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2 NOTES FOR “GEOMETRIC LANGLANDS FOR PROJECTIVE CURVES”

1. Lecture 1

1.1. Sheaf theories. Throughout this course, we fix the following setup:

● An algebraically closed field k = k, called the geometric field.
● A sheaf theory with coefficient field e such that char(e) = 0.

Below are some examples of sheaf theories.

Example 1.1.1 (Betti setting). Let k = C. Let Shv(Y ) = Shv(Y, e) to be the cate-
gory of sheaves of e-vector spaces on Y (C) equipped with the complex topology, and
Lisse(Y ) ⊂ Shv(Y ) be the full subcategory of finite rank locally constant sheaves.

Example 1.1.2 (ℓ-adic/étale setting). Let ℓ ≠ char(k) be a prime number, and

e = Qℓ. Let Shv(Y ) be the category of ℓ-adic sheaves on Y , and Lisse(Y ) ⊂ Shv(Y )
be the full subcategory of lisse sheaves.

Example 1.1.3 (de Rham setting). Let char(k) = 0, e = k. Let Shv(Y ) = DMod(Y )
be the category of D-modules on Y , and Lisse(Y ) ⊂ Shv(Y ) be the full subcategory
of finite rank vector bundles equipped with a flat connection.

Remark 1.1.4. For k = C, Y a smooth variety, there is an equivalence

LissedR(Y ) ≃Ð→ LisseBetti(Y,C)
sending (E ,∇) to the de Rham complex [E → E ⊗Ω1

Y → E ⊗Ω2
Y → ⋯].

1.2. Geometric class field theory a.k.a. “abelian Geometric Langlands”.
Let X be a smooth projective curve over k of genus g. Consider BunGm , the moduli
stack of line bundles onX. For any fixed base point x0 ∈X, we have an identification

BunGm ≃ Jac(X) ×Z × BGm.

In above,

● Jac(X) is the Jacobian of X, which is an abelian variety prametrizing line
bundles on X of degree 0 equipped with a trivialization at x0.
● The factor Z corresponds to taking the degree of a line bundle.
● The factor BGm encodes automorphisms of a line bundle, which is k×.

Goal 1.2.1. Our goal is to conduct the following construction:

● (input) A rank 1 local system (=lisse sheaf) σ on X;
● (output) A lisse sheaf χσ on BunGm equipped with the following data:

– (Hecke property) For and L ∈ BunGm , x ∈ X and L(x) ∶= L ⊗O O(x),
an isomorphism

χσ ∣L(x) ≃ χσ ∣L ⊗ σx
depending algebraically on (L, x).

– (normalization) An isomorphism

χσ ∣OX
≃ e.

Let us give two constructions of χσ.

Construction 1.2.2. For simplicity, we work in the Betti setting. Then knowing
σ is equivalent to knowing a homomorphism

π1(X,x0)→ e×.
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We can replace the fundamental group by its abelianization, which is

π1(X,x0)ab ≃ H1(X,Z) ≃ H1(X,Z),
where the last isomorphism is Poincaré duality. Hence σ provides a homomorphism

(1.1) H1(X,Z)→ e×.

On the other hand, the short exact sequence

0→ Z→ O expÐ→ O× → 0

induces an isomorphism

Jac(X) ≃ H1(X,O)/H1(X,Z)
which implies

π1(Jac(X)) ≃ H1(X;Z).
Together with (1.1), we get a homomorphism

π1(Jac(X))→ e×,

which gives a rank 1 local system χσ ∣Jac(X) on Jac(X). Now we define χσ such that
its restiction to Jac(X) × {d} × BGm is given by

χσ ∣Jac(X) ⊠ σ⊗dx0
⊠ eBGm .

Exercise 1.2.3. Verify χσ satisfies the Hecke property.

Construction 1.2.4 (Deligne). This construction works for any sheaf theory.
For a line bundle L ∈ BunGm , a choice of a rational section gives an isomorphism

O(D) ≃ L, where D = ∑nixi is a divisor on X. Our axioms for χσ require

χσ ∣L ≃⊗σ⊗ni
xi

.

So we see χσ is “overdetermined”, and we need to answer the following question:
Why is this vector space independent of the choice of D?
To treat this problem, consider the d-th symmetric power Symd(X) of X, which

is the moduli space of effective divisors of degree d on X. Equivalently, it classifies
(L, s) where L is a degree d line bundle and s ∈ Γ(X,L) is a nonzero section. There
is a map

AJd ∶ Symd(X)→ BundGm

that forgets the section s. This is known as the Abel–Jacobi map. The fiber of this
map at L is Γ(X,L) ∖ 0.

When d > 2g − 2, by Riemann-Roch,

dimΓ(X,L) = d + 1 − g,
which implies AJd is smooth. Note that the fibers of AJd are simply-connected.

Now for the given σ, we can produce its d-th symmetric power, which is a rank
1 local system on Symd(X) given by the formula

(1.2) σ(d) ∶= addd,∗(σ ⊠ ⋅ ⋅ ⋅ ⊠ σ)Sd .

Here addd ∶Xd → Symd(X) and Sd is the symmetric group. Our axioms require

χσ ∣Symd(X) ≃ σ(d).

