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Abstract

This thesis explores questions regarding complex projective plane alge-
braic curves. Any such specific curve determines three pieces of information.
It determines the curve itself, the link of the curve and the complement of the
curve. This thesis establishes strong connections between these quantities.

We use methods from 3-manifold topology to show that the complement
always determines the link. We also show that the link does not always de-
termine the curve itself, however under certain restrictions it does determine
the curve. Furthermore in the case that the link does not determine the
curve, we find an algorithm in some cases which generates all curves with
a specific link. This is the central part of this thesis and the method uses
the combinatorics of plumbed 3-manifolds which enables the computing of
finitely many associated graphs. We also explore a weaker invariant that the
link may determine. Finally we briefly explore when a curve which consists

of a union of lines determines its complement.
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Chapter 1
Introduction

A specific complex projective plane algebraic curve C' embedded in CP? de-
termines three pieces of information. Firstly it determines the topology of C'
itself, also the topology of the complement CP?\ C of C' in CP? and finally
the topology of the link L(C). The link is the boundary of a closed regular
neighbourhood of C' in CP2. (See definition 2.1.1 .)

By a specific curve C, we mean that C' can be described as the zero
set, of a particular homogeneous polynomial in three variables. Of course C'
can be decomposed into its irreducible components C, Cs, ..., C, so that C
can be thought of as a specific arrangement A of specific irreducible curves
C1,Cy,...,C,. We shall assume that C has no multiple components so that
Ci#Cjifi # 3.

Now when we think of an arrangement A of curves, we do not have any
specific equations in mind, but only the structure of how A is put together.
For example the arrangement A; being the union of the two lines y = 0 and
y = x can be considered to be equivalent to the arrangement A, which is
the union of the two lines y = 2x and y = 3x. Both arrangements are line
pairs. Thus we can speak of two specific arrangements A; and A, as being

equivalent. This motivates the following definition.
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Given two specific arrangements A;, A, of curves in CP?, construct the
immediate plumbing diagrams, Pl(A;), Pl(As) (see definition 2.1.2 ) ob-
tained by minimal resolution. For each specific arrangement A we also have
the marked plumbing diagram Mark(A), which is PI(A) with exceptional
divisors marked. We say two specific arrangements are equivalent if they
have isomorphic marked plumbing diagrams. Henceforth we shall speak of
an (abstract) arrangement A to mean an equivalence class of equivalent spe-
cific arrangements. We similarly say that the complements (respectively the
links) of two specific arrangements are equivalent if they are homeomorphic
and we shall speak of a complement (respectively a link) to mean an equiva-
lence class of equivalent complements (respectively links).

Thus given a specific arrangement A, we have three pieces of information:
e The (abstract) arrangement A.

e The complement of A.

e The link of A.

The study of curves has been of long interest. Conic sections had been
studied and classified over two millenia ago and Newton classified real cu-
bic curves. When complex projective curves began to be studied, results
like Bezout’s theorem and the well known genus formula showed that under-
standing singularities of curves is very important. Methods for understanding
singularities include the study of the complement in a small ball about the
singularity and also the resolution of singularities by blowing up. Hirzebruch
[6] and Jung [12] have shown that any complex surface singularity may be
resolved after finitely many blow ups and Hironaka [5] has succeeded in ex-
tending this to all algebraic varieties over a field of characteristic zero.

Zariski [21] was interested in the complement and its fundamental group,

in particular when the fundamental group of the complement is abelian.
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More recently Libgober [13], [14], Falk [4] and Cohen [3] have studied
the complement via its fundamental group and its homotopy type. They
have found examples of arrangements which are different but have same
fundamental group of the complement and some even having same homotopy
type of the complement.

The relationship between an arrangement and its complement has been
of interest in other contexts, particularly where the arrangement consists
solely of hyperplanes. For example in studying the motion of points in the
complex plane C one is quickly led to studying the complement of the hyper-
planes [[,, ;< (%i — ;) = 0 in C" and its fundamental group. The book
Arrangements of Hyperplanes [17] describes many of the directions in which
the study of hyperplanes has been.

In 1991, Jiang and Yau, in studying the problem of arrangements of lines
in CP?, asked if it were possible that two different arrangements could have
the same complement. They announced [10] the following result in 1993 and
a proof appeared [9] in 1995.

Theorem Within the class of arrangements of complez lines in CP?, the
topology of the complement of the arrangement determines the topology of
the arrangement itself.

(This result showed that the two nonequivalent line arrangements of Falk
[4] which had homotopy equivalent complements, actually have topologically
inequivalent complements.)

However, they nearly proved something stronger, namely for the case
of arrangements of lines, the complement determines the link and the link
determines the arrangement. This stronger result is part of what we prove
and our proofs are somewhat simpler than theirs. Our methods also lend
themselves more easily to investigating arrangements of more general type
of curves.

Section 2 revises the machinery which is needed to characterise the link.

14



The link is actually a 3-manifold which can be described by a plumbing
diagram. For this we require elements of the Plumbing Calculus [16].

In section 2.4 we prove the following theorem:

Theorem 1.0.1 (Corollary 2.4.4) The topology of the complement of any
(possibly singular or even reducible) complex curve in a two complex dimen-

stonal complex surface determines the topology of the link of the curve.

Although theorems of this type have been floating around for a while, it
seems that a proof of this general statement has not been realised until now.

Sections 3 and 4 deal with regular arrangements, that is arrangements
of non-singular curves with only pairwise transversal intersections (defini-
tion 3.1.2 ). We investigate under what circumstances the link may determine

the arrangement. We prove the following results:

Theorem 1.0.2 The topology of the link determines the arrangement for the

following classes:
1. Arrangements of lines. (Corollary 8.4.6.)

2. Arrangements of nonreducible conics in which all curves only pairwise

intersect transversally. (Corollary 3.4.7.)

3. Arrangements of non-singular curves in which all curves only pairwise
intersect transversally and in which the arrangement contains a curve

which is not a line nor a conic. (Corollary 3.4.2.)

For general regular arrangements we find that if the link does not deter-
mine the arrangement, then an axiom system results (see Theorem 3.1.3,
Axiom 4.3.2, Axiom 4.3.3 and Axiom 4.3.4) and these lead directly to exam-
ples of different arrangements with the same complement and the same link.
We thus prove theorem 1.0.3, but see algorithm 3.4.5 and section 4.3.9 where
the algorithm is explicitly described.

15



Theorem 1.0.3 The topology of the link does not always determine the
topology of the arrangement, but for the class of arrangements in which all
curves pairwise intersect transversally and are nonsingular, there is a simple
algorithm which discovers firstly if there is any other arrangement in this class
having the same link and then how to find all possible arrangements within
this class which have the same link. Furthermore there are only finitely many

arrangements within this class which can have a particular link.

In section 5 we notice that once we pass over to the most general types
of arrangements, that is where the constituent curves may be singular and
their intersections may be very complicated, then the phenomenon that the
link may not determine the arrangement can occur very frequently and it
does not seem immediately possible to quantify under what circumstances
this may happen. Yet in all known cases it happens that if two arrangements
have same link, then they are “birationally topologically equivalent”. (In
the sense that the exceptional curves are also part of the arrangement. See
definition 5.1.2). We thus form a new equivalence on arrangements, BTE
(Birational Topological Equivalence), which seems to be the more natural
concept to investigate anyway, since two arrangements which are BTE have
the same link. We conjecture that BTE is determined by the link. In sec-

tion 5.2 we do prove this for a very large class of arrangements.

Theorem 1.0.4 (Theorem 5.2.1) Let C be the class of arrangements con-
sisting of arrangements A, where A consists of the distinct irreducible curves
C1,Cy,...,Ch, and such that any A € C fulfills at least one of the following

two conditions.

1. U ,C; is a curve whose singularities are all ordinary.

2. The initial plumbing diagram for A contains a cycle and the passage to
normal form can be achieved using only (—1)-blow-ups or (—1)-blow-

downs.
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Then BTE holds for the class C.

Sections 5.3 and 5.4 are devoted to discussing difficulties and strategies in
aiming for a general proof.

In section 6 we revisit the definition of an arrangement and then inves-
tigate the question of an arrangement determining its complement. This is
very difficult and we only deal with line arrangements. In section 6.2 we
define brittle arrangements (see definition 6.2.2) and prove that non-brittle
arrangements determine their complement. We prove (theorem 6.2.5) that
all arrangements of less than eight lines are non-brittle. We also find all
reduced brittle arrangements of less than ten lines. Section 6.3 is a short
intuitive discussion of why an arrangement does not necessarily determine

its complement. Section 6.4 concludes with questions.
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Chapter 2

Characterising the Link

2.1 Preliminary Definitions and Machinery

Definition 2.1.1 The link of an arrangement A of curves in CP? is the

boundary of a closed regular neighbourhood of A in CP2.

Intuitively this means that we “thicken up” the components of A and
then take the boundary. For example three closed neighbourhoods of a circle
S! in R? are shown in figure 2.1, but only the first is a regular neighbourhood.
The second has an unnecessary “hole” in it and the third includes too much.
Note also that the regular neighbourhood and hence the link depend on the
ambient space and also the embedding. For example a regular neighbourhood
of a circle on a sphere is an annulus and its boundary consists of two disjoint
circles, however a circle embedded in the real projective plane RP? can have
an annulus as its regular neighbourhood and hence two disjoint circles as
its link if the circle represents an orientation preserving path, or a Mobius
band as its regular neighbourhood and hence one circle as its link if the circle
represents an orientation reversing path.

There is a way of abstractly constructing a regular neighbourhood and

its link for an arrangement which we describe now. See Walter Neumann’s
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Figure 2.1:

“Calculus for Plumbing” [16] for the results of this section.

Let F' be a 2-dimensional compact surface embedded in a 4-manifold M.
Let T(M) be the tangent bundle of M and consider its restriction 7'(M)|p
to F. Consider also the tangent bundle T(F) of F' as a smooth manifold.

We have a natural embedding

L T(F) < T(M)|r

and this induces the quotient bundle T'(M)|r/T (F') which is also the normal
bundle of F'in M. We can assume that we have endowed the tangent bundle
with a Riemannian metric <,> and the normal bundle can be identified
with the orthogonal complement of T'(F). We denote this by T(F)*. Let
Fy denote the zero section of F in T(F)*. The following theorem provides a

regular neighbourhood of F' in M.

Theorem 2.1.1 (Tubular Neighbourhood Theorem) F has a neighbour-
hood in M diffeomorphic to a closed tubular neighbourhood of Fy in T (F)*.

The tubular neighbourhood of Fy in T'(F)+ is simply the set of vectors of

norm at most 1 using the Riemannian metric (a disc bundle). The boundary
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of this is a circle bundle consisting of the set of vectors of norm equal to 1.
See pp. 37-39 of [2].

Theorem 2.1.2 The self intersection number F - F classifies the disc bundle

of F' up to diffeomorphism.

A consequence of this is that we can use any abstract disc bundle of F
to construct a regular neighbourhood of F' provided that the zero section of
F has the same self intersection number in the bundle as F' itself does in
M. This number e is called the Euler number of the bundle. For example
consider a line [ in CP? and a conic v in CP?. Now [ and v are topologically
equivalent, both being homeomorphic to the sphere S?, however [ - = +1
while 7 - v = +4 so that they have different self intersection numbers. Thus
they have different regular neighbourhoods and different links. Hence CP?\ |
and CP? \ vy are topologically inequivalent as we will see later.

We still need to describe a regular neighbourhood of an arrangement of
surfaces.

Assume Fi, F5 are two surfaces in M. We construct the regular neigh-
bourhood of Fy UF5 as follows (plumb F; and F3). First we have disc bundles
m : By — I, my : By — F5. For each intersection point P of F} and F; of
positive orientation choose disjoint small discs Dy C Fy, Dy C F5. Then we
have

7, Y(D1) ~ D, x D C E,

7y {(Dy) >~ Dy x D C Ej
and form E; U Es but identify D; x D with Dy x D under the map (z,y) —
(y, x) which identifies Dy in Dy X D with D in Dy x D and D in Dy X D with
Dy in Dy x D. (If the intersection is of negative orientation then identify D,
with —D and D with —D, via the map (z,y) — (—y,xz)). This yields the
required regular neighbourhood of F} U F5. See figure 2.2.

In general we have the following result:

20



Figure 2.2:

Theorem 2.1.3 If F', Fs, ..., F, are closed surfaces in a 4-manifold inter-
secting each other pairwise transversally and all intersection points are double
points, then a reqular neighbourhood of Fy UF>,U...UF, in M, and hence its
boundary, can be reconstructed from the following data which is also called

the plumbing diagram.

1. For each F; we have a vertex v; with a pair of numbers e;, [g;] attached
where g; is the genus of F; and e; is the self intersection number of F;
in M. This is written as in figure 2.3. We take the convention that
if gi = 0 we omit it. We also have the convention that the surface of
genus g; < 0 is the non orientable surface being the connect sum of —g;
copies of RP2. We shall also need the following notation. If gi,g; are
integers, let Fy,, Fy. be surfaces of the corresponding genus, then g;#g;

is the integer which is the genus of the connect sum Fy #F,. .

2. There are edges between v; and v;. For each intersection point of F;
and Fj there is an edge between v; and v; which is weighted with a “+”

113

if the intersection is in the positive sense or a “—” if the intersection

s in the negative sense.
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°

[9]

Figure 2.3:

We will usually only have to deal with positively oriented intersections. Hence
the edge signs will generally be omitted but included if there exist some neg-
atively oriented intersections. An example of a plumbing diagram is shown

in figure 2.4.

+4

+1 +1

Figure 2.4: Line Pair and Conic

There is another way of describing a regular neighbourhood of an arrange-
ment. The standard construction is firstly to give the ambient space a finite
triangulation such that each curve in the arrangement is a subcomplex and
each point of intersection of curves is part of the 0-skeleton. Now make two
successive barycentric subdivisions and take the closed star of those simplices
which intersect the arrangement. This is the required regular neighbourhood.
Of course this construction is dependent on the triangulation but the follow-

ing result ensures uniqueness.

Theorem 2.1.4 Any two regular neighbourhoods are homeomorphic whether

constructed by triangulation or by vector bundles and plumbing. Furthermore
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if U, V' are regular neighbourhoods of an arrangement A with V C U then the

inclusions A — V — U are homotopy equivalences via contraction.

We can reconstruct the boundary of the regular neighbourhood of FiUF,U
...UF, from the plumbing graph as follows. For a vertex v; we have a surface
F; of genus g; and a unique up to diffeomorphism disc bundle 7; : E; — F;
of Euler number ¢;. If v; has valence d;, cut out d; closed small disjoint discs
from F;. Whenever v; is joined to v; we paste together the circle bundles
over F; and F} along the corresponding boundaries of the corresponding discs
using the map described earlier on page 20. If I' is the plumbing graph we
denote by M (T") the boundary of the closed neighbourhood just constructed.
Note that M(T') is a compact 3-manifold without boundary. We also allow
the disjoint union of plumbing graphs I' = I'y + I['s and the corresponding
3-manifold to be the connected sum M(T') = M(T';)#M(Ty). Also allow
M(¢) = S3. The result that we will need is:

Theorem 2.1.5 The plumbing diagram of an arrangement codes the topol-

oqy of the link.

Note that often in an arrangement A we may have some intersection
points which are not double points and the construction does not apply. In
this case we need to blow up these points until we arrive at a (blown up)
arrangement of curves in a compact manifold M. Recall that blowing up
a point P replaces P by a copy of CP! and separates curves or branches of
curves of different gradients through P. Furthermore blowing up a point on
a curve reduces the curve’s self intersection number by n?, where n is the
order of the curve at P (theorem 5.1.7 ). The CP' produced replacing P is
called an exceptional curve. It has self intersection number —1 and genus 0.
For an arrangement A, we blow up all singular points on singular curves of
A and also all points of order > 3. We denote by A the corresponding blown

up arrangement.
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Blowing up is useful in view of the following result.

Theorem 2.1.6 The link of the blown up arrangement A in the blown up

manifold is homeomorphic to the link of the arrangement A.

Thus the plumbing diagram for this blown up arrangement A codes the
link of A and hence the link of A. We now build up a brief example.

Consider an arrangement A, consisting of a triangle of lines [y, I, and I3
and also other curves some of which pass through the triangle’s vertices P,
P, and Ps. (This is so we feel justified in blowing up these three vertices.) To
obtain PI(Ap), blow up the vertices P;, P5, P3 to obtain exceptional divisors
E\, Ey, E5. Each E; has self-intersection number —1. Since two points have
been blown up on each [;, the self-intersection number of /; has dropped from
+1 to —1. See figures 2.5 and 2.6 for the resolution and marked plumbing

diagrams respectively.

Figure 2.5:

Note that since there are other —1-curves it is important to remember
which ones are the marked ones. This becomes a central issue in section 3.1.
Next let A; be the arrangement Ay where the other curves are specifically
a cubic through the vertices P, P, P; but otherwise in general position, and
a further line in general position with respect to everything else. Figure 2.7

shows the marked plumbing diagram.
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Figure 2.7:

Our strategy shall be to blow up arrangements where necessary to get
plumbing diagrams so as to compare their links.

One notices that “redundant” blowing up (that is, blowing up when there
is no need to, for example at a simple or double point), does not change the

topology of the link, but does change the plumbing diagram.

Definition 2.1.2 The immediate plumbing diagram for an arrangement A
s obtained by performing only the necessary blow-ups needed to resolve sin-

gularities and complicated intersections and no more. It is denoted by PI(A).

Note that under this definition even a double point is to be blow up if it
is a singular point of some curve. Thus PI(A) can have no loops.
(Recall the definition of an arrangement A alluded to in the introduction.

We can recover an arrangement from PI[(A) provided we remember which
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curves are to be blown down.) Hence even though the plumbing diagram
uniquely determines the topology, the converse is far from true. There are
certain operations which one can apply to the plumbing diagram which do
not change the topology. This is described in “A Calculus for Plumbing ...”
by W.D. Neumann and the relevant parts are reviewed here. See section 2
of [16] for full details.

2.2 Plumbing Calculus

Theorem 2.2.1 Applying any of the operations RO to R7 to a plumbing
graph T' does not change the oriented diffeomorphism type of M(T).

RO(a). If v; is a vertex with g; > 0, reverse the signs on all edges other than

loops at this vertex.

RO(b). If v; is a vertex with g; < O reverse the sign on any edge at this

vertex.

R1. (Blowing down). In any of the following four situations, replace the
graph on the left by the one on the right. Here ¢ = +1 and ¢¢, &1, 69

are the edge signs and are related by ¢g = —ce165.
R2. (RP*-absorption). Here §; = £1, 6, = £1 and § = 242,

R3. (0-chain absorption). Here the edge signs €} are given by ¢} = —¢eze; if

the edge in question is not a loop and €} = ¢; if it is a loop.

RA4. (unoriented handle absorption). In the diagram below if g; is the genus
of F; and g; is the genus of F; then g;#g; is the genus of Fi#Fj.
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I_0 + i : rO

e € — &€
S — I

[9i]

:. e & & g g : : e-& g & :

~Tgi] [9;] gl gl
e &1 € e;- 2¢
[9i] &, [9i]
Figure 2.8: R1
—_Ci 0 2% >e.i
(9] 2, [g:#(-1)]

Figure 2.10: R3

>. eiC 0 : €
o] e >g‘i#(-2>]

Figure 2.11: R4
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R5. (oriented handle absorption).

: i O—> >e.i

9] + gi#1]

Figure 2.12: R5

R6. (splitting). If any component of I" has the form as in figure 2.13, where

Figure 2.13: R6

each I'; is connected and for each j, I'; is joined to a vertex v; by k;
edges, replace I' by the disjoint union of I'y,..., Iy and k copies of
figure 2.14 where

{29%—2‘;:1(/@—1) if g >0
—Q+E;:1(1€j—1) 1fg<0

R7. (Seifert graph exchange). If any component of I' is one of the graphs
on the left of the following list, replace it by the corresponding graph
on the right.
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Figure 2.14: R6

Figure 2.15: R7
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2.3 Normal Form

Two plumbing diagrams can describe the same 3-manifold and the calculus of
the preceding section describes ways in which we can alter the plumbing dia-
gram but still leave the 3-manifold described unaltered. For each 3-manifold
described by a plumbing diagram there is a minimal such diagram called the
normal form for the plumbing diagram. This normal form can be obtained
by applying the moves R0-R7 and is unique up to application of R0O. Thus
if we would like to know when two plumbing diagrams describe the same 3-
manifold, all we need to do is to convert them both to their respective normal
forms and then see if they are equivalent modulo RO. We now describe the
normal form and also the algorithm needed to convert a plumbing diagram

into normal form.

