Problems for the 2024 Summer school

1 Grassmannians and Chern classes
1.1

Check that the elementary symmetric function eg(z1, x9,...) is the unique symmetric function of degree
k such that
ek(xlw'-yxkyo,o,o,...) =TT Tk -

1.2

Let c¢(V,t) = >,o0 tkck(V) denote the Chern polynomial of a vector bundle V. Prove that for any
subbundle V' < V' we have
c(Vit) =c(V' 1) c(V/V' 1).

1.3

Compute the Chern classes of the tangent bundle to P™. Here and below all projective spaces, Grassman-
nian, flag varieties etc. denote the corresponding complex manifolds.
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Let M < P™ be a smooth (complex, as always) hypersurface of degree d. Consider the exact sequence of

the vector bundles
0—-TM —TP"
M

— NP"/M —0

on M, where Npn/ys is the normal bundle. Check that

Nowjar = Gpn(d)|

M

and conclude a formula for the Chern classes of M. In particular, when is ¢;(M) = 0 ? What is the
topological Euler characteristidl] of M ? What is the genus of the curve M when n = 2 ? Compute

SM C1 (M)nfl .

!By the Lefschetz hyperplane section theorem, this is equivalent to knowing the dimension of H™iddle(Af)




1.5

Consider the Grassmannian X = Gr(k, n). Its points correspond to linear subspaces V' < C" of dimension
k. Consider the set of pairs

{(V,v), such that v e V} c Gr(k,n) x C". (1)

Check that the LHS in is a vector bundle of rank k over X, called the tautological subbundle of the
trivial bundle in the RHS of . By a slight abuse of notation, we denote this tautological bundle by V.
Check that

TX =V*®(([C"/V),

where V* denotes the dual bundle and C"/V is the tautological quotient bundle. Express ¢;(7°X) and
c2(T'X) of the tangent bundle TX in terms of the Chern classes of V. If you are familiar with the language
of symmetric functions, propose a formula for ¢ (TX).

1.6

Consider the product X x X, where X = Gr(k,n) as in Problem . On X x X we have two tautological
bundles V; and V5, pulled back from the two factors. Consider the composed map

Vi —C"—C"/V;.
Show this section of (C"/V3) ® V;* vanishes precisely over the diagonal in X x X, in other words, the top
Chern class of (C"/V,2) ® Vi* is the class
Ae H*3mX (X x X)

of the diagonal. Consider the operation

Pa iy = P (AUups(y))

from H*(X) to H*(X), where p; and p, are the projections of X x X to the respective factors. Show that
® 5 is the identity map. Conclude that the cohomology of X is generated by the Chern classes of V.

What is the K-theory analog of these statements ?

1.7

The group GL(n) acts on X = Gr(k,n) via its defining action on C". Describe the orbits of the subgroup
U < GL(n) formed by lower-triangular matrices with 1s on the diagonal. Show that each orbit contains a
unique fixed point for the subgroup

A = diag(ay,...,a,)
to which all other points are attracted when a;/as, as/as, -+ — oo . The orbits are called the Schubert
cells and their closures are called Schubert varieties G,. They are naturally indexed by partitions A that
fit into k x (n — k) rectangle. Show they form a basis in integral homology or cohomology of X.
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1.8

Show that Schubert cycles Gy for the subgroup U, of upper-triangular matrices form a basis dual to the
basis of Schuber cycles. Translate the equality

Crop(V* ® (C"/12)) = Y [6,] B [65] € H' (X x X)
A

into an identity of symmetric functions.

1.9

Compute the Poincaré polynomial of Gr(k,n) and compare it with number of points of Gr(k,n) over a
finite field with ¢ elements.

1.10

For X = P"~! = Gr(1,n), Schubert classes &;, I = 0,...,n — 1, form a chain
prlospr2o5...opritl o

cut out by the equations x; = --- = x; = 0. Here x; are the homogeneous coordinates, or more precisely

the components of the natural map

In particular, each individual coordinate x; is a A-equivariant map

ﬁx®a;1 i ﬁ(l)x,

and so its zero locus represents the class ¢ + «;, where £ = ¢;(0(1)) and «; € Hi(pt) corresponds to the

character a;. Therefore
!

