canonical trivialization

at ∞. This defines a point in f−1
γ (aγ). This procedure defines a map Flγ → f−1

γ (aγ).

Now we come to the symplectic structure on Mγ . Recall the construction of Hamiltonian reduction:
For an algebraic group H acting on a symplectic variety X equipped with a H-equivariant moment map
µ : T ∗X → h∗. For any ζ ∈ h∗,H , one can consider T ∗X //ζ H := [µ−1(ζ)/H]. When ζ = 0, one has

T ∗X//0H = T ∗(X/H). Varieties obtained via Hamiltonian reductions are equipped with induced symplectic
structures.

In our case, consider

K1 = Ker(G(C[[t−1]])
ev∞−−−→ G))

and

K2 = Ker(G(C[[t−1]])
mod t−2

−−−−−−−→ G(C[t−1]/(t−2))).

Consider the map BunG(I0,K2) → BunG(I0,K1) which is a g ∼= K2/K1-torsor. Consider the natural
moment map µ : T ∗ BunG(I0,K2)→ g∗ ∼= g, one has the following:
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Fact 3.9. We have a natural isomorphism T ∗ BunG(I0,K2)//γ0 g
∼=Mγ . In particular, this equipsMγ with

a symplectic structure.

3.3.2. General case. Now we come to the general slope ν. Most of arguments in the slope one case generalizes
directly. Only the last part (the symplectic structure onMγ) acquires a significant generalization.

To see the symplectic structure onMγ , we first recall how one sees the symplectic structure on S̃e. One

achieves this by writing S̃e = T ∗X //ζ H. Indeed, one can take X = B. When e is even (i.e. godd = 0), one

takes H = G≤−2. Regard e as an element in g∗≤−2 by ⟨−, e⟩, one has S̃e = T ∗B //e G≤−2. For general e,

consider the symplectic pairing on g−1 given by ⟨[−,−], e⟩. Taking a Lagrangian subspace m ⊂ g−1, we can

take H such that LieH = g≤−2 +m and arrives at S̃e = T ∗B //e H.
We would like to find the affine analogue of the above argument. Heuristically speaking, this means that

we would like to find a subgroup Jγ ⊂ L∞G such that (γ + (L∞g)≤0)/Kγ
∼= (γ + (LieJγ)

⊥)/Jγ in which
one regards γ as an homomorphism γ : Jγ → C. After that, one can write Mγ = T ∗ Flγ //γJγ . However,
this involves infinite-dimensional geometry, which we would like to avoid. To work with finite-dimensional
geometry, we do the following modification: We look for a pair of subgroups J′

γ ◁ Jγ ⊂ LG such that γ can
be regarded as a character J′

γ/Jγ → C. In this case, the moduli space BunG(I0,J
′
γ) is equipped with an

action by J′
γ/Jγ . We expectMγ

∼= T ∗ BunG(I0,J
′
γ) //γ (J

′
γ/Jγ).

Motivated by the finite-dimensional case, we can take Jγ = (L∞G)≤−ν/2 ·(L∞T )<0 when (L∞g)−ν/2 = 0.
In general, take a Lagrangian subspace m ⊂ (L∞g)−ν/2/(L∞tγ)−ν/2 and take Jγ to be the preimage of m
under the natural quotient map (L∞G)≤−ν/2 · (L∞Tγ)<0 → (L∞g)−ν/2/(L∞tγ)−ν/2. Viewing γ ∈ LieJ∗

γ ,
by the choice of Jγ , this functional integrates to a map γ : Jγ → Ga. Therefore, we can take J′

γ = Ker(γ :
Jγ → Ga). As a generalization of Fact 3.9, one shows thatMγ

∼= T ∗ BunG(I0,J
′
γ) //γ Ga. This defines the

symplectic structure onMγ .

Example 3.10. When ν = 2 and γ = γ0 · t2 for γ0 ∈ hrs. We can choose m ⊂ g/h to be the image of the Borel
subalgebra b ⊂ g. In this case, we have Kγ = K2 · (L∞T )≤−1 and Jγ = {1 + bt−1 + · · · } ⊂ L∞G.

This explains the symplectic structure onMγ . Now we come to the description of Hitchin base Aγ in the
general case.