Definition 2.3.1 We define a chain of length k in a plumbing diagram T" to
be any part of the diagram (after reindexing vertices) with distinct vertices
€1,€3, ..., € such that there is exactly one edge of any sign joining e; to e;11
fori=1,...,k —1 and also such that ey, e, ..., ex_1 all have valence 2 and
ex has valence 1 or 2. We further require that the genus [g] of each e; be
zero. See figure 2.16.

e, e, €y
- ——@— - —o—--
OR
(k non-negative)
e e, €y
@ —@—---------- °
Figure 2.16:
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Definition 2.3.2 The chain is maximal if it can be included in no larger

chain.

Definition 2.3.3 (Normal Form) A plumbing diagram T is said to be in
normal form if the following conditions N1-N6 hold.

N1. None of the operations R1-R7 can be applied to I', except that I' may
have components of the form in figure 2.17 with £ > 1 and ¢; < —2 for

Figure 2.17:

1=1,...,k.
N2. The weights e; on all chains of I' satisfy e; < —2.

N3. No part of I' has the form as in figure 2.18 unless it is a component of

-2

Figure 2.18:

I of the form in figure 2.19 with £ > 1 and e; < -2 fori=1,...,k.

N4. No portion of I' has the form in figure 2.20 unless vertex ¢ is an interior

vertex of a chain.

N5. No component of I' has the form in figure 2.21.
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Figure 2.20:

e e
k 1 €

P - o— @ ( k non-negative)
[-1]

Figure 2.21:

N6. No component of I' is isomorphic to one of the diagrams in figure 2.22.

Theorem 2.3.1 Any plumbing diagram can be reduced to normal form using

operations R1-R7 and their inverses.

The proof of this can be found in [16] . However the proof is in the form
of an algorithm and parts of this algorithm are to be used frequently. The
first step is to apply operations R1-R7 to I' until no more are applicable.
This process will clearly terminate. The second step is to convert a maximal
chain into one with all weights < —2. By the first step we cannot have any
weights in the chain equal to —1,0,1. Thus choose the rightmost weight e;
which is > 2 and do sufficiently many (that is e; — 1) (—1)-blow-ups directly
to the left of this vertex until vertex i has weight 1. Now do a (+1)-blow-
down of vertex ¢. Thus provided e;_; # 2, we get a chain like the one with

which we started except it has fewer positive weights. If e;_; = 2, then after

32



Figure 2.22:
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this process vertex 7 — 1 will have weight +1. If this is the case, blow this
vertex down. This will solve all our problem provided vertex i — 2 didn’t
start out with weight +2, because now it will have weight +1. So now we
have to blow this vertex down also. It is easy to see that we can keep doing
this if we have a whole row of +2 weighted vertices and this will eventually
remedy the situation provided the chain is not a cycle. However the cycle
case if dealt with in the same way as outlined will also be transformed into
normal form by this procedure unless all the vertices have weight +-2. But if
all vertices of the cycle have weights +2, then this procedure will reduce the
diagram to a two vertex graph on which we can to a handle absorption (R4
or R5) and the resulting single vertex graph will be in normal form.

Some examples of reduction to normal form can be found in figures 3.51

to 3.57 on pages 85 to 90. There are further examples in section 4.1.

Definition 2.3.4 We define the normal form plumbing diagram for an ar-
rangement A, NPI(A), to be the normal form of the (immediate) plumbing
diagram Pl(A) of the arrangement A.

2.4 Complement Determines Link

The fundamental reason for studying the link of an arrangement is because
for arrangements of curves, the complement determines the link. We now
establish this result.

Recall two compact oriented manifolds M, N are h-cobordant if there ex-
ists a compact oriented manifold X such that 0X = M U (—N) and M, N
have the property that the natural inclusions into X are homotopy equiva-

lences.

Theorem 2.4.1 If X,Y are compact manifolds with boundaries M, N re-
spectively such that X \ M is homeomorphic to Y \ N, then M, N are h-
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cobordant.

Proof: By the collaring theorem we know there is a collar neighbourhood
of M in X so that we can see X = X U ([0,1] x M) where [0,1] x M is a
collar neighbourhood, in fact also a regular neighbourhood for M. Thus we
have X \ M = X U ([0,1) x M) and similarly Y\ N =Y U (][0,1) x N). Now
we have

XU(0,1)x M)ZY U([0,1) x N)

Now {0} x M disconnects X U ([0,1) x M) into two pieces. One piece is
X U {0} x M which is compact and the other is [0,1) x M. Hence the
image ¢({0} x M) must disconnect Y U ([0,1) x N) into two pieces. One
is compact namely ¢(X U {0} x M) and the other ¢([0,1) x M) is not.
Now if t1,%o,... is a sequence in [0,1) with ¢; — 1 then we certainly have
that ¢(X U {0} x M) C UR,(Y U[0,4) x N) = Y U[0,1) x N. Thus
since p(X U {0} x M) is compact we see that there is a ¢ < 1 such that
(X U{0} x M) CYUI0,t) x N. However since ¢ is a bijection we then
must also have that [t,1) x N C ¢([0,1) x M). Thus ¢(]0,1) x M) is a
neighbourhood of [¢,1) x N for some ¢ with 0 < ¢ < 1.

Also 7' ({t} x N) disconnects [0,1) x M and we can similarly find ¢
such that ¢~ '([t,1) x N) is a neighbourhood of [t;,1) x M. and again find
to such that @[t;,1) x M) is a neighbourhood of [t2,1) X N and ¢3 such that
0 '([t2,1) x N) is a neighbourhood of [t3,1) x M.

Now consider the manifold Z which is the region between ¢; X M and
0o '({t2} x N). (See figure 2.23.) It is clear that 0Z = M U (—N). Set
M, =[s,1)x M, Ny = [s,1)x N and M. = p([s,1) x M), N! = ¢ *([s,1)x N)

. Now consider the following sequence of inclusions:

i j k
M, <5 Nj, <5 My, < N,
Now because of the product structure in [0,1) x M we have that the
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composition j ot : M, — M, is a homotopy equivalence. Furthermore
if ¢/, 4', k' are the the maps induced by ¢ between subspaces of Y, then
we also see that k' o j' : Ny, — N; is a homotopy equivalence. Since ¢
is a homeomorphism we conclude that ko j : N; < N/ is a homotopy
equivalence. Thus j, having a left inverse and a right inverse, is thus a
homotopy equivalence. Similarly & is a homotopy equivalence.

Consider now the following maps:

e ({tk x N) SN D, Bz
We can choose 3 to be the map such that 3’ is the collapsing map 3’ :
Z'"U N, — Z', being the identity map on Z’ and projecting [t2,1) X N onto
{t2} x N. One sees that « is a homotopy equivalence because o' is. Also (3
is a homotopy equivalence fixing ¢~ ({#2} x N). We already have seen that
j is a homotopy equivalence. Thus we see that the composition Fo j o« is
a homotopy equivalence and is also the inclusion map ¢! ({ta} x N) < Z.

Additionally we have the maps:

tyxMS M, 5z

These maps once again are homotopy equivalences and whose composition

is the inclusion map {t;} x M — Z. See figure 2.23.

Figure 2.23:
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Corollary 2.4.2 Let Ci, Cy be homeomorphic complements of arrangements

of algebraic curves Ay, Ay. Then their links are h-cobordant.

Proof: Let L; be the link for A;. Then one sees that C; is homeomorphic to

C;U([0,1) x L;) so that we can cap C; with a boundary L; to get a compact
manifold X; with boundary L;. Applying theorem 2.4.1 yields the result.

O

Incidentally this result is much more general than stated. For example

if C1, Cy are homeomorphic complements of subsets A;, As of any manifolds

such that both A;, A; have regular neighbourhoods. Then their links are

h-cobordant. A particularly interesting version of this is when we have im-

mersed surfaces in a 4-manifold.

Theorem 2.4.3 (Turaev [20]) The following three conditions for a pair of
geometric 3-manifolds are equivalent.

1. M is homeomorphic to N.

2. M s simple homotopy equivalent to N.

3. M s h-cobordant to N.

Here geometric means those 3-manifolds which after splitting along in-
compressible spheres (see [15]) and tori (JSJ decomposition, see [7] and [11]),
have geometric pieces i.e. are Seifert fibred, Haken or Hyperbolic. We have
such a decomposition in our case. Firstly separating out disjoint components
of a plumbing graph corresponds to splitting along incompressible spheres.
Secondly, in the connected components that remain, each edge represents a
gluing along a torus, however the set of tori here does not necessarily form a
minimal family for the JSJ splitting, but a subset of them does. The pieces

remaining are certainly geometric, all of them being Seifert fibred.
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Corollary 2.4.4 For arrangements of complex projective curves, be they sin-
gqular or having non-transversal intersections, the complement determines the
link.

Proof: Let C', Cs be two homeomorphic complements of such arrangements.
Then the respective links L, Ly are h-cobordant. Yet Lq, L, are possibly re-
ducible graph manifolds and are thus geometric. Applying Turaev’s theorem

yields the result.
O

Again this result would also hold for arrangements of immersed surfaces

in a 4-manifold whose singular points can be resolved by blowing up of points.
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Chapter 3

Links and Arrangements : The

Normal Nonsingular Case

3.1 Axiomatizing Ambiguity

We begin by asking the following question: Is it possible that two different
arrangements A;, A, could have homeomorphic links? Equivalently, is it
possible that the link does not determine the arrangement? The answer is
yes.

Let A; consist of a triangle of lines, a cubic passing through the triangle’s
vertices and a line in general position. Let A, consist of a triangle of lines,
a cubic passing through the triangle’s vertices and a conic passing through
the triangle’s vertices. Then the plumbing diagrams are shown in figure 3.1.

Both plumbing diagrams are in normal form already and are clearly iso-
morphic, (although they are not isomorphic as marked plumbing diagrams),
hence have same link.

We would like to quantify when this phenomenon occurs.

Definition 3.1.1 An arrangement is said to be normal if PI(A) = NPI(A),

that is the immediate plumbing diagram is already in normal form.
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Definition 3.1.2 An arrangement is said to be regular if all curves in the
arrangement are nonsingular and the pairwise intersections are all trans-

Verse.

The two arrangements shown in figure 3.1 are both regular and normal.
We begin by studying the class of normal, regular arrangements. In section
4 we will extend this to include all regular arrangements.

Many regular arrangements can be immediately seen to be normal as the

following shows.

Theorem 3.1.1 Let A be a reqular arrangement of curves in CP? such that
each curve has at least three intersection points on it. Then every verter of

PI(A), the plumbing graph of A, has valence at least three.

Proof: If E € A is an exceptional divisor, then £ must have arisen by
blowing up a point with n curves Cy, Cs,...,C, (n > 3) passing through it.
Hence E intersects the n curves Cq,Cs,...,C, in A and hence has valence
n > 3 in PI(A).

If C € A is not an exceptional divisor, then C' had n > 3 intersection
points in A. Those points which have exactly one other curve D; passing
through them do not get blown up so that C is joined to D; in A. Those
points which have at least two other curves passing through them do get
blown up to give one exceptional divisor E; € A corresponding to each such
point, and each of the E; intersects C.

Hence C is joined to exactly n curves in A and so has valence at least
three in PI(A) O

Corollary 3.1.2 Let A be a reqular arrangement of curves in CP? such that
each curve has at least three intersection points on it. Then A is also a

normal arrangement.
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Proof: All the moves of the plumbing calculus used in reduction to
normal form involve vertices of valence at most two. O
Let A;, A, be two normal, regular arrangements in CP?. Furthermore
assume that their immediate plumbing graphs PIl(A;) and PIl(A;) are both
isomorphic to say PI(A) so that the links of A; and A, are both (abstractly)
homeomorphic to the link of the abstract blown-up arrangement A in a

blown-up surface, say where (see figure 3.2) the «; are the isomorphisms

0 A=A (i=1,2)
and ¢; are the projections (blowing downs)

¢t Ay — Ai(i=1,2)

A4 A,
ml ld)z
Ay A,
Figure 3.2:

Also define m; = ¢;oq; (for i =1,2).

Definition 3.1.3 A curve is said to be regular with respect to m; if it is not

blown down.

Definition 3.1.4 A curve is said to be exceptional with respect to m; if it is

blown down.

Let R; be those curves regular with respect to m; and let E; be those

curves exceptional with respect to ;.
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Definition 3.1.5 A curve C € A is said to be ambiguous if it is reqular
with respect to one m; and exceptional with respect to the other. Equivalently
C € A is ambiguous means that C € (Ry N Ey) U (Ry N E)).

Note that we could also see these definitions as relating to a plumbing
diagram that can be marked in two different ways. Two arrangements A;
and A, which are different but have equivalent links amounts to Mark(A;)
and Mark(As) being non-isomorphic as marked plumbing diagrams, but iso-
morphic if we ignore the markings. Now let G be an unmarked plumbing
diagram which is isomorphic to PI(A;) and PI(As) so that we have maps
a; : Mark(A;) — G, which are the maps that forget the markings. We see
that the regular vertices of G are by definition 3.1.3 those vertices which
correspond to being unmarked in both Mark(A,) and Mark(Ay). Similarly
the exceptional vertices of G are by definition 3.1.4 those vertices which cor-
respond to being marked in both Mark(A;) and Mark(As,). The ambiguous
vertices of G are those vertices which correspond to being marked in one
Mark(A;) but not in the other.

Let K be the subgraph of PI(A) on the vertices representing the set of
ambiguous curves. Differences in A;, A, may arise because we may have to
blow down different curves to go from A to A; than in going from A to Ao
as was demonstrated in the example in figure 3.1.

To go from A to Ay, one must blow down the curves corresponding to the
dark (blue) coloured vertices (see figure 3.3).

But to go from A to As one must blow down the curves corresponding
to the light (red) coloured vertices. In our case K is the graph shown in
figure 3.4.

Now if K is nonempty, colour each vertex of K which is regular with
respect to m; red and colour each vertex that is regular with respect to ms
blue.
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Figure 3.3:

Figure 3.4:
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Theorem 3.1.3 K has the following properties:
K1 K # ¢.

K2 All vertices of K have genus zero and weights (self intersection num-

bers)minus one.
K3 FEach vertex of K is coloured either red or blue.
K4 No vertices of the same colour are joined by an edge.
K5 There are no double edges or loops.
K6 FEvery vertex has valence either two or five.

K7 For any pair (u,v) of vertices of the same colour, denote by n(u,v) the

number of vertices w € K such that both u and v are joined to w. Then

where the notation u(i) means that u is a vertex of valence i.

K8 K is connected.
Proof:
K1 This is part of the definition of K.

K2 If v is a red vertex, then v is exceptional with respect to w5 and hence

has genus zero and weight minus one. Similarly if v is a blue vertex.
K3 This is part of the definition of K.
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K4 Assume that v and w are two red vertices joined by an edge. But then
v and w are both exceptional with respect to 7y and two exceptional

divisors cannot intersect (contradiction).

K5 Loops cannot occur because all curves are assumed to be nonsingular.
Also if v and w have two edges between them, without loss of generality
we can assume by (K4) that v is red and w is blue, then with respect
to my, v is exceptional and after blowing v down w has two points

identified and hence must be singular (contradiction).

K6 Let v be without loss of generality a red vertex of K. Now since all
vertices of K represent nonsingular curves of genus zero, we see that
with respect to 7, v must be either a line or a non-degenerate conic.
Assume that v has valence n where n is a non-negative integer, hence in
view of (K4) we see that v is joined to n blue vertices wy, w, ..., w, and
these must all be exceptional with respect to ;. Hence after blowing
down via 7; we see that 7 (v) has self-intersection number n — 1 (The
result of doing n blow-ups on a —1-curve). However since v is either a
line or a non-degenerate conic which have self-intersection numbers +1

and +4 respectively we see that n =2 or n = 5.

K7 Let u and v be without loss of generality red vertices of K (so u has
valence 2 if u is a line with respect to m; or valence 5 if u is a conic
with respect to m1). Now by (K4) u and v are not joined, hence any
intersection points of 71 (u) and 7 (v) in A; must be blown up under
7. Hence u and v are joined to a vertex w in PI(A) of weight minus
one. Now assume that w € PI(A) \ K, so then w is exceptional with
respect to both 7m; and m,. Hence in particular with respect to my all
of u,v,w are exceptional. This is a contradiction because u is joined

to w and no two exceptional curves can intersect. Hence w € K and

by (K4), w is blue. So for each intersection point of 7 (u) and 7 (v) in
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A; there is an associated blue vertex to which u and v are both joined.
The number of such vertices is of course the product of the degrees of
the curves represented by v and v by Bezout’s theorem. Conversely
suppose that u and v are both joined to a red w. Then after applying
m; we find u and v intersecting. Hence the correspondence between
blue vertices w to which both v and v are joined and the intersection
points of 7 (u) and 71 (v) in A; is bijective. Now since all crossings are
normal, apply Bezout’s theorem, we see that |line N line| = 1, |line N

conic| = 2 and |conic N conic| = 4, thus proving (K7).

K8 (i) If u and v are the same colour (without loss of generality red), then
applying (K7) and noting that n(u,v) > 1 yields a path of length two
joining them. (ii) If u and v are different colours say without loss of
generality v is red and v is blue, then by (K6) v is joined to at least
two vertices so say v is joined to w. By (K4) w is red. But now by (i)
u and v have a path between them. Note that in all cases the length

of the path is at most three.

Hence we have verified (K1)-(K8). O

3.2 Determining Ambiguity - Classifying K

It so happens that the properties K1-K8 that K has, force K to be one of four
possible graphs. We now try to classify combinatorially all possible graphs
K satisfying (K1)-(K8). Clearly the critical elements which will determine
K are the properties (K3)-(K7).

Now since K # ¢ by (K1), K has a vertex. By (K4) and (K6) K has a
vertex of each colour and in fact by (K4) and (K6) again K has at least two

vertices of each colour.
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Case 1 : K has no blue vertices of valence 5.
Hence it has at least two blue vertices of valence 2. Now it also has at least
two red vertices say ri, 7. Now if r; had valence 5, then n(ry,r2) > 2 by
(K7), hence there would exist two blue vertices By, By such that both r; and

r9 are joined to both Bjand B; as in figure 3.5.
r1 r2

B B
Figure 3.5:

But then n(B(2),B2(2)) > 2. This contradicts (K7). Hence all red
vertices have valence 2. However all blue vertices have valence 2. This
together with the fact that K is connected (K(8)) implies that K is a cycle.
furthermore by (K4), the vertices alternated in colour. Hence K is a 2n-
gon n > 2 with vertices by,bs,...,b,,71,72,...,1. If K is a 4-gon we get

figure 3.6 which we have seen contradicts (K7).

My b,

b, ra
Figure 3.6:

If K is a 2n-gon with n > 4, then part of K looks like figure 3.7.
This contradicts (K7) since we require n(by,bs) = 1, however b; and bs

have no further edges extending from them. This only leaves the possibility
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Figure 3.7:

that K is a hexagon. Thus we get figure 3.8 which is easily seen to satisfy

(K1)-(K8).

Figure 3.8:
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Case 2 : K has no blue vertices of valence 2.
Lemma: K has no red vertex of valence 2.
Proof: Assume that r; is a red vertex of valence 2. Now r; is joined to
two blue vertices say by, by (of valence 5). Then by (K7) n(b(5),b:(5)) = 4.