But by the previous simply-connectedness, for d >> 0 this σ(d) must descend to a
lisse sheaf on BundGm

. Hence we can define χσ ∣BundGm
for d >> 0, and then use the

Hecke property to extend it to all of BunGm .
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Remark 1.2.5. In (1.2), the fiber of addd,∗(σ ⊠ ⋅ ⋅ ⋅ ⊠ σ) at D is

⊕
D=∑xi

⊗iσxi ,

where the direct sum is labelled by all ways of writing D as ∑xi. Now taking
invariants for Sd removes the redundancy such that the fiber becomes ⊗σxi .

1.3. Non-abelian theory. Now take G = PGL2. Now our goal becomes:

● (input) An SL2-local system σ on X. We view σ as a rank 2 local system
equipped with a trivialization of ∧2σ.
● (output) A sheaf Fσ on BunPGL2 satisfying a Hecke property (to be ex-
plained in future lectures).

However, we no longer require Fσ to be lisse. Rather, we only want it to be preverse.
The reason for this will be explained in future lectures.

In above, BunPGL2 is the moduli stack of PGL2-bundles on X. By definition, a
PGL2-bundle on X is a rank 2 vector bundle modulo ambiguity of tensoring by line
bundles. In other words, E and E ⊗L give the same point in BunPGL2 . Note that

deg(E ⊗L) = deg(E) + 2deg(L).
Hence we have a well-defined map

BunPGL2

degÐÐ→ Z/2
and a decomposition

BunPGL2 ≃ BunevenPGL2
⊔BunoddPGL2

Figure 1. A picture of BunPGL2

The above is a picture of BunPGL2 . A few explanations are in order:

● BunevenPGL2
and BunoddPGL2

are both connected.
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● The semi-stable locus consists of E such that for any line subbundle L ⊂ E ,
we have

deg(L) ≤ deg(E)/2.
Note that this condition is invariant under twisting by line bundles. This
is an open condition and therefore defines an open substack

BunssPGL2
⊂ BunPGL2 .

● Let B ⊂ PGL2 be the standard Borel subgroup, and BunB be the moduli
stack of B-bundles on X. By definition, it classifies short exact sequences
[0→ L→ E → O → 0]. We have a map

BunB
degÐÐ→ Z

sending the above sequence to deg(L). This gives a decomposition

BunB ≃ ⊔
d∈Z

BundB .

For d ≥ 1, the map
BundB → BunPGL2

is a locally closed embedding.
● For n ≥ 0, we have an open substack Un ⊂ BunPGL2 which is a disjoint union

of BunssPGL2
and (the images of) BundB for 1 ≤ d ≤ n. In particular, BunPGL2

is not quasi-compact.

Exercise 1.3.1. Show that BunevenPGL2
and BunoddPGL2

are connected.

Exercise 1.3.2. Show that for d ≥ 0, the map BundB → BunPGL2 is injective on
k-points.

Exercise 1.3.3. Find the dimension of BundB and BunPGL2 . Deduce that there
exists odd semistable PGL2-bundles.

Exercise 1.3.4. For d << 0, show that BundB → BunPGL2 is smooth.
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2. Lecture 2

Last time: given an irrducible SL2 local system on X, we want a corresponding
sheaf Fσ on BunPGL2 with some unspecified properties.

Let us list a few desired properties for Fσ.

● Fσ should be perverse.
● Fσ ∣Buneven/odd

PGL2

should be irreducible as a perverse sheaf.

● Fσ should be cuspidal.
● ⋯

In above, cuspidality is the counterpart to σ being irreducible, according to
Langlands’s philosophy.

2.1. Cuspidality.

Definition 2.1.1. Consider the correspondence

BunPGL2

p←Ð BunB
qÐ→ BunGm ,

where p sends a sequence [0→ L→ E → O → 0] ∈ BunB to E ∈ BunPGL2 , and q sends
it to L ∈ BunGm . We define the constant term functor

CT∗ ∶= q∗p! ∶ Shv(BunPGL2)→ Shv(BunGm).
For each d ∈ Z, we similarly define a functor

CTd
∗ ∶ Shv(BunPGL2)→ Shv(BundGm

).
by replacing BunB with BundB .

Definition 2.1.2. We say F ∈ Shv(BunG) is cuspidal if CT∗(F) ≃ 0.

Remark 2.1.3. F is cuspidal iff CTd
∗(F) ≃ 0 for any d ∈ Z.

Remark 2.1.4. For general reductive groups, we use all proper parabolics and
their Levi quotients to define cuspidality.

Recall the picture (1.3) from the last lecture. The following result says cuspidal-
ity implies vanishing “at ∞”.

Proposition 2.1.5. If F is cuspidal, then its !-restriction to BundB is zero for
d > 2g − 2.
Sketch. Consider the map qd ∶ BundB → BundGm

. If d > 2g − 2, for any point in BundB ,
the corresponding sequence 0 → L → B → O → 0 splits. It follows that the fiber of
qd at a point L ∈ BundGm

can be identified with1 the classifying stack BH1(X,L).
Recall we have an equivalence

π∗ ∶ VectÐÐ→←ÐÐ Shv(BGa) ∶ π∗
because Ga is contractible, where π ∶ BGa → pt is the projection. Similarly, because
H1(X,L) is contractible, the functor

qd,∗ ∶ Shv(BundB)→ Shv(BundGm
)

is an equivalence for d > 2g − 2. It follows that CTd
∗(F) ≃ 0 implies p!d(F) ≃ 0 as

desired. □
We can also define another version of the constant term functor.