(&1 = [](€+ o) € HA(X). (2)

i=1
1.11
Verify that the polynomial is characterized by the following Newton interpolation properties:

e it has degree [ in the variables £ and q, corresponding to the fact that [&;] € H?(Gr) ,

e its restriction to A-fixed points not in &; vanishes |,



e its restriction to the A-fixed point in the Schubert cell equals the Fuler class of the normal bundle
to the Schubert cell.

Generalize this reasoning to compute the classes of the Schubert cells in the Gr(k,n). Your answer should
look like a Schur function in the Chern roots &1, . .., & of the universal bundle, in which the monomials 5;
are replaced by univariate interpolation polynomials of the form . Those unfamiliar with Schur functions
will discover them for themselves by solving Problem

1.12

Generalize the results of Problems and to equivariant K-theory.

1.13

Let G be the group GL(n,C), B < G be the subgroup of the upper-triangular matrices and y : B — C* a
character. Consider holomorphic, or meromophic, functions f(g) of g € G which satisfy

fgb) = f(g)x(b) ,¥be B.
Interpret them as sections of a holomorphic line bundle %, on flag manifold
Flags, = G/B = U(n)/diagonal matrices.

Compute the Euler characteristic x(.%) by equivariant localization. Compare your result with the Weyl
character formula for G and explainﬂ this comparison using the Peter-Weyl decomposition

ClGl= P V'RV, as G x G-modules.

irreps V'

1.14

Let % be a complex line bundle with a connection V and corresponding curvature F € Q?(X,C). Show
that, nonequivariantly, the form ;-F represents ¢;(). For an equivariant generalization, see Chapter 7
in |[?Berline-Getzler-Vergne|.

For a rank 7 vector bundle V, the curvature form is matrix-valued, that is, F' € Q*(X,End V). Show that

Dtk (V) = det (1 + iF) ,
- 2

nonequivariantly.

For a simple proof of fact that at most one cohomology group of .%, is nonvanishing see |[?Demazure
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2 Elliptic functions and elliptic curves
2.1

Consider holomorphic functions f(z) of z € C* solving the g-difference equation

flgz) = 2™ f(2), (3)

where ¢ is a fixed complex number such that |g| < 1. Compute the dimension of the space of solutions as
a function of d (and ¢, for d = 0) in two ways: first by analyzing the Laurent series expansion of f, and
then by using the Riemann-Roch formula for the complex elliptic curve £ = C* /g% .

2.2

Consider the functionf|

and check that is solves the equation
0(qz) = —q '2710(2) .

Prove that a general solution of has the form

f(z) = constH@(z/wi) : Hwi = (—¢)%.

Interpret this result as saying that two divisors

d d
Z w;, Z w) e S'E
-1 i1

are linearly equivalent if and only if [Jw; = [Jw! in E, that is, modulo ¢%. In other words, the natural
map
S'E — Picy B~ E

is from divisors to line bundles of the same degree is given by the multiplication in the group E. Its fibers
are projective spaces for d > 0.

3In many, many contexts, it is more convenient to use a different normalization of the theta function, namely

I(z) = 21%0(z) = (212 — 271/?) H(l —q"2)(1—q"2z7 ).

n>0

It has a series expansion in half-integer powers of z, that is, satisfies ¥(e*™z) = —9(2). It is still the unique, up to multiple,
section of the line bundle @ (e), where e = 1 € E = C*/¢% is the identity, just for a different trivialization of the pullback of
this line bundle to C*. The extra convenience of using 9(z) is due to its anti-symmetry J(z71) = —9(z).



2.3

Let f(z) be a meromorphic function on E, equivalently a rational function on the algebraic variety F.

Show that is has the form
< 0(z/a;)
= t L
f(2) = cons H 90/

for some values of a; and b;, where [[a; = [[b; in E, that is, modulo ¢*.