However b, and b, are already both joined to r1, hence let them also be joined

to 79,73, T4.
ry r, rg Iy
b, b,
Figure 3.9:

Now we can easily see from figure 3.9 that n(ri(2),72) > 2, hence by
(K7) we see that 7 must have valence 5 and similarly so do r3 and r4.
Remembering that the valence of b; is 5, let r5 be the fifth vertex joined to
b;. Now 75 has valence 2 or 5, hence the number of edges emanating from
T1,79,73,74,75 is either 2+ 5+5+5+2=190r2+5+5+5+ 5 = 22.
However we can count these edges in a different way. Let there be n other
blue vertices by, bs, . .., b, 1 besides b;. However by (K7) (n(b1(5), b;(5) = 4)
each of by, bs, ..., b, must be joined to four of the ry,ry, 3,74, 75 and when
we remember that b; is joined to all five of r1, 79,73, 74,75 We see that this
accounts for all the edges between 71, r9, 73, 74,75 and the b;. This yields the
equation 4n + 5 = 19 or 22. Hence 4n = 14 or 17 which is clearly impossible
for non-negative integers n thus establishing the lemma. a
Hence all vertices have valence 5. Now again let b; be a blue vertex and
r1,...,75 the five red vertices joined to it. Once again assume there are
n other blue vertices bs,...,b,+1 besides by and again count the number

of edges emanating from the ry,...,r5 in two ways. The direct sum of all
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the valences of the rq, ..., r5 yields the number of edges to be 25 and using
(K7) each b;(i > 2) satisfies n(by, b;) = 4,hence each b; is joined to four of the
r1,...,7s and adding on the five edges from b; to 71, ..., r5 yields 4n+5 = 25.
Thus n = 5. Hence if K has no blue vertex of valence 2, then K has precisely
six blue vertices of valence 5. Similarly because we have already established
in the lemma that K has no red vertices of valence 2, then K has precisely
six red vertices of valence 5. From the combinatorics we can easily draw as
much of the graph as in figure 3.10 and the remaining edges are forced, that

is all by, ..., bs are joined to rg. Rearranging and relabeling yields figure 3.11

Figure 3.10:

It is easy to see that this satisfies (K1)-(K8).

b, b, by b, by bg

(Eachr; isjoined to every b; exceptb;.)
Figure 3.11:

Now what remains is if K has a blue vertex say b; of valence 5 and a blue
vertex say be of valence 2. Now by (K7) n(b;(5),b2(2)) = 2, hence we have
the diagram as in figure 3.12. There are four possible cases by (K6) for the
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r rs

b b>

Figure 3.12:

0) (i)
r(2) r{2) (5 rf2) r1(2) r2(5) r1(5) r{5)

XX

b(®) bf2) b bf2 b bf2) bd) bf2)
Figure 3.13:

valences of r; and ry, namely those shown in figure 3.13

Now (i) is impossible since the diagram shows that n(ri(2),72(2)) > 2
contradicting (K7). Also (ii) is equivalent to (iii), hence only (ii) needs dis-
cussing. We shall discuss (iv) separately. In any case we have two further

cases to study.

Case 3 : K has a subdiagram of the form in figure 3.14.

Figure 3.14:

Now let b3 be any other blue vertex. If bs has valence 5, then by (K7)
n(ba(2),b3(5)) = 2. Hence by and b3 are both joined to two red vertices.
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However b, is already joined to r; and 5 and has valence 2, hence this forces
bs to be joined to both r; and ry. This contradicts that the valence of ry is
2. See figure 3.15.

r(5) rf2)

b(5) bf2) b5
Figure 3.15:

Now r; has valence 5, hence we know that there must exist at least three
other blue vertices bs, by, b5, all of which by the preceding remarks must have
valence 2. By exactly the same reasoning b, is joined to three further red
vertices r3, 74,75 all of valence 2 and so we have as much of the diagram as

shown in figure 3.16.
5 2 2 2 2

5 2 2 2 2

Figure 3.16:

Now if there were another blue vertex bg, then by (K7) n(by(2),bs) = 1
or 2. But by has valence 2 and is already joined to r; and 73, hence bg must
be joined to at least one of r1,r,. However r; and ro already have their full
quota of valences and neither can afford to be joined to bg. Hence we have

all the blue vertices and their valences. Similarly we have all the red vertices
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and their valences. Now each of bs, by, b5 is already joined to r;. However
bs, by, bs each have valence 2 and ry cannot have any more edges. Hence it is
easy to see that bs, by, b5 must be joined in one to one correspondence with
r3, 4,75 (Without loss of generality b; is joined to r; for i = 3,4,5), and the

final configuration as shown in figure 3.17 satisfies (K1)-(K8).

5 2 2 2 2

5 2 2 2 2

Figure 3.17:

Case 4 : K has a subdiagram of the form in figure 3.18.

Figure 3.18:

Now by (K7) n(r1(5),72(5)) = 4, so there are two more blue vertices
b3, by such that both r; and r, are joined to b3 and by. Now consider the
subdiagram defined by 71,73, by, b3 (see figure 3.19).

We see that n(by(2), b3) > 2, hence by (K7) b3 cannot have valence 2 and
hence bs has valence 5. Similarly b4 has valence 5. Also r; has valence 5
hence there is a fifth blue vertex b5 such that r; is joined to b5 as shown in
figure 3.20.

If ro were joined to b5, then from the diagram r; and 75 would be joined to
all of by, by, b3, by, bs, thus n(ri(5),r2(5)) > 5 which contradicts (K7). Hence
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r{9) rf9)

N\

bf2) Ds

Figure 3.19:

r«5) r45)

b,(5) b(2) by(5) b,(5) bg

Figure 3.20:
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r9 is not joined to bs. However because 75 has valence 5, a further blue vertex
bg must exist such that ry is joined to bg.

Now if b5 had valence 5, then (K7) forces n(b2(2),b5) = 2 and since by
has valence 2, bs; must be joined to both r; and ry, but this causes ry to have
valence at least 6 contradicting (K6). Hence b5 has valence 2. Similarly bg

has valence 2.(See figure 3.21.)

r«5) r45)

b(5) by(2) by5) b,®5) b(2) bg2)
Figure 3.21:

Now assume a further blue vertex b; exists. Then by (K7) n(b2(2),b7) > 1,
hence b7 is joined to at least one of rq,75. But this would cause either r; or
9 to have valence at least six which is impossible from (K6). Hence we have

all the blue vertices of K - three are of valence 2 and three are of valence 5.
(See figure 3.22.)

rq5) ri5)ry

b4(5) b(2) by(5) b,(5) b(2) bg2)
Figure 3.22:

Now by (K7) n(bs(2),b6(2)) = 1, hence both b5 and bg are joined to a

red vertex r3 (since bg cannot be joined to 7 nor bs to r9). Now if r3 had
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valence 2 then by (K7) n(ry(5),73) = 2 and so 75 would have to be joined to
bs which has already been ruled out. Hence r3 has valence 5. Since we have
established that by, ..., bg are all the blue vertices we see that r3(5) is joined
to five of them. However 73 cannot be joined to b3(2) because b already has
its full quota of edges. Thus r3 is joined to by, bs, by, b5, bg. Tidying up by

rearranging and relabeling yields the picture so far in figure 3.23.

r45) r4«5)r45)

b4(5) by(5) b4(5) b,(2) bg2) bg2)
Figure 3.23:

Now by (K7) n(b1(5),b2(5)) = 4, hence there exists a further red vertex
r4 with both b; and by joined to r4. Now if r, had valence 5, then since we
already have all the blue vertices, by the pigeonhole principle b, is joined to
one of by, bs, bg which contradicts the fact that b4, b5, bg all have valence 2.
Hence r, has valence 2. A similar argument shows that any further r; (i > 4)
must have valence 2. Also by (K7) b; and b3 must both be joined to an r;
(of valence 2) and by and b3 must both be joined to an rg (of valence 2).
We thus get the completed picture in figure 3.24 which satisfies properties
(K1)-(K8).
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2 5 5 2

Figure 3.24:

We now exhibit the subarrangements of ambiguous curves in A; corre-
sponding to the four cases to verify they all exist geometrically.

Case 1. We get a triangle of lines. See figure 3.25.

Combinatorics
-1 -1

1 -1 1
Geometry
- N 1 o
+1 +1 .
+1 +1
ST N

Figure 3.25: Case 1

N.B. The circles represent points to be blown up (curves in A that have

been blown down via 7).
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Case 2. We get in A; six points which are in sufficiently general position
with respect to conics (that is all six points are not conconic and no three
are collinear) such that a conic passes through each 5-tuple of points (and
not the sixth). Note that this forces each pair of conics to have four of the
six points in common and these are all their intersection points by Bezout’s
theorem. See figure 3.26.

Case 3. It is easy to see that this represents four lines and a conic all
passing through a single point with the conic intersecting each line at one
other place. See figure 3.27.

Case 4. It is easy to see that the three valence 2 blue vertices could
only possibly have come from three lines (since they pairwise intersect in
only one point i.e. have only one red vertex in common). Furthermore the
three valence 5 blue vertices must have come from three conics (this comes
from considering their self intersection numbers after blowing down the red
vertices), all passing through the three points of intersection of the lines,
but also intersect pairwise in one other point. As before the six intersection
points must be in general position with respect to conics with the possible
exception that the three intersection points which do not lie on the three
lines may be collinear. See figure 3.28.

Hence all combinatorially possible situations for K occur geometrically.
Now let us remember that K was only a subgraph of P/(A). Hence we must
see also how other curves could intersect with the four cases just shown. We
will do this from the perspective of m;. But first we need a few preliminary

results.
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Combinatorics

-1 -1 -1 -1 -1

-1

Geometry

+4

+4

<+
|_|

+4

+4

+4

Figure 3.26: Case 2
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Combinatorics 1

-1 -1 -1 -1 -1

'1 @ @ \Y;
-1

-1 -1 -1-1 -1
Geometry -1
+4
+1
+1 +1
-1
-1
+4
+1
YT\ RS

Figure 3.27: Case 3
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Combinatorics

Figure 3.28: Case 4
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3.3 How Other Curves may Intersect the Am-

biguous set

Lemma 3.3.1 No vertez of K can be joined in PI(A) to a vertex in PI(A)\K

which is exceptional with respect to either m or m,.

Proof: If this were so, say k € K were joined to [ € PI(A) \ K where k is
without loss of generality exceptional with respect to m;. But [ is exceptional
with respect to either m; or my and since [ is not in K, it is not ambiguous.
Thus ! must be exceptional with respect to both 7; and m. Hence with
respect to m; both k£ and [ are exceptional divisors and hence cannot intersect.

O

Corollary 3.3.2 The subarrangement of ambiguous curves with respect to
(without loss of generality) w1 has the property that apart from their natural
intersection points, no other points on them can be blown up when seen in
Ay. Hence in particular if three curves in A; intersect at a point P, then
this point is either one of the intersection points of the subarrangement of

ambiguous curves, or else is not on any ambiguous curve.

Hence when investigating how a curve C' intersects with the ambiguous sub-
arrangement, if P is a point blown up on C, then either P is not part of
the ambiguous subarrangement and hence under 77!, P is blown up, but
is blown straight down again under 7, of else P is one of the intersection
points of the ambiguous subarrangement. Also note that any intersections of
C with the ambiguous subarrangement not at the special intersection points

are part of a curve which gets blown down. In particular we have

Lemma 3.3.3 A curve C cannot intersect one of the ambiguous curves in
two places Py and P, such that neither P, nor Py are intersection points of

the subarrangement of ambiguous curves.
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Proof: If this were so then the image of C under 7, o 7' would identify P,
and P, to a single point thus causing the image to be singular - contradiction.
O

We can now begin discussing the various cases.
Case 1(i): A line [ intersects the configuration without passing through

any ambiguous intersection points. See figure 3.29.

As A

Figure 3.29: Case 1(i)

Blowing up the three intersection points leaves the self intersection num-
ber of [ at +1 and blowing down the three lines increases the self intersection
number of [ to +4. Note that any other points getting blown up by 7"
get blown straight back down by 7y since the vertices of K constituted the
ambiguous set, and hence any other points play no part in this type of dis-
cussion (compare corollary 3.3.2 ).

The only candidate for I’ = my(m; *(1)) is thus a conic which passes through
the three points A = my(m; *(\;)) ¢ = 1,2, 3. This is clearly possible in essen-
tially only one way as shown in figure 3.30.

Note that (of course) the two configurations have the same immediate
plumbing diagram as in figure 3.31.

Strictly speaking the first has plumbing diagram as in figure 3.32 (which
is of course equivalent to the plumbing diagram in figure 3.31), however we
had to blow up the three intersection points, reminding us that there were

other curves passing through these intersection points.
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Figure 3.30: Case 1(i)

-1 -1

Figure 3.31: Case 1(i)

+1

+1

+1

Figure 3.32: Case 1(i)
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Comment: This type of phenomenon where the configurations in A; and
A, are different is an example of a non-self-inverse scenario. This can be
detected in the asymmetry in the plumbing diagram of the ambiguous set

together with the curve [ with respect to blue and red vertices. See figure 3.33.

Figure 3.33: Case 1(i)

Henceforth such lengthy explanation will be omitted since the same goes
for all of the following discussion.

Case 1(ii): A line [ intersects the configuration and passes through
exactly one ambiguous intersection point.

Blowing up decreases the self intersection number of [ to 0 and blowing
down then increases it back to +1, so that [’ can only be a line. See figure 3.34.

Note that the first diagram looks like the last. This can be detected in
the symmetry of the plumbing diagram (figure 3.35) with respect to blue and
red vertices.

This is an example of a self-inverse scenario.

Case 1(iii): A conic 7 intersects the configuration without passing
through any ambiguous points.

This cannot occur by lemma 3.3.3 since a conic intersects a line in two
points and so ' would have to be singular. See figure 3.36 which demon-
strates this.

Case 1(iv): A conic 7 passes through exactly one ambiguous point.
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A,
! %
A3

"
bS

Figure 3.34: Case 1(ii)

Figure 3.35: Case 1(ii)
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K

e

\. @Y

Figure 3.36: Case 1(iii)



This cannot occur by lemma 3.3.3 because then it intersects an ambiguous
line in two non-ambiguous points. Hence this case does not occur.

Case 1(v): A conic v passes through exactly two ambiguous intersection
points.

Blowing up decreases the self intersection number of vy from +4 to +2
and blowing down increases it back to +4. This is possible in essentially only

one way as shown in figure 3.37.

=
<>
e

Figure 3.37: Case 1(v)

As

This is another self-inverse scenario since the plumbing diagram (fig-
ure 3.38) is symmetric with respect to blue and red vertices.

Case 1(vi): A conic 7 passes through all three ambiguous intersection
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Figure 3.38: Case 1(v)

points as in figure 3.39.

A \,

Figure 3.39: Case 1(vi)

This case is inverse to case 1(i) so the reverse argument applies.

Case 1(vii): A (nonsingular) cubic 0 passes through all three ambiguous
intersection points.

Blowing up decreases the self intersection number of § from +9 to +6,
then blowing down increases it again to +9. See figure 3.40.

This is possible in essentially only one way and is another self-inverse
scenario. The plumbing diagram (figure 3.41) is symmetric with respect to
blue and red vertices.

Case 1(viii): A cubic § passes through at most two ambiguous intersec-

tion points. See figure 3.42.
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Let P be an ambiguous point through which ¢ does not pass and A one
of the ambiguous lines passing through P so that A and § have at most one
ambiguous intersection point in common. However by Bezout’s theorem ¢
must intersect A in three points, and so at least two of these intersection
points are non-ambiguous. This contradicts lemma 3.3.3.

Hence this case does not occur.

Ay A,

a

22X

Figure 3.42: Case 1(viii)

Case 1(ix): A degree n (nonsingular) curve § (n > 4) is in the configu-
ration. See figure 3.43.

Then the total number of intersection points of 0 with one of the lines is
n by Bezout’s theorem. Since n > 4 at least two of these intersection points
are non-ambiguous intersection points. This contradicts lemma 3.3.3.

Hence this case does not occur.

Ao A,

» 7 X

Figure 3.43: Case 1(ix)
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Now for the remaining three cases there are many subcases to consider.
The arguments as to whether or not a curve is allowed to be in the configura-
tion, and if it is, how it transforms under the blowing up and blowing down,
are much the same as in the treatment of Case 1. Hence we just give the
summary of what curves and how they lie are allowable, and if allowable how
they transform. The full treatment is given in Appendix A. First we fix nota-
tion in figure 3.45 and then list what can happen. See figures 3.46, 3.47, 3.48
and 3.49.

Comment: In listings 3 and 5 in figure 3.48 it appears that we have a self
inverse scenario. This is true in the sense that the two diagrams have the
same plumbing diagram after a small amount of twisting (that is, relabeling).
However if more curves enter the picture then the net result may not be self
inverse even though each individual curve appears to be a twisted self inverse.

For example see figure 3.44.

Figure 3.44:

From the classification of ambiguous cases we immediately have the fol-

lowing.
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Notation

Origina Image
Case 1.
Case 2
P,O OP; C,o 06
PO OP. Cio OC.
PsO OPs Cc 0O O G

C. istheconic not passing through P ..
P isthe conic not passing through C ..

Case 3:

Case 4:

M, isthe conic not passing through P, , Q. , but through the other P j,Q E
P! isthe conic not passing through A’ u;', but through the other )\j’,uj T

Figure 3.45: Notation
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Cubic

Py D 2

Casel

Pe D B

Figure 3.46: Case 1

75

Self Inverse ?

No

Yes

Yes

Yes



O

Case 2

A\
O =——= O
O
O
Cubic

Figure 3.47: Case 2

76

Self Inverse ?
Yes

O
Yes
Yes



eoboB

Case 3
Self Inverse ?

Yes

Conic

See
Comment

See
Comment

Cubic

OEHDDD

Figure 3.48: Case 3
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Case 4

|

Self Inverse ?

A line may pass through the Q

if they are collinear.

5%

C

T

_

|

ubic

|

No

O O
Yes

O O
‘ i No
% Yes
Yes

O O
@ Y&G

Figure 3.49: Case 4



3.4 Main Results

Corollary 3.4.1 Let Ay and As be two normal reqular arrangements having

homeomorphic links, then Ay and Ay contain the same number of curves.

Proof: Firstly, since they have homeomorphic links, the map 7y o 7, *
A; — As is a bijection between curves of A; and A, outside of the ambiguous
set. In the ambiguous set we see from the four cases that the number of
ambiguous curves blown down equals the number of ambiguous points blown

up thus maintaining equal cardinalities of curves. O

Corollary 3.4.2 Let Ay and Ay be two reqular arrangements with homeo-
morphic links. If Ay contains a curve of genus > 1 (that is of degree > 3),

then Ay and As are equivalent arrangements.

Proof: Firstly we see that if the arrangements contain at least two curves
then the plumbing diagram for each is already in normal form because the
presence of a curve of degree greater than three forces each curve to have
at least three intersection points on it. (Corollary 3.1.2.) Of course if the
arrangement consists of a single curve then the plumbing diagram is in normal
form. From the classification just completed we see that in the four cases it
is not possible to have a curve of genus greater than one in the arrangement.
Thus the ambiguous set must be empty and the map 7, o ;' furnishes the

required isomorphism between the arrangements.
O

Corollary 3.4.3 Let A; and Ay be two arrangements with homeomorphic
complements. If Ay contains a curve of genus > 1 (that is of degree > 3),

then Ay and Ay are equivalent arrangements.

It is now an appropriate time to quantify exactly what we mean by a

symmetric plumbing diagram.
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Define a map o on each of the graphs in figure 3.50 to be the map which

interchanges a vertex with the vertex opposite to it that is reflection in the

horizontal.

Figure 3.50:
Definition 3.4.1 Let G be a plumbing diagram which arises from two ar-
rangements having the same link and with a distinguished labeled subset of
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reqular, exceptional and ambiguous vertices. Let K be the subgraph on the
ambiguous set of vertices, so that K defines a subgraph which is one of the
diagrams in figure 3.50. We say that G is semi-symmetric with respect to K
if the map o defined on K can be extended to an automorphism of G' which
maps reqular vertices to reqular vertices and exceptional vertices to excep-
tional vertices. We say that G is symmetric with respect to K if o can be
extended to an automorphism of G such that the restriction of o to G\ K is

the identity map.

