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Andrei Okounkov

Research

My research is on the crossroads ofmathematical physics, probability theory, representation
theory, and algebraic geometry. Below is a very brief description of some of my results in the
chronological order. This cannot possibly serve as a survey of the areas of mathematics to
which these papers belong1. I will skip over a very large fraction of my own papers, despite
the fact that I have put a lot of thought and work into writing each one of them and I believe
none of them deserves obscurity.

In my PhD thesis [79, 86], I completed the program of the classification of admissible rep-
resentation of the infinite symmetric group S(∞) initiated by G. Olshanski in [126]. This in-
cludes representations with a trace, and hence gives a new proof (in fact, several new proofs)
of the classical description of the characters of S(∞) obtained originally by E. Thoma [131]
and later A. Vershik and S. Kerov [133] by different means. So, as a special case, this gives
new proofs of the classification of the so-called totally positive, or PF, sequences — a classi-
cal result in analysis to which G. Polya, I. Schoenberg, A. Edrei, and others have contributed
[103,107].

In a sequence [32, 65, 68, 73, 78] of papers with Olshanski we realized the Vershik-Kerov vi-
sion of asymptotic spherical function theory for all infinite series of Riemannian symmetric
spaces. In fact, we did it for general special functions of Heckmann-Opdam type as their
ranks grows to infinity.

A number of new technical ideas from that work had an impact in rather distant areas of
mathematics. For instance, convex bodies, now known as Okounkov bodies, were intro-
duced originally in [69, 81] to prove inequalities on multiplicities of irreducible representa-
tions. Subsequently, they have become a very popular tool in a wide range of contexts
ranging from differential geometry to number theory.

Similarly, multivariate interpolation polynomials introduced by Olshanski and me [73,78] be-
came a very popular and powerful tool to work with Macdonald polynomials and their gen-
eralization. In particular, the general “binomial” formula proven in [74] sheds light on the
most difficult properties of Macdonald polynomials, see for instance the short note [54]
for a demonstration and [127, 128] for the current state of art in the subject. The binomial
formula also plays the key role in the asymptotic analysis.

Also from my graduate years, the inductive approach to constructions of representations
of symmetric group that became known as the Okounkov-Vershik approach [80] has been
applied in many other situations, and is subject of several monographs.

An important theme in my research are the interactions between probability and represen-
tation theory, in which objects like random partitions, random permutations, and random
matrices show both their probabilistic and algebraic sides. A good example may be my work
on the conjecture of Baik, Deift, and Johansson [105] (BDJ), a work which had a certain
resonance in the community and has been highlighted in the popular articles written about
my Fields Medal. The conjecture states that the distribution of increasing subsequences in

1References after [100] refer to the necessarily very abbreviated bibliography at the end of this narrative.
Please turn to my papers cited for a comprehensive set of references.
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a very large random permutation is, up to normalizations, the same as the distribution of
largest eigenvalues of a random Hermitian matrix.

I gave two proofs of the BDJ conjecture. In the first one [63], random permutations are
connected to random matrices through an intermediate object, a random branched cover
of the sphere, an object which turns out to be closely related to random tessellations of
surfaces and random trees.

As one of the ramifications of techniques introduced in [63], R. Pandharipande and I gave
a proof [26] of Kontsevich’s combinatorial formula for intersection number on the moduli
spaces of pointed curves [116]. This formula is the key step in the argument leading to the
proof of the Witten conjecture — a result very much celebrated by the community. Witten’s
conjecture was stimulated by a comparison between different theories of 2-dimensional
quantum gravity and computes the intersection numbers in terms of a certain particular
solutions to the Korteweg-de Vries hierarchy [134]. It is the point of departure for many
interactions between enumerative geometry and integrable systems/representation the-
ory discussed below. Other proofs of the Witten conjecture were subsequently found by
M. Mirzakhani [118] and S. Lando and M. Kazaryan [115]. The latter proof very elegantly
exhibits the problem as a special case of a more general and richer problem of the Gromov-
Witten theory of P1, and of the Toda equations there, proven in various degrees of generality
in [41,61]. A detailed proof of combinatorial formula along the lines originally envisioned by
Kontsevich was subsequently given by D. Zvonkine in [135].