1For any d, the fiber can be canonically identified with the vector stack RΓ(X,L)[1].
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Definition 2.1.6. We define CT! to be the functor

q!p
∗ ∶ Shv(BunG)→ Shv(BunT ).

Remark 2.1.7. Formally, if F is constructible, CT∗(F) ≃ DCT!D(F), where D is
the Verdier duality.

Theorem 2.1.8 (Drinfeld–Gaitsgory, “2nd adjointness”). We have a canonical
equivalence

CTd
∗ ≃ inv ○ CT−d! ,

where inv is the functor induced by the isomorphism BundGm
≃ Bun−dGm

, L↦ L−1.
Corollary 2.1.9. If F is constructible and cuspidal, then so is DF .

Corollary 2.1.10. If F is cuspidal, then its ∗-restriction to BundB is zero for
d > 2g − 2

Proof. By Drinfeld–Gaitsgory, CT−d∗ (F) ≃ 0 implies CTd
! (F) ≃ 0. As in the proof

of Proposition 2.1.5, the latter implies p∗d(F) ≃ 0 for d > 2g − 2
□

Corollary 2.1.11. There exists an open substack Un ⊂ BunG, which is a finite
union of strata, such that any cuspidal F is both ! and ∗ extended2 from U .
Remark 2.1.12. In fact, we can take n =max{0,2g − 2}.
Exercise 2.1.13. Verify Theorem 2.1.8 for the constant sheaf on BunG.

Exercise 2.1.14. Let B− be the standard opposite Borel subgroup, and define
CT−∗, CT

−
! by replacing B with B−. Show that Theorem 2.1.8 is equivalent to the

statement that CT−! ≃ CT∗. Challenge: construct natural transformations CT−! →
CT∗ and CT∗ → CT−! .

Exercise 2.1.15. Challenge: for g ≥ 2, show that cuspidal sheaves exist.

2.2. Coefficients. To state other expectations for the sheaf Fσ, we use some mo-
tivations from theory of modular forms (a.k.a. automorphic forms for PGL2).

Recall a (holonomic) modular form (of weight k and level 1) is a sum f =

∑n≥0 anq
n converging for ∣q∣ < 1 such that for any g = (a b

c d
) ∈ SL2(Z), we have

f(g ⋅ τ) = (cτ + d)kf(τ),
where q = exp(2πiτ) with Im(τ) > 0. The Langlands conjecture say for any (odd)
irrducible (unramified) Galois representation3

σ ∶ “GalQ”→ SL2(“C”),
there exists a modular form fσ = ∑anqn such that

● (cuspidality) the constant term a0 is zero;
● ap = tr(σ(Frp)), where Frp ∈ GalQ is the Frobenious conjugacy class for a
prime number p;
● a1 = 1, anm = anam if (n,m) = 1, and

(2.1) apn+1 = apapn − pk−1apn−1

2In other words, F is cleanly extended from U .
3The weight k is determined by σ at archemedean place.
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Note that the above conditions uniquelly determine fσ.
Our goal is to provide analogues of an, which is the n-th Fourier coefficient of a

modular form, for sheaves on BunPGL2 .

● We will replace n, which is an effective divisor on SpecZ, with an effective
divisor D on X.
● We will replace the numbder an(f) with a vector space coeffD(F) ∈ Vect,
following Geothendieck’s philosephy on the sheaf-function correspondence.

Let us first consider the case D = 0, which is analogous to a1(f). Recall

an(f) = ∫
R/Z

f(τ) exp(−2πinτ)dτ.

Here we identify R with the unipotent radical of the standard Borel of SL2R. This
motivates us to consider BunN , where N is the unipotent radical of the standard
Borel of PGL2. By definition, this is the moduli stack of extensions [0 → O → E →
O → 0]. For subtle reasons, we need to consider a variant

BunΩN ∶= BunB ×BunGm
{Ω},

where Ω ∈ BunGm is the point corresponding to the canonical line bundle on X.
Note that as a vector stack, we have

BunΩN ≃ RΓ(X,Ω)[1].
Now consider the correspondence

BunG
pN←Ð BunΩN

ϕÐ→ H1(X,Ω) ≃ A1,

where the identification H1(X,Ω) ≃ A1 is due to Serre duality.

Definition 2.2.1. We define

coeff0(F) ∶= C⋅(BunΩN , p!N(F)
!
⊗ ϕ!(exp)),

where exp ∈ Shv(A1) is the “exponential sheaf” (explained below).

Example 2.2.2 (de Rham setting). Let exp be the D-module (O,∇ = d − dt).

Example 2.2.3 (ℓ-adic setting). We have a short exact sequence

0→ Fp → Ga
πÐ→ Ga ≃ 0

where π is the Artin–Schreier map t↦ tp − t. It follows that π∗(Qℓ) is acted by Fp.

