
Problems for the 2024 Summer school

1 Grassmannians and Chern classes

1.1

Check that the elementary symmetric function ekpx1, x2, . . . q is the unique symmetric function of degree
k such that

ekpx1, . . . , xk, 0, 0, 0, . . . q “ x1x2 ¨ ¨ ¨ xk .

1.2

Let cpV, tq “
ř

kě0 tkckpV q denote the Chern polynomial of a vector bundle V . Prove that for any
subbundle V 1 Ă V we have

cpV, tq “ cpV 1, tq cpV {V 1, tq .

1.3

Compute the Chern classes of the tangent bundle to Pn. Here and below all projective spaces, Grassman-
nian, flag varieties etc. denote the corresponding complex manifolds.

1.4

Let M Ă Pn be a smooth (complex, as always) hypersurface of degree d. Consider the exact sequence of
the vector bundles

0 Ñ TM Ñ TPn
ˇ

ˇ

ˇ

M
Ñ NPn{M Ñ 0

on M , where NPn{M is the normal bundle. Check that

NPn{M “ OPnpdq

ˇ

ˇ

ˇ

M

and conclude a formula for the Chern classes of M . In particular, when is c1pMq “ 0 ? What is the
topological Euler characteristic1 of M ? What is the genus of the curve M when n “ 2 ? Compute
ş

M
c1pMqn´1 .

1By the Lefschetz hyperplane section theorem, this is equivalent to knowing the dimension of HmiddlepMq
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1.5

Consider the Grassmannian X “ Grpk, nq. Its points correspond to linear subspaces V Ă Cn of dimension
k. Consider the set of pairs

tpV, vq, such that v P V u Ă Grpk, nq ˆ Cn . (1)

Check that the LHS in (1) is a vector bundle of rank k over X, called the tautological subbundle of the
trivial bundle in the RHS of (1). By a slight abuse of notation, we denote this tautological bundle by V .
Check that

TX “ V ˚
b pCn

{V q ,

where V ˚ denotes the dual bundle and Cn{V is the tautological quotient bundle. Express c1pTXq and
c2pTXq of the tangent bundle TX in terms of the Chern classes of V . If you are familiar with the language
of symmetric functions, propose a formula for ckpTXq.

1.6

Consider the product X ˆ X, where X “ Grpk, nq as in Problem 1.5. On X ˆ X we have two tautological
bundles V1 and V2 pulled back from the two factors. Consider the composed map

V1 Ñ Cn
Ñ Cn

{V2 .

Show this section of pCn{V2q b V ˚
1 vanishes precisely over the diagonal in X ˆ X, in other words, the top

Chern class of pCn{V2q b V ˚
1 is the class

∆ P H2 dimX
pX ˆ Xq

of the diagonal. Consider the operation

Φ∆ : γ ÞÑ p1,˚p∆ Y p˚
2pγqq

from H‚
pXq to H‚

pXq, where p1 and p2 are the projections of X ˆX to the respective factors. Show that
Φ∆ is the identity map. Conclude that the cohomology of X is generated by the Chern classes of V .

What is the K-theory analog of these statements ?

1.7

The group GLpnq acts on X “ Grpk, nq via its defining action on Cn. Describe the orbits of the subgroup
U Ă GLpnq formed by lower-triangular matrices with 1s on the diagonal. Show that each orbit contains a
unique fixed point for the subgroup

A “ diagpa1, . . . , anq

to which all other points are attracted when a1{a2, a2{a3, ¨ ¨ ¨ Ñ 8 . The orbits are called the Schubert
cells and their closures are called Schubert varieties Sλ. They are naturally indexed by partitions λ that
fit into k ˆ pn ´ kq rectangle. Show they form a basis in integral homology or cohomology of X.
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1.8

Show that Schubert cycles S_
λ for the subgroup Uopp of upper-triangular matrices form a basis dual to the

basis of Schuber cycles. Translate the equality

ctoppV ˚
1 b pCn

{V2qq “
ÿ

λ

rSλs b rS_
λ s P H

‚
pX ˆ Xq

into an identity of symmetric functions.

1.9

Compute the Poincaré polynomial of Grpk, nq and compare it with number of points of Grpk, nq over a
finite field with q elements.

1.10

For X “ Pn´1 “ Grp1, nq, Schubert classes Sl, l “ 0, . . . , n ´ 1, form a chain

Pn´1
Ą Pn´2

Ą ¨ ¨ ¨ Ą Pn´1´l
Ą . . .

cut out by the equations x1 “ ¨ ¨ ¨ “ xl “ 0. Here xi are the homogeneous coordinates, or more precisely
the components of the natural map

pCn
q

˚
b OX Ñ Op1qX .

