
ON A ⊆ [N ] SUCH THAT ab+ 1 IS NEVER SQUAREFREE FOR a, b ∈ A
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1. Statement of result

In this short note, we address the following question of Erdős [2]. We remark that substantial progress
towards this problem was made by van Doorn, Weisenberg and Cambie [1].

Proposition 1.1. There exists an integer N0 such that if N ≥ N0 then the following holds. Let A ⊆ [N ]
with the property that if a, b ∈ A then ab+ 1 is not squarefree. Then |A| ≤ |{n ∈ [N ] : n ≡ 7 mod 25}|.

Remark. Equality is achieved precisely when A = {n ∈ [N ] : n ≡ 7 mod 25} or (possibly) A = {n ∈ [N ] :
n ≡ 18 mod 25}. The proof in fact gives that there exists η > 0 such that if |A| ≥ (1/25− η) ·N and N is
sufficiently large then A is contained in either {n ∈ [N ] : n ≡ 7 mod 25} or {n ∈ [N ] : n ≡ 18 mod 25}.

It may be of interest to explore further whether one can give a strong structural classification of sets A
with size δN where δ is a fixed small constant.

2. Preliminary lemmas

We now require the following pair of preliminary lemmas; the first was already used by van Doorn (see
[1]). In order to be self-contained, we provide proofs with suboptimal error terms.

Lemma 2.1. Let P be a subset of primes with maxP ≤ N1/2 and let q be a positive integer. For each
p ∈ P, define Rp to denote a set of residue classes modulo p2 with |Rp| ≤ 2 and Rp = ∅ if (p, q) ̸= 1. Then∣∣∣∣∣∣∣({n ∈ [N ] : n ≡ t mod q

}⋂ ⋃
p∈P

{n mod p2 ∈ Rp}
)∣∣∣− N

q
·
(
1−

∏
p∈P

(
1− |Rp|

p2

))∣∣∣∣ ≪ N(logN)−1/2.

Proof. Let T = ⌊
√
logN⌋. Note that∣∣∣[N ]

⋂ ⋃
p∈P

T≤p≤N1/2

{n mod p2 ∈ Rp}
∣∣∣ ≪ ∑

T≤p≤N1/2

N

p2
≪ N

T
.

Therefore it suffices to estimate∣∣∣({n ∈ [N ] : n ≡ t mod q
}⋂ ⋃

p∈P
p≤T

{n mod p2 ∈ Rp}
)∣∣∣.

Note that as T ≤
√
logN , we have that

∏
p≤T p2 ≤ No(1). Via inclusion exclusion, we have∣∣∣({n ∈ [N ] : n ≡ t mod q

}⋂ ⋃
p∈P
p≤T

{n mod p2 ∈ Rp}
)∣∣∣

=
∑

S⊆P∩[T ]
S ̸=∅

(−1)|S|−1 ·
∣∣∣ ⋂
p∈S

{n mod p2 ∈ Rp} ∩ {n ∈ [N ] : n ≡ t mod q}
∣∣∣

= No(1) +
∑

S⊆P∩[T ]
S ̸=∅

(−1)|S|−1 · N
q

·
∏

p∈S |Rp|∏
p∈S p2

This research was conducted during the period that the author served as a Clay Research Fellow. The author thanks Mark
Sellke for useful comments.
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=
N

q
·
(
1−

∏
p∈P∩[T ]

(
1− |Rp|

p2

))
+No(1).

Completing the product, we have the desired result. □

We next require a variant of the previous lemma which allows us to incorporate the “off-diagonal” con-
straints that ab+ 1 is not squarefree.

Lemma 2.2. Fix a positive integer N , residue class t mod q with q a perfect square and an integer b such
that 1 ≤ b ≤ N . Suppose that there does not exist a prime p such that p2|q and p2|(bt+ 1).

Then we have that∣∣∣∣∣∣∣{a ∈ [N ] : a ≡ t mod q ∧ µ(ab+ 1) = 0}
∣∣∣− N

q
·
(
1−

∏
p

(p,qb)=1

(
1− 1

p2

))∣∣∣∣ ≪ N√
logN

.

