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These are supplementary notes to a talk on abelian varieties. We cover two distinct topics:
Tate’s isogeny theorem and the moduli space of principally polarized abelian varieties. This
material is all standard and mostly taken from [1] and [2].

1 Tate’s isogeny theorem

Let A and B be abelian varieties over a field k. Let l be a prime different from char k and let
G = Gk be the Galois group of k, which acts on Tl(A), Tl(B). Consider the morphism

Homk(A,B)⊗ Zl → HomG(Tl(A), Tl(B)). (1)

In [2], Tate showed that this morphism is an isomorphism when k is a finite field.

1.1 Reductions

Recall that last time, we saw that ϕ ∈ Hom(A,B) is divisible by ln if Tl(ϕ) : Tl(A) → Tl(B) is.
This implies the cokernel of eq. (1) is torsion-free.

We can also show that eq. (1) is injective. But first, note thatHom(A,B) → HomZl
(Tl(A)Tl(B))

is injective by the following argument. If ϕ ∈ Hom(A,B) is 0 on Tl(A), then ϕ(Aln(k)) = 0 for
alln. Restricting to any simple abelian subvarietyA′ ↪→ A, we see that the kernel ofϕ restricted
to A′ is not finite, and is thus equal to A′. Then because A is isogenous to a product of simple
subvarieties (Poincaré reducibility theorem), we see that ϕ = 0.

Lemma 1.1. If A is simple, then Endk(A) is finitely generated.

Proof. SinceA is simple all endomorphisms are isogenies, and have integer degrees. Take {ei}i
linearly independent over Z inEnd(A) and letM be the Z-submodule ofEnd(Tl(A)) generated
by the Tl(ei). ThenQM ∩End(A) is discrete inQM (because by taking degrees, its intersection
with a neighborhood of 0 is just 0), and is therefore a finitely generated Z-module. Choosing
the ei to be aQ-basis of End0(A), we have End(A) = QM ∩End(A)which is finitely generated.

Remark. The proof above relies on knowing that End0(A) is a finite Q-vector space. If we do
not assume this, then we can still prove the next proposition by assuming there is a relation
between e1, . . . , er and applying the argument to the submodule they generate.

Proposition 1.2. The morphism

Homk(A,B)⊗ Zl → HomG(Tl(A), Tl(B))

is injective with torsion-free cokernel.
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Proof. We already know the second statement. For the first, we will show that End(A,B) is a
finitely generated Z-module. Indeed, choosing isogenies

∏
Ai → A and B →

∏
Bj with the

Ai and Bj simple, we see that Hom(A,B) injects into
∏

Hom(Ai, Bj), and each factor injects
into End(Ai) which is finite-dimensional.

Now choose a Z-basis e1, . . . , er for Hom(A,B) and assume that
∑
aiTl(ei) = 0 for ai ∈

Zl. Then we can find integers ni(r) (approximating ai by taking the first r digits) such that∑
ni(r)Tl(ei) ̸= 0 is divisible by an arbitrarily large power of l in End(Tl(A)) for sufficiently

large r. But then the same is true in End(A), and thus each of the ni(r) is also divisible by an
arbitrarily large power of l, which cannot occur unless they go to 0.

Next, we tensor by Ql. Let Vl(A) = Tl(A)⊗Zl
Ql.

Lemma 1.3. The map

Homk(A,B)⊗Ql → HomG(Vl(A), Vl(B)) (2)

is injective, and is bijective if and only if eq. (1) is. In fact, eq. (1) is bijective if and only if

Endk(A)⊗Ql → EndG(Vl(A)) (3)

is.

Proof. Because Ql is flat over Zl, the injectivity follows from proposition 1.2. Surjectivity fol-
lows because the cokernel of eq. (1) is torsion-free. Finally, we can reduce to the case A = B
because End(A×B) = Endk(A)⊕Hom(A,B)⊕Hom(B,A)⊕ End(B).

1.2 A key lemma coming from a finiteness result

Consider the following finiteness condition.

Condition 1.4. Given an abelian variety A/k, there are only finitely many abelian varieties B, up
to k-isomorphism, which are isogenous to A with degree a power of l (where l ̸= char k is a prime).

In fact, amuch stronger condition is true when k is finite; in that case there are only finitely
many abelian varieties up to k-isomorphism of dimension g. For this, one can invoke the ex-
istence of Hilbert schemes or construct a parameterization directly. We sketch the idea.