For a fixed nontrivial character ψ ∶ Fp → Q
×

ℓ , we can consider the ψ-component of

π∗(Qℓ), which can be shown to be a rank 1 lisse sheaf. We define exp to be this
sheaf.

Remark 2.2.4 (Betti setting). In the Betti setting, exp does not exist. But there
are tricks to avoid usage of it.

3. Lecture 3

3.1. Coefficients (continued). Last time we defined coeff0 ∶ Shv(BunG) → Vect.
Now we define coeffD for any effective divisor on D.

Consider the stack

Bun
Ω(−D)
N ∶= BunB ×

BunGm

{Ω(−D)}.
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This is the moduli stack for extensions of [0→ Ω(−D)→ E → O → 0]. Let
pN,D ∶ BunΩ(−D)N → BunG

be the map remembering E . Consider the composition

ϕD ∶ BunΩ(−D)N → H1(X,Ω(−D))→ H1(X,Ω) ≃ A1,

where the last isomorphism is due to the Serre duality.

Definition 3.1.1. We define

coeffD(F) ∶= C⋅(BunΩ(−D)N , p!N,D(F)
!
⊗ ϕ!D(exp)).

Now we are ready to state our goal.

Goal 3.1.2. Our goal is to conduct the following construction:

● (input) An irreducible SL2-local system σ on X.
● (output) A cuspidal perverse sheaf Fσ ∈ Shv(BunPGL2) that is irreducible

on Bun
even/odd
PGL2

equipped with the following data:
– For each effective divisor D = ∑nixi, an isomorphism

(3.1) coeffD(Fσ) ≃⊗
i

Symni(σxi).

Remark 3.1.3. Note that (3.1) is analogous to the multiplicativity and recursion
formula (2.1) from last lecture, because

Symn(V )⊗ V ≃ Symn+1(V )⊕ Symn−1(V )
for the standard representation V ∈ Rep(SL2).

In above, the isomorphisms (3.1) should depend algebraically in D. More pre-
cisely, for each d ≥ 0, we can construct a functor

coeffd ∶ Shv(BunG)→ Shv(Symd(X))
such that for D ∈ Symd(X), we can identify coeffD with the composition

Shv(BunG)→ Shv(Symd(X))
(−)∣

!
DÐÐÐ→ Vect.

Now (3.1) should be upgraded to an isomorphism

coeffd(Fσ) ≃ σ(d),
where

σ(d) ∶= addd,∗(σ⊠d)Sd

is defined as in the rank 1 case. However, σ(d) is perverse but not lisse.
Based on the motivation from modular forms, we might want the functor

∏
d≥0

coeffd ∶ Shv(BunG)cusp →∏
d≥0

Shv(Symd(X))

to be fully faithful (so that Fσ is uniquely determined by the previous expectation).
However, this is not true because the RHS splits onto factors labelled by Z≥0, while
the LHS only onto Z/2. Nevertheless, we have the following claim:

Proposition 3.1.4. Let F be a perverse cuspidal sheaf on BunPGL2 such that its

restrictions on Bun
even/odd
PGL2

are irreducible and have dense supports. Then F is

uniquely determined by coeffd(F) and coeffd+1(F) for any d > N , where N is an
integer depending only on g.
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Warning 3.1.5. The above claim is special to PGL2.

3.2. Fourier transform. To explain Proposition 3.1.4, we recall the Fourier(–
Deligne) transform. For a finite dimensional vector space V and its dual space V ∨,
consider the correspondence

V
pr1←Ð V × V ∨

pr2Ð→ V ∨.

We have an equivalence

Shv(V ) FourÐÐ→ Shv(V ∨), F ↦ pr2,∗(pr!1(F)
!
⊗ ev!(exp)),

where ev ∶ V × V ∨ → A1 is the pairing map. This can be generalized to vector
bundles E and E∨ over a base S, so we have a canonical equivalence

Four ∶ Shv(E) ≃Ð→ Shv(E∨).

Remark 3.2.1. In the Betti setting where exp does not exist, we can do Fourier
transform for monodromic sheaves.

We can rewrite coeffd using Fourier transforms and geometry of bundles as fol-
lows. Recall the fiber of the map

q−d ∶ Bun−dB → Bun−dGm

at L is identified with RΓ(X,L)[1]. For d > 0, H0(X,L) ≃ 0, hence q−d is a vector

bundle over Bun−dGm
, which we denote by Ed. The fiber of the dual bundle E∨d at L

is

H1(X,L)∨ ≃ H0(X,L∨ ⊗Ω).
It follows that E∨d is the moduli stack classifying (L, s ∶ L → Ω), where L ∈ Bun−dGm

and s ∶ L→ Ω is a map.
Note that we have an identification

Symd+(2g−2)(X)→ E∨d ∖ {0}, D ↦ [Ω(−D)→ Ω],
where 0 means the zero section of E∨d (which is isomorphic to Bun−dGm

).

Exercise 3.2.2. The functor coeffd+(2g−2) can be identified with the composition

Shv(BunG)
p!
−dÐÐ→ Shv(Bun−dB )

FourÐÐ→ Shv(E∨d )
restrictionÐÐÐÐÐ→ Shv(Symd+(2g−2)(X))

Fact 3.2.3. If f ∶ Y → Z is a smooth map with connected fibers, then the pullback
functor on perverse sheaves is fully faithful.