If we replace random covering of the sphere by coverings of the torus, we get into the
domain studied by S. Bloch and me. Our formula [57, 64] for the character of the infinite
wedge representation may be interpreted, among other things, as an explicit enumeration
of branched covers of the torus by their ramification type. This was used by Eskin and me
to compute the asymptotics of these numbers and thereby compute the volumes of various
moduli spaces of flat surfaces [59]. These computations enter crucially into many formulas
of Teichmuller dynamics, which is an area of rapid growth in dynamical systems.

A different proof of the BDJ conjecture was subsequently given by me in collaboration with
Borodin andOlshanski in [62]. The route taken in that paper is very different. It goes through
seeing both increasing subsequences in random permutations and eigenvalues of a random
matrix as two different instances of the same general notion of a determinantal point pro-
cess. Determinantal and pfaffian point processes encompass many other objects of central
importance in probability and mathematical physics, such as perfect matching or dimer con-
figurations on planar graphs. The ideas of [62] were subsequently expanded in my papers
[45,53,57]. These papers introduce the notion of a Schur measure and a Schur process, re-
spectively, and give general formulas for the n-point correlation functions of these particle
systems/processes, both exact and asymptotic. Statements like the BDJ conjecture, or its
process version, become simple corollaries of these techniques.

Dimer models on periodic planar graphs, another instance of a determinantal process, were
the subject of a sequence of papers [29,38,39] of R. Kenyon and I, also joint with S. Sheffield
in the first issue. There are two principal results in this sequence of papers. The first con-
cerns the surface tension for the dimer models (which may be interpreted as random surface
models via their associated height functions). In [39], we identify these functions, and their
singularities (which are, from the mathematical physics point of view, some of their most
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important characteristics) in terms of the geometry of certain real algebraic curves, the
“spectral curves” of the model. Interestingly, the singularities persist outside of a small res-
onant sets of parameters and this corresponds to spectral curves being very special real
algebraic curves known as Harnack curves. Here, the information flows both ways between
probability theory and real algebraic geometry. For example, R. Kenyon and I showed in [38]
that the set of Harnack curves is connected (and, in fact, contractible), which was an open
question in real algebraic geometry.

The second main result of Kenyon and I is an explicit construc-
tion of surface tension minimizers (and thus limit shapes, that
is, law of large numbers configurations) in terms of algebraic
geometry [29]. The essense of this result may be illustrated by
the rather popular image from [47]. It shows a random stepped
surface spanning a given frame of 8 segments. One can really
see the cardioid, both its real points as the frozen boundary
and its complex points as the disordered region. The picture
appears e.g. as theWikipedia image for theNotices of the AMS.

The idea of a formation of a limit shape in a counting prob-
lem, and its determination in terms of real algebraic geometry,
played the key role in my paper [44], joint with N. Nekrasov. In
the 90s, Seiberg and Witten had a remarkable physical insight that allowed them to guess
the low-energy description of certain supersymmetric gauge theories in terms of periods of
a particular family of hyperelliptic curves [130]. Nekrasov proposed a direct gauge-theoretic
derivation of this result through what can be described as the thermodynamics of a gas of
instantons [124]. By localization, this may be also seen as a random partition problem, which
was completely solved in [44]. The curve of Seiberg and Witten appears very directly as the
limit shape in the random partition problem, just like the cardioid in the above image. Google
Scholar thinks this is my most influential work since it has counted 1142 citations for it the
last time I checked.