The Hitchin base for γ is a subspace Aγ ⊂
∏r
i=1H

0(P1,O([diν])) described as follows: An element
a = (a1, · · · , ar) ∈

∏r
i=1H

0(P1,O([diν])) lies in the subspace Aγ if and only if

• Each ai (regarded as a polynomial in t) has zero constant term.
• Each ai has leading term equals to that of fi(γ), and other terms have degree ≤ (di − 1)ν.

Theorem 3.11. Suppose γ ∈ Lg is a homogeneous element of slope ν > 0.

(1) The Hitchin moduliMγ is a smooth algebraic space with a canonical symplectic structure.
(2) The map fγ :Mγ → Aγ is a Lagrangian fibration.
(3) When γ is elliptic, fγ is proper.
(4) There is a compatible Gm-action onMγ and Aγ contracting Aγ to a single point aγ ∈ Aγ .
(5) There is a natural map Flγ → f−1

γ (aγ) which is a homeomorphism.
(6) The natural restriction map induces an isomorphism H∗(Mγ) ∼= H∗(Flγ).

Example 3.12. For G = SL2 and ν = 3
2 . The affine springer fiber Flγ is isomorphic to two P1’s intersect

at a point, while the special Hitchin fiber f−1
γ (aγ) is isomorphic to two P1’s tangent at a point. This is an

example that Flγ and f−1
γ (aγ) are homeomorphic but not isomorphic.

Example 3.13. For G = SL2 and ν = 1, the special fiber f−1
γ (aγ) is isomorphic to the affine Springer fiber

Flγ which is an infinite chain of P1’s, while the generic fiber of fγ is isomorphic to Gm.

Example 3.14. As an evidence for the theorem, note that dimAγ =
∑r
i=1[(d1− 1)ν] and dimFlγ = ν|Φ|−cw

2 .

The theorem implies that
∑r
i=1[(d1 − 1)ν] = dimAγ = dimFlγ = ν|Φ|−cw

2 . As a first approximation, this

would require
∑r
i=1(di − 1) = |Φ|

2 , which is easy to check.

3.4. Exercises.

Exercise 3.15. Consider G = SL2 with homogeneous element γ =

(
t
−t

)
of slope 1.
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(1) Describe Aγ .
(2) Show that f−1

γ (aγ) is isomorphic to an infinite chain of P1.
(3) Show that the generic fiber of fγ is isomorphic to Gm.

Exercise 3.16. Consider G = SL2 with homogeneous element γ =

(
t

t2

)
of slope 3

2 .

(1) Describe Aγ .
(2) Show that f−1

γ (aγ) is isomorphic to two P1’s tangent at a point (i.e. has equation (y − x2)y = 0
locally around the intersection point).

(3) Show that the generic fiber of fγ is isomorphic to the elliptic curve with complex multiplication by
Z[i].

Exercise 3.17. Consider G = SL3 with homogeneous element γ =

 1
t

t

 of slope 2
3 .

(1) Describe Aγ .
(2) Show that f−1

γ (aγ) is isomorphic to three P1’s intersect pairwise-transversally at a single point (i.e.
has equation (y − x)xy = 0 locally at the intersection point).

(3) Show that the generic fiber of fγ is isomorphic to the elliptic curve with complex multiplication by
Z[ω].

Exercise 3.18. Consider G = Sp4 with homogeneous element γ =

(
P

tQ

)
of slope 1

2 as in Exercise 2.13.

Show that the generic fiber of fγ is isomorphic to the elliptic curve which is the double cover of the central
P1 ramified at the four points in Exercise 2.13(2).

Exercise 3.19. Repeat Exercise 3.18 for G = SO8 with homogeneous element of slope 1
4 .

4. Non-abelian Hodge theory

In this section, we study the non-abelian Hodge companions of the Hitchin moduli spaceMγ .

4.1. Classical story. In non-abelian Hodge theory, one is interested in three different moduli spacesMDol,
MdR, andMBet:

• The moduli stackMDol is the Dolbeaut moduli space (called Hitchin moduli space before), which is
the moduli space of Higgs bundles.

• The moduli stackMdR is the de Rham moduli space, which is moduli space of vector bundle with
connection.

• The moduli stack MBet is the Betti moduli space, which is the moduli space of homomorphisms
π1(X)→ G.