Lemma 3.4.4 Let A1, Ay be two arrangements with same plumbing diagram
PI(A) = G. Let K be the corresponding labeled ambiguous set with map o.
If the plumbing diagram is semi-symmetric with respect to the ambiguous set

then Ay and Ay are equivalent arrangements.

Proof: Let 3 be the map myooon;!: Ay — Ay. We claim that 3 is an
isomorphism of marked plumbing diagrams.

Firstly if P is a point of intersection outside the ambiguous set, let
C1,0Cs, ..., C, be the curves passing through P. Since none of the curves
Cy,Cs, ..., C, are ambiguous we easily see that 5(C,), 5(Cy),..., B(C,) are
all curves in A,. Also 3(P) is a point contained in each of 3(C}), 3(Cs), . .., B(Cy).
(If P gets blown up, then it gets blown straight back down).

If P is a point of intersection on one of the ambiguous curves but not at an
ambiguous vertex, then by lemma 3.3.3 P cannot be blown up and hence only
two curves C, D pass through P where D is ambiguous and C' is not. Now
C gets mapped to another curve 8(C). D gets mapped to the curve 7] (D),
then to another curve o omr; '(D), and then to another curve myooom; }(D).
The effect of o stops m; *(D) from being blown down to a point by m,. Also
P gets mapped to the point 77 (P) which is the intersection of 77 !(C) and
771 (D), then to the point o o 77 ' (P) which is the intersection of o o 77 (C)
and oon; '(D) by symmetry, then to the point 3(P) which is the intersection
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of 3(C) and B(D).

If P is one of the ambiguous points of intersection with nonambiguous
curves C; and ambiguous curves D; passing through P, then the C; are
mapped to curves 3(C;) and the D; to curves §(D;) and P is mapped to the
exceptional curve 7, ' (P) where 7, !(C;) and 7, *(D;) pass through, then to
the exceptional curve o o m; '(P) where o o m; '(C;) and o o 7, ' (D;) pass
through by symmetry then to the point §(P) where 3(C;) and 3(D;) pass
through. The effect of o ensures that 7, *(P) eventually gets blown down.

Thus we have proven that 3 is a lattice homomorphism. Similarly 87! is
a lattice homomorphism. Thus (3 is an isomorphism.

O

Notice that this result also yields a way to detect for a given normal
regular arrangement, if there is another normal regular arrangement with

the same link.

Algorithm 3.4.5 For a given arrangement A, firstly form the plumbing di-
agram (which will already be in normal form for what we are considering).
Next systematically search the plumbing diagram for each of the four dia-
grams n figure 3.50. If no such diagram is found, then there is no other
arrangement giving the same link. If such a diagram is found, say for exam-
ple the third one in figure 3.50, then look up its summary (in this example
it is found in figure 3.48). If there is a curve in the arrangement not fitting
into the scheme of things found in the summary then again there is no other
arrangement giving the same link for the chosen subdiagram. If all curves in
the arrangement fit into the scheme, then replace each curve in the scheme
with its inverse partner and then check if this is a new arrangement. By
using lemma 3.4.4 we can quickly preclude that this is a new arrangement
with same link if the plumbing diagram is semi-symmetric with respect to the
chosen subset in figure 3.50. If it is not a semi-symmetric scenario then the

new arrangement s still a candidate.
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Incidentally when checking (for example, the case 3 type diagrams in
figure 3.48), for the property of being semi-symmetric, all self inverse type
curves can be ignored. For a strictly non-selfinverse situation such as in the
second listing of figure 3.48, a curve and its image provided they both occur,
can be ignored in pairs.

As an example, consider the arrangement of seven curves which is in fact
the fourth listing of the summary to Case 4 found on page 78. It is a tri-
angle of lines with three conics all passing through the triangles vertices,
and they pairwise intersect in three further points which are collinear and
through which pass another line. Searching systematically for the subdia-
grams quickly shows that only Cases 1 and 4 could possibly occur, if at all.
Case 4 obviously occurs but leads to nothing new because the situation is
symmetric. Case 1 occurs four times but only one of them yields a new
arrangement with same link. It is a triangle of lines with a conic ¢ passing
through the vertices and also three other lines which intersect pairwise on

the conic ¢ but are in general position with respect to the triangle of lines.

Corollary 3.4.6 Consider the class of arrangements of lines. Then there
s a bijective correspondence between the combinatorics of the arrangements

and the topology of the links.

Proof: Assume firstly that there exist two arrangements A; and A, such
that they have same plumbing graph but nonisomorphic lattices. It is easy
to see that the following cases partition all possible arrangements of lines in
CP2.

Case 1 : Every line has at least three intersection points on it.

Then as we have seen, the plumbing diagram must be in normal form.
In this case if two arrangements A;, A, have the same plumbing diagram
then from the classification of possible cases we see that because only lines

are involved, that only case 1(ii) is applicable here (see page 67) and in
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this case the plumbing diagram is symmetric with respect to the exceptional
set and hence lemma 3.4.4 is applicable so that A; and A, are isomorphic
arrangements.. Furthermore, if there is an intersection point which requires
blowing up, then we see that the plumbing diagram must contain a vertex
of weight —1. If no point requires blowing up, then the lines are in generic
position and the plumbing diagram is a complete graph with all weights +1.
In either case the normal form plumbing diagram of this case contains a
vertex of weight +1 or —1.

Case 2 : Double Pencil. See figure 3.51.

Note that the final configuration is in normal form since &k, > 2 implies
that all valences are > 3.

Case 3 : Line and Pencil. See figure 3.52.

The final configuration is obviously in normal form and the link is home-
omorphic to S x Fj_; where F}_; is a surface of genus k — 1.

Case 4 : Pencil consisting of at least three lines. See figure 3.53.

The final configuration is in normal form. The link is #571(S* x S?).

Case 5 : Triangle. See figure 3.54.

Note that this is a special case of Case 3. The link is 7.

Case 6 : Line pair. See figure 3.55.

Note that this is a special case of case 4. The link is S x S2.

Case 7 : Single line. See figure 3.56. (Special case of case 4.)

The link is S3.

Now it remains to show why if A; is not isomorphic to A, then the
corresponding plumbing diagrams NPI(A;) and NPI(Ay) are not the same.

Let A; be in case 1. Then if Ay is also in case 1 then as discussed,
their plumbing diagrams cannot be isomorphic. If A, is not in case 1, then
NPI(A;) 22 NPI(Ay) because NPI(A;) has a vertex of weight +1 but all
vertices in cases 2 - 7 are weighted with 0. Furthermore all other combinations

of cases 2-7 for A; and A, are trivial to check by inspection that they are all
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NSNS
N A e
Blowing up yieldsthe

following plumbing
diagram. 0 0

Blowing down (R1)
yields

Figure 3.51: Double Pencil
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Blowing up yields:

0

Oriented Handle Absorption (R5) 0
[ ]

[k-1]

Figure 3.52: Line and Pencil
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LK k>2

Blowing up yields:

k
0
Rearrange: -1 \\1
0 k-1
0
Splitting (R6) ¢ .
Vo k-1
Oe -

Figure 3.53: Pencil
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Plumbing + + +1

Diagram

+1
Blow down (R1) _
0e__—e(
+

Oriented Handle
Absorption (R5)

[1]

Figure 3.54: Triangle
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Plumbing Diagram +1 +1
e———o

Blow down (R1) 0
o

Figure 3.55: Line Pair

Plumbing Diagram +1
 J

Blow down (R1) ¢
(Leaves the empty

graph.)

Figure 3.56: Single Line
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different. Thus we have shown that the topology of the link determines the
arrangement in the case of lines. The converse is trivial.

O

Corollary 3.4.7 Consider the class of conics. There is a bijective corre-

spondence between the the arrangements and the links.

Proof: Firstly the plumbing diagram for an arrangement of conics is al-
ready in normal form because if an arrangement contains at least two conics,
then each conic intersects the first conic in four places, thus we can apply
theorem 3.1.2 because each curve has at least three (four) intersection points
on it. If the arrangement consists of only one conic, then its plumbing di-
agram is not in normal form (see figure 3.57), however its normal form is
certainly different to the plumbing diagrams of arrangements of conics with

at least two curves.

+4 R1 3 -1
o o—0
R1 2 1 2
o—0 °
R1 112 2
o— 0 0 ©°
R1 (inverse) -2 -2 -2
o—0 °

Figure 3.57: Normal Form for single conic

Now suppose we have two arrangements A; and Ay of conics which have
isomorphic plumbing diagrams. Since only conics are involved we see that
only the second listing in figure 3.47 is applicable here and since this yields a
symmetric scenario, we see that lemma 3.4.4 is applicable again and allows us
to conclude that the arrangements are isomorphic. Once again the converse

is trivial.
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O

Corollary 3.4.8 Consider the class of arrangements of lines. Then the

topology of the complement determines the topology of the arrangement.

Note that this result implies that although the complements of two ar-
rangements may be homotopy equivalent, they are not necessarily topolog-
ically equivalent. (See the two inequivalent arrangements of Falk [4] which

have homotopy equivalent complements. See also [3] section 7.4 p310.)

Corollary 3.4.9 Consider the class of arrangements of conics. Then the

topology of the complement determines the topology of the arrangement.
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Chapter 4

The Regular Case in Full
Generality

4.1 Classification of Non-Normal Cases

The purpose of this section is to classify all possible non-normal cases into
families and then divide and conquer by comparing families. The approach
will be similar to that taken in the classifying into families arrangements of
lines in the previous section.

Case 1: The plumbing diagram is already immediately in normal form.

Note that this is precisely the case when all curves have at least three
intersection points on them or the arrangement is a single curve of genus > 1.
Consequently we can assume henceforth that our arrangement consists only
of lines and conics.

Case 2: The arrangement consists of lines only such that the plumbing
diagram is not in normal form. The normal forms for this class of arrange-
ments were computed in section 3.4.

Henceforth we can assume that there is at least one conic.

Case 3: Our arrangement consists of a single conic. The normal form is
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shown in figure 4.1.

+4
N .
2 2 2
o—o o

Figure 4.1:

Case 4: Our arrangement consists of a single conic and a single line. The

normal form is shown in figure 4.2.

/\ +4 41
[ -

B — +2@

Figure 4.2:

Henceforth we can assume that all conics will have at least three inter-
section points on them. Thus lines are now the only possible curves that
could have at most two intersection points on them. Note that no line could

possibly have exactly one intersection point on it since there is at least one
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conic. We now classify as to the number of lines with exactly two intersection
points on them.

Case 5: Exactly one line [ has only two intersection points on it, and
the arrangement is not case 4.

Now say [ intersects the conic ¢ at points P and ). We claim that both
P and @ have branches of curves passing through them other than [ and c.
Indeed if say P had only two branches passing through it then ¢ must be the
only conic. (If d were another conic then d intersects | twice. Since [ only
has intersection points at P and ), we see that d intersects [ at P and Q).)
Now since we are not in case 4 there are further lines in the arrangement. By
assumption these must all pass through ). However then these lines would
also have the property of having exactly two intersection points on them
which contradicts the uniqueness of [ for this case.

The point of this discussion is that the normal form for arrangements in
this case is only one step away, namely we only need to do a single (—1)-

blow-down. See figure 4.3.

Figure 4.3:

Case 6: The arrangement consists of one conic and two lines, all three
curves passing through a common point. The normal form is shown in fig-
ure 4.4
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(+1]

Figure 4.4:

Case 7: Exactly two lines say [ and m have exactly two intersection
points on them, and the arrangement is not case 6.

This forces [, m and ¢ to concur at a point say P. Now let () be the other
intersection point of [ and c. Let R be the other intersection point of m and
c. Now P has three curves passing through it. We claim that both R and @)
have at least three branches of curves passing through each of them. Indeed
assume that ) say has no other curves passing through it other than [ and
c. As in case 5 we see that there can be no other conics. However since we
are not in case 6, there are further lines in the arrangement and these all
intersect [, thus they all pass through P. This contradicts the uniqueness of
[ and m having only two intersection points.

Again the point of this discussion is that the normal form for arrange-
ments in case 7 is found by blowing down the curves [ and m. See figure 4.5.

Case 8: Exactly n > 3 lines which are not all concurrent have exactly
two intersection points on them.

This immediately implies there are three non-concurrent lines [, m and n

with exactly two intersection points on them. Any fourth line would violate
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Figure 4.5:

the two point property. Thus n = 3. Figure 4.6 shows the passage to normal

form.

+1

+1

+1

Figure 4.6:

Case 9: The arrangement consists of three lines and a conic all concur-
rent. See figure 4.7 for normal form.

Case 10: Exactly three concurrent lines say [, m and n have exactly two
intersection points on them and we are not in case 9.

Assume the curves [, m,n,c all concur at P and that the other points

of intersection of [, m,n with c are @, R, S respectively. Now if there is any
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(+2]

Figure 4.7:

other line say £ in the configuration it must pass through P since @, R, S
are not collinear. Thus there must be another conic in the configuration. All
such conics must pass through the four points P,Q, R and S. The passage
to normal form is shown in figure 4.8.

Case 11: Exactly n > 4 concurrent lines have exactly two intersection
points on them.

Let the lines l4,...,[, intersect the conic ¢ in points P, @, ..., R, with
P, Q); lying on [;. Any other conic d say would have to pass through all the
points P, Q1,...,Q, in order not to violate the two point property of all the
;. But then ¢ and d would intersect in n + 1 > 5 points which contradicts
Bezout’s theorem. Thus there are no additional conics and we have all the

lines. The passage to normal form is shown in figure 4.9.

Theorem 4.1.1 The eleven cases described above classify all possible ar-
rangements of nonsingular curves such that all crossings are pairwise transver-

sal.
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Figure 4.8:

% -13

+ +2

o 0
Ll )
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0

[n-1]

Figure 4.9:
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4.2 Divide and Conquer

Given two arrangements A; and A, we must now check if they can both
give rise to the same plumbing diagram. We divide and conquer much in
the same way as was done in section 4.2 where we were only dealing with

lines. Only in this case there are many more comparisons to do. Actually
11
( 5 ) 4+ 11 = 65 comparisons to do. Luckily most are trivial, but some are

not and as in section 3.1, we will need to develop an axiom system similar

to the one in theorem 3.1.3 to sort some comparisons out.

4.2.1 Case 1 versus Case n

Say A; is in case 1 and A, is in case n. The cases n = 1,2 were handled
in the previous section. The case n = 3 cannot occur because NPI(A;) will
either have all vertices with positive weights or will contain a vertex with
weight —1. NPI(Az) does not have this property.

The case n = 4 cannot occur because this would force A; to have only one
curve in it, and no non-blown-up algebraic curve has negative self intersection
number.

The case n = 5 certainly can occur. Referring to the notation of the pre-
vious section, label the vertices of N PI(Aj) corresponding to P, Q as F1, Ey,
and let the vertices to they correspond in NPI(A;) be Ry, R, respectively.
Now it is clear that the Euler weights of vertices in N P[(Ajy) corresponding
to exceptional divisors in A, are all —1 with the exception of E1, Fo, whose
weights are 0. It is also clear that the vertices in NPI(A;) corresponding
to exceptional divisors in A; all have weights —1. Thus in particular R;, R,
being of weight 0 correspond to curves in A; and so the edge between them
corresponds to an intersection point of the curves. Now do a (-1)-blow up

on the plumbing diagrams of Ay, A5 on the edge joining E;, Ey in NPI(As)
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and on the corresponding edge joining R;, Ry in NPI(A;) so as to preserve
the isomorphism of diagrams.

This has the effect of blowing up an intersection point of two curves in
A;. In A, it has the simultaneous effect of causing all exceptional divisors to
have weight (—1) and also recovers the curve [ which was blown down.

Now if we follow the method as in section 3.1 to these altered plumbing
diagrams by letting K be the subgraph on the set of ambiguous vertices, then
it is easy to see that K satisfies the axioms K1-K8 of theorem 3.1.3 and the
analysis of how other curves intersect the ambiguous set is unchanged. Thus
we get no new phenomena.

The cases n = 6,9, 11 cannot occur because N PI(A;) will always have an
edge with a negative sign while N PI(A;) never does.

The case n = 10 doesn’t occur because N PIl(Ajy) has a vertex of weight
0. However for NPI(A;) to have a vertex of weight 0 some curve had to have
had at least one point blown up on it, thus NPI(A;) would need to have a
vertex of weight —1. Yet NPI(As) has no such vertex.

The cases n = 7,8 are similar to the case n = 5. For n = 7, using
the notation of the previous section, label the vertices of NPI(As) which
correspond to the points P,Q), R in A, as F, E;, E5 and the corresponding
vertices in NPI(A;) as R, Ry, Ry. Now do (—1)-blow-ups along the edges
joining E, E and Ey, E in NPI(As) and also the corresponding blow-ups in
NPI(A;) so as to maintain isomorphic diagrams. In NPI(A;) this merely
corresponds to blowing up two intersection points. In NPI(A,) this causes
the rogue vertices F, E|, Fy corresponding to exceptional divisors to have
weights —1 and also recovers vertices corresponding to curves [, m which had
gotten blown down. If we follow the method as in section 3.1 to these altered
plumbing diagrams we come to the same conclusions as in the case n = 5.

Similarly for the n = 8 case we alter plumbing diagrams by blowing up

along the edges in NPI(Ay) which join the vertices corresponding to points
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P,Q, R in A, and do the induced thing in NPI(A;). This again leads to the

same conclusion.

4.2.2 Case 2 versus Case n.

The case n = 2 has been dealt with in a previous section.

For n > 3 we note that NPI(A;) has all vertices of weight 0, yet for n =
3,4,6,7,8,9,10,11 we immediately can see in NPI[(As) a nonzero weighted
vertex. Finally for n = 5 if apart from P and () there are other points in A,
which need blowing up then this translates into the existence of a vertex of
weight —1 in N PI(A,). But if no further points are to be blown up, then the
vertex in NP[(Ay) which corresponds to the conic ¢ in Ay will have weight

+2. Thus for n = 5 we also have a nonzero weighted vertex.

4.2.3 Case 3 versus Case n.

Case 3 has all vertices of weight —2. Certainly n = 3 is vacuous. For n > 4
we see that N PI(As) ostensively always contains a vertex of weight not equal
to —2.

4.2.4 Case 4 versus Case n.

Certainly n = 4 is vacuous. Also NPI(A;) consists of a single vertex with

no edges, yet for n > 5, NPI[(A,) always contains edges.

4.2.5 Case 5 versus Case n

The cases n = 5,7,8,10 are difficult and will be dealt with separately. One
sees that cases n = 6,9, 11 cannot occur because of having negatively signed

edges.
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4.2.6 Case 6 versus Case n

Immediately the case n = 6 is vacuous. For n > 7 we see that NPI(A;) has
all vertices with genus [+1] (namely a single vertex like this) while NPI(A2)

does not have this property.

4.2.7 Case 7 versus Case n

The cases n = 7,8 are difficult and will be dealt with later. For n > 9 we
see that NPI(A;) always contains a vertex of weight +1, but NPI(Ay) never

does.

4.2.8 Case 8 versus Case n.

The case n = 8 is difficult and will be dealt with later, but again for n > 9
we see that NPI(A;) always contains a vertex of weight +1, but NP[(A,)

never does.

4.2.9 Remaining Cases.

Cases 9 versus 9 and 11 versus 11 are vacuous, while case 10 versus case 10 is
difficult and will be dealt with later. Case 9 versus case 11 does not happen
because their normal forms are explicitly different. Finally Case 10 versus
case 9 or case 11 does not occur because the normal form for case 10 contains

a vertex of weight zero but the normal forms for cases 9 and 11 do not.

4.3 Difficult Non-Normal Cases

The previous section showed that nothing new happens in most cases for
the non-normal situation. Yet there were eight situations that could and do

lead to new things happening. They were A; belonging to case 7 and A,
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belonging to case j where (i, j) were one of the following pairs: (5,5); (5,7);
(5,8); (5,10); (7,7); (7,8); (8,8); (10, 10).