A quantization of these limit shapes, which involves a noncommutative deformation of the
curve responsible for the limit shape, allows to describe the fluctuations around the limit
shape in all orders of the expansion in the inverse size of the system [1]. Quasiperiodic
phenomena in this expansion were connected by E. Rains and me to remarkable dynamical
systems [17] which are vast generalizations of the Sakai’s elliptic Painleve equations and
thus also of the ubiquitous differential equations from Painleve’s list.

Counting branched covers of the sphere and of the torus, proof of Kontsevich’s formula, etc.
above can all be seen as special cases of enumerative geometry of maps from one Riemann
surface to another, known as the Gromov-Witten (GW) theory of curves (which, in turn, is
a very special case of the more general enumerative theories of curves to be discussed
below). Here, and in several instances below, the word “theory” is traditionally used in the
theoretical physics sense of the word, that is, to denote a framework in which something
could be, in principle, computed and well-defined questions may be asked. In other words,
translated to the usual language of mathematics the word “theory” should read “an infinite
set of challenging questions”.

A complete answer to all question in the Gromov-Witten theory of curves has been obtained
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in a sequence [40–42] of papers by R. Pandharipande and me. This includes a proof of
the 2-Toda equations in the equivariant Gromov-Witten theory of P1, which is the natural
generalization of KdV equations of Witten, previously conjectured based on the insights of
T. Eguchi and his collaborators [108, 109]. It also includes the proof of (a generalization)
of the Virasoro constraints in the Gromov-Witten theory of curves. An important feature
of our description is that it is effective and is given in the standard operator language of
mathematical physics. For instance, the 2-Toda equation follow from such description, and
the work of the Kyoto school [119], in a very transparent way. The explicit nature of our
answers made it a basis of many further computations.

General question in Gromov-Witten theory concern the enumerative geometry of maps from
a variable source curve C (or Riemann surface) to a fixed complex manifoldX . This is closely
related to the study of the supersymmetric sigma-model with target X coupled with the 2-
dimensional gravity in the domain C, and thus has received a very significant influx of ideas
from modern theoretical physics.

One particular such idea, known as the “topological vertex”
was proposed by Aganagic, Klemm, Marino, and Vafa based on
conjectural connections between curve counts in a Calabi-Yau
3-fold X and knot invariants [102]. Reshetikhin, Vafa, and I
linked this conjecture with the earlier work [53] of Reshetikhin
and I, and with the geometry of the Hilbert schemes of curves
inX . Concretely, in [43] we showed that the topological vertex
enumerates 3-dimensional partitions with infinite legs ending
on three given 2-dimensional partitions. We also matched that
data to torus-fixed points in the Hilbert scheme of curves in
C3.

This was a very important input into the sequence of papers [35, 36] by Maulik, Nekrasov,
Pandharipande, and me, usually abbreviated MNOP. In these papers, in which the term
“Donaldson-Thomas” theory (DT) was coined, a very general conjectural correspondence
was proposed between fully equivariant Gromov-Witten counts for a quasi-projective 3-fold
X (which need not be Calabi-Yau, or otherwise restricted) and enumerative geometry of
sheaves on X (such as 1-dimensional ideal sheaves) of the kind studied by Richard Thomas
in [132] as an extension of Donaldson’s theory for Kähler surfaces. The correspondence is
very powerful but not direct: it equates generating functions after an exponential change
of the variable, thus producing e.g. all-genera Gromov-Witten counts in any given degree.
It would be fair to say that the MNOP conjectures shaped a lot of subsequent research in
enumerative geometry.

Gromov-Witten theory strongly depends on the dimension of the target X and exhibits a
certain periodicity by which the counts in dimensions 1 may be directly seen as a special
case of counts in dimension 3. Our earlier results with Pandharipande may be thus seen as
an organic part of the GW=DT framework. Extending these earlier results, R. Pandharipande
and I completed the proof the correspondence in the case when X is a rank 2 bundle over
a curve in [24].