These moduli spaces are related as follows:

• The stack MdR is a deformation of MDol. More precisely, there is a (family of) moduli spaces
λ :MHod → A1 called Hodge moduli space, which is the moduli space of λ-connections. It satisfies
λ−1(0) ∼=MDol and λ

−1(1) ∼=MdR.
• The Riemann-Hilbert correspondence gives a complex analytic isomorphism RH :MdR →MBet.

We now spell out the definition ofMHod. For λ ∈ C, a λ-connected on a vector bundle V is a homomor-
phism of sheaves of abelian groups ∇ : V → V⊗ωX satisfying the λ-Leibnitz rule ∇(f ·s) = λ(df)·s+f ·∇(s).
This definition extends to G-bundles by Tannakian formalism. In particular, on a G-bundle, a 0-connection
is a G-Higgs field, and a 1-connection is a connection. One defines the Hodge moduli space MHod as the
moduli of triples (E , λ,∇) in which

• E ∈ BunG,
• λ ∈ C,
• ∇ is a λ-connection on E .

There is a natural map λ :MHod → A1 given by λ(E , λ,∇) = λ.
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The non-abelian Hodge theory shows that (after imposing appropriate stability conditions and taking
coarse moduli) MDol, MdR, MBet are differeomorphic to each other. Moreover, they realize different
complex structures on the same hyperKähler manifold.

Example 4.1. When G = GL1, one has MDol
∼= Pic×H0(X,ωX), MdR fits into an exact sequence 0 →

H0(X,ωX) →MdR → Pic → 1, andMBet
∼= H1(X,Z)⊗Z Gm. One easily checks that all these spaces are

differeomorphic.

4.2. Hodge moduli space for homogeneous elements. For γ ∈ Lg a homogeneous element of slope ν,

we define the Hodge moduli spaceMHod,γ to be the moduli of tuples (λ, E , EB0 , E
Kγ
∞ ,∇) in which:

• (E , EB0 , E
Kγ
∞ ) are the same as those date inMγ .

• λ ∈ C, ∇ is a λ-connection on E|P1\{0,∞}.

• At 0, ∇ has a simple pole with res0(∇) ∈ EB0 ×B nB .

• At ∞, under any trivialization of (E , EKγ
∞ ), one has ∇ ∈ λd+ (γ + (L∞g)≤0)dt/t.

Note that MDol,γ := λ−1(0) = Mγ . Define MdR,γ = λ−1(1). We have the following result parallel to
Theorem 3.11:

Theorem 4.2. The following are true:

• The map λ : MHod,γ → A1 is representable in smooth algebraic spaces, with a canonical relative
symplectic structure.

• There is a Gm-action onMHod,γ compatible with the scaling action on A1, hence, contractingMHod,γ

to Flγ .
• The restriction maps induce natural isomorphisms

H∗(Flγ)
∼←− H∗(Mγ)

∼←− H∗(MHod,γ)
∼−→ H∗(MdR,γ).

Remark 4.3. In [JY23], the authors use the Hodge moduli spaceMHod,γ to solve particular cases of Deligne-
Simpson problem. In their setting, for each pair (O, ν) where O ⊂ N is a nilpotent orbit and ν ∈ Q>0 is a
slope, one asks for existence of G-connections on P1\{0,∞} with regular singularity with monodromy lies
in O at 0 and isoclinic of slope ν at ∞. It was proved in loc.cit that such G-connection exists if and only if
[Lν(triv) : EO] ̸= 0. Here Lν(triv) is a certain representation of a rational Cherednik algebra and EO is the
representation of W attached to O via the Springer correspondence.

4.3. Betti moduli space for homogeneous elements. Now we come to define the Betti moduli space
MBet,γ . It should parametrize topological G-local systems on P1\{0,∞} with Borel reduction at 0 and
Stokes data at ∞.

4.3.1. Stokes data. We now explain the idea of Stokes data. Choose the local coordinate τ = t−1 at ∞. For
a rank n vector bundle V (which we trivializes at D∞ = Spec C((t−1))) with connection ∇ = d+A(τ)dτ with
A(τ) ∈ gln(C(τ)), the flat sections around D×

∞ are those f(τ) = (f1(τ), · · · , fn(τ)) : D×
∞ → Cn satisfying

f ′(τ) = A(τ)f(τ). On the ray of argument θ starting from ∞, one can canonically identify all the fibers of
V with a single n-dimensional vector space Vθ via parallel transportation. According to the decay rate of
flat sections of (V,∇) along the ray, there is a filtration on Vθ. On a general ray, the filtration will give a
full flag.