Fact 3.2.4. If f ∶ Y → Z is a smooth map with connected or empty fibers, and Y
is nonempty, then the pullback functor on irreducible perverse sheaves with dense
support is fully faithful.

Exercise 3.2.5. For any open substack Un ⊂ BunPGL2 , there exists an integer N

depending only on n and g such that the fibers of p−d ∶ Bun−dB → BunG over points
in Un are connected or empty for any d > N .

Proof of Proposition 3.1.4. Recall F is determined by its restriction on Un ⊂ BunPGL2

where n is an integer depending only on g (Corollary 2.1.11). Hence by the above
fact and exercise, there exists an integer N depending only on g such that the func-
tor p!−d does not lose information about F ∣

Bun
d+2Z/2Z
PGL2

for any d > N . Hence to prove
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Proposition 3.1.4, we only need to recover Four(p!−dF) from its restriction along the
open embedding

E∨d ∖ 0 ⊂ E∨d .
To see this, we note that the !-restriction of Four(p!−dF) on the zero section can be

identified with CT−d∗ (F), which is zero because F is assumed to be cuspidal.
□[Proposition 3.1.4]

3.3. Geometric Langlands Correspondence. We have already seen Fσ is uniquely
determined by σ if exists. The following result is known as geometric Langlands
correspondence for PGL2.

Theorem 3.3.1 (Drinfeld, Laumon, Frenkel–Gaitsgory–Vilonen). For any irre-
ducible SL2-local system σ, there exists Fσ ∈ Shv(BunPGL2) that is perverse and
irreducible on each connected component of BunPGL2 , such that

coeffd(Fσ) ≃ σ(d).

Moreover, Fσ is a Hecke eigensheaf. To explain this notion, consider the moduli
stack Hecke classifying (x ∈ X,E ⊂ E ′ ⊂ E(x)), where (up to tensoring with a line
bundle) E and E ′ are rank 2 bundles on X, and the inclusions E ⊂ E ′ ⊂ E(x) are
strict. We have a correspondence

BunG

←

h←Ð Hecke
→

hÐ→ BunG ×X

such that
←

h sends (x ∈ X,E ⊂ E ′ ⊂ E(x)) to E , and
→

h sends it to (E ′, x). Consider
the functor

(3.2) Hstd ∶=
→

h∗
←

h !.

Now the Hecke eigenproperty says

(3.3) Hstd(Fσ) ≃ Fσ ⊠ σ.

4. Lecture 4

4.1. Hecke functors. Let us define Hecke property for general reductive group G
(split and connected over k). Let Ǧ be the dual reductive group over e.

We have the notion of G-bundles.

Example 4.1.1. G-bundles mean the following:

● For G = GLn, rank n vector bundles E ;
● For G = SLn, rank n vector bundles E equipped with detE ≃ O;
● For G = PGLn, rank n vector bundles E up to tensoring with line bundles;
● For G = On, rank n vector bundles E equipped with a symmetric non-
degenerate form E ⊗ E → O;
● For G = Spn, rank n vector bundles E equipped with an alternating non-
degenerate form E ⊗ E → O;
● ⋯

For any G-bundle PG on a scheme S, we have a right t-exact4 symmetric
monoidal functor

Rep(G)→ QCoh(S), V ↦ VPG
.

4For derived schemes S, the functor below is not t-exact.
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If V is finite dimensional, VPG
is a vector bundle of finite rank.

We also have the notion of Ǧ-local systems, which can be defined as right t-exact
symmetric monoidal functors

Rep(G)→ Shv(X), V ↦ Vσ

If V ∈ Rep(G) is finite dimensional, Vσ is lisse.
Now for any V ∈ Rep(Ǧ), we can define a functor

HV ∶ Shv(BunG)→ Shv(BunG ×X),
which generalizes the Hecke functor defined in the last lecture (which is the case
Ǧ = SL2 and V being the standard representation). The ingredient for the definition
is the following equivalence.

Theorem 4.1.2 (Geometric Satake). For any x ∈X, there is a canonical monoidal
functor

Rep(Ǧ)→ Shv(L+xG/LxG/L+xG), V ↦ SV
where Lx(G) ∶= G(k((tx))), L+x(G) ∶= G(k[[tx]]) and tx is a local coordinate near x.

Remark 4.1.3. One can check that SV does not depend on the choice of tx.

The double quotient

Heckelocx ∶= L+xG/LxG/L+xG
classifies two G-bundles PG, P ′G on Dx ∶= Speck[[tx]] equipped with an isomorphism

between their restrictions on
○

Dx. We can also consider a global version of this stack

Heckex

which classifies two G-bundles on X equipped with an isomorphism between their

restrictions on
○

X ∶=X ∖ x. We have the following diagram

BunG Heckex

←

hoo
→

h //

π

��

BunG

Heckelocx .

Definition 4.1.4. We define a functor

HV,x ∶ Shv(BunG)→ Shv(BunG), F ↦
→

h∗(
←

h !(F)
!
⊗ π!(SV )).