A key technical step for this proof was the determination of the quantum cohomology of the
Hilbert scheme of points of C2 in [25]. Quantum cohomology is a deformation of the prod-
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uct structure on the cohomology of X that takes into account the enumerative geometry
of rational curves in X . Enumerative theory of sheaves on any fibration is related to the
maps from the base to the moduli spaces of sheaves on the fiber, and this relation becomes
partially tight if the base is 1-dimensional and the fiber is a symplectic surface such as C2.
Equivariant quantum cohomology of the Hilbert scheme of point of C2 was completely and
effectively described in [25], and this served as key input in the DT theory of fibrations and
into the subsequently developed (by D. Maulik and me) theory of quantum cohomology of
Nakajima varieties [121], of which Hilb(C2) is an example.

A further development of these ideas lead Maulik, Oblomkov, Pandharipande, and me to the
proof of the GW=DT correspondence for arbitrary toric 3-folds [21]. As a very particular
special case, this gave a proof of the topological vertex formula of [102]. Extending that
formula, our results imply, among other things, that the above partition counts, taken with
natural weights, reproduce general triple Hodge integrals over the moduli spaces of curves
— a vast generalization of the generating functions that satisfy the KdV and Toda equations.
The exact quantum group solution of the DT theory to be discussed below gives one an
excellent control over all such counts.

The direction of research started in my work with Pandharipande on the quantum coho-
mology of Hilb(C2), was continued in our work with D. Maulik on quantum cohomology of
general Nakajima varieties X . The motivations for this continuation were multifold. Very im-
portantly, in the context of supersymmetric gauge theories, Nekrasov and Shatashvili had
a pioneering insight that connected the quantum cohomology of certain moduli spaces of
vacua (of which Nakajima varieties are examples) with Bethe Ansatz and other fundamental
structures of quantum integrable system.

On the other hand, Bezrukavnikov and I conjectured a precise link between the quantum
differential equation for a symplectic resolution X , and its monodromy, with the derived
equivalences ofX constructed by Bezrukavnikov and Kaledin in their study of quantizations
of equivariant symplectic resolutions2. Since my work with Braverman and Maulik [22] on
quantum cohomology of T ∗G/B, it has become clear that quantum cohomology of symplec-
tic resolutions has certain general powerful features that make the methods of geometric
representation theory directly applicable to enumerative problems.

By design [121,122], Nakajima varieties provide a geometric realization of representations of
certain quantum groups, which are precisely the objects at the heart of quantum integrable
systems. However, to describe the quantum cohomology of an arbitrary quiver variety, these
quantum group actions were insufficient, andMaulik and I had to rethink the whole paradigm
of geometric representation theory to get away from actions defined by an explicit assign-
ment of correspondences to generators. Our theory of stable envelopes provides a geomet-
ric construction of a tensor structure on equivariant cohomology and equivariant K-theory
of Nakajima varieties, thus turning them geometrically into modules over a certain quantum
group. That Maulik-Okounkov quantum group is typically much larger than the Kac-Moody
construction of Nakajima. For these larger quantum groups, Maulik and I give a represen-

2The quantum differential equation, or the Dubrovin connection, is a remarkable flat connection with base
H2(X) and fiber H∗(X), which packages the enumerative data of rational curves in X . Equivariant symplectic
resolutions form a very special class of algebraic varieties which is rapidly gaining importance in algebraic
geometry and geometric representation theory. They include e.g. cotangent bundles T ∗G/P of homogeneous
projective varieties and all Nakajima quiver varieties.
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tation theoretic description of quantum cohomology of the precise shape conjectured by
Nekrasov and Shatashvili from one side, and Bezrukavnikov and his collaborators — from
the other. The technical constructions and steps that make the proof work take over 200
pages of the book [8] by D. Maulik and me.

As one of the many applications of the techniques developed in [8], we prove several con-
jectures proposed by Alday, Gaiotto, and Tachikawa (AGT) in [101], which is a paper that had
a significant resonance in both mathematics and physics literature. Note the AGT conjec-
tures concern the usual, classical cohomology of the moduli spaces of instantons, and not
its quantum cohomology which has also been sorted out completely in [8].