In particular, each individual coordinate xi is a A-equivariant map

OX b a´1
i

xi
ÝÝÝÝÝÑ Op1qX ,

and so its zero locus represents the class ξ ` αi, where ξ “ c1pOp1qq and αi P H2
Apptq corresponds to the

character ai. Therefore

rSls “

l
ź

i“1

pξ ` αiq P H
‚

ApXq . (2)

1.11

Verify that the polynomial (2) is characterized by the following Newton interpolation properties:

• it has degree l in the variables ξ and αi, corresponding to the fact that rSls P H2lpGrq ,

• its restriction to A-fixed points not in Sl vanishes ,
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• its restriction to the A-fixed point in the Schubert cell equals the Euler class of the normal bundle
to the Schubert cell.

Generalize this reasoning to compute the classes of the Schubert cells in the Grpk, nq. Your answer should
look like a Schur function in the Chern roots ξ1, . . . , ξk of the universal bundle, in which the monomials ξlj
are replaced by univariate interpolation polynomials of the form (2). Those unfamiliar with Schur functions
will discover them for themselves by solving Problem 1.13

1.12

Generalize the results of Problems 1.10 and 1.11 to equivariant K-theory.

1.13

Let G be the group GLpn,Cq, B Ă G be the subgroup of the upper-triangular matrices and χ : B Ñ Cˆ a
character. Consider holomorphic, or meromophic, functions fpgq of g P G which satisfy

fpgbq “ fpgqχpbq , @b P B .

Interpret them as sections of a holomorphic line bundle Lχ on flag manifold

Flagsn “ G{B “ Upnq{diagonal matrices .

Compute the Euler characteristic χpLχq by equivariant localization. Compare your result with the Weyl
character formula for G and explain2 this comparison using the Peter-Weyl decomposition

CrGs “
à

irreps V

V ˚ b V , as G ˆ G-modules .

1.14

Let L be a complex line bundle with a connection ∇ and corresponding curvature F P Ω2pX,Cq. Show
that, nonequivariantly, the form i

2π
F represents c1pL q. For an equivariant generalization, see Chapter 7

in [?Berline-Getzler-Vergne].

For a rank r vector bundle V , the curvature form is matrix-valued, that is, F P Ω2pX,EndV q. Show that

ÿ

k

tkckpV q “ det

ˆ

1 `
it

2π
F

˙

,

nonequivariantly.

2For a simple proof of fact that at most one cohomology group of Lχ is nonvanishing see [?Demazure]
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2 Elliptic functions and elliptic curves

2.1

Consider holomorphic functions fpzq of z P Cˆ solving the q-difference equation

fpqzq “ cz´dfpzq , (3)

where q is a fixed complex number such that |q| ă 1. Compute the dimension of the space of solutions as
a function of d (and c, for d “ 0) in two ways: first by analyzing the Laurent series expansion of f , and
then by using the Riemann-Roch formula for the complex elliptic curve E “ Cˆ{qZ .

2.2

Consider the function3

θpzq “
ź

ną0

p1 ´ qnzq
ź

ně0

p1 ´ qnz´1
q

and check that is solves the equation
θpqzq “ ´q´1z´1θpzq .

Prove that a general solution of (3) has the form

fpzq “ const
d

ź

i“1

θpz{wiq ,
ź

wi “ p´qq
dc .

Interpret this result as saying that two divisors

d
ÿ

i“1

wi,
d

ÿ

i“1

w1
i P SdE

are linearly equivalent if and only if
ś

wi “
ś

w1
i in E, that is, modulo qZ. In other words, the natural

map
SdE Ñ Picd E – E

is from divisors to line bundles of the same degree is given by the multiplication in the group E. Its fibers
are projective spaces for d ą 0.

3In many, many contexts, it is more convenient to use a different normalization of the theta function, namely

ϑpzq “ z1{2θpzq “ pz1{2 ´ z´1{2q
ź

ną0

p1 ´ qnzqp1 ´ qnz´1q .

It has a series expansion in half-integer powers of z, that is, satisfies ϑpe2πizq “ ´ϑpzq. It is still the unique, up to multiple,
section of the line bundle Opeq, where e “ 1 P E “ Cˆ{qZ is the identity, just for a different trivialization of the pullback of
this line bundle to Cˆ. The extra convenience of using ϑpzq is due to its anti-symmetry ϑpz´1q “ ´ϑpzq .
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2.3

Let fpzq be a meromorphic function on E, equivalently a rational function on the algebraic variety E.
Show that is has the form

fpzq “ const
d

ź

i“1

θpz{aiq

θpz{biq

for some values of ai and bj, where
ś

ai “
ś

bi in E, that is, modulo qZ.

2.4

By cutting partitions λ along the diagonal, prove that
ÿ

λ

qλ “ coefficient of z0 in
ź

ną0

p1 ` qn´1{2zqp1 ` qn´1{2z´1
q .