Each of these cases requires detailed analysis and will be put under its
own subheading. It turns out in most cases that we can adjust the plumb-
ing graphs in each case so as to be able to do the sort of axiomatizing of
ambiguous subgraphs as was done in section 3.1.

Convention: In order to avoid clumsiness, for the rest of this section we

shall not distinguish between a curve in A; and the vertex representing it in
PI(4;).

431 i=j=5

Let Ey, Ey be the two exceptional curves of weight zero in NPI(A;). Let
F, F, be the two exceptional curves of weight zero in N PI(As). The question
is what happens under the isomorphism between plumbing graphs. We iden-
tify E; with its image under the isomorphism between NPI(A;), NPI(As).
Case 1: If the sets {E}, Ey} and {F}, F,} are disjoint, then we can blow up
along the edge joining F;, Ey and do the corresponding thing in N PI(As),
then blow up the edge joining F}, F, and do the corresponding thing in
NPI(A;) so that all we have done is to restore curves that had been blown
down, made all exceptional divisors have weights —1 and blown up a couple
of intersection points of curves. One can easily check after these alterations
that the subgraph K on ambiguous vertices satisfies the same eight axioms
as in theorem 3.1.3. Thus nothing new occurs here.

Case 2: If the sets {E1, Ey},{F1, F3} coincide, say Ey = F and Ey = F5,
then blowing up along the edged joining E,, E, will also restore the situation
to one that can be dealt with as in section 3.1.

Case 3: If the sets { £, Es},{F1, F>} have exactly one element in common

say F, = F, then blow up along the edge joining F;, F; and forming a new
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vertex R; also the edge joining F}, F5 forming a new vertex S;. Here we have
an unusual situation where F, is now a vertex of weight —2 - representing
the only exceptional curve whose weight is not —1. Note that E5 is not an
ambiguous vertex being an exceptional divisor for both A; and Ay, but that
Ei, Ry, F, S, are ambiguous. Furthermore Ei,S; are blue and Fi, R, are
red. Now the subgraph K on the ambiguous set of vertices one can check
satisfy axioms K1-K5. Axiom K6 holds for all vertices except Ry, S, F1, Fy
which satisfy v(R;) = v(S1) = 1 and v(E;),v(F1) = 1 or 4. (Recall that F;
is a line in A; and F} a line in A,y). Axiom K7 holds for all pairs of vertices
except the following situations: n(R;(1), F1(1)) = n(S1(1), £1(1)) = 0 and
n(Ry1(1), F1(4)) = n(S1(1), E1(4)) = 1.
See also figure 4.10.

Let us write down these axioms.
Axiom 4.3.1
Kl K#¢
K2 All vertices have [g] = [0] and weights —1.

K3 All vertices are either coloured red or blue and we have two distinguished
red vertices Ry, Ry and two distinguished blue vertices By, By. Further-

more Ry is joined to By and B is joined to Rs.
K4 No vertices of the same colour are joined by an edge.
K5 There are no double edges or loops.
K6 FEvery vertex has valence either 2 or 5 except that

1. ’U(Rl) == U(Bl) =1
2. v(By),v(Ry) =1 or4
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K7 Ifu,v are vertices of the same colour, then n(u(z),v(y)) = (z—1)(y—1)
except that

L n(Bi(1), RBy(1)) = n(Bi(1), B(1)) = 0
2. n(Ri(1), Rx(4)) = n(Bi(1), Bo(4)) = 1
3. n(R(2), Ri(1)) = n(B(2), Bi(1)) = 1
4- n(R(5), Bi(1)) = n(B(5), B.(1)) = 2
5. n(R(2), Ry(1)) = n(B(2), Ba(1)) = 1
6. n(R(5), Ry(1)) = n(B(5), Bx(1)) = 2
7. n(R(2), Ra(4)) = n(B(2), B2(4)) = 2
8. n(R(5), R2(4)) = n(B(5), Bs(4)) = 4

Figure 4.10:

We now need to determine K. One immediate simplification is that
v(Rg) = wv(Bz). This follows from the axioms because if say v(Ry) = 1
and v(By) = 4, then we have n(Bs(4), B1(1)) = 1 by K7. However B; is only
joined to R, so that B, must be joined to Ry also. Thus R, has at least
valence at least 2. Thus we really only have two cases to consider. We also
have the simplification that there can be no valence 5 vertices, for if say B
had valence 5, then n(B(5), B1(1)) = 2 yet v(B;) = 1.

Case 1: v(By) = v(Ry) = 1.

In this setting we immediately see that B;, By, Ry, Ry are all the vertices
of K, for if say B were another blue vertex, then n(B;,B) > 1 and this
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contradicts that B; is only joined to Ry. Thus we already have all of the

diagram as in figure 4.11.

BZ Bl
Rl RZ
Figure 4.11:

Actually if we augment the graph K to include in addition not only
the ambiguous vertices, but also the vertices which are exceptional in both
diagrams but have weights not equal to —1 then the axioms for K become a

little easier.
Axiom 4.3.2

K1 K # ¢

K2 All vertices have [g] = [0] and weights —1 except vertexr E* which has
weight —2.

K3 All vertices are coloured red or blue except E* which is coloured grey.
Furthermore we have distinguished red vertices Ry, Ry and distinguished
blue vertices B1, By. We further demand that the valences of E*, Ry, B;
be 2 and that R, is joined to both By and E* and that By is joined to
both Ry and E*.

K4 No vertices of the same colour are joined by an edge.
K5 There are no double edges or loops.

K6 FEuvery vertex has valence 2 or 5 except that v(Ry),v(Bs) =1 or 4.
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K7 If u,v are vertices of the same colour then

1. n(Ry(2), Ro(1)) = n(B1(2), Bs(1)) = 0
2. n(Ry(2), Ra(4)) = n(B1(2), By(4)) = 1
3. n(R(2), Ra(1)) = n(B(2), Bz(1)) = 1
4. n(R(5), Ry(1)) = n(B(5), By(1)) = 2
5. n(R(2), Ra(4)) = n(B(2), B2(4)) = 2
6. n(R(5), Ro(4)) = n(B(5), B(4)) = 4

The presence of E* in K makes the process of the passage between A
and A, much easier to understand. See figure 4.12.

When we do an analysis as in section 3.3 of how other curves intersect
the ambiguous set we see that firstly only the three situations in figure 4.13
can arise due to the restrictive nature of Case 5, and that these are all self
inverse, giving rise to symmetric plumbing diagrams.

Case 2: n(By) =n(Ry) =4
It takes little effort to see that the graph K must be the one shown in
figure 4.14.

When one does the analysis of how other curves may intersect the am-
biguous set the nonself-inverse case does arise. The summary of what may

occur is shown in figure 4.15.
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B, |E
R2
B *
B, R,
Figure 4.12:
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Figure 4.13:
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Self Inverse under correspondence
R which exchanges the 4-tuples:
! Ry B, (R1,R2,R3,R4) and (B1,B2,B4,B3) ?

R, Yes

Figure 4.15:
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432 i=54="7

From here on and in succeeding sections, it will be useful to see NPI(A;) and
NPI(Ay) as being the same graph but looked at through different glasses.
For example in the previous case of ¢+ = 7 = 5 our analysis boiled down to
where in the diagram the two figures in figure 4.16 were. Figure 4.17 shows
all possible relative positions, and only the third relative position caused

something new which had to be investigated.

o—0 o—o
0 0 0 0
Figure 4.16:
1. (Digoint) PP PP
0 0 0 0

2. (Coincident) 0: : 0
3. (Overlapping) 0.—80—0 0

Figure 4.17:

In our present case we have the two figures as shown in figure 4.18 with
all their possible relative positions.

The first position where they are disjoint is easiest. Just blow up as was
done in case 1 of section 4.3.1 to recover all ambiguous curves which got
blown down in the passage to normal form. One can check that ambiguous
subgraph K of the altered plumbing diagram will satisfy axioms K1-K7 of
theorem 3.1.3 and so nothing new happens.

The second position is impossible because it is illegal from the point of
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1. (Digoint) o—o
0 0 .\o/.
+1
2. (Overlapping) O:T/' 0

+1
0

3. (Overlapping) .—'0\./. 0

+1

Figure 4.18:

view of NPI(A;), namely the two exceptional divisors of weight 0 could not
have been joined by an edge.

The third position can happen. We use the same process as in the previous
subsection by blowing up along relevant edges in order to restore blown
down ambiguous curves. One can check that the ambiguous subgraph K
of the altered plumbing diagram satisfies the axioms K1-K7 of Axiom 4.3.2
in subsection 4.3.1 where the axioms needed altering. The only difference
is that there is one more distinguished vertex and that the ambient non-
ambiguous curves satisfy at least the same conditions as in Axiom 4.3.2.

Thus as far as © = 5,5 = 7 goes we don’t see anything that we haven’t

seen before.

433 i=5j=28

There is only one relative position in which the relevant small diagrams
(figure 4.19 ) can occur and this is by being disjoint. We blow up to restore
any lost ambiguous curves and see that the resulting ambiguous subgraph K
of the altered plumbing diagram satisfies axioms K1-K8 of theorem 3.1.3 so
that nothing new happens.
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+1 +1
1. (Disjoint) o o v
o o0

+1

Figure 4.19:

4.34 i=57=10

All the relative positions of the relevant small diagrams are shown in fig-
ure 4.20.

0 0

1. (DISOI nt) o—o +2
’ ‘\I/.
0 0 0
2. (Overlapping)
+
0

0 0 0
3. (Overlapping) \;+ T —
0

Figure 4.20:

o

The first position (disjoint) we again easily deal with by blowing up to
restore any lost ambiguous curves and see that the resulting subgraph K
of the altered plumbing diagram satisfies axioms K1-K8 of theorem 3.1.3 so
that nothing new happens.

The second position is impossible being illegal from the point of view of
NPI(A,).

The third position can occur and we deal with it again by blowing up to
restore any lost ambiguous curves. The resulting K satisfies axioms K1-K8

of Axiom 4.3.2 so that nothing new happens.
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435 i=4j=1

All the relative positions of the relevant small diagrams are shown in fig-
ure 4.21.

1. (Digoint) 0.\./.0 2\./.0
+1 +1
0 0
2. (One Vertex
in Common) +
0 0
0 0 0
3. (One Vertex .\./“\./.
in Common)
+1 +1
0 0
4. (Two Vertices
in Common) 41
0
+1
5. (Two Vertices
in Common) 0 0
+1
6. (Three Vertices 0 0
in Common)
+1
Figure 4.21:

The first and the last positions are easiest. Blow up to restore lost am-
biguous curves. The resulting K satisfies axioms K1-K8 of theorem 3.1.3 so
that nothing new happens.

The third and the fourth positions are also easy and result in the axioms
of Axiom 4.3.2.

The second position is different. Blowing up to restore lost ambiguous

curves yields figure 4.22.
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Figure 4.22:

The resulting axioms for the resulting K are as follows:
Axiom 4.3.3

Kl K # ¢

K2 All vertices have [g] = [0] and weights —1 except one special vertex E*
which has weight —3.

K3 All vertices are coloured red or blue except E* which is coloured grey.
Furthermore we have distinguished red vertices Ry, Ry, R3, Ry and dis-
tinguished blue vertices Bi, By, By, By. We further demand that the
valences of Ry, Ry, Bs, By be 2, the valence of E* be 4 and that Ry s
joined to both By and E*, Ry is joined to both By and E*, Bs is joined
to both R3 and E* and that By s joined to both Ry and E*.

K4 No vertices of the same colour are joined by an edge.
K5 There are no double edges or loops.

K6 FEvery vertex has valence 2 or 5 except that v(By),v(Bs),v(R3),v(Rs) =
1 or4 and v(E*) = 4.
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K7 If u,v are vertices of the same colour then

n(u(z),v(y)) = (= - 1)(y —1)

except that if C' is one of Ry, Ry and D is one of R3, Ry then

1. n(C(2),D(1)) =0
2. n(C(2),D(4)) =1

3. n(Rs(1), Re(1)) = 0

4. n(Ry(4), Ry(1)) = 1

5. n(Rs(1), Ra(4)) = 1

6. n(Rs(4), Ry(1)) = 3

7. n(Rs(1), R(2)) = n(Ra(1), R(2)) = 1
8. n(Rs(1), R(5)) = n(Ra(1), R(5)) = 2
9. n(Rs(4), R(2)) = n(Ra(4), R(2)) = 2
10. n(Rs(4), R(5)) = n(Ru(4), R(5)) = 4

Corresponding axioms for the blue vertices holds where R; corresponds
to By_;. From this one can easily determine that v(R3) = v(B) and v(Ry) =
v(By). One also easily sees that if one of R3, Ry has valence 4 then so does
the other. This induces the two cases that follow:

Case 1: v(R3) =1
From this one quickly determines K to be as in figure 4.23.

When we do the analysis of how other curves may intersect the ambiguous
set we see that they are all self inverse situations so that nothing new occurs.
See figure 4.24.

Case 2: v(R3) =4
It is not too hard to determine that K must be as in figure 4.25.
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E*
R, R, Ry R,
Figure 4.23:
Ry B,
Ry B, Sdf Inverse?
1 B, o, : P2 Yes

R, B,

E B,.B, By E'RR, Ry

-
L

Figure 4.24:
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R, RR Ry R,
Figure 4.25:
The classification as to how other curves may intersect the ambiguous set

is shown in figure 4.26. So something new occurs here because we have a

nonself-inverse scenario.

@%@
2K 2SN
A A

Self-Inverse?

Yes
No

PP -2p .
A A

Figure 4.26:
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The fifth position is different. Blowing up to restore lost ambiguous curves

yields the diagram in figure 4.27.

Figure 4.27:

The axioms for K in this instance are as follows.

Axiom 4.3.4

K1 K # ¢

K2 All vertices have [g] = [0] and weights —1 ezxcept two special vertices
E.*, E5* which have weights —2.

K3 All vertices are coloured red or blue except E.*, Ey* which are coloured
grey. Furthermore we have distinguished red vertices Ry, Ry, Ry and
distinguished blue vertices By, By, Bs. We further demand that the va-
lences of Ry, Ro, By, By be 2, and that Ry is joined to both E\*, Bs, and
that Ry is joined to both Es* and Bs,By is joined to both R3 and E.*
and that By is joined to both R3 and Es*.

K4 No vertices of the same colour are joined by an edge.
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K5 There are no double edges or loops.
K6 Fuvery vertex has valence 2 or 5 except that v(R3) = v(Bs) = 3.

K7 Ifu,v are vertices of the same colour then n(u(x),v(y)) = (x —1)(y —1)
except that

1. n(Ri(2), Rs(3)) = n(Re(2), R(3)) = 1
. n(R(2), Ry(3) = 2

2
3. n(R(5),R3(3) =4

From these axioms one can very quickly deduce that R3 must be joined
to Bs and that once this is done then figure 4.27 is already complete and
no further vertices are possible. The rearranged completed K is shown in
figure 4.28 and the summary of how other curves may intersect the ambiguous

set is shown in figure 4.29. Note that nothing new occurs in this case.

Bl B3 BZ
E; E
I:21 RS RZ
Figure 4.28:
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Self-Inverse?

NS

N N

Figure 4.29:
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436 i=7,=28

The only possible relative positions for the two small relevant diagrams to

occur are shown in figure 4.30.

+1
0 0
1. (Disjoint) .\./.
+1 +1 +1
+1
2. (One Vertex 0
in common) +1
+1
0
Figure 4.30:

We know how to deal with the disjoint case. The relevant K ends up
satisfying the axioms of theorem 3.1.3 and so leads to nothing new.

We also know how to deal with the second case. Blowing up lost am-
biguous curves eventually leads to K with axioms as in Axiom 4.3.3. Again

nothing new.

4.37 i=j=38

The possible relative positions for the two small relevant diagrams are shown
in figure 4.31.

Again the first and the last cases are easiest and lead to the axioms in
theorem 3.1.3.

The second position leads to the axioms in Axiom 4.3.3.

The third position leads to the axioms in Axiom 4.3.4.
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+1 +1

1. (Disoint) A
+1 +1 g ¥l

+1
2. (One Vertex
in common) +1  +1
+1
+1
+1
3. (Two vertices +1 +1
in common)
+1
+1
4. (Threevertices
in common) +1
1

+

Figure 4.31:
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4.38 i=j=10

Recall that a case 10 arrangement consists of exactly three lines [, m,n and a
conic ¢ all concurrent at a point say P. The lines also intersect the conic ¢ at
Q, R, S respectively. There is at least one other conic which passes through
P Q,R,S, as must all such other conics. There may be in addition some
other lines. These would then have to all pass through P. Let x be the total
number of lines so that there are x — 3 other lines not [, m,n, and let y be
the total number of conics. Figure 4.8 shows that the ordered pair (z,¥)
completely determines the plumbing graph which is a single weighted +2
vertex with edges to every vertex of the complete bipartite graph K(z,y),
thus showing that only (z,y) and (y, z) can lead to the same case 10 graph.

4.3.9 Algorithm for Regular Arrangements

We can now collect together all the information to derive an algorithm which
for a given arrangement A; finds all arrangements A, which are different
from A; but have same link. It basically means to systematically search A;
for the subarrangements found in figures 3.46, 3.47, 3.48, 3.49 and also the
subarrangements found in figures 4.15 and 4.26. Provided all curves present
fit within the scheme we can just do the replacement by the inverse curve
method as in Algorithm 3.4.5, and see whether or not a new arrangement

arises. Of course if A; is a case 10 arrangement we will also need section 4.3.8.

124



Chapter 5

Birational Topological

Equivalence

5.1 Introduction

In sections 3 and 4 we saw that the topology of the link of an arrangement did
not necessarily determine the topology of the arrangement itself, although
for this implication to be false the arrangements of curves had to be very
special indeed. However in the cases where the implication is false, we did

see the following.

Theorem 5.1.1 If Ay, Ay are two arrangements of nonsingular curves with
all crossings pairwise transversal such that the links of Ay and As are homeo-

morphic, then Ay and Ay are BTE (“Birationally Topologically Equivalent”).

We make this precise. For any birational map 3 on CP?, denote by s(53),
the set of points in CP? for which 3 is not an injection either because it is not
one to one or because it is not well defined. One can see that s(3) consists

precisely of those curves which are blown down.
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Definition 5.1.1 (BE) Two specific arrangements of curves A;, As are
said to be BE (birationally equivalent) if there is a birational map 3 on CP*
such that

e s(f) are curves in Ay,
e s5(871) are curves in A,

e and [ induces a bijection

B:A\s(B) = A\ s(B7)
between the curves of Ay and the curves of Ay outside of s(3).

Definition 5.1.2 (BTE) Two arrangements of curves Ay, Ay are said to
be BTE (birationally topologically equivalent) if there is an arrangement A
equivalent to Ay such that A, Ay are BE.

For example let A; be an arrangement of four lines in general position,
and A, be the arrangement of a conic passing through the intersection points

of a triangle of lines and in particular has equation

zyz(xy +yz +x2) =0

in homogeneous coordinates. Now choose the map 7'

T:(x:y:2)— (yz:xz:2y).

T is in fact well known as a Cremona transformation. It is a birational
equivalence on CP? and is also an involution. Furthermore 7 is not a well
defined map on the three point set {(1 : 0: 0),(0:1:0),(0:0:1)} and
is not injective on the set xyz = 0, but away from this three line set 7" is a

homeomorphism. Now applying T to A, yields
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XY2ZA(XYZ2+ XY Z + XY?Z) =0

that is
XYZ(X+Y+Z)=0

Hence the image of A, is four lines in general position. Since 7' is a
homeomorphism away from xyz = 0, it is certainly a homeomorphism on
the complement provided that the moduli space of A; is connected (which
it is). (We are using the term: moduli space, in a loose sense to mean any
parameter space. See theorem 6.2.1 and the paragraph which follows.)

We now develop a simpler characterisation of BTE.

Definition 5.1.3 (RE) Two arrangements Ay, Ay are said to be RE (ra-
tionally equivalent) if we can obtain Pl(As) from Pl(Ay) using only (—1)-
blow-ups or (—1)-blow-downs. That is only R2 moves.

Theorem 5.1.2 Assume we do a sequence of (—1)-operations starting with
CP? such that we have done m; blow-ups and ms blow-downs. Then mq > mo

and my = me if and only if we finish up with CP?