We can also vary x ∈X and similarly define a functor

HV ∶ Shv(BunG)→ Shv(BunG ×X)
such that HV (F)∣BunG×x ≃ HV,x(F). We call them the Hecke functors.

Exercise 4.1.5. For G = PGL2 and Ǧ = SL2, consider the standard representation
std ∈ Rep(Ǧ). Verify that the Hecke functor Hstd defined above is equivalent to the
functor (3.2).

The Hecke functors commute in the following sense. For V1, V2 ∈ Rep(Ǧ), let
HV1,V2 be the composition

Shv(BunG)
HV2ÐÐ→ Shv(BunG ×X)

HV1ÐÐ→ Shv(BunG ×X ×X).
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Then we have a canonical identification

HV1,V2 ≃ swap ○HV2,V1 ,

where swap is the involution on Shv(BunG ×X ×X) induced by swaping the two
factors X. More generally, given a finite set I and Ǧ-representations V = {Vi}i∈I
indexed by I, we have a well-defined functor

HV ∶ Shv(BunG)→ Shv(BunG ×XI)
given by composing of HVi ’s in any order.

Exercise 4.1.6. Verify that

HV1,x ○HV2,x ≃ HV1⊗V2,x.

Question 4.1.7. What acts on Shv(BunG)?
For each x ∈ X, we have an endo-functor HV,x on Shv(BunG), but the functors

HV is not an endo-functor. There is a formal way to produce an endo-functor out
of these Hecke functors as follows.

For a finite set I, V = ⊠i∈IVi ∈ Rep(Ǧ)⊗I and G ∈ Shv(XI), consider the compo-
sition

(4.1) Shv(BunG)
HVÐÐ→ Shv(BunG×XI)

−⊗
!pr!2(G)ÐÐÐÐÐ→ Shv(BunG×XI)

pr1,∗ÐÐ→ Shv(BunG).
This gives us a functor

Rep(Ǧ)⊗I ⊗ Shv(XI)→ End(Shv(BunG))
sending V ⊠ G to the above endo-functor.

Remark 4.1.8. When I = {1,2}, the endo-functor (4.1) is the “integration” of the
functors HV1,x1 ○ HV2,x2 (when x1 ≠ x2) and HV1⊗V2,x (when x1 = x2 = x), against
the “mearsure” G on X2.

For any map α ∶ I → J between finite sets, we have a functor

Rep(Ǧ)⊗I multαÐÐÐ→ Rep(Ǧ)⊗J

provided by the symmetric monoidal structure on Rep(Ǧ), and a functor

∆α
∗ ∶ Shv(XJ)→ Shv(XI)

induced by the map ∆α ∶ XJ → XI . One can check the following diagram com-
mutes:

Rep(Ǧ)⊗I ⊗ Shv(XJ)multα⊗id//

id⊗∆α
∗

��

Rep(Ǧ)⊗J ⊗ Shv(XJ)

��
Rep(Ǧ)⊗I ⊗ Shv(XI) // End(Shv(BunG))

It follows that we have a functor

(4.2) Rep(Ǧ)Ran ∶= colim
α∶I→J

Rep(Ǧ)⊗I ⊗ Shv(XJ)→ End(Shv(BunG)),

where the colimit is indexed by maps α ∶ I → J , and is contravariant in I while
covariant in J .

Note that Rep(Ǧ)Ran has a (symmetric) monoidal structure given by tensoring

the I
αÐ→ J and I ′

α′Ð→ J ′ entries into the I ⊔ I ′ (α,α
′
)ÐÐÐ→ J ⊔ J ′ entry. One can check

that (4.2) is compatible with the monoidal structures on both sides.
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In summary, we have a monoidal functor

Rep(Ǧ)Ran → End(Shv(BunG))

obtained by putting all the Hecke functors together.

4.2. Hecke property.

Question 4.2.1. What can Rep(Ǧ)Ran do for us?

We give two answers:

● It gives all the Fourier coefficients into one home.
● It gives a full and correct definition of eigensheaves.

Let us first explain the second point. Fix a Ǧ-local system σ on X, we have a
symmetric monoidal functor

evσ ∶ Rep(Ǧ)Ran → Vect

whose restriction on the I
=Ð→ I entry is

Rep(Ǧ)⊗I ⊗ Shv(XI) σ⊠I⊗idÐÐÐÐ→ Shv(XI)⊗ Shv(XI) −⊗
!
−ÐÐÐ→ Shv(XI) ΓÐ→ Vect,

where recall the Ǧ-local system σ⊠I on XI is viewed as a symmetric monoidal
functor

Rep(Ǧ)⊗I → Shv(XI).

Definition 4.2.2. A Hecke eigensheaf with eigenvalue σ is a Rep(Ǧ)Ran-linear
functor

Vect→ Shv(BunG), e↦ F ,
where Rep(Ǧ)Ran acts on Vect via evσ. We often abuse notation and write F for
the Hecke eigensheaf.

Exercise 4.2.3. Show that σ is uniquely determined by the symmetric monoidal
functor evσ.

Exercise 4.2.4. Let F be a Hecke eigensheaf with eigenvalue σ. Show that

(4.3) HV (F) ≃ F ⊠ Vσ
Remark 4.2.5. Note that (4.3) generalizes (3.3).