Among the AGT conjectures, the one that identifies the Ext-operator as a vertex operator
for certain W-algebras presented a particular challenge. This operator is defined by the
kernel Ext∗(F1,F2) on the product of two moduli spaces of sheaves. It is often called the
Carlsson-Okounkov operator, because it was introduced and computed in [20] for rank 1
sheavesFi on an algebraic surface. In [19], we extended the results of [20] to K-theory and
also gave a very useful general factorization of the Ext-operator in terms of the operator
corresponding to the universal sheaf. A decisive general progress on the Ext-operator has
been obtained by A. Neguţ, see in particular [123] for the geometric representation theory
description of the universal sheaf operator for sheaves of arbitrary rank on an arbitrary
surface.

Stable envelopes turned out to be an exceptionally powerful and versatile tools for enumer-
ative geometry and geometric representation theory. In addition to equivariant cohomology
and equivariant K-theory, they may be defined in equivariant elliptic cohomology, as in the
work [6] of M. Aganagic and I, and in the derived category of coherent sheaves [93]. Many
of their properties are surveyed in my PCMI lectures [13]. These lectures also contain many
new results.

Using the K-theoretic version of stable envelopes, and the associated quantum group ac-
tions, A. Smirnov and I were able to compute the quantum difference equation in the K-
theory of Nakajima varieties [3]. K-theoretic quantum computations are much more delicate
and mysterious than quantum cohomology, but there is also a great geometric interest and
reward in those computation. For example, the Higgs/Coulomb duality of symplectic res-
olutions, known as the symplectic duality in mathematics, and as the 3-dimensional mirror
symmetry in physics [114], is expected to exchange equivariant quantum difference equa-
tions of dual varieties in a Langlands-like fashion.

The quantum difference equations for Hilbert schemes of points hold the key to K-theoretic
Donaldson-Thomas theory of 3-folds in the exact same way as the quantum cohomology of
the Hilbert scheme yields key computations in the traditional, cohomological, Donaldson-
Thomas theory. One can say that we have obtained a quantum group solution of the K-
theoretic Donaldson-Thomas theory in the same sense in which quantum groups solve the
Chern-Simons (CS) theory of real 3-folds, the theory that served as the main inspiration for
the early work on the DT theory. One important difference is that CS deals with ordinary
quantum groups, that is, deformations of U(g), where g is a finite-dimensional Lie algebra.
Here, by constrast, we work with object of the size of double loop groups, that is, deforma-
tions of U(̂̂g).
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In a attempt to give a mathematical description of supersymmetric membranes of M-theory
[104], Nekrasov and I proposed a set of challenging conjectures relating K-theoretic DT
theory of an arbitrary 3-fold to enumerative geometry of immersed algebraic curves in an
associated Calabi-Yau 5-fold [15]. (It is very important for this conjecture to work with in
equivariant K-theory and not in ordinary cohomology because the Kähler, that is, degree-
counting variables are traded for equivariant variables in our DT=Mcorrespondence). Now at
least one side of this conjectural equation is under excellent control. Perhaps the hardest
challenge on the 5-fold side is to find what corresponds to cutting and gluing of 3-folds,
which need not be Calabi-Yau as I already stressed previously.

Elliptic quantum groups [110] form a very important and, traditionally, very technical chapter
of representation theory. The elliptic stable envelopes of M. Aganagic and I [6] provide
a geometric construction and a geometric understanding of new and old elliptic quantum
groups in the same way as [8] dealt with Yangians etc. One of the main applications of
elliptic stable envelopes is to the computation of the monodromy of the quantum difference
equations. These difference equations include, as a special case, many important difference
equations of mathematical physics such as the quantum Knizhnik-Zamolodchikov equations
of [112]. Their monodromy is thus of great theoretical and practical interest, see e.g. [111].
By specialization, this also yield the monodromy of the quantum differential equation that
has been the subject of conjectures by Bezrukavnikov and me, see more on this topic below.