Example 4.4. When G = GLn and ν = 1, one takes A(τ) = diag(−a1τ−2, · · · ,−anτ−2) for ai ∈ C. Solving
the equation f ′i(τ) = −aiτ−2fi(τ), one gets fi(τ) = eaiτ

−1

. For τ = reiθ, one has |eaiτ−1 | = er
−1Re(aie

−iθ),
whose decay rate is completely modeled by Re(aie

−iθ). When the argument θ satisfies that Re(aie
−iθ) are

distinct, one gets a complete flag Vθ,• in Vθ.
When θ satisfies Re((ai−aj)e−iθ) = 0, it is called a singular direction (or Stokes ray) for (i, j). These rays

divide the complex plane into several sectors. The vector space Vθ is equipped with a complex flag on each
sector. On each singular direction, the flag is no longer complete. Locally moving around the point τ = 0 and
doing parallel transportation allows one to identify vector spaces Vθ for nearby θ. Locally around a singular
direction θ0 for (i, j) (we assume that it is not a singular direction for other pairs (i′, j′)), let V = Vθ, one gets
two filtrations 0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk ⊂ Vk+1 ⊂ · · · ⊂ V and 0 ⊂ V1 ⊂ · · ·Vk−1 ⊂ V ′

k ⊂ Vk+1 ⊂ · · · ⊂ V
coming from the two sectors near the ray. There two filtrations are different only in a single step, where one
has fi(τ) ∈ Vk and fj(τ) ∈ V ′

k. In this case, we can say these two filtrations has relative position sk ∈ Sn.
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As one moves around the circle, all the relative positions of the filtrations can be encoded in a positive
braid β ∈ Br+W = ⟨si | braid relations⟩. For an element β = si1 · · · siN ∈ Br+W where sij are simple reflections,

there is an associated braid varietyM(β) defined as the moduli space of (EB• , α•) in which

• EBi are B-bundles over a point for i = 0, 1, · · · , N and EBN ∼= EB0
• αj : EBj−1 ×B G

∼→ EBj ×B G are isomorphisms of G-bundles such that EBj−1 and EBj has relative
position sij for j = 1, · · · , N .

We would like to write the data above as

M(β) = {EB0 99Ksi1 · · · 99KsiN E
B
N
∼= EBN}.

The moduli spaceM(β) is equipped with a mapM(β)→ G/G by

(EB• , α•) 7→ (αN ◦ · · ·α1 : EB0 ×B G
∼→ EB0 ×B G).

One defines M̃(β) :=M(β)×G/G Ũ/G, in which Ũ → U is the Springer resolution of the unipotent cone.
We now explain the procedure obtaining a braid β from a homogeneous element γ which generalizes the

procedure in Example 4.4. One regard γ as a map γ(τ) : C× → grs → grs // G = hrs // W . Taking the
fundamental group, one gets Z = π1(C×)→ π1(h

rs // W ) ∼= BrW . This determines the conjugacy class of β.
To get a positive braid, one can do the following: For a small enough ϵ > 0, consider the circle S1

ϵ ⊂ C×

of radius ϵ around 0 ∈ C. Inducing from γ, one obtains γ : S1
ϵ → C× → hrs → hR in which the last step is

taking real part. Take the singular directions (regarded as points on S1
ϵ ) to be the preimage of walls (i.e.

root hyperplanes) in hR. Suppose the singular directions are preimages of walls of type sj1 , · · · , sjN ∈W in

order, then one associates β = sj1 · · · sjN ∈ Br+W . The resulting β is well-defined up to cyclic shift, and only
depends on the slope ν.

Remark 4.5. When γ is elliptic, assume ν = d
m for gcd(d,m) = 1. The braid β ∈ Br+W admits the following

easy description: One chooses a regular element w ∈ W of order m which has minimal length within its

conjugacy class. By Exercise 1.17(2), one has l(w) = |Φ|
m . Choose w̃ ∈ Br+W to be the (unique) minimal

length lift of w in Br+W , one has β = w̃d ∈ Br+W .