2.4

By cutting partitions A along the diagonal, prove that

n>0

Zq’\ = coefficient of 2° in 1_[(1 + g 2 (1 4+ V2.
A

Deduce that ,
Dl == )+ ¢ )1+ "2,

nez n>0

which is one of the equivalent forms of the Jacobi triple product identity, and of the Macdonald identity
for the Lie algebra s[(2). Note this means

PCHRISRERION SEETD

and compare the rate of convergence of two sides.

2.5

Let I' = C be a lattice and x € C be a complex number. Form the following product

2
J(x)zxn(l—z)exp(va%),
0#yel v T

known as the Weierstrass o-funciton, and show that it represents an odd entire function of . Consider a

vector v € ['\2I", which means
o(7/2) = —a(7/2) # 0.

For such vector v, prove that
o(x +7)
o) = —exp(n,(z +7/2))

for some constant 1, € C. Express the function o(x) in terms of the theta function of the elliptic curve

E=CJT.



2.6

Given a lattice I" as in Problem [2.5] its holomorphic Eisenstein series are defined by

Eisenstein(I',n) = Z Y,
0#£~el

which converges for n > 2 and vanishes for n odd. Relate these series to Ino(z) and express them in terms
of the parameter ¢ in the isomorphism F = C/T" =~ C* /¢%.

2.7

The theorem of the cube refers to various generalizations of the following basic statement. Let X and Y
be complete algebraic varieties over a field k, and let Z be an arbitrary variety over k. Let x € X, y e Y,
z € Z be k-points. Let .Z be a line bundle over X x Y x X. If .Z is trivial when restricted to {z} x Y x Z,
X x {y} x Z,and X x Y x {z}, then .Z is trivial. Find or read [ a proof of this or any related statement.
In the example X =Y = FE, check that the corresponding statement for two factors is false.

2.8

Let A be an abelian variety, which for our purposes we will always assume to be of the form A = E". Let
Pic(A) denote the Picard group of line bundles on A and let Picy(A) be the subgroup of line bundles that
are algebraically equivalent to zero H Consider the map

¢ : Pic(A) x A — Picg(A)

that takes
(&, a) — (translation by a)*Z ® £ *.

Prove this is a group homomorphism, which is one of the forms of the theorem of the square.

4there are many sources for reading about this result, which goes back to A. Weil, with a classical exposition by Mumford.
Among online resources, https://www.math.ru.nl/personal/bmoonen/BookAV/LineBund.pdf/ may be recommended.

5Two line bundles .2, and .%, are algebraically equivalent % ~ % if there is a line bundle 2 on A x B, where B
connected, such that
Llaxiy =24, Llaxp,y =22,

for some by, by € B. You should check that this is an equivalence relation and

$1~${,$2~$2/ = $1®$2~$1/®$2/


https://www.math.ru.nl/personal/bmoonen/BookAV/LineBund.pdf

2.9

Let . € Pic(A) be homogeneous, that is, ¢(Z,a) = 0 for all a € A. Let
p1,pe,m: A2 — A
be the two projections and the multiplication map. Prove that
L Qpy L =m'Z,

and conclude

H(ZL)QH (¥Y)=H(ZL)QH (0,).

Since dim H%(04) = 1, it follows that
dim H°(.Z) € {0,1}.

Show that in first case H'(.#) = 0 for all ¢, while in the second case .& is trivial.

2.10

Show that any . € Pico(A) is homogeneous. We will see a converse to this statement below in Problem

214

2.11

For an elliptic curve F, check the exact sequence

deg

0 — Pico(E) — Pic(E) Z—-0

and identify Picy(F), and hence Picy(E) with E itself.

Prove that for any B and any line bundle Z on E x B whose restrictions to the E-fibers has degree 0 and
whose restriction to 0 x B is trivial, there is a map f : B — E such that

L =(@{dx f)*&»
where & is the following line bundle on
P = 0O(diagE — E x {0} — {0} x E)

on E' x E. This realizes E as the dual abelian variety EY = E, and & as the Poincaré line bundle on
Ex EY.