4.3. Geometric Langlands correspondence.

Conj 4.3.1. If σ is a irreducible Ǧ-local system5, then there exists a unique Hecke
eigensheaf Fσ equipped with coeff0(Fσ) ≃ e.

Theorem 4.3.2 (Arinkin–Beraldo–Campbell–Chen–Faergeman–Gaitsgory–Lin–
R.–Rozenblyum). This conjecture is true if char(k) = 0.

Moreover, we know

● Fσ is perverse;
● Fσ is cuspidal;

5This means it does not come from a proper parabolic subgroup
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● Fσ is semisimple. More precisely, let Sσ be the automorphism group of σ,
then we have a decomposition

Fσ ≃ ⊕
ρ∈IrrSσ

F⊕dimρ
σ,ρ

such that Fσ,ρ is simple perverse.
● The characteristic cycle of Fσ is [Nilp], wher Nilp ⊂ T∗BunG is the global
nilpotent cone.
● For g > 1, the generic rank of Fσ is

∏d
(2di−1)(g−1)
i

where di’s are the exponents of G.

Remark 4.3.3. The connected components of BunG can be identified with the set
Irr(ZǦ) of irreducible representations of the center of Ǧ. The perverse sheaf Fσ,ρ

is supported on the connected component labelled by ρ∣ZǦ
.

5. Lecture 5

5.1. Whittaker coefficients. We have the following motto:

Rep(Ǧ)Ran lets us “glue” all the Whittaker coefficients of a sheaf on BunG.

To explain it, let us first define Whittaker coefficients for general G. Consider

BunΩN ∶= BunB ×
BunT

{ρ̌(Ω)},

where ρ̌(Ω) ∶= 2ρ̌(Ω1/2) and Ω1/2 is a fixed square root of the line bundle Ω. For
each positive simple root αi, we have a map N → Ga which induces a map

ϕi ∶ BunΩN → BunΩGa
→ H1(X,Ω) ≃ A1

Define

ϕ ∶=∑
αi

ϕi ∶ BunΩN → A1

and consider the correspondence

BunG
pN←Ð BunΩN

ϕÐ→ A1.

As in the PGL2-case, we make the following definition:

Definition 5.1.1. Let coeff0 ∶ Shv(BunG) → Vect be the functor given by the
formula

coeff0(F) ∶= C⋅(BunΩN , p!N(F)
!
⊗ ϕ!(exp)).

Similarly, for each D = ∑ λ̌ixi with λi ∈ Λ̌+, we use ρ̌(Ω)(−D) ∈ BunT to produce a
functor

coeffD ∶ Shv(BunG)→ Vect.

We call them the Whittaker coefficient functors.

Example 5.1.2. For G = Gm, D can be an arbitrary divisor, and the functor

coeffD ∶ Shv(BunGm)→ Vect

is taking the !-fiber at O(−D).

Example 5.1.3. For G = PGL2, these functors recover those denoted by the same
notations in the previous lectures.
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The following result is known as the geometric Casselman–Shalika formula:

Theorem 5.1.4 (Frenkel–Gaitsgory–Vilonen). For D = ∑ λ̌ixi with λi ∈ Λ̌+, we
have

coeffD(F) ≃ coeff0(H⊠V λ̌i ,x(F)),
where recall that H

⊠V λ̌i ,x is the composition of HV λ̌i ,xi
in any order.

Note that we have an object

⊠i(V λ̌i ⊗ δxi) ∈ Rep(Ǧ)⊗I ⊗ Shv(XI),
which gives an object in Rep(Ǧ)Ran. Now the above theorem says coeffD is equiv-
alent to the Hecke action of this object followed by coeff0.

Definition 5.1.5. Let Fσ be a Hecke eigensheaf with eigenvalue σ. We say F is
normalized if it is equipped with an isomorphism

coeff0(F) ≃ e.

Let Fσ be a normalized Hecke eigensheaf Fσ. By Exercise 4.2.4, we have

H
⊠V λ̌i ,x(Fσ) ≃ Fσ⊗⊗

i
(V λ̌i

σ )xi .

It follows from the theorem that this condition implies

coeffD(Fσ) ≃ coeff0(Fσ)⊗⊗
i
(V λ̌i

σ )xi ≃ ⊗
i
(V λ̌i

σ )xi ,

where the last isomorphism is because Fσ is normalized. Note that this generalizes
(3.1).

Now consider the following functor

(5.1) Rep(Ǧ)Ran ⊗ Shv(BunG)
Hecke actionÐÐÐÐÐÐÐ→ Shv(BunG)

coeff0ÐÐÐ→ Vect.

The previous theorem implies this functor can be viewed as assembling all the
Whittaker coefficients in a family. The category Rep(Ǧ)Ran is self dual, with pairing
functor given by

Rep(Ǧ)Ran ⊗ Rep(Ǧ)Ran
−⋆−ÐÐ→ Rep(Ǧ)Ran

ΓÐ→ Vect,

where −⋆− is the symmetric monoidal structure on Rep(Ǧ)Ran and Γ ∶= Hom(triv,−).
Hence the functor (5.1) can be rewritten as a functor

coeffult ∶ Shv(BunG)→ Rep(Ǧ)Ran
characterized by the formula

Γ(coeffult(F) ⋆ G) ≃ coeff0(G ⋅F), F ∈ Shv(BunG), G ∈ Rep(Ǧ)Ran.
Here G ⋅F is the action of G on F .