Example 4.6. When ν = d
h , the regular element w = s1 · · · sr is a Coxeter element. Then β = (s1 · · · sr)d. In

this case, the remark above also works when d = h: For ν = 1 = h
h , one gets β = (s1 · · · sr)h = w̃2

0 ∈ Br+W
which is called the full twist. Here w0 is the longest element inW . In this case, one hasM(w̃2

0) = {(EB0 99Kw0

EB1 99Kw0
EB2 ∼= EB0 )} = BopB/AdT .

4.3.2. Riemann-Hilbert map. By the previous discussion, there is a natural mapMdR,γ → M̃(β) by taking
the associated local system with B-reduction at 0 and Stokes data at ∞. When γ is elliptic, we expect this

map to be a finite covering as complex analytic spaces. In general, we further enhance M̃(β) to make the
map possibly a complex analytic isomorphism: Note that there is a natural map M(β) → [T/Adw T ] by
sending

(EB0 99Ksi1 · · · 99KsiN E
B
N
∼= EBN ) 7→ (EB0 ×B T

∼→ EB0 ×B T )

where Adw stands for w-twisted conjugation. Consider the exponential map hw ∼= (Ltγ)0
exp−−→ T/Adw T in

which T/Adw T is quotient by w-twisted conjugation by T . We defineMBet,γ := M̃(β)×T/Adw T hw. Then
the Riemann-Hilbert map admits a natural lift RH :MdR,γ →MBet,γ .

Theorem 4.7. The map RH :MdR,γ →MBet,γ is a complex analytic map.

Conjecture 4.8. This is a complex analytic isomorphism.

Remark 4.9. We also expect thatMDol,γ ,MdR,γ , andMBet,γ are differeomorphic. But we do not know if
one should expect a hyperKähler structure on these spaces.

4.4. Exercises.

Exercise 4.10. Consider G = SLn with homogeneous element

γ =


1

. . .

1
t


d
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of slope ν = d
n for d ∈ Z≥1 such that gcd(d, n) = 1.

(1) Describe the braid βν ∈ Br+Sn . Identify the braid closure β̂ν which is the link obtained from βν by
connecting startpoints with endpoints in order 1.

(2) For an algebraic curve C ⊂ C2 passing through the origin 0 ∈ C2, the algebraic link associated to C
is defined as C ∩ S3

ϵ ⊂ S3
ϵ = {(x, y) ∈ C2||x|2 + |y|2 = ϵ} for sufficiently small ϵ > 0. Show that the

algebraic link associated to V (xn − yd) is equivalent to the link β̂ν .

Exercise 4.11. Consider G = SLn with homogeneous element

γ =


1

. . .

1
t

0


d

of slope ν = d
n−1 for d ∈ Z≥1 such that gcd(d, n− 1) = 1.

(1) Describe the braid βν ∈ Br+Sn . Identify the braid closure β̂ν .

(2) Show that the algebraic link associated to V (xn − xyd) is equivalent to the link β̂ν .

Exercise 4.12. This exercise studies the Betti moduli spaceMBet,γ with slope ν = 1
m where m is a regular

elliptic number of W .
For each elliptic element w ∈ W with minimal length in its conjugacy class, consider Zw = ⟨Tw, Uα :

wα = α, α ∈ Φ⟩ and Uw = U ∩ wU−w−1. Here Uα is the root subgroup of α, U is the unipotent radical of
B, and U− is the opposite of U . Define the multiplicative transversal slice Σw = UwZww, which satisfies the
following properties:

• The map

U × Σw → UZwwU

(u, s) 7→ usu−1

is an isomorphism.
• Σw is transversal to conjugacy classes in G.

The result above is proved in [HL12]. See [Dua24] for a generalization to non-elliptic case.

(1) Show that β1/m ∈ Br+W is a minimal length representative of a regular elliptic element of order m in
W .

(2) Choose w ∈ W a minimal length representative of a regular elliptic element of order m. Consider

Σ◦
w = Uww. Show that MBet,γ

∼= Σ◦
w ×G Ũ . Conclude that MBet,γ is a classical smooth algebraic

variety.
(3) Show thatMBet,γ is a point when m = h is the Coxeter number.
(4) For G = Sp4 and ν = 1

2 , show thatMBet,γ can be identified with a resolution of V (x2 + (y + z)2 +

xyz) ⊂ A3. Note that the later has A3-singularity at the origin as its only singular point.