Proof. Note that ab+ 1 ≤ N2 + 1. Therefore if µ(ab+ 1) = 0, there exists a prime p such that p2|(ab+ 1).
Additionally note that (p, qb) = 1. In particular, if p|b then p ∤ ab + 1. Furthermore if p|q, then observe
ab+ 1 ≡ bt+ 1 ̸≡ 0 mod p2 by the imposed condition.

We now let T = ⌊
√
logN⌋. We have that∑

T≤p≤N

|{a ∈ [N ] : p2|(ab+ 1)}| ≪
∑

T≤p≤N

(N
p2

+ 1
)
≪ N

T
.

Therefore it suffices to handle p ≤ T with (p, qb) = 1. The condition that p2|ab+1 gives one specified residue
class (depending on each prime p) and therefore we may handle the remaining primes via Lemma 2.1 and
we may conclude the proof. □

3. Completing the proof of Proposition 1.1

We now give the remainder of the analysis to conclude the proof. The proof consists of breaking the
set into the parts which are 7 mod 25, 18 mod 25 and the remainder. We then apply combinations of
Lemma 2.1 and Lemma 2.2 based on whether the relevant sets are nonempty. To optimize the numerical
factor of

∏
(p,qb)=1(1 − 1/p2), we introduce casework based on whether these sets contain an even integer.

We note that there exist various solutions within this framework; indeed the initial version of the solution
required more extensive casework modulo numbers including 169 and 289.

Proof of Proposition 1.1. Let η > 0 be a small absolute constant, let N be sufficiently large and suppose
that |A| ≥ (1/25− η) ·N . Define

A7 = {a ∈ A : a ≡ 7 mod 25}
A18 = {a ∈ A : a ≡ 18 mod 25}
A∗ = A \ (A7 ∪A18).

We first prove that A∗ is empty.
Suppose that there exists b ∈ A∗ with 2|b. Then for each x ∈ A∗, there is p ≡ 1 mod 4 with p ≥ 13

such that p2|x2 + 1. By breaking A∗ into residue classes modulo 25 (of which there are 23 possibilities) and
applying Lemma 2.1, we have that

|A∗|
N

≤
(23
25

)(
1−

∏
p≡1 mod 4

p≥13

(
1− 2

p2

))
+ o(1).

For a ∈ A7 ∪A18, we have that there exists p ̸= 2, 5 such that p2|ab+ 1. This implies by Lemma 2.2 that

|A7 ∪A18|
N

≤
( 2

25

)(
1−

∏
p̸=2,5

(
1− 1

p2

))
+ o(1).
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Combining these bounds we have that

|A|
N

≤
(23
25

)(
1−

∏
p≡1 mod 4

p≥13

(
1− 2

p2

))
+

2

25

(
1−

∏
p̸=2,5

(
1− 1

p2

))
+ o(1)

≤ 0.0252 + 0.0125 = 0.0377;

here we have absorbed the o(1) error assuming that N is sufficiently large.
Therefore we have reduced to the case that A∗ consists of odd elements. By breaking A∗ into residue

classes modulo 50 and noting there are 23 valid possibilities and applying Lemma 2.1, we have that

|A∗|
N

≤
(1
2

)(23
25

)(
1−

∏
p≡1 mod 4

p≥13

(
1− 2

p2

))
+ o(1).

We now split into cases based on whether or not A7 ∪ A18 contains even elements. First suppose that no
element of A7 ∪ A18 is even; then A7 ⊆ {7, 57} mod 100 and A18 ⊆ {43, 93} mod 100. Fixing b ∈ A∗, for
each of A7 and A18 one of the residue classes mod 100 will have 22 as a divisor and the other will not.
Therefore applying Lemma 2.2 to these progressions mod 100, we have that

|A7 ∪A18|
N

≤ 1

50
+
( 1

50

)(
1−

∏
p̸=2,5

(
1− 1

p2

))
+ o(1).

Therefore we have a bound of

|A|
N

≤
(1
2

)(23
25

)(
1−

∏
p≡1 mod 4

p≥13

(
1− 2

p2

))
+

1

50
+

( 1

50

)(
1−

∏
p̸=2,5

(
1− 1

p2

))
+ o(1)

≤ 0.0126 + 0.0200 + 0.0032 = 0.0358.