Deduce that
ÿ

nPZ

qn
2{2zn “

ź

ną0

p1 ´ qnqp1 ` qn´1{2zqp1 ` qn´1{2z´1
q ,

which is one of the equivalent forms of the Jacobi triple product identity, and of the Macdonald identity
for the Lie algebra slp2q. Note this means

ÿ

nPZ

p´1q
nqpn`1

2 qzn “ θpzq
ź

ną0

p1 ´ qnq

and compare the rate of convergence of two sides.

2.5

Let Γ Ă C be a lattice and x P C be a complex number. Form the following product

σpxq “ x
ź

0‰γPΓ

ˆ

1 ´
x

γ

˙

exp

ˆ

x

γ
`

x2

2γ2

˙

,

known as the Weierstrass σ-funciton, and show that it represents an odd entire function of x. Consider a
vector γ P Γz2Γ, which means

σpγ{2q “ ´σpγ{2q ‰ 0 .

For such vector γ, prove that
σpx ` γq

σpxq
“ ´ exppηγpx ` γ{2qq

for some constant ηγ P C. Express the function σpxq in terms of the theta function of the elliptic curve
E “ C{Γ .
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2.6

Given a lattice Γ as in Problem 2.5, its holomorphic Eisenstein series are defined by

EisensteinpΓ, nq “
ÿ

0‰γPΓ

γ´n ,

which converges for n ą 2 and vanishes for n odd. Relate these series to lnσpxq and express them in terms
of the parameter q in the isomorphism E “ C{Γ – Cˆ{qZ .

2.7

The theorem of the cube refers to various generalizations of the following basic statement. Let X and Y
be complete algebraic varieties over a field k, and let Z be an arbitrary variety over k. Let x P X, y P Y ,
z P Z be k-points. Let L be a line bundle over X ˆY ˆX. If L is trivial when restricted to txu ˆY ˆZ,
X ˆ tyu ˆ Z, and X ˆ Y ˆ tzu, then L is trivial. Find or read 4 a proof of this or any related statement.
In the example X “ Y “ E, check that the corresponding statement for two factors is false.

2.8

Let A be an abelian variety, which for our purposes we will always assume to be of the form A “ En. Let
PicpAq denote the Picard group of line bundles on A and let Pic0pAq be the subgroup of line bundles that
are algebraically equivalent to zero 5 Consider the map

ϕ : PicpAq ˆ A Ñ Pic0pAq

that takes
pL , aq ÞÑ ptranslation by aq

˚L b L ´1 .

Prove this is a group homomorphism, which is one of the forms of the theorem of the square.

4there are many sources for reading about this result, which goes back to A. Weil, with a classical exposition by Mumford.
Among online resources, https://www.math.ru.nl/personal/bmoonen/BookAV/LineBund.pdf may be recommended.

5Two line bundles L1 and L2 are algebraically equivalent L1 „ L2 if there is a line bundle ĂL on A ˆ B, where B
connected, such that

L |Aˆtb1u “ L1 , L |Aˆtb2u “ L2 ,

for some b1, b2 P B. You should check that this is an equivalence relation and

L1 „ L 1
1,L2 „ L 1

2 ñ L1 b L2 „ L 1
1 b L 1

2 .
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2.9

Let L P PicpAq be homogeneous, that is, ϕpL , aq “ 0 for all a P A. Let

p1, p2,m : A2
Ñ A

be the two projections and the multiplication map. Prove that

p˚
1L b p˚

2L “ m˚L ,

and conclude
H

‚
pL q b H

‚
pL q “ H

‚
pL q b H

‚
pOAq .

Since dimH0pOAq “ 1, it follows that
dimH0

pL q P t0, 1u .

Show that in first case H ipL q “ 0 for all i, while in the second case L is trivial.

2.10

Show that any L P Pic0pAq is homogeneous. We will see a converse to this statement below in Problem
2.14

2.11

For an elliptic curve E, check the exact sequence

0 Ñ Pic0pEq Ñ PicpEq
deg

ÝÝÝÝÝÑ Z Ñ 0

and identify Pic1pEq, and hence Pic0pEq with E itself.

Prove that for any B and any line bundle ĂL on E ˆB whose restrictions to the E-fibers has degree 0 and
whose restriction to 0 ˆ B is trivial, there is a map f : B Ñ E such that

L “ pid ˆ fq
˚P

where P is the following line bundle on

P “ OpdiagE ´ E ˆ t0u ´ t0u ˆ Eq

on E ˆ E. This realizes E as the dual abelian variety E_ “ E, and P as the Poincaré line bundle on
E ˆ E_.
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2.12

For an abelian variety of the form A “ En prove that

A_
– A ,

and construct the Poincare line bundle.