5. Ramified geometric Langlands

In this section, we formulate a ramified geometric Langlands conjecture for P1 using the Hitchin moduli
space and Betti moduli space, and provide evidence for the conjecture in case ν = 1.

5.1. Unramified Geometric Langlands. We first recall the unramified geometric Langlands. For a
smooth projective curve X, the geometric Langlands conjecture asks for a relation between Shv(BunG)
and Coh(LocǦ). Here LocǦ is the moduli space of local systems on the curve X. The notion Shv and Loc
have different meanings in different settings. In the de Rham setting, Shv reads as the category of D-modules
and Loc reads as moduli of flat connections over X. In the Betti setting, Shv stands for the category of
topological sheaves and Loc stands for the moduli of representations of π1(X). Usually, Shv(BunG) is called
the automorphic side and Coh(LocǦ) is called the spectral side.

1You may find more background on links and link invariants in [GKS21].
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The precise relation between two sides is a categorical equivalence ShvNilp(BunG) ∼= IndCohNilp(LocǦ),
which is now a Theorem due to [GR24a][ABC+24a][CCF+24][ABC+24b][GR24b] when X is over a charac-
teristic zero field.

One the automorphic side, Nilp := T ∗ BunG×A{0} ⊂ T ∗ BunG is the global nilpotent cone in the Hitchin
moduli stack. For each bounded object F ∈ Shv(BunG), there is an attached singular support which is
a conical subset SS(F) ⊂ T ∗ BunG. The category ShvNilp(BunG) is the full subcategory of Shv(BunG)
consisting of sheaves with its cohomologies having singular support contained in Nilp ⊂ T ∗ BunG. One can
regard the inclusion ShvNilp(BunG) ⊂ Shv(BunG) as a global analogue of the inclusion CS(G) ⊂ Shv(G/G)
in which CS(G) stands for the category of character sheaves, which consists of F ∈ Shv(G/G) with SS(F) ⊂
(G×N ∗)/G ∩ T ∗(G/G) ⊂ T ∗(G/G).

The ind-completion and singular support condition on the spectral side aims to match the compact objects
on both sides, which have a very different flavor from the singular support condition on the automorphic
side.

5.2. Geometric Langlands for homogeneous elements. In our case, we consider X = P1 but allow
ramifications at 0 and ∞. We specialize to the Betti setting.

Fix a homogeneous element γ ∈ Lg. On the automorphic side, we consider the moduli space Mγ
∼=

T ∗ BunG(I0,J
′
γ) //γ Ga, which is something related the moduli stack T ∗ BunG(I0,Jγ). On the spectral side,

we consider the moduli stack M̃(β) where β ∈ Br+W is attached to γ.
Since Mγ is not of cotangent type, defining a correct notion of category of sheaves attached to it is

more subtle comparing to the unramified case. In this case, the analogue of Nilp ⊂ T ∗ BunG in our case is
Flγ ⊂Mγ . We can consider µShFlγ (Mγ) which is the category of microlocal sheaves onMγ with singular
support contained in Flγ .

The category of microlocal sheaves with prescribed singular support µShΛ(M) is defined in [KS02] for
any conical Lagrangian inside a symplectic manifold Λ ⊂M. WhenM = T ∗S and Λ = ∪αT ∗Sα ⊂ T ∗S for
a stratification S = ∪αSα with the scaling Gm-action on cotangent fibers, one has µShΛ(M) = Shvb{Sα}(S)

consisting of bounded complexes which is locally constant with respect to the stratification {Sα}.
In our case, the spaceMγ is not of cotangent type but is close to, which gives us a more concrete sheaf

theory which we are going to explain now. Recall that Mγ = T ∗ BunG(I0,J
′
γ) //γ Ga. We would like to

consider more generally the case M = T ∗S̃ //1 Ga in which 1 ∈ (LieGa)
∗ is a non-zero element and S̃ is a