More precisely, the monodromy of the quantum difference equations in equivariant variables
was computed in [6] in terms of the elliptic R-matrices constructed ibidem. The monodromy
in the Kähler variables has the exact same form, but now involving elliptic stable envelopes
for a different group. In place of a group that acts on X , we take the group G used in the
GIT quotient construction ofX . This group is a general connected reductive group, not nec-
essarily a torus. The corresponding theory of elliptic stable envelopes has been developed
in [4, 90]. In those papers, I revisit the foundations of the elliptic stable envelopes theory
and prove their existence in uniqueness in a much broader context than the context of the
Nakajima quiver varieties treated in [6]. In addition to the computations of the monodromy
of the quantum difference equations, the results of [90] also give an integral formula for the
fundamental solution of the quantum difference equation.

It is a classical and much studied problem in mathematical physics to find integral solutions
of equations of, broadly speaking, Knizhnik-Zamolodchikov type. This subject is directly
linked with Bethe ansatz and other core issues in the analysis of exactly solvable models.
In [14], M. Aganagic and I revisit this problem from the point of enumerative geometry and
geometric representation theory. By a geometric argument, we prove very general formulas
for integral solutions. We also show, very generally, that stable envelopes give the off-
shell Bethe eigenvectors, that is, they become eigenvectors when the Bethe equations are
satisfied. This results e.g. in a general R-matrix formula for these eigenvectors. This revolu-
tionizes the technical foundations in the theory of Quantum Integrable Systems (QIS), vastly
extends the previously known results, see [129], and completes the vision of Nekrasov and
Shatashvili who first found a geometric interpretation of the Bethe eigenvalues [125] (as
opposed to eigenvectors).

The main result of [90] explicitly solves the fundamental problems on the both the enumer-
ative side and the QIS side in terms of the theory nonabelian stable envelopes developed
ibidem. These nonabelian stable envelopes are object of classical (as opposed to quantum,
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curve-counting) topology, but due to the features of elliptic cohomology they have a man-
ifest and nontrivial dependence on variables in Pic(X) ⊗ C× that are used to keep track of
degrees in curve counts. As a result, nonabelian stable envelopes explicitly and effectively
sum of those curves counts. On the QIS side, they have the role of specifying the measure
of integration for integral solutions of equations of Knizhnik-Zamolodchikov type.

Also, integral representations play a central role in [11], where M. Aganagic, E. Frenkel, and I
conjecture and prove a certain two-fold deformation of the key statement of the geometric
Langlands correspondence. We identify, with a concrete match of parameters, conformal
blocks of deformed W-algebras of Frenkel and Reshetikhin with conformal blocks of the
quantum affine Kac-Moody Lie algebras. The identification is on an arbitrary level and it
specializes to the usual statement of the geometric Langlands correspondence when the
deformation is turned off on both sides of the correspondence and the level is taken to the
classical/critical limit on the respective sides.

Categorical lifts of stable envelopes are the subject of a number of papers currently in var-
ious stages of completion. In [93], D. Halpern-Leistner, D. Maulik, and I give a construction
of stable envelopes in DbCoh(X). The braid relations that they satisfy give, in particular, a
categorical analog of the Yang-Baxter equation and should provide a basis for a theory of
categorical actions of quantum groups that is not based on explicit assignment of functors
to generators.

In [91], R. Bezrukavnikov and I prove our monodromy=derived equivalences conjecture for
the majority of known symplectic resolutions, including all Nakajima varieties. The key tech-
nical result there is that the categorical stable envelope becomes the parabolic induction
functor under the Bezrukavnikov-Kaledin equivalence [106] between DbCoh(X) and mod-
ules over a quantization of X (this also gives an independent construction of categorical
stable envelopes for symplectic resolutions).