Therefore we have reduced to the case where A∗ is nonempty, consisting of odd elements and at least one of
A7 or A18 has an even element. We now fix b ∈ A∗ and b′ ∈ A7 with 2|b′ (with the case where A18 has the
even element being completely analogous). The size of |A∗| is bounded as before. By using b and Lemma 2.2,
we have that

|A7|
N

≤ 1

25

(
1−

∏
p̸=5

(
1− 1

p2

))
+ o(1).

Additionally, using b′ ∈ A7 and Lemma 2.2, we have that

|A18|
N

≤ 1

25

(
1−

∏
p̸=2,5

(
1− 1

p2

))
+ o(1).

Therefore we have that

|A|
N

≤
(1
2

)(23
25

)(
1−

∏
p≡1 mod 4

p≥13

(
1− 2

p2

))
+

1

25

(
1−

∏
p̸=5

(
1− 1

p2

))
+

1

25

(
1−

∏
p̸=2,5

(
1− 1

p2

))
+ o(1)

≤ 0.0126 + 0.0147 + 0.0063 = 0.0336.

Therefore we have now reduced to the case where A∗ = ∅. Suppose that A7 and A18 are nonempty; fixing
b ∈ A7 and b′ ∈ A18 and applying Lemma 2.2 twice we have that

|A|
N

≤ 2

25

(
1−

∏
p̸=5

(
1− 1

p2

))
+ o(1) ≤ 0.0294.

Therefore A is fully contained inside one of A7 or A18. This immediately gives the desired bound. □
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4. Discussion of the role of AI assistance

The proof of Proposition 1.1 was obtained with assistance from ChatGPT 5 Pro. The primary discussion
with GPT is

https://chatgpt.com/share/68ec50da-cf00-8005-b5f6-b683506e5853.
The main additional lemma Lemma 2.2 over those on [1] was suggested by ChatGPT 5 Pro. The lemma is

a slight variant of standard facts giving the density of square–free integers. GPT however crucially notes that
one may exclude primes depending on b and on the common difference of the progression under consideration.
GPT then attempts (in various elaborate and incorrect ways) to prove that one cannot have two residue
classes modulo 25 with positive density; these attempts are seen to be incorrect by using an analogous
example modulo 169. However it attempts naturally suggest using a single element in the alternate residue
class to sieve A7 and A18. Additionally at various steps it treats 1 −

∏
p̸=5(1 − 1/p2) = (1 − 6/π2 · 25/24)

as 0; this “mistake” was quite useful as it suggests pushing this quantity as close to zero as possible. Giving
these lemmas, and supposing that A∗ is nonempty, one gets a bound of the form(23

25

)(
1−

∏
p≡1 mod 4

p≥13

(
1− 2

p2

))
+

2

25

(
1−

∏
p̸=5

(
1− 1

p2

))
≤ 0.0252 + 0.0294 ≈ 0.0546.

This is already quite close to the desired bound and incorporating further primes to push the numerical
factor towards zero ultimately completes the proof. (A particularly encouraging subcase is assuming that
A∗ is empty and then carrying out the argument; an incorrect execution of this appears in 3.3 of ChatGPT’s
first response but the correct numerics are sufficient.) We remark that in the discussion/initial solution of
the author the auxiliary prime 3 was used; that the prime 2 could be used was realized slightly later leading
to a cleaner proof.

Numerical constants and verification

We record various constants in the argument to 4 digits; we round to preserve the stated inequalities.

•
∏

p

(
1− 1

p2

)
= 6

π2 ≥ 0.6079, so 1− 6
π2 ≤ 0.3921.

•
∏

p̸=5

(
1− 1

p2

)
= 25

4π2 ≥ 0.6332, so 1− 25
4π2 ≤ 0.3668.

•
∏

p̸=2,5

(
1− 1

p2

)
= 25

3π2 ≥ 0.8443, so 1− 25
3π2 ≤ 0.1557.

• 1−
∏

p≡1 (4)
p≥13

(
1− 2

p2

)
≤ 0.0274.
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