Ga-torsor over S.
We would like a sheaf theory microlocalizes to M. In the l-adic setting over characteristic p, Shv(S)

microlocalizes to T ∗S while Shv(S̃/(Ga,ASψ)) microlocalizes toM. Here Shv(S̃/(Ga,ASψ)) is the category

of (Ga,ASψ)-equivariant sheaves on S̃. The sheaf ASψ ∈ Shv(Ga) is the Artin-Schreier sheaf defined as

follows: Consider α : Ga → Ga defined by x 7→ x − xp, then α∗Qℓ =
⊕

ψ:Fq→Q×
ℓ
ASψ. We take any non-

trivial character ψ : Fq → Q×
ℓ . The sheaf ASψ is a character sheaf on Ga (i.e. it is equipped with a structure

add∗ASψ ∼= ASψ ⊠ ASψ for the addition map add : Ga × Ga → Ga), this gives us a notion of (Ga,ASψ)-

equivariant sheaves on S̃ defined as the category of sheaves F ∈ Shv(S̃) equipped with a∗F ∼= ASψ ⊠ F in

which a : Ga × S̃ → S̃ is the action map.
For other sheaf theories, one can use the Kirillov model defined by Gaitsgory in [Gai21], which works

uniformly in de Rham, étale, and Betti settings, but requiring an extra Gm-action. Suppose the action of

Ga on S̃ can be extended to an action of Aff = Ga ⋊ Gm, one defines the Kirillov category as the Verdier

quotient Kir(S̃) := Shv(S̃/Gm)/Shv(S̃/Aff). When we are in the l-adic setting over characteristic p, the

averaging functor with respect to the Artin-Schreier sheaf induces an equivalence Av(Ga,ASψ) : Kir(S̃)
∼→

Shv(S̃/(Ga,ASψ)) for any non-trivial character ψ : Fq → Q×
ℓ .

The category Kir(S̃) microlocalizes on M, which means for any F ∈ Kir(S̃) one can associate a conical

subset SS(F) ⊂M behaves as the singular support of F . To see this, note that Shv(S̃) microlocalizes over

T ∗(S̃/Gm) = µ−1
Gm(0)/Gm and Shv(S̃/Aff) microlocalizes on µ−1

Aff(0)/Aff. Here µ? is the moment map for

?-action on T ∗S̃. We know that Kir(S̃) microlocalizes on µ−1
Aff((LieGa\{0}) × {0})/Gm. Then our claim is

justified by the following exercise:

Exercise 5.1. Show that µ−1
Aff((LieGa\{0})× {0})/Gm ∼=M.
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Given this, for any conical subset Λ ⊂M, one can define the full subcategory category KirΛ(S̃) ⊂ Kir(S̃).

There is a natural functor KirbΛ(S̃)→ µShΛ(M), which is a equivalence sometimes but not in general.

In our case, take S̃ = BunG(I0,J
′
γ) equipped with the natural action of Aff, we have a category

KirFlγ (BunG(I0,J
′
γ)). This the category we consider on the automorphic side.

On the spectral side, we would like to find a version of LocǦ with level structures at 0 and ∞. For this,

we use M̃Ǧ(β). Here we use the subscript Ǧ to indicate that we are working with Ǧ rather than G, and we

regard β as a braid for Ǧ since it has the same braid semigroup as G.

Conjecture 5.2. There exists a fully faithful functor Ψ : KirFlγ (BunG(I0,J
′
γ)) ↪→ IndCoh(M̃Ǧ(β)).

5.2.1. Compatibilities with Hecke actions. The functor in Conjecture 5.2 should be compatible with various
symmetries.

For any point x ∈ P1\{0,∞}, the geometric Satake equivalence gives an action of Rep(Ǧ) on the category

KirFlγ (BunG(I0,J
′
γ)). One the spectral side, one has a natural map M̃Ǧ(β) → [∗/Ǧ], hence, a natural

action of Rep(Ǧ) on IndCoh(M̃Ǧ(β)) via pull-back and tensoring. The functor Ψ should intertwine these
two actions.

The Hecke action at 0 gives us an action of Shv(I\LG/I) on KirFlγ (BunG(I0,J
′
γ)). Via the Bezrukavnikov’s

equivalence Shv(I\LG/I) ∼= IndCoh(( ˜̌U ×Ǧ ˜̌U)/Ǧ) proved in [Bez21], the same category acts on the spectral

side IndCoh(M̃Ǧ(β)). The functor should intertwine these actions.
There are also symmetries from ∞: There is an action of L∞Tγ/(L∞Tγ)<0 on Mγ and Flγ . Consider

subgroup Λγ = π0(L∞Tγ) ∼= X∗(T )w ⊂ L∞Tγ/(L∞Tγ)<0, it gets an induced action on KirFlγ (BunG(I0,J
′
γ)).