This result can be deduced from [1] pp468-469 and using the fact that

CP? contains no (—1)-curves which can be blown down.

Theorem 5.1.3 Assume arrangements Ay, Ay are RE, then the number of

(—1)-blow-ups in the passage from A; to As via the plumbing diagrams
A1 — Pl(Al) — Pl(AQ) — AQ
equals the number of (—1)-blow-downs.

Proof: Assume in the passage from A; to A, there are m; blow-ups and

mso blow-downs. If m; # my we can assume without loss of generality that
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my > my. Now consider the passage from A, to A;. Even though the (—1)-
operations between PI(A;) and PI(As) have no ambient space in which to do
them we can still do these operations on Ay which carries its ambient space
with it. Since we do more blow-downs than blow-ups, there must be some
point where we have done as many blow-downs as blow-ups, and the next
(—1)-operation is a blow-down. However by theorem 5.1.2 we end up with
an arrangement in CP? at this point and cannot blow down any curves in
CP? as we need to.

O

Corollary 5.1.4 RE is equivalent to BTE.

Proof: If A; and A, are RE then by theorem 5.1.3 the number of blow-ups
equals the number of blow downs. It is well known that if this is the case
then the blowing-up and blowing down can be achieved by a birational map
on CP%. The reverse implication holds because any birational map can be
constructed as a combination of blow-ups and blow-downs. (See [1] pp468-
469.)
O
It would be tempting to conjecture that the only situations in which the
link does not determine the arrangement are the situations in sections 3 and
4. But this can be seen not to be the case. In fact there are infinite families
using singular curves where the link does not determine the arrangement. In
fact one such family can be seen to be an extension of cases 1 and 4 in section
3. A; consists of a degree n curve C with an ordinary order n — 1 point P
and with 2n lines [y, . . . [5, passing through P transversally. There is also one
additional line m in the arrangement which we now describe. By Bezout’s
theorem I; N C' consists of two points P and another which we shall name @);.
We take m to be any line passing through (; and intersecting everything

else in general position. We form its plumbing diagram by blowing up points
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P and all the Q;. (Strictly we do not need to blow up Qs,...,Q2, but
this makes the example transparent.) The plumbing diagram is shown in
figure 5.1 where the marked vertices are the top 2n + 1 vertices.

A,y consists of two degree n curves C,Cy with ordinary n — 1 points
both at P but with all intersections being pairwise transversal and 2n lines
l1,...lan_1, m which we now describe. The intersection multiplicity of C;, Cy
at Pis (n — 1)2. By Bezout’s theorem C},C, must intersect in 2n — 1 other
distinct points @1, ...Q2,—1. We take [; to be the line joining P, Q); and we
take m to be a line in general position passing through P. We form the
plumbing diagram by blowing up points P and all the ); and also the point
where m intersects C;. (Again, strictly we do not need to blow up this last
point, but it makes the example clearer.) The plumbing diagram is shown in

figure 5.1 where the marked vertices are the bottom 2n + 1 vertices.

2n+1 vertices in total at top

joining X,y. -
2n+1 vertices in total at bottom

Figure 5.1:

The significance of this family is that the ambiguous family can be arbi-
trarily large. Indeed for the nth case we have a degree n curve and 2n lines,
that is 2n + 1 ambiguous curves. However we still see the passage between

the two arrangements as being a sequence of (—1)-blow-ups and blow-downs,
that is a BTE.
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This conjecture (BTE) would be highly desirable to prove in full gener-

ality, and amounts to the following:

Conjecture 5.1.5 Given arbitrary arrangements A; and Ay with homeo-
morphic links, first blow up relevant points in each arrangement so as to
obtain plumbing diagrams for A; and As. Now we know that PI(A;) and
PI(Ay) describe the same 3-manifold and so we can transform Pl(A;) into
PIl(Ay) via plumbing calculus moves. We conjecture that only (—1)-blow-ups

and blow-downs are needed for this.

Although a proof of this has not yet been found, we do prove it for a large
number of cases.

Before closing this section, however, we need a few lemmas that justify
the infinite family of counterexamples and also the processes used in the next

section.

Lemma 5.1.6 Let C be an algebraic curve in an algebraic surface M. Let
P € C be a singular point of order n, then after blowing up at P the to-
tal transform of C counting multiplicities is C U nE where C is the strict
transform of C' and E is the exceptional divisor. Furthermore we have the

intersection number C.E = n.

Proof: C' can be locally described as follows.

Z a;r'y" "t +0(Mn+1)=0
i=0

Where ag # 0 and O(n + 1) denotes those terms of degree at least n + 1.
Since ay # 0 we can see that all the action occurs in the chart y = uv, z = u.
In the preimage we see that O(n+1) is divisible by u™*! so that the equation

becomes
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n
Z au'u" """ + u" g (u,v) = 0
i=0
thus

u"(z av™ " + ug(u,v)) = 0.
=0

And this establishes the lemma since v = 0 is the exceptional divisor £
in this chart and Y27, a;0" " + ug(u,v) = 0 is the strict transform C and of
course intersects v = 0 n times counting multiplicities because ag # 0.

O

Corollary 5.1.7 Let C be an algebraic curve in an algebraic surface M.
Let P € C be a singular point of order n, then blowing up at P reduces the

self-intersection number of C by n? in the strict transform of C.

Proof: Using the lemma we have the following.

C.C = (C+nE).(C +nE)
= C.C+2nC.E+n’E.E.

Now C.E = n by the lemma and also we have E.E = —1, thus

CC = C.C-2nC.E—-n*E.E
= CC—-2n*4+n
= C0.C-n’
O
Comment: This allows us to conclude for example that the curve y” =

™ + 2" of genus zero with the origin being an nth order singularity has

plumbing diagram as calculated in figure 5.2.
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2n+1
(n edges)

-1

Figure 5.2:

Lemma 5.1.8 The genus of a nonsingular curve of degree n is 3(n—1)(n—
2). If the curve has only ordinary singularities, then each n;th order singu-

larity reduces the genus by in;(n; — 1).
This result can be found in [1] p614.

Lemma 5.1.9 There is no genus zero curve with exactly two singularities,

both being ordinary.

Proof: Assume there is a curve of degree n with exactly two singu-
lar points of orders a,b > 1, both being ordinary singularities. Then by
lemma 5.1.8 we have:

1 1 1

—(n—1)n-2)—=ala—1)—=b(b—1) =

S =1 =2) = Safe—1) - Sbb—1) =0
thus if a +b < n — 1 we have

n*—3n+2 = a®+b°—(a+b)

< a*+b*+2ab— (a+0)
= (@a+b)(a+b—1)
< (n—=1)(n—2)
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Which is a contradiction. Thus we must have ¢ + b > n. But Bezout’s
theorem after considering a line passing through the two singular points,

forces a + b = n. Hence

(a+b)?*=3a+b)+2 = a®>+b*—(a+b)

a>+2ab+ b +2 = a®>+ b+ 2a+2b
ab—a—-b+1 = 0
@—1)b-1) = 0

Thus either a =1 or b =1, a contradiction.

5.2 The Pairwise Transversal Crossings Sin-

gular Case

In this section we prove the following result, which is about as general as we

can get without proving the whole result.

Theorem 5.2.1 Let C be the class consisting of arrangements A, where A
consists of the distinct irreducible curves C1,Cy,...,C,, and such that any

A € C fulfills at least one of the following two conditions.

1. U ,C; is a (reducible) curve whose singularities are all ordinary.

2. The initial plumbing diagram for A contains a cycle and the passage to
normal form can be achieved using only (—1)-blow-ups or (—1)-blow-

downs.

Then BTE holds for the class C.
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Note that the condition (2) is a very weak condition in that most arrange-

ments satisfy (2). In fact most arrangements which satisfy (1) will also satisfy

(2).

Lemma 5.2.2 If C;,C5 are two curves in A such that their intersection
consists of at least two distinct points, then the initial plumbing diagram for

A will contain a cycle.

Proof: Let P,() € C; N C5. Then both C; and C5 are represented by
vertices v, w; in the initial plumbing diagram. However since C intersects
C5 at P, then there is a path A via P (P is either an edge if P is an ordinary
double point which is not a singular point of either curve, or an exceptional
vertex otherwise.) from C; to Cy. Similarly there is a path p via @ from Co
to C;. But since P ¢ 1 and (Q € A we have that the path A 4+ p is a cycle as
required.

O

Our current task is now to quantify precisely which arrangements of (1)

are not in (2).

Theorem 5.2.3 The set of arrangements in (1) which are not in (2) are

precisely the arrangements which follow.

1. Line and Pencil
2. Pencil

3. Double line

4. Single line

5. Single conic

6. Conic and Line
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7. Nodal Cubic

8. Degree n genus zero curve with ordinary order n — 1 point with m lines

passing through the singular point with pairwise transversal crossings.

9. Single nonsingular curve of degree n.

Lemma 5.2.4 Let P, be two points of orders x,y respectively on a curve

C of degree n > 2 with only ordinary singularities, then x> + y? < n2.
Proof: We certainly have z(z — 1) + y(y — 1) < (n — 1)(n — 2) and thus

24y < n?=3n+2+ax+y

VAN

n?—3n+2+2(n—1)since z,y <n—1.

I
N
|
3

VAN
3

O

Lemma 5.2.5 Let C, D be two curves of degree at least 2 such that CUD 1s
a curve with ordinary singular points only. Then the number of intersection

points on C s at least 3.

Proof: Let the degrees of C' and D be m and n respectively. Assume
first that C, D intersect only in one point P. If x is the order of C' at P and
u is the order of D at P, then using Bezout yields

mn = Iu

< (m=1)(n-1)

A

mn
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a contradiction. Alternatively if C, D intersect in precisely two distinct points
P, Q. Let z,y be the orders of C at P, () respectively and let u, v be the orders
of D at P, respectively. Bezout yields

mn = xu-+yv
< /224 y2V/u2 + v? (Cauchy Schwartz)
vVm2v'n? by the lemma

mn

N

another contradiction.

|

Lemma 5.2.6 Let C' be a curve of degree n > 2 and l a line such that C' Ul
s a reducible curve with only ordinary singularities. Then C' intersects | in

at least two points.

Proof: This is immediate from the fact that
an(nZ -H<(n-1)(n—-2)
P,

where the sum ranges over all singular points P, of order n,. QO

Corollary 5.2.7 The initial plumbing diagram for an arrangement A con-
tains a cycle, provided that A contains at least two curves, one of which is

not a line.

Lemma 5.2.8 In an arrangement of at least two curves with only pairwise
transversal crossings and containing at least two curves which are not lines,
the passage to normal form can be achieved using only (—1)-blow-down op-

erations.
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Proof: If there are at least two curves of degree at least two, then they
will all have at least three intersection points on them (lemma 5.2.5) so that
their valences in the plumbing diagram are all at least three. Thus only
lines have the possibility of having valence at most two in the plumbing
diagram. Let [ be any such line, thus the valence of [ is equal to two by
lemma 5.2.6. Now let C, D be the two curves of degree at least two. Then
[ intersects C' twice in points P, () only. Furthermore [ intersects D twice
in points P, only. Thus there are at least three curves passing through
both P and @, namely C, D and [, making it necessary for these points to
be blown up. Hence the vertex representing [ in the plumbing diagram has
weight —1. Thus we can do simultaneous (—1)-blow-downs on all vertices in
the plumbing diagram which represent a line with exactly two intersection
points on it. This does not change the valences of any other vertices, and
since all other vertices have valence exceeding two, we attain normal form.

O

Definition 5.2.1 Let C' be a curve in an arrangement A. A special point
on C is any point P on C which is either an intersection point of C' with

some other curve, or a singular point of C'.

Lemma 5.2.9 A genus zero curve C of degree n > 3 intersecting a line [
always has the property that the number of special points from [ U C' which
lie on C 1is at least three, unless C contains an ordinary order n — 1 point

through which | passes.

Proof: We already know that [ intersects C in at least two points so
assume that | N C = {P,Q}, with the order of C at P,Q being z,y > 2

respectively. Then x + y = n by Bezout. However we also have

z(r—-1)+yly—1) = (n—-1)(n—2)
= (z+y—-1)(z+y—2)
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2’ —z+y -y = 2 +22y+y’ -3z —3y+2
=2zy—2x—-2y+2 = 0
S@-1)-1) = 0

a contradiction. If say x = 1 then y = n — 1 and we get the situation which

we have excluded.
O

Corollary 5.2.10 In an arrangement of at least three curves, all curves of

degree at least two have at least three special points on them.

Lemma 5.2.11 Let C be a curve of nonzero genus and of degree at least
three. Let | be a line which intersects C in exactly two points P,Q. Then
both P, are singular points of C.

Proof: If say P were not a singular points of C' then using Bezout’s
theorem we see that the multiplicity of the intersection at () is n — 1 which

violates the nonzero genus premise.
O

Corollary 5.2.12 Let C be a curve of degree at least three and | a line
intersecting C' in exactly two points P,Q. Then both P, Q) are singular points

of C unless C' has an ordinary n — 1 order point through which | passes.

Corollary 5.2.13 Let A be an arrangement consisting of a curve C of degree
n > 3 and some lines I, 1y, ..., l,,. Then the passage to normal form can be
achieved using only (—1)-blow-down operations unless C' has an ordinary

n — 1 order point through which all the l; pass.

Proof: Assume otherwise, then we quickly see that C' must have an

ordinary n — 1 order point P. If P ¢ [; for some 7, then the number of special
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points on /; is at least three. Also if P € [; for some j then either the number
of special points on [; is at at least three if I; N ([; N C) = ¢ or else [; must
have have two points blown up on it, namely P and I;NC'". In either case the

passage to normal form only uses (—1)-blow-down operations.

Putting everything together proves theorem 5.2.3.
We can now prove BTE for the class C.
Proof: Class C can be resubdivided into the following mutually exclusive

subclasses.
e (1)) =(1)\ (2) - The list in theorem 5.2.3
e (2) = (2) - as before.

We have three comparisons to do.

If Ay, As € (1) we see that all the normal forms in (1)’ are different so
that BTE (in fact topological equivalence) holds for Ay, A,.

If Ay € (1)) and Ay € (2), then the normal form for A, will contain
a cycle because the (—1)-operations do not change the number of cycles.
Thus A; could only possible be the seventh or eighth situations in the list
from theorem 5.2.3. But this is impossible because (—1)-operations cannot
introduce negative signs on edges. Thus we have topological equivalence
again and hence BTE.

If Ay, A € (2)' then of course we have BTE.

This completes the proof of theorem 5.2.1.

O

We note that BTE holds almost vacuously for another large class C*.

Theorem 5.2.14 Let C* be the class of arrangements such that the passage

to normal form only requires (—1)-operations. Then in C*° we have BTE.

139



Comment: I can as yet see no way of obtaining BTE for the class C€ =
CUC®>. For example it may be possible using only (—1)-operations on some

unusual arrangement to achieve the normal form for a pencil of lines.

5.3 BTE Difficulties

It is very tempting to try and generalise BTE to all arrangements, however
this turns out to be very difficult and it is the purpose of this section to
highlight some of the difficulties.

It can be shown that an arrangement such that each curve contains at
least three special points yields a plumbing graph which is already in normal
form except for whatever simple double points which are singular points
of a curve where the exceptional divisor involved needs to be blown down.
However it is possible for each pair of curves to have only one point in common
even if we permit nonzero genus.

Consider the two singular curves

V)

plr,y) = y—x

q(z,y) = y°

In the projective completion one computes that they intersect in exactly
one point in CP?, namely (0:0:1) and with multiplicity n?. Furthermore
(0 : 0:1) is not a singular point of the curve p = 0, thus a generic linear
combination of p and ¢ will have no singular points. In particular taking
r =p-+q and s = p — ¢ it is routine to check that r, s are two nonsingular
curves of degree n and intersect in a single point (0: 0 : 1) with multiplicity
n?. In fact even in the resolution the vertices representing the curves defined
by r =0 and s = 0 both have valence 1.

Nonzero genus however is helpful, since reduction to normal form involves

genus zero vertices. Thus it is the genus zero curves which really cause
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the most trouble. There are many examples of arrangements whose normal
form cannot be realised unless one uses operations in addition to the (—1)-
operations.

We have for example the infinite family of arrangements A, A,, ..., A,, ...
which all define homeomorphic links. The arrangement A,, is the union of

"t and y = 0. See figure 5.3 for resolution.

the two curves y" = x

Forming the plumbing diagram and then performing all the obvious (—1)-
blow-downs yields figure 5.4

Doing a zero chain absorption yields its normal form. (Figure 5.5.)

Yet we can see that the nth diagram is equivalent to the (n — 1)th di-
agram using only (—1)-operations as follows (figure 5.6) which inductively
establishes the claim. Yet we cannot reduce to normal form using only (—1)-
operations.

The problem however is that the singularities could get very complicated.

In fact in the next section we show how bad it can get.
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(n+1)?

+1
2n+1
-1
(n) 0
2 2n
-1
(n-1) -1

(After n-2 blowups)

12 )

n+2

2, -+ | g

Figure 5.3:
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-n+1) O n+1
o —o o

Figure 5.4:

0
o

Figure 5.5:

-n+1) O n+1
o—o o

(-1)-Blowup -(n+1) -1 -1

(-1)-Blowdown - 0 n

—_— o— 0 °
Figure 5.6:
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5.4 Cremona Transformations

Recall the basic Cremona transformation of CP? up to linear equivalence can
be written as

To:(x:y:z)— (yz:zz:zYy)

It is in fact a bicontinuous bijection outside of the set xyz = 0 which is a
union of three distinct nonconcurrent lines. We see that the lines x = 0,
y =0 and z = 0 are mapped to the points (1:0:0), (0:1:0) and (0:0: 1)
respectively. We also loosely say that the points (1 :0:0), (0:1:0) and
(0:0:1) get mapped to the lines z = 0, y = 0 and z = 0 respectively even
though T is not well defined on the three points. Note also that 7j is an
involution.

In terms of plumbing diagrams 7T looks like figure 5.7

Figure 5.7:

We also have the two singular Cremona transformations 77 and 75 (see
[1] p469). The transformation 7} is a limiting case of where two of the lines
of the triangle in 7T, are permitted to coalesce. Up to linear equivalence T}
is given by

T:(x:y:2)— (2% 2y y2)
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Both lines are collapsed to a point, but one line is more badly collapsed. Also
two points are blown up, but a further blow-up is done on the exceptional
divisor where the original lines intersected. Figure 5.8 shows what it looks

like in terms of plumbing diagrams.

#
-1 -1 -1 -1 -1
—_— *—o o o o°
N
0o -1 -1 -1
—_— o—0 o o
N
+1 +1
\
Figure 5.8:

The equation for 75 up to linear equivalence is given by
Tr:(v:y:2)w (zy+c2® 1y 1 yz) (c#0)

Here the single line y = 0 is badly collapsed to a point. Branches of curves
passing through (1 : 0 : 0), however, may be highly separated. Other
branches of curves intersecting y = 0 at different points are all made to
intersect with tangency so that they all become tangent to the line y = 0
at the point (1 :0:0). Figure 5.9 shows what is happening in terms of the

plumbing diagram.
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Figure 5.9:
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Now if an arrangement contains some lines, we can use a Cremona trans-
formation to obtain a different arrangement, but with same complement. In
particular T5 causes the worst complications. Indeed if B;, B, are branches
of curves which intersect a line [ transversally in distinct points P;, P, and
P is chosen to be different from P, P,, then applying (after a linear map) 75
causes Bj, B), to both be tangential to each other and to both be tangential
to the line P’ with third order contact.

For a particular example, let the n+1 lines [, 1, s, ..., 1, all concur at F.
After applying 75 along [ and at P, we end up with n conics all tangent to
a line at the same point and tangent to each other with order four contact.