Remark 5.1.6. The functor coeffult should be viewed as the best version of “q-
expansion” for automorphic sheaves.

Theorem 5.1.7 (Beraldo, Frenkel–Gaitsgory–Vilonon). For G = GLn or PGLn, the

functor coeffult is fully faithful on Shv(BunG)cusp.

For PGL2, the proof imitates that of Fourier inversion. For GLn, it imitates the
works by Piatetski–Shapiro and Shalika.
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5.2. Categorical geometric Langlands equivalence. Now we work with the
de Rham setting. Consider LSǦ = LSdRǦ , the moduli stack of (de Rham) Ǧ-local
systems on X. There exists a canonical symmetric monoidal functor

Loc ∶ Rep(Ǧ)Ran → QCoh(LSǦ)
which sends V ⊗ δx ∈ Rep(Ǧ)⊗DMod(X) to ev∗x(V ). Here

evx ∶ LSǦ → LSǦ(Dx) ≃ BǦ

is the evaluation map, and we identify QCoh(BǦ) with Rep(Ǧ).
Exercise 5.2.1. For σ ∈ LSǦ, identify the functor

evσ ∶ Rep(Ǧ)Ran → Vect

with the composition

Rep(Ǧ)Ran
LocÐÐ→ QCoh(LSǦ)

(−)!σÐÐÐ→ Vect.

Theorem 5.2.2 (Lurie, Gaitsgory–Rozenblyum). The functor Loc has a fully faith-
ful right adjoint

QCoh(LSǦ)
⊂Ð→ Rep(Ǧ)Ran

Theorem 5.2.3 (Drinfeld–Gaitsgory). The action of Rep(Ǧ)Ran on DMod(BunG)
factors through Loc.

Corollary 5.2.4. The functor coeffult factors as

DMod(BunG)
LG,coarse//

coeffult ''

QCoh(LSǦ)

⊂

��
Rep(Ǧ)Ran

Idea of categorical geometric Langlands: the functor LG,coarse is “almost” an
equivalence. Note that it cannot be an equivalence because for nonabelian G, it
sends the constant sheaf to 0.

Main Theorem 5.2.5 (Categorical Geometric Langlands, 1st version). The func-
tor LG,coarse induces an equivalence

DMod(BunG)cusp ≃ QCoh(LSirredǦ ),
where LSirredǦ ⊂ LSǦ is the locus of irreducible Ǧ-local systems.

Corollary 5.2.6. coeffult is fully faithful on the cuspidal subcategory.

There is also a correction of LG,coarse due to Arinkin–Gaitsgory. Recall for nice
enough stack Y , we have

QCoh(Y ) ≃ Ind(Perf(Y )),
where Perf(Y ) is the subcategory of locally bounded cmoplexes of finite rank pro-
jective modules. We can also consider

IndCoh(Y ) ∶= Ind(Coh(Y )),
where Coh(Y ) is the category of locally bounded complexes of finite generated
modules. We have an inclusion

Perf(Y ) ⊂ Coh(Y ),
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which is strict if Y has singularities.
Now we can define a subcategory

CohNilp(LSǦ) ⊂ Coh(LSǦ)
such that it is generated by the images of

Perf(LSM̌)
q∗Ð→ Perf(LSP̌ )

p∗Ð→ Coh(LSǦ)
for all parabolic subgroups P̌ and their Levi quotients M̌ . Here the map q ∶ LSP̌ →
LSM̌ is a map of finite Tor amplitude, and the map p ∶ LSP̌ → LSǦ is proper, so
that the above functors are well-defined.

Remark 5.2.7. The subcategory CohNilp(LSǦ) ⊂ Coh(LSǦ) can be defined in an
intrinsic way using the theory of singular supports of coherent sheaves.

Theorem 5.2.8. There exists a unique functor

LG ∶ DMod(BunG)→ IndCohNilp(LSǦ)
subject to a technical condition6 such that the following diagram commutes

DMod(BunG)
LG //

LG,coarse ((

IndCohNilp(LSǦ)

Ψ

��
QCoh(LSǦ),

where Ψ is the ind-extension of the embedding CohNilp ⊂ Coh ⊂ QCoh.
Main Theorem 5.2.9 (Categorical Geometric Langlands, ultimate version). The
functor LG is an equivalence.

Remark 5.2.10. The proof uses particularities of the de Rham setting, such as
using Kac–Moody localization at the critical level to prove “geometric” statements
about DMod(BunG).

More seriously, we use the fact that the de Rham moduli stack LSdRǦ has few
global (algebraic) functions.

Still, we can obtain the Betti version (and ℓ-adic versions when char(k) = 0) by
“Riemann–Hilbert” in some sense.

Remark 5.2.11. The “concrete” theorem 4.3.2 in the last lecture really use all the
categorical assertions.

6It should send compact objects in the source to objects bounded from below in the t-structure
of the target.
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