First one shows there are finitely many such abelian varieties with a polarization ψ of de-
gree d2. Such a polarization arises from an ample line bundle L, and by the theorem of the
square L3 is very ample. (This can be used to prove that abelian varieties are projective.) One
has that χ(L) =

√
deg ϕL = d. Furthermore, Hirzebruch-Riemann-Roch gives χ(L) = (Dg)/g!,

so we have χ(3L) = 3gd. This realizes B as a degree 3gd(g!) subvariety of P3gd−1, and if the
ground field are finite then there are finitely any of these up to isomorphism. Then it can be
shown (Zarhin’s trick) that (B × B∨)4 has a principal polarization, and an abelian variety has
only finitely many direct factors up to isomorphism.

Now we prove a lemma about constructing isogenies from the Tate module.

Lemma 1.5. Let W be a G-stable submodule of Tl(A) of finite index. Then there is an abelian
variety B and an l-power isogeny B → A whose image on Tate modules isW .

Sketch. Pick n such that lnTl(A) ⊂W , and letN be the image ofW in Tl(A)/lnTl(A). Then we
take B = A/N , and [ln] : A→ A factors through B to give the desired isogeny.

The key lemma is the following.
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Lemma 1.6. Suppose condition 1.4 is satisfied. Then given any G-stable subspace W ⊂ Vl(A),
there is some u ∈ End(A)⊗Ql such that u(Vl(A)) =W .

Proof. Let
Xn = (Tl(A) ∩W ) + lnTl(A).

Then Xn is stable under the action of G, and is a finite-index Zl-submodule of Tl. Then by
the previous lemma, there is an abelian variety Bn with an isogeny fn : Bn → A such that
fn(Tl(Bn)) = Xn. Since there are finitely many isomorphism classes of abelian varieties for
Bn, we will take an infinite set I of Bi which are all isomorphic. Say j is the smallest such
index, soXj is the biggest of theXi. We have isomorphisms vi : Bj → Bi.

Bj Bi

A

vj

fi
fj

Note that ui := fivif
−1
j ∈ End(A) ⊗ Ql. Then ui(Xj) = Xi ⊂ Xj . Since End(Xj) is compact

we can extract a subsequence I ′ of the ui that converges to some u which gives an element of
End(A)⊗Ql with u(Xj) = ∩i∈I′Xi = Tl(A) ∩W . This implies that u(Vl(A)) =W , as desired.

1.3 Finishing the proof

The fact that Vl(A) is a semisimpleG-representation is generally included in the statement of
Tate’s isogeny theorem. Thus, we need to prove the following.

Theorem 1.7. Let A be an abelian variety over a finite field k and let l ̸= char k be a prime. Then:
(a) Vl(A) is a semisimple G-representation.
(b) Endk(A)⊗Ql → EndG(Vl(A)).

Before proving this, we review some noncommutative algebra. ByWedderburn’s theorems,
every semisimple k-algebra is a finite product of square matrices of division algebrasMn(D).
The right ideals inMn(D) are obtained by requiring that a certain subset of the columns be 0,
and are thus are each generated by an idempotent given by an appropriate diagonal matrix.

Let R ⊂ E be k-algebras and let E = Endk(V ) for some faithful semisimple R-module V .
The double centralizer theorem states that CE(CE(R)) = R. By the previous results, we know
that End(A)⊗Ql is a semisimple Ql-algebra.

Proof of theorem 1.7. (a) Given W a G-stable subspace of Vl(A), we need to construct a com-
plementary G-stable subspace. Let a ⊂ Endk(A) ⊗ Ql be the right ideal of elements which
preserveW ; by lemma 1.6 we know that aVl(A) =W . Thus ⊣ is generated by an idempotent e,
and we have eVl(A) =W . Then (1− e)Vl(A) is a G-invariant complementary subspace toW .

(b) Takeα ∈ EndG(Vl(A)). To showα comes fromEndk(A)⊗Ql, we letC = CEndG(Vl(A))(Endk(A)⊗
Ql); then Endk(A) ⊗ Ql is the centralizer of C because it is semisimple. So we have to show
that for every c ∈ C, we have cα = αc.

The graph of α is a G-invariant subspace W ⊂ Vl(A) × Vl(A), because α is G-invariant.
Thus there is some u ∈ Endk(A × A) ⊗ Ql such that u(Vl(A) × Vl(A)) = W . Note that cI2 ∈
End(Vl(A)× Vl(A)) commutes with u, so

cI2W = cI2uW = ucI2W ⊂W,

which means that (cx, cαx) = (cx, αcx) for all x ∈ Vl(A). This implies that cα = αc as desired.