Natural next steps in this direction will be addressed in forthcoming papers. For instance,
the Bezrukavnikov-Kaledin story is about quantizing X in characteristic p ≫ 0. From the
point of view of both theoretical physics and enumerative geometry, it is much more natural
to quantize a multiplicative analog of X as a quantum group at a root of unity. The order of
the root of unity here need not be large and it need not be prime for there to be a direct
link with the enumerative story3. Both technically and conceptually, this line of research is
closely interwoven with the work [92].

There is an aspect in which the 3-dimensional mirror symmetry of Intriligator and Seiberg
[114] is different from the more familiar 2-dimensional mirror symmetry, and also from e.g.
the geometric Langlands correspondence. For a dual pair of varieties X and X∨, it relates
objects that, while different, are naturally compatible. I thus believe it is given by an acces-
sible Fourier-Mukai kernel on L̃oop(X)× L̃oop(X∨), where tilde denotes the universal cover.
This kernel is the subject of [94]. In particular, in the Grothendieck group of the correspond-
ing category, it reduces to a remarkable elliptic cohomology class on X ×X∨, which we call
the duality interface. It has the property that restricted to the torus-fixed points in X it
gives the stable envelopes of the dual points of X∨, and vice versa. We prove the existence
of this class for many dual pairs of varieties. This implies the striking numerical predictions

3See e.g. my talk at the CMI at 20 conference for a preliminary report on this.
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of the 3d mirror symmetry, such as the exchange of the quantum difference equations in
Kähler and equivariant variables between X and X∨. In the case X = T ∗G/B, this reduces
to statements like the label-argument symmetry of Macdonald polynomials, but already for
X = Hilb(C2, n) this leads to rather dramatic new identities.

Starting with the paper[89] joint with David Kazhdan, my work and interests have branched
out in a new direction, taking aim at some fundamental questions in the theory of automor-
phic forms, and Langlands’ vision linking them to the Galois representation. Our methods
appear to be absolutely new and really powerful. Remarkably, while fundamentally geomet-
ric, they work equally well for both number fields and function fields. Already in the first
installment [89] we were able to solve spectral problems that were waiting for a compre-
hensive solution since Langlands pioneering work on Eisenstein series back in 1964, see
[117]. The Eisenstein series outputs an automorphic forms on a group G over a global field
F starting from an automorphic form on a Levi subgroup M ⊂ G. Langlands computed the
spectrum of invariant differential operators and Hecke operators acting on the Eisenstein
series in terms of residues in certain integrals of L-functions. For instance, focusing on the
most basic case when M is the maximal torus and its automorphic representation is trivial,
this is a certain rank(G)-fold integral involving the ζ-function of F. Langlands did these in-
tegrals explicitly for groups of rank 2 in [117] and found a remarkable new phenomenon for
the exceptional group G2. Classical groups were sorted out by C. Mœglin and J.-L. Wald-
spurger, see [120]. As to the exceptional groups, the program to study the corresponding
integrals was initiated by Volker Heiermann, Marcelo de Martino, and Eric Opdam in [113]4.
That remarkable program analyzes the integrals using a variety of different theoretical tools,
including also computer computations in the case E8.

Our approach with Kazhdan is very different, works uniformly for all groups, and outputs
directly the objects appearing in the multitude of influential conjectures in the subject made
by Landlands, Arthur, and probably others. The key step is to interpet Langlands’ Riemann
integral is a equivariant pushforward (in the sense of distributions) of a certain cohomology
or K-theory class on the cotangent bundle to a certain flag variety on the Galois side (this
can all be phrased in a very powerful abstract language, but effectively reduces to this). The
nilpotent elements in the Langlands dual group that are supposed to control the spectrum of
Eisenstein series indeed appear absolutely directly in our computation as we push forward
the class in question along the Springer map. The results obtained in [89] have a direct
generalization to most general Eisenstein series. This is the subject of our current ongoing
work, see [88] for the next installment in this series.
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