2.13

For elliptic curve E, define the Fourier-Mukai transform

Φ : DbCohE Ñ DbCohE

by the equality
F ÞÑ p1,˚ pP b p˚

2pF qq

where p1, p2 : E
2 Ñ E are the two projections and the pushforward p1,˚ is derived. Show that

Φ2
“ ppullback by a ÞÑ ´aq r´1s ,

where r´1s denotes the cohomological shift of a complex by one step to the right. In particular, Φ is an
equivalence. Generalize to an abelian variety of the form A “ En.

2.14

Let L be a homogeneous line bundle on A “ En which is not in Pic0pAq. Using the results of problem
2.9, show that ΦpL q “ 0 and derive a contradiction. This proves that

L P Pic0pAq ô ϕpL ,—q “ 0 .

Prove the exact sequence

0 Ñ Pic0pAq Ñ PicpAq
ϕpL ,—q

ÝÝÝÝÝÝÝÝÑ HomsymmetricpA,A
_

q Ñ 0 , (4)

where symmetric means ϕ : A Ñ A_ is equal to the pullback map ϕ_ : Pic0pA_q “ A Ñ Pic0pAq “ A_.

2.15

The sequence (4) is true for all abelian varieties, not just those of the form A “ En, but the proof is more
involved. It shows that the map ϕpL ,—q is the correct multivariate generalization of the degree.

What is the degree of the Poincaré bundle on E ˆ E ? What is the degree of the line bundle on A “ En

whose section spzq is given by

spzq “
ź

θpcµz
µ
q
mµ

where zµ “
śn

i“1 z
µi

i , cµ P Cˆ, and mµ P Z . When does such expression give a rational function on A ?
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3 Krichever’s proof of rigidity of the elliptic genus

3.1

We begin with a discussion of how to read and interpret localization formulas. Let V be an equivariant
vector bundle on X. Define

Λ
‚

tV “
ÿ

n

p´tqnΛnV , S
‚

t “
ÿ

n

tnSnV ,

where we interpret the second expression as an element of KGpXqrrtss. Check that6

Λ
‚

tV b S
‚

tV “ 1 .

3.2

Let V P KpXq be a vector bundle and assume that dimQ KpXq b Q is a finite-dimensional vector space
over Q. Prove that all eigenvalues of the operator of tensor product by V in KpXq b Q are equal to
rkV . Moreover, these operators commute for different bundles V1, V2. Conclude that all eigenvalues of the
operator bΛ‚

tV are equal to p1´ tqrkV , and hence this operator is invertible as a rational function in t with
a pole at t “ 1. As t Ñ 0,8, we have

pΛ
‚

tV q
´1

„ 1, t Ñ 0, pΛ
‚

tV q
´1

„ t´ rkVΛtopV ˚, t Ñ 8 .

What does this say about series of the form

χpX,F b S
‚

tV q P Zrrtss

where F P KpXq is arbitrary ?

3.3

What is the equivariant analog of the results in problem 3.2 ?

3.4

We abbreviate
ϕpzq “

ź

ną0

p1 ´ qnzq

6you may want to interpret this equality in terms of the Koszul resolution of structure sheaf O0 of the zero section of V ˚

10



and define Krichever genus by

EypXq “ χ

ˆ

X,
θpy b TXq

ϕpTXqϕpT ˚Xq

˙

y P Cˆ .

Here X is compact complex or, more generally, a stably almost complex manifold. Assuming there is S1-
action on X, write make the equivariant localization formula for EypXq explicit. Determine the possible
singularities of EypXq as a function on the complexification Cˆ of the group S1.

3.5

Consider the canonical bundle KX “ ΛtopT ˚X. Assume that KX admits, equivariantly, a root of order N
and that yN “ 1. (This includes the case when KX is trivial and y is arbitrary.) These are the assumptions
in the rigidity theorem for EypXq. Show that, with these assumptions, EypXq is invariant under t ÞÑ qt,
that is, a function on E “ Cˆ{qZ.

3.6

For any n “ 1, 2, . . . , let µn P S1 be the group of elements of order n, and let Xn be the fixed locus of
µn. Show that it is a smooth and (stably, almost) complex. Denote by Nn the normal bundle of Xn in X.
Check that

EypXq “ χ

ˆ

Xpnq,
θpy b TXnq

ϕpTXnqϕpT ˚Xnq

θpy b Nnq

θpNnq

˙

.

Conclude that EypXq is regular at all points of order n in E and, hence, a constant.

Solutions and hints

11


	Problems for the 2024 Summer school
	Grassmannians and Chern classes
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Elliptic functions and elliptic curves
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Krichever's proof of rigidity of the elliptic genus
	
	
	
	
	
	


	Solutions and hints