Note that generally Tp, 77,75 all double the degree of every (other) curve
unless they are chosen very carefully. Thus if we have an arrangement Ag
containing a line [y, choose a point P, to be a generic point (i.e. not an
intersection point) on [. Apply 75 to get an arrangement A;. Note that A;
will contain a line /;. Choose P; to be a generic point on /;. Apply 75 to get
an arrangement As. As we keep repeating this process, the curves and their
singularities get quite bad (in fact even A; will have only one intersection
point) and can be of arbitrarily high degree. Yet they all have the same
normal form plumbing diagram. Of course in terms of plumbing diagrams
all we are doing is finding the vertex representing the line in question and
doing three blow ups as shown in figure 5.10.

This suggests a possible strategy to obtain a BTE result for very compli-
cated arrangements which contain only one line. If a genus zero C curve is
present and in the plumbing diagram has valence one. It certainly intersects
the line which we shall call [ somewhere say at P. Now do a 7T operation
along [ at P which separates [ and C' as much as possible. Hopefully the new
situation is simpler and hopefully we can eventually transform the situation
into one where we have two or more lines and then use 77 and 7 in appropri-

ate ways. This is trying to model the reverse of the previous example where
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[¢]

~.e2 -1 =2
Figure 5.10:

the situation was purposely complicated.

Another bad problem that can arise in reduction to normal form is that
a vertex of valence one or two and of weight zero may appear. A really bad
example is the family of arrangements Ag, As, ..., A,,.... Where A,, consists
of the singular curve C' which has an order n — 1 point at the origin and the
line [ which passes through the origin at general position. We see in the
immediate resolution plumbing diagram that [ is represented by a vertex of

degree one and weight zero and thus allows splitting.
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Chapter 6

The Complement

6.1 Introduction

Given an arrangement A C CP?, we would like to know when the arrange-
ment A itself determines the topology of M(A), the complement of A in CP2.
This is a very difficult question in general. Indeed even in the case where
the arrangement consists of a union of lines difficulties arise and we content
ourselves with exploring only this case.

In terms of arrangements, a union of lines is very easy to deal with be-
cause any reasonable definition of what constitutes equivalent line arrange-
ments will coincide with the definition of an arrangement used throughout
this thesis. The definition used basically codes the lattice structure of the
arrangement. Here we will describe a line arrangement in terms of its moduli

space, Mod(A). The following result is well known.

Theorem 6.1.1 Let A be an arrangement. If Mod(A) is connected then the

arrangement determines its complement.

Proof (Sketch): Let Ay, A; be two points in Mod(A), and A(¢) a path

joining Ay, A;. Then A defines a continuously varying set of arrangements
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A; with the same topology as Ay and Aj, so that Ay, A; are isotopic, which
in turn implies that they are ambient isotopic and thus have homeomorphic
complements. (See [18].)

O

This indicates that we have three possibilities worthy of discussion for an

arrangement A.

1. The moduli space of A is connected.
2. Two arrangements A;, A, € Mod(A) are isotopic.

3. Two arrangements A;, A, € Mod(A) have homeomorphic complements.

Now we certainly know that (1) implies (2) and that (2) implies (3).
Hence we investigate (1), (2) and (3) in turn.

6.2 Moduli Spaces

Since we are restricting ourselves to line arrangements, we can see that two
line arrangements are equivalent if and only if they generate equivalent lat-

tices which in turn coincides with the moduli space criterion.

Definition 6.2.1 Given an arrangement A of lines, we say a line | is re-
movable from the arrangement if the set of triple or higher order points on [

are always collinear for the deleted arrangement A\ [.

Definition 6.2.2 (Brittle) An arrangement A of lines is said to be brittle
iof 1t is not possible to delete in succession removable lines and end up with

the empty set.

Definition 6.2.3 We say a brittle arrangement is reduced if the arrange-

ment contains no removable lines.
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Theorem 6.2.1 All non-brittle arrangements have irreducible moduli spaces

Here we describe the moduli space for line arrangements a little differently.
Say that there are n lines and that the line [; has equation a;z+b;y+c¢;z = 0.
Then the line /; can be described by a single point (a; : b; : ¢;) € CP2. The

three lines /;, [; and [}, concur if and only if the determinant

a b ¢
CL]' bj Cj = O
ar by c

We abbreviate this to R(7, j, k) = 0. Thus the moduli space can be written
as a subspace of (CP?)" determined by a family of relations R(i, j, k) = 0 with
the subspace determined by some further family of relations R(¢', j', k') = 0
deleted. Note that we want to delete also the subspace which codes lines
being coincident. This will usually have been taken care of solely by the

above procedure.

Lemma 6.2.2 Let A be an arrangement of n lines such that the line l, is
removable. If Mod(A\ l,) is irreducible, then so is Mod(A).

Proof: Mod(A \ [,) can be described as an open subset S of some irre-
ducible closed variety V. Say that [, has coefficients (a4 : ba : Co)-

If [,, has no triple points, then no extra relations are added so that Mod(A)
is an open subset of S x CP?, which is irreducible.

If I, has exactly one triple point then one relation is added but is linear
in ag, ba, co and so we see that Mod(A) is isomorphic to an open subset of a
CP'-bundle over S, and so is irreducible.

If [, has at least two triple points on it, we only need two corresponding
relations to describe l,. (The other relations will be consequential since
lo is removable.) This completely determines [, yielding that Mod(A) is

isomorphic to an open subset of S and hence irreducible.
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O
In view of the fact that an open subset of an irreducible complex variety

is always connected, we have the following corollary.

Corollary 6.2.3 If A is a non-brittle arrangement, then Mod(A) is con-

nected and thus A determines its complement.

Non-brittleness is usually very easy to detect and it is a much simpler
concept than Jiang and Yau’s “nice” criterion found in [8] p139. We now
investigate all small arrangements of lines and determine which ones are

reduced brittle arrangements.
Theorem 6.2.4 All arrangements of at most siz lines are non-brittle.

Proof: Let n < 6 be the smallest positive integer such that there ex-
ists a brittle arrangement of n lines. Thus we can further assume that the
arrangement is a reduced brittle arrangement and so contains no removable
lines. Thus every line contains at least three triple (or higher order) points
and this forces the number of lines to be at least seven.

O

Theorem 6.2.5 All arrangements of at most seven lines are non-brittle.

If there were a brittle arrangement of seven lines, then again every line
would have to contain at least three triple (or higher order) points. Thus
every line contains exactly three triple points and no other sorts of inter-
section points. Choose the [; and assume we have R(1,2,3), R(1,4,5) and
R(1,6,7). Now the four lines [y, I3, 14, 5 intersect in four distinct points which
themselves must be triple points, so that lg and /; must pass through them.
This very quickly yields figure 6.1 after relabeling.

The incidences are R(1,2,4), R(1,3,5), R(2,3,6), R(1,6,7), R(2,5,7),
R(3,4,7) and R(4,5,6). Under a T, type Cremona transformation on the
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Figure 6.1:

lines [, s, I3, we obtain that I7 becomes a conic which is tangent to each of
the three lines [}, I}, . Yet these three lines are concurrent at a point P say.
This is impossible because there are at most two distinct lines though a given
point which are tangent to a given conic.

O

Theorem 6.2.6 There is exactly one eight-line arrangement which is brittle.

Furthermore its moduli space is disconnected.

Proof: Again all lines of a reduced brittle arrangement must contain
at least three triple or higher order points. If there were a quintuple or
higher order point then we immediately require at least nine lines. If four
lines 1, l5, I3, 14 concurred at a quadruple point, then each of those four lines
must have in addition two other triple points on them and no other sorts
of intersection points. Thus any of the other four lines say I5 must intersect
l1,1s,13,14 in triple points. Thus l5 has four triple points yielding at least nine
lines.

Thus all lines contain exactly three triple points and one double point.
Say [, 1o, 13 are concurrent. Now [; intersects some line say lg at a double

point. Say also that lo, 3 intersect 7, lg respectively at double points. Now
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lg intersects Iy, I3 in triple points and without loss of generality assume that
we have R(3,4,8) and R(2,5,8). We also see that Iy, 5 intersect at a double
point. This forces the rest of the incidences. The list of incidences are
R(1,2,3), R(1,4,7), R(1,5,6), R(2,4,6), R(2,5,8), R(3,4,8), R(3,5,7) and
R(6,7,8). This can be rearranged using a projective linear transformation
which sends the line (this line is not part of the arrangement) which joins the
two triple points Pjo3, Pg7g to the line at infinity. Restricting our attention
now to the affine part, we now further transform so that P47 = (0,0), Pig =
(1,0), P35 = (1,1) and P35 = (0,1). See figure 6.2.

lg I,

|3

|2

I1
Ll g
Figure 6.2:

Thus [, has equation y = z and so P has coordinates (o, ). We
compute the coordinates of the triple points of I5. P56 = (a,0), Pass = (1, @)
and P57 = (0,1). We want these to be collinear. Thus

a 0 1
=0
0 1 1
which simplifies to
@ —a+1=0

thus a = %, either of the two complex cube roots of —1.
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Both values yield brittle arrangements of eight lines which are in fact con-
jugate and neither can be realised as a real arrangement. Furthermore if we
consider the moduli space for this arrangement under projective equivalence
we see that it is a two point space. The points corresponding to o and @a.
Furthermore, applying an automorphism to the arrangement does not flip it.

O

This eight line lattice is known as the MacLane arrangement (M?%). See

[3] section 7.7 pp312-314.

Theorem 6.2.7 There are exactly four reduced brittle arrangements of nine
lines. Two of them have connected moduli spaces and two have disconnected

moduli spaces.

Proof: Firstly no reduced brittle arrangement of nine lines can contain
a quintuple or higher order point P since any line not passing through P
would have to intersect at least five other lines in triple points which needs
at least eleven lines. We now deal with the case if there is a quadruple point.

If there are two quadruple points on the one line say lg, then lq must
contain an additional triple point and no other sorts of intersection points.
Assume without loss of generality that we have R(1,2,3,9), R(4,5,6,9) and
R(7,8,9). We note that there can be no quadruple point P not on /g otherwise
this would cause ly to have at least four intersection points on it. Thus
l1,1ly,...,lg must all have precisely one quadruple point, two triple points
and one double point on them. Also l; and lg must either have four triple
points or three triple points and two double points.

Now consider all the intersection points on [y, 5,13 and lg. They account

M ORORAR(HEARH R

9
But the total number of intersections is ( ) ) = 36.
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Thus no intersections occur off Iy, l5,13,l9. Thus there are exactly three
double points, one on each of Iy, [y, 3. Therefore there are at most six lines
with at least one double point, however the lines [, l5, . . ., lg account for this.
Hence l; and Ig contain no double points and so must contain exactly four
triple points.

Thus deleting the line lg leaves a brittle eight-line MacLane arrangement.
The rigidity of this arrangement does not permit the line ly to exist in that
the purported intersection points on /g cannot be collinear.

If there is a quadruple point P through which the four lines Iy, (5,13, 14
pass and have no other quadruple points on them, we see that [y, l5, I3, 4 must
each have two further triple points, one double point on them and no other
sorts of intersection points. Since there are only five remaining lines but four
double points, one of the remaining lines say /5 must intersect ly,ls,[3, 14 in

triple points only. The number of intersection points,, counting multiplicities
. 4 3 2 C 1.
on ly,...,l5 is ( ) ) +8< ) ) +4( ) ) = 34, which is two short of the

9 . )
( ) ) = 36 required. Thus there are two double points amongst g, ...l

not on lq,...,l5. If they both occur on one line, say ls, then g will have
an additional four intersections with [, ..., [4 that is at least six intersection
points, which is not possible for a reduced brittle arrangement of nine lines.
Thus the two double points occur on different lines. Without loss of generality
say lg, lg intersect in a double points and say I7, lg intersect in a double point.
Note that this forces all other intersection points between Ig,...,lqg to be
triple points. It also guarantees that the lines lg,...,ly all have precisely
three triple points and two double points. Thus all the intersections (Ig, l7);
(l6,18); (I7,1g) and (lg,ly) are triple points. Now relabel Iy, ... 14 so that we
have R(4,6,7); R(2,6,8); R(3,7,9) and R(1,8,9) This yields figure 6.3.
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7 N

Figure 6.3:

Note that [5 is the only line in the configuration with exactly four triple
points on it and no other sorts of points. Using a projective transformation,
we send this line to infinity and concentrate on the affine part only. See
figure 6.4.

(LY
t1

Figure 6.4:

This turns out to be a complete pentagram with two lines deleted (P?).
We want [y to be parallel to l;. The calculation yields { = t_%, that is
t? —t—1=0. Thus t = HEQ—‘/E and the moduli space of the arrangement up
to projective equivalence is once again a two point space. The two points
corresponding to which sign of ++/5 is taken. This arrangement also has the

advantage of having a purely real realisation but the disadvantage of being
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able to get from one arrangement to the other via an automorphism of the
lattice. See [3] section 7.5 pp311-312.

It there are only triple points, deleting one line yields the MacLane ar-
rangement. The rigidity of the MacLane arrangement forces the right four
points to be collinear so that this nine-line MacLane arrangement, (M?) ex-
ists. (As in the eight line MacLane arrangement it has disconnected moduli

space). See figure 6.5.

lg I,

|3

I2

4 I
g g
7 6 8
Figure 6.5:

If there is a double point, combinatorics yields that the number of double
points must be divisible by three.

If there are exactly three double points, and hence eleven triple points,
then removing one of the lines with a double point on it yields the MacLane
arrangement whose rigidity prevent restoring the line correctly.

If there are exactly six double points, and hence ten triple points, then
we quickly see that there must exist three lines say [;,ls,ly containing no
double points and these must concur at a point P say. Furthermore, since
l7,1s, ly account for ten triple points, there can be no triple points occurring
off I7, g, lg. Thus if we remove these lines, we see that [y, ..., [s only intersect

each other in double points.
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Now consider the six triple points on l7,lg,ly excluding P. One quickly
sees that these are joined by [,...,ls in a hexagonal sequence. Figure 6.6
shows that situation without losing generality. The figure also shows nine
double points and lg must pass through three of these double points (as well
as P).

Figure 6.6:

We already know that A, B,C are collinear and so we quickly see that
one possibility is that P, A, B, C are collinear, yielding a nongeneric Pascal

arrangement as in figure 6.7. This is non-brittle.

Figure 6.7:
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The only remaining possibility is that one of A, B,C; one of U, VW
and one of XY, Z must be collinear. Without loss of generality assume
that B is involved. This immediately excludes W, X, U, Z. Thus B, V)Y are
collinear. It is easy to check if this situation is possible by use of a projective
transformation, which sends the three collinear points A, B, C' to infinity and
the points K, L, M to the coordinates (0, 1), (0,0) and (1, 0) respectively. Let
the coordinates of N be (r,s). See figure 6.8.

(O.r+s)

Figure 6.8:

We can now calculate the equation of the line joining L and N to be
y = 2x. Intersecting this with the line x +y = 1 yields the coordinates of
Y to be (;I5,745). The line joining M and @ has equation y = f(z — 1).

Intersecting this with the line x + y = r + s yields the z-coordinate of V'

to be X5t Now for the points B, Y,V to be collinear, we must have the

r+s
. . 2 .
a-coordinates of Y and V' being equal. Thus ;*~ = ==+ This can be
. _p2 .
rearranged to give s = =5-. However we must remember that P is also

collinear with B, V.Y and so must have same x-coordinate. The equation of
the line joining K and N isy = 5‘;—135—0-1. Intersecting this with the line y = 0
yields the z-coordinate of P to be . Using that the z-coordinates of P

1
- Thus s = 2(1—r). Putting this

Il e

and Y are equal, we quickly have
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T'—T'Z
r+17

(r —1)?> = 0. Thus the only possibility is r = 1 and this forces s = 0 so that

together with the previous expression yields 121 = which rearranges to
N coincides with M - a contradiction. Thus B, V)Y may be collinear, but
not with P.

If there are exactly nine double points, and hence nine triple points, form
a graph G whose vertices are the double points such that two points are joined
by an edge if and only if the double points lie on a line of the arrangement.
We see that all vertices in G' have valence two and there are no double edges
or loops. Thus G is a union of disjoint polygons. One quickly sees that there
is either a triangle, a quadrilateral or a nonagon in G. If there is a triangle,
say l7,ls,lyg form a triangle of double points, then we are back in the six
double point case analysis, except that [7, g, g do not concur. In one case we

get a generic Pascal arrangement as in figure 6.9. In the other case we saw
7"77'2
r4+1 "

that the moduli space corresponds to an open subset of the curve s =

See figure 6.10 which shows the case r = —2

Figure 6.9:

If there is a quadrilateral in G say [i, o, (3,14 form a quadrilateral with
l;, ;11 (indices taken modulo 4) intersect in double points, then [, /3 intersect
in a triple point and likewise for /5, [4. However each line contains two double
points and three triple points, thus each line contains a further two triple

points. Thus there are ten triple points involved in the four lines l,...[4

161



Figure 6.10:

which exceeds the nine calculated. Thus G' cannot contain a quadrilateral.
If there is a nonagon, assume without loss of generality that /; intersects
l;+1 in a double point for all 7 and where the indices are taken modulo 9. Say
that the triple points on [; are Ay, By, and that the triple points on [y are
Ay, By, C5. Now [3 intersects [; in what must be a triple point say A;. I3 has
two further triple points say As, Bs. l4 intersects I and [ in triple points say
A, for Iy and B for l;, note that it cannot be A; because [3 intersects I in
a double point. I, has one further triple point say A4. Thus far we have now
accounted for all the nine triple points. Now [5 intersects lq,[lo,[3 in triple
points. If l5 passes through A; then we have accounted for /5 intersecting
both I3 and [; in triple points via the one point A;. Furthermore l5 would
gain a triple point from its intersection with /5 but would still need one more
triple point and none of these can come from the nine triple points A;, By,
Ci, Ay, By, Cy, A3, B3 and A4. This would force us to exceed nine triple

points. Note also that l5 cannot pass through B; or A, because l; passes
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through those points. Thus [5 is forced to intersectl; at C; and without
loss of generality intersects Iy and I3 in By and Aj respectively. Note that
in particular we have shown that [;,/;19,l;14 are not concurrent for any .

Figure 6.11 shows what we have so far.

Figure 6.11:

Considering lg now, we see that it intersects [, o, 3,14 in triple points.
Since we know [;,l;19,1l;14 cannot be concurrent for any i, lg cannot pass
through A,. It must pass through one of A;, B; so that either R(1,3,6) or
R(1,4,6). In fact we have shown that for every ¢ modulo 9, we have either
R(i,1+42,1+5) or R(4,i+3,i+5). Now colour 7 white if we have R(7,i+2,i+5)
and black if we have R(i,7+3,i+5). Now consider where lq intersects /4, and
assume 7 = 1 is white. It must be at either By, Ay or A;. B is discounted
because [; passes through it and A, is discounted because this would cause
liy livo, lirs to be concurrent for ¢ = 9. Thus [y passes though A, so that that
we have R(4,6,9). Hence i being white implies that 7 4+ 3 is white for any i.

Now we have nine colours around a circle and nine is odd, thus there
must exist an 7 such that both ¢ and ¢ + 1 have the same colour. Assume
without loss of generality that that + = 1 and ¢ = 2 have the same colour.
Furthermore by the automorphism of indices i — 7 —1i (mod 9) if necessary,
we can assume that we have R(1,3,6) and R(2,4,7). Now consider where

l; and lg intersect [3. l; does not pass through A; because lg does and [;
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does not pass through A3 because then we would have [;,l;2,1; 14 for i = 3.
Thus [; passes through B;. Thus lg does not pass through B3 and neither
does it pass through A; since A; already has three lines through it. Hence [g
passes through A3 and so we have R(3,5,8). But now we have i = 1,2,3 all
white and when we consider that 7 is white implies that 7 + 3 is white, we see
that all ¢ (mod 9) are white. Thus R(7,7 + 2,7+ 4) for all 7 (mod 9) are the
complete set of triple points and this in conjunction with /;,/;,, intersecting
in a double point make up the complete set of incidences.

We now projectively transform as follows. The intersection of [, [, is sent
to the origin (in the affine part). The intersection of Iy, [, ls is sent to the
point (1,0). The intersection of l4,lg, ly is sent to (1,1) and the intersection
of la, g, lg is sent to (0,1). Note the this forces Iy, I3, [ to be all parallel to the
X-axis l; and [y, 4,17 to be all parallel to the Y-axis l,. Let I3 have equation

y = s and [; have equation x = r. Figure 6.12 shows the situation so far.