Corollary 1.8. Let R be the image of Ql[G] in End(Vl(A)). Then R is semisimple and C(R) =
End(A)⊗Ql. R is the centralizer of End(A)⊗Ql in End(Vl(A)).
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1.4 Faltings’s theorem and the Tate conjecture

Tate’s isogeny theorem is part of a larger, important story in arithmetic geometry. First, its
validity for number fields was an important part of the proof of Faltings’s theorem. We give a
quick sketch.

Recall that we used a finiteness theorem for abelian varieties to prove the Tate conjecture.
This is a version of the Shafarevich conjecture, and is much harder to prove over number fields.
However, Faltings proved a version of finiteness up to isogeny, using the Faltings height. This
allowed him to prove the Tate conjecture for number fields, which allowed him to deduce the
Shafarevich conjecture, from which the Mordell conjecture follows.

1. (Finiteness I) There are finitely many abelian varieties B which are isogenous to A.

2. (Tate conjecture I) a) The representation of GK on Vl(A) is semisimple.

b) The natural map HomK(A,B)⊗Z Zl → HomGK
(Tl(A), Tl(B)) is an isomorphism.

3. (Shafarevich conjecture for AV) Let S be a finite set of places of K and fix a positive
integer g. Then there are only finitely many isomorphism classes of abelian varieties
A/K of dimension g with good reduction outside S.

4. (Shafarevich conjecture) With the notation above, there are only finitely many isomor-
phism classes of smooth projective curves C of genus g with good reduction outside S.

5. (Mordell’s conjecture) If g ≥ 2, then C(K) is finite.

1.5 The Tate conjecture

There is another direction in which the Tate isogeny theorem can be generalized, namely the
Tate conjecture on algebraic cycles. This puts the Tate isogeny theorem into a much richer
perspective. The Tate conjecture is an enormously important question in arithmetic geometry
and we will hardly scratch the surface here, not even saying anything about (e.g.) the deep
connection with the BSD conjecture.

Let X be a smooth geometrically irreducible projective variety over a field k, and let X =
X ×k Spec k. Recall the cycle class map, sending subvarieties to étale cohomology. This is a
homomorphism

cr(Z(X)) → H2r(X,Ql(r)).

In the case of divisors, this can be seen through the first Chern class. Indeed, the Kummer
sequence gives an injection

Pic(X)/ln Pic(X) ↪→ H2(X,µn),

and taking the inverse limit gives an injection

Pic(X)⊗Ql ↪→ H2(X,µn).

We defineA(X) to be the left hand side, or more generally, the quotient of the Chow group
by the classes which map to 0 under the cycle class map. This equivalence relation is known as
homological equivalence, and sits between rational/algebraic equivalence and numerical equiv-
alence. In the case of divisors, we can say more. Recall we have the surjections

Pic(X) ↠ NS(X) ↠ Num(X)
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corresponding to rational, algebraic, and numerical equivalence. The kernel of the second sur-
jection is torsion, so in this case homological and numerical equivalence coincide.

We now state the Tate conjecture. Note that the image of Z(X) in Z(X) is fixed byGk, and
thus its cycle class is as well. The Tate conjecture states a converse.

Conjecture 1.9 (Tate). LetX be a smooth projective variety over a field kwhich is finitely generated
over its prime field. Then the map

Ar(X)⊗Ql → H2r(X,Ql(2r))
GK

is an isomorphism.

Let us now relate this with the version we saw for abelian varieties. The idea is that, first
the Tate module of an abelian variety is dual to its l-adic cohomology, and second, homomor-
phisms between abelian varieties and their cohomology can be described by cycles or coho-
mology classes of the product, which is a very classical motivic idea.

First, let us say we know the Tate conjecture. We will apply it to a product of abelian vari-
eties A × B. First, note that by identifying B with its double dual and using the fact that the
dual represents Pic0, we have that

Homk(A,B) = ker(A1(A× B̂) → A1(A)×A1(B̂)).

On the other hand, by Künneth we have

H1(A,Ql)×H1(B̂,Ql) ∼= ker(H2(A× B̂) → H2(A,Ql)×H2(B̂,Ql)).

Applying the cycle class map, given the Tate conjecture we can identify Homk(A,B)⊗Ql with
the Galois invariants ofH1(A,Ql)×H1(B̂,Ql), which are identified with theGK maps on Tate
modules.

In the other direction, fix a polarization λ, and