2.12

For an abelian variety of the form A = E™ prove that
AV = A,

and construct the Poincare line bundle.

2.13

For elliptic curve E, define the Fourier-Mukai transform
®: D'Coh E — D"Coh E

by the equality
T = pry (P Qpy(F))

where py,ps : E* — F are the two projections and the pushforward p; , is derived. Show that
®? = (pullback by a — —a)[~1],

where [—1] denotes the cohomological shift of a complex by one step to the right. In particular, ® is an
equivalence. Generalize to an abelian variety of the form A = E™.

2.14

Let .Z be a homogeneous line bundle on A = E™ which is not in Picy(A). Using the results of problem
2.9 show that ®(.#) = 0 and derive a contradiction. This proves that

£ €Picy(d) = ¢(L,—)=0.
Prove the exact sequence

0 — Picy(A) — Pic(A) —2ZL)

where symmetric means ¢ : A — A" is equal to the pullback map ¢¥ : Picg(AY) = A — Picy(A) = AY.

Homsymmetric <A7 AV) - O ) (4)

2.15

The sequence is true for all abelian varieties, not just those of the form A = E™, but the proof is more
involved. It shows that the map ¢(.Z,—) is the correct multivariate generalization of the degree.

What is the degree of the Poincaré bundle on F x E 7 What is the degree of the line bundle on A = E"
whose section s(z) is given by

s(2) = [ [0(cuz)™

where 2# =[]\, 2/, ¢, € C*, and m, € Z. When does such expression give a rational function on A ?
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3 Krichever’s proof of rigidity of the elliptic genus
3.1

We begin with a discussion of how to read and interpret localization formulas. Let V' be an equivariant

vector bundle on X. Define
NV =D (=t)"A"V, Sp= ) t"S"V,

where we interpret the second expression as an element of K¢(X)[[t]]. Check that]

NV RSV =1.

3.2

Let V e K(X) be a vector bundle and assume that dimg K (X) ® Q is a finite-dimensional vector space
over Q. Prove that all eigenvalues of the operator of tensor product by V in K(X) ® Q are equal to
rk V. Moreover, these operators commute for different bundles V7, V5. Conclude that all eigenvalues of the
operator @A}V are equal to (1 —¢)"™*" and hence this operator is invertible as a rational function in ¢ with
apoleatt=1. Ast — 0,00, we have

AV P~ 1, t—0, (A V)~ VAP s oo,
What does this say about series of the form
X(X, .7 ®S51V) e Z[[t]]

where . € K(X) is arbitrary 7

3.3

What is the equivariant analog of the results in problem [3.2] 7

3.4

We abbreviate

o(z) =[] - q")

n>0

Syou may want to interpret this equality in terms of the Koszul resolution of structure sheaf & of the zero section of V*
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and define Krichever genus by

e C*.

O(y@TX)
) = x <X’ ¢<TX>¢<T*X>)

Here X is compact complex or, more generally, a stably almost complex manifold. Assuming there is S!-
action on X, write make the equivariant localization formula for &,(X) explicit. Determine the possible
singularities of &,(X) as a function on the complexification C* of the group S*.

3.5

Consider the canonical bundle .#x = A*PT*X. Assume that #x admits, equivariantly, a root of order N
and that y¥ = 1. (This includes the case when ¥y is trivial and y is arbitrary.) These are the assumptions
in the rigidity theorem for &,(X). Show that, with these assumptions, &,(X) is invariant under ¢ — gt,
that is, a function on E = C* /¢%.

3.6

For any n = 1,2,..., let u, € S* be the group of elements of order n, and let X,, be the fixed locus of
fn. Show that it is a smooth and (stably, almost) complex. Denote by N,, the normal bundle of X, in X.

Check that Oy®TX,) Oy®N,)
_ (n) y n v
&y(X) X(X "o(TX,)p(T*X,)  O(N,) >

Conclude that &,(X) is regular at all points of order n in E and, hence, a constant.

Solutions and hints
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