On the spectral side, consider the map M̃Ǧ(β)→MǦ(β)→ Ť /Adw Ť → [∗/Ťw]. It gives rise to an action

of Rep(Ťw) on IndCoh(M̃Ǧ(β)), hence, inducing an action of Λγ on IndCoh(M̃Ǧ(β)).

5.3. Slope one case. Now we give evidence for the conjecture in case ν = 1. We take γ = γ0 · t for γ0 ∈ hrs.

Regard γ : K1 → K1/K2
∼= g

⟨−,γ⟩−−−→ Ga. Define K′
1 = Ker(K1 → Ga). We have Jγ = K1 and J′

γ = K′
1.

In this case, BunG(I0,Jγ) = BunG(I0,K1). The braid β = w̃2
0. We have M̃Ǧ(w̃

2
0) = ˜B̌opB̌ ∩ Ǔ/Ad Ť .

Here ˜B̌opB̌ ∩ Ǔ = (B̌opB̌ ∩ Ǔ)×Ǧ
˜̌U .

We first consider a variant of Conjecture 5.2 without the Iwahori level structure at 0:

Theorem 5.3. There is an equivalence of categories Kir(BunG(K
′
1))

∼→ Rep(Ť ).

The category Kir(BunG(K
′
1)) microlocalizes onMγ which has the same description asMγ except lacking

the Iwahori level structure at 0. It admits a Hitchin map fγ : Mγ → Aγ with the same Hitchin base as

before. One hasMγ,red = X∗(T ). There is a natural mapMγ →Mγ (and also a map p : BunG(I0,K
′
1)→

BunG(K
′
1)). This gives us a pull-back functor p∗ : Kir(BunG(K

′
1))→ KirFlγ (BunG(I0,K

′
1)) .

One defines the category Dγ ⊂ KirFlγ (BunG(I0,K
′
1)) to be the full subcategory generated by the essential

image of p∗ and the Hecke action at 0 by the category Shv(I\LG/I).

Theorem 5.4. There is an equivalence of categories Dγ
∼→ CohŤ ( ˜̌N )B̌. Here CohŤ ( ˜̌N )B̌ is the category of

Ť -equivariant coherent sheaves on the Springer resolution ˜̌N supported on the zero section B̌ ⊂ T ∗B̌ ⊂ ˜̌N .

Remark 5.5. This is a part of the conjectural equivalence in 5.2. On the automorphic side, note that

Dγ ⊂ KirFlγ (BunG(I0,K
′
1)). On the spectral side, CohŤ ( ˜̌N )B̌

∼→ CohŤ ( ˜B̌opB̌ ∩ U)B̌ ⊂ IndCoh(M̃Ǧ(β)).

This equivalence of categories is compatible with symmetries introduced in 5.2.1. Moreover, one has richer
symmetry from ∞.

Pretend we are in the l-adic setting over characteristic p. In this case, one has

KirFlγ (BunG(I0,K
′
1))
∼= ShvFlγ (BunG(I0,K

′
1)/(Ga,ASψ)).

Consider the Hecke category H∞ = Shv((K1, γ
∗ASψ)\L∞G/(K1, γ

∗ASψ)) which acts on the category above.

Fact 5.6. There is an equivalence of categories H∞
∼→ Rep(Ť )⊗ Shv(T ).
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Note that Rep(Ť ) ⊗ Shv(T ) ∼= Shv(X∗(T ) × T ). We have a functor Rep(Ť ) → H∞ by sending the
character λ ∈ X∗(Ť ) to the universal local system on {λ} × T . This gives rise to an action of Rep(Ť ) on
ShvFlγ (BunG(I0,K

′
1)/(Ga,ASψ)), which preserves the subcategory Dψ. This action is compatible with the

action of Rep(Ť ) on CohŤ ( ˜̌N )B̌.

Remark 5.7. When ν = 1
m , there are many cases we can formulate and prove analogues of Theorem 5.4.
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