[
I °

's ®
| CEN

6 (11)
I 00\ (10

I, 1, I,
Figure 6.12:

The equation of the line lg is y —1 = 2= (z — 1) and this intersects the Y-

axis I at (0, 7=}). The equation of lg is # +y = 1 and this intersects the line

I3 at (1—s,s). Finally /5 must pass through these two points as well as (7, 0)
the intersection of {; and l;. Thus ﬁ;o = =0

This rearranges to give
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(s+7r?—=r)(s—1) = 0. Thus the moduli space of this arrangement corresponds

to an open subset of s = r—r?. Figure 6.13 shows the arrangement for r = 2.

(0.1

(L1

(0,0

(1,0

Figure 6.13:

O

Comment: It would seem to me that the classification of small brittle

arrangements should be known. However I have been unable to locate such

results nor find the concept of a brittle arrangement in the literature.
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Comment: There will be nonreducible ten-line arrangements. One such

is the ten-lined deleted pentagram (P'°) in figure 6.14.

5
%,

fé
S

7

Figure 6.14:

Again the moduli space is disconnected but this time there is no auto-
morphism of the lattice which takes an arrangement in one component of the
moduli space to the other.

There are nonbrittle ten line arrangements such that each line contains
at least three triple or higher order points. Unfortunately this complicates
a search for nonreducible ten-line arrangements. One such is the Desargue

arrangement and its degenerations. See figure 6.15.

Figure 6.15:

166



6.3 Isotopy and the Complement

There is not much to say here on isotopy except that it makes sense to deal
with labeled arrangements. Say for example we had two arrangements of lines
Ay ={ly,ls,...,1,} and Ay = {my,ms, ..., m,} where [; corresponds to m;
under a given lattice isomorphism. But suppose that as arrangements A; and
A, were isotopic and that the induced map on lattices did not correspond to
the given isomorphism of lattices but to a different isomorphism of lattices.
Then we could mark the lines in A as an abstract arrangement as follows.
For the line [;, create an (i + 1)-tuple point P; in general position on /; by
adding ¢ lines through P; in general position with respect to the rest of the
arrangement. Thus if the new arrangement has a unique isotopy class, then
so does the old. However the new arrangement forces us to deal with labeled
arrangements.

Now as labeled arrangements the two eight-line conjugate MacLane con-
figurations are isotopic. They are related by complex conjugation which is
ambient isotopic to the identity map on CPZ.

Here is a nonrigorous sketch of two arrangements which are lattice equiv-
alent but not ambient isotopic (and hence not isotopic).

Assume the following proposition.

Proposition: Any ambient isotopy of a labeled MacLane arrangement
to itself is isotopic to the identity map.

Corollary: Any ambient isotopy of the MacLane arrangement to itself
acts trivially on the generators for the homology of the complement.

Let M8 denote one of the eight-line MacLane arrangements and M? a
member of the class of its conjugate. We can define M'® to be two copies
of M?® pasted together along li,ls,1l5 and M to be a copy of M? pasted
to a copy of M?® along [y, l,,l3. These define lattice equivalent thirteen-line

arrangements.
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Corollary: M'3 and M are not ambient isotopic and thus not isotopic
as labeled arrangements.

Proof: To match M8s we consider the induced ambient isotopies M8 —
M?® and M® — M3. One wants to preserve the generators of H; while the
other wants to reverse them. This is incompatible.

O

We also have the ten-line deleted pentagram P! whose moduli space is
a two point set and no lattice automorphism transfers between these points.
These points are related algebraically by the surd conjugation v/5 — —/5.
This does not induce a nice continuous automorphism of CP? like complex
conjugation does. Hence it is unclear if P'® determines its (ambient) isotopy
class.

A comment finally on the complement proper. This is very difficult.
However Rybnikov [19] claims that M'3 and M have different comple-
ments because they have different fundamental groups. Conjugation is sort
of detected in the fundamental group.

Note the contrast to real arrangements of non-intersecting lines in R3

where the complements are all homeomorphic.

6.4 Questions

1. Can a single irreducible curve have disconnected moduli space?

2. Can an arrangement consisting of a single irreducible curve not deter-

mine its complement?

3. The definition of an (abstract) arrangement is quite satisfactory. What

other definitions for an arrangement could be reasonably considered?

4. Apart from M? are there any other non-trivial line arrangements with

no double points?
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10.

11.

12.

13.

. What rigidity properties are causing unusual incidences such as the

Pascal, Desargues and M° arrangements?

Can the Rybnikov arrangement M be more easily seen to not deter-

mine its complement?

. It is easier to compute the fundamental group of the complement of

an arrangement which has a real realisation. Is it possible to find an
arrangement with disconnected moduli space and with two real realisa-
tions which have different fundamental groups for their complements?

The ten-lined deleted pentagram arrangement P! is such a candidate.

. The sphere can be realised topologically by a curve of any degree. In

general what two dimensional complexes can be realised by projective

complex plane curves, and in which degrees?

. Is it true that two arrangements are BTE if and only if they have

homeomorphic links?

Is there a way to detect when a plumbing diagram represents the link

of some arrangement?

Is there a way to detect when a plumbing diagram represents an im-

mediate plumbing diagram for the link of some arrangement?

Is there an effective normal form for a plumbing diagram if we are

restricted to using only R2 type moves?

To what extent can we carry the investigation of arrangements and

links to curves of higher dimension/codimension?
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Appendix A

In section 3.3, we studied how a curve may intersect the ambiguous set.
However this was only done in case 1. The remaining cases 2, 3 and 4 are
computed here. These computations justify the summary diagrams found in
figures 3.47, 3.48 and 3.49. Refer to figure 3.45 on page 74 for the notation
used in this section.

Case 2:

Note that the conics do not
intersect in points which

are not ambiguous. For
example thisintersection
should not really be here.

Henceforth the six conics will not be drawn, only the six ambiguous points.

Figure A.1: Case 2

Case 2(i): A line [/ passes through 0 or 1 intersection points. See fig-
ure A.2.
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Then consider the conic C passing through five ambiguous points none of
which [ passes through. Then [ intersects C' in two non-ambiguous points
contradicting lemma 3.3.3.

Hence this case does not occur.

©) ©)

@) @)

Figure A.2: Case 2(i)

Case 2(ii): A line [ passes through two ambiguous intersection points
say P; and P,. See figure A.3.

O (@)
O @)

Figure A.3: Case 2(ii)

Then [ intersects four conics Cs, Cy, Cs,Cs (C; is the conic not passing
through P;) in the two points P; and P, and the other two conics Cy, Cy in Py,
P, respectively and in another point each of which is non-ambiguous. Hence
blowing up reduces the self intersection number of [ from +1 to —1, then
blowing down increases it back to +1. The result is once again essentially
unique and self-inverse as we can easily understand this in terms of the

symmetry in the plumbing diagram (figure A.4).
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Figure A.4: Case 2(ii)

O

O

iii)

t

Figure A.5: Case 2
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Case 2(iii): A conic 7y passes through at most three ambiguous points.
See figure A.5.

Let Py, P,, P; be ambiguous points which v does not pass through. Con-
sider (g, the ambiguous conic which passes through P;, P, Ps, P;, Ps. Now
by Bezout’s theorem Cy intersects v in four points. However the only pos-
sible ambiguous points they could have in common are P, and Ps, hence
Ce and 7 intersect in at least two other non-ambiguous points contradicting
lemma 3.3.3.

Hence this case does not occur.

Case 2(iv): A conic 7 passes through exactly four of the ambiguous
points say P, Py, P3, P;. See figure A.6.

©)

O

Figure A.6: Case 2(iv)

Hence ~ intersects the two ambiguous conics Cs, Cg in the four points
Py, Py, Py, P, and intersects the remaining four conics in three of the four
ambiguous points P, P, P3, P, and in one other non-ambiguous point. Hence
blowing up decreases the self intersection number of v from +4 to 0, and
blowing down increases it back to +4. The result is once again essentially
unique and self-inverse, and we can easily understand this in terms of the
symmetry of the plumbing diagram (figure A.7).

Note that a conic cannot pass through five of the ambiguous points with-

out being one of the ambiguous conics since five points define a conic.
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Figure A.7: Case 2(iv)

Case 2(v): A cubic ¢ passes through at most five ambiguous points. See
figure A.8.

Figure A.8: Case 2(v)

Say 6 does not pass through P;. Consider Cs. Now by Bezout’s the-
orem Cg and J intersect in six points, however they have only at most
four ambiguous points in common, namely some subset of {P,, Ps, Py, P5},
hence they must intersect in at least two non-ambiguous points contradicting
lemma 3.3.3.

Hence this case does not occur.

Case 2(vi): A cubic § passes through all six ambiguous intersection
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points (which is o.k. since the six are not conconic). See figure A.9.

Figure A.9: Case 2(vi)

By Bezout’s theorem § and C; intersect in six points, but they only have
five of the ambiguous points P; in common. Hence they intersect at one non-
ambiguous point. Hence blowing up decreases the self intersection number of
0 from +9 to +3 and blowing down restores it to +9. The result is once again
essentially unique and the scenario is self-inverse. Again we understand this

in terms of the symmetry of the plumbing diagram (figure A.10).

Figure A.10: Case 2(vi)

Case 2(vii): A degree n curve n > 4 ¢ is in the configuration.
Again we can appeal to Bezout’s theorem. The curve § must intersect one of
the conics say C; in 2n > 8 places since n > 4. But at most six of these are

ambiguous points, hence at least two intersections are non-ambiguous points
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contradicting lemma 3.3.3.

Hence this case does not occur.

Case 3 For notation first label the ambiguous points and curves as in
figure A.11.

Figure A.11: Case 3

Case 3(i): A line [ passes through no ambiguous intersection points. See
figure A.12.

Then [ intersects p in two non-ambiguous intersection points contradict-
ing lemma 3.3.3.

Hence this case does not occur.

Case 3(ii): A line [ passes through only the ambiguous point Q). See
figure A.13.

This can easily be seen to be self inverse from the symmetry in the plumb-
ing diagram (figure A.14).

Case 3(iii): A line [ passes through exactly one of the P; (without loss
of generality P;). See figure A.15.
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Figure A.12: Case 3(i)

Figure A.13: Case 3(ii)
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-1 -1 -1 -1 -1

-1 -1 -1 -1 -1
Figure A.14: Case 3(ii)

Blowing up decreases the self intersection number of [ from 41 to 0 and
blowing down increases it from 0 to +4, so that we should end up with a
conic passing through the four points A}, A5, A}, ¢ and crossing the curve P/

at a non-ambiguous point.

Figure A.15: Case 3(iii)

The result is essentially unique but not self inverse as can be seen in the
asymmetry of the plumbing diagram (figure A.16).

Case 3(iv): A line [ passes through two of the P; (without loss of gen-
erality P; and P,). See figure A.17.
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Figure A.16: Case 3(iii)

Figure A.17: Case 3(iv)
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This is easily seen to be self-inverse from the plumbing diagram (fig-

ure A.18) after reshuffling.

Figure A.18: Case 3(iv)

Case 3(v): A conic vy does not pass through @, but passes through all
of Py, Py, P3, P,. See figure A.19.

This is easily seen to be self-inverse from the plumbing diagram (fig-
ure A.20.

Case 3(vi): A conic v does not pass through @ and does not pass
through at least one of P;, P, P5, P, (without loss of generality v does not
pass through P;. See figure A.21.

However v must intersect \; in two places by Bezout’s theorem and nei-
ther of these places are ) or P, hence 7 intersects A; in two non-ambiguous
places contradicting lemma 3.3.3.

Hence this case does not occur.

Case 3(vii): A conic 7 passes through ) and does not pass through at
least three of Py, P, P3, Py (without loss of generality v does not pass through
Py, Ps, Py). See figure A.22.
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Figure A.19: Case 3(v)

Figure A.20: Case 3(v)
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Figure A.21: Case 3(vi)

Figure A.22: Case 3(vii)
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Now then 7 and p have only at most two ambiguous points (@ and pos-
sibly P;) in common, but by Bezout’s theorem they must have four points
in common, hence they intersect in at least two non-ambiguous points con-
tradicting lemma 3.3.3.

Hence this case does not occur.

Case 3(viii): A conic vy passes through @ and exactly two of Py, Py, P3, P,
(without loss of generality P; and P,). See figure A.23.

Y
R P
R/ P
)\1 2 3 )\4
A, A3

M

Figure A.23: Case 3(viii)

This is easily seen to be self-inverse from the symmetry in the plumbing
diagram (figure A.24) after reshuffling.
Case 3(ix): A conic 7 passes through @ and exactly three of P;, P, Ps, P,

183



Figure A.24: Case 3(viii)

(without loss of generality P,, Ps, P;). See figure A.25.

R P
R R

Ay

Ao A3

Figure A.25: Case 3(ix)

This case is inverse to case 3(iii), so the reverse argument applies.

Case 3(x): A conic vy passes through all of Q, Py, Ps, P, Py.

This is impossible since then it has five points in common with x and hence

V= p.

184



Case 3(xi): A cubic ¢ does not pass through all of Q, Py, P, P3, P;.
In this case it is easy to see that § cannot have two ambiguous points in
common with some line say A;. Hence ¢ and \; have at most one ambiguous
point in common. By Bezout’s theorem they have three points in common,
hence § and )\; intersect in at least two non-ambiguous points contradicting
lemma 3.3.3.

Hence this case does not occur.

Case 3(xii): A cubic ¢ passes through all of Q, Pi, P, P3, P;. See fig-
ure A.26.

Figure A.26: Case 3(xii)

By Bezout’s theorem we quickly see that ¢ intersects each of the curves
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14y A1, A2, A3, A4 in one non-ambiguous point each. Hence blowing up decreases
the self intersection number of ¢ from +9 to +4 and blowing down restores
it back to +9. And we can see this case to be self-inverse from the symmetry

in the plumbing diagram (figure A.27).

Figure A.27: Case 3(xii)

Case 3(xiii): A degree n curve (n > 4) ¢ is in the configuration.
Then this must (by Bezout’s theorem) intersect A; in n > 4 places and
at most two of these places can be ambiguous points (namely @ and P;).
Hence ¢ intersects P; in at least two non-ambiguous places contradicting
lemma 3.3.3.

Hence this case does not occur.

Case 4: For notation we label the ambiguous curves and points as in
figure A.28.

Case 4(i): A line [ does not pass through any P; or Q;, i = 1,2, 3.
Then [ intersects u; say in two non-ambiguous points contradicting lemma 3.3.3.

Hence this case does not occur.

Case 4(ii): A line [ does not pass through any of P;, P,, P; but passes
through exactly one of @1, @2, @3 (without loss of generality | passes through

Q1).

However (01 € p1 thus we see that [ and u; don’t have any ambiguous points
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Figure A.28: Case 4

in common, hence they must intersect in two non-ambiguous points contra-
dicting lemma 3.3.3.

Hence this case does not occur.

Case 4(iii): A line [ does not pass through any of P, P, P, but passes
through exactly two of @1, Q2, @3 (without loss of generality | passes through
Q- and Q3). See figure A.29.

Note that the plumbing diagram (figure A.30) is not symmetric and so
this case is not self-inverse.

We verify that this case can occur as follows. Firstly [ passes through
A1, A2, A3 at non-ambiguous points and also uy and p3 at Q2,3 and a non-
ambiguous point each. Thus after blowing up and blowing down we see that
[ now must pass through the five ambiguous points A}, A}, Aj, 5, 15 and also
intersect the lines ()}, Q% in one non-ambiguous point each. No other inter-
sections occur. Furthermore the self intersection number of [ decreases from
+1 to -1 after blowing up, then increases to +4 after blowing down. All
of this points to the image of [ being a conic which passes through the five
points A{, A, A, 5, ps Furthermore the conic I’ has four (ambiguous) points

in common with each of the conics P{, Py, P;. Thus all incidences match up
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Figure A.30: Case 4(iii)
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and we have found that case 4(iii) occurs in precisely the way described in
the figure A.29.

Case 4(iv): A line [ passes through exactly one of Py, Py, P3 (say P;),
but not through any @;. See figure A.31.

Figure A.31: Case 4(iv)

Note that the plumbing diagram (figure A.32) is not symmetric and so
this case is not self-inverse.

Now we can see that [ passes through P; hence [’ intersects the conic
P/ in one non-ambiguous point. Also [ intersects all the curves A1, p1, pto, 143

in one non-ambiguous point each and hence I’ passes through the vertices
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Figure A.32: Case 4(iv)

s i, h, . Also the self intersection number of I decreases from +1 to 0
after blowing up, then increases to +4 after blowing down. All this shows
that case(iv) occurs in precisely the way described in figure A.31 - a conic '

passing through M|, u!, ph, pb, but not A, Aj.

Case 4(v): A line [ passes through exactly one P; and exactly one @;.
A little thought shows that without loss of generality we can assume that [
passes through P; and );. See figure A.33.

This is easily seen to be a self-inverse case from the plumbing diagram
(figure A.34) after reshuffling.

Case 4(vi): The points @1, @2, Q3 are collinear and a line [ passes
through them. See figure A.35.

This case is easily seen to be self-inverse from the plumbing diagram, and
hence occurs precisely in the way described in the diagram above provided

the three points |, A}, A} are collinear in Aj.

Case 4(vii): A conic 7 passes through at most one of the P; (without
loss of generality say v does not pass through P, or P).
Then v and A\, have no ambiguous points in common and hence must have
two non-ambiguous points in common contradicting lemma 3.3.3.

Hence this case does not occur.
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Figure A.33: Case 4(v)

Figure A.34: Case 4(v)
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Figure A.35: Case 4(vi)

Case 4(viii): A conic v passes through exactly two of the P; (without
loss of generality P, and P;) and passes through at most one @); (without
loss of generality say v does not pass through @, and Q3).

Then v and py have only P, and P3 as common ambiguous points. Hence
they must intersect in two non-ambiguous points contradicting lemma 3.3.3.

Hence this case does not occur.

Case 4(ix): A conic 7 passes through exactly two of the P; (without loss
of generality P, and P3) and passes through exactly two of the @; (without
loss of generality Q2 and @3). See figure A.36.

This is easily seen to be self-inverse from the plumbing diagram (fig-
ure A.37) after reshuffling.

Case 4(x): A conic 7 passes through exactly two of the P; and all three
Q-

This case is inverse to case 4(iii) and hence the reverse argument applies.

Case 4(xi): A conic y passes through all three P; but through no @;.
See figure A.38.

This is easily seen to be self-inverse from the plumbing diagram (fig-
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Figure A.38: Case 4(xi)
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ure A.39).

Figure A.39: Case 4(xi)

Case 4(xii): A conic v passes through P, P, P; and exactly one Q;.

This case is inverse to case 4(iv) and so the reverse argument applies.

Case 4(xiii): A conic 7 passes through Pj, P», P; and at least two of the
Q; (without loss of generality @1 and Q).

Then v has five points in common with p3 contradicting Bezout’s theorem.

Case 4(xiv): A cubic 6 does not pass through all P, (without loss of
generality § does not pass through Py).
Then ¢ has only one ambiguous point in common with \;. Applying Bezout’s

theorem to these two curves yields a contradiction to lemma 3.3.3.

Case 4(xv): A cubic § does not pass through all @); without loss of
generality ¢ does not pass through Q).
Thus ¢ has at most four ambiguous points in common with us. Applying

Bezout’s theorem to these two curves yields a contradiction to lemma 3.3.3.

Case 4(xvi): A cubic ¢ passes through all six points Py, P, P3, Q1, Q2, Q3.
See figure A.40. This case is easily seen to be self-inverse from the plumbing
diagram (figure A.41) and hence occurs.

Case 4(xvii): A degree n (n > 4) curve ¢ is in the configuration.

194



Figure A.41: Case 4(xvi)

Then ¢ intersects A1 in n > 4 places by Bezout’s theorem, of which at most
two can be ambiguous contradicting lemma 3.3.3.

Hence this case does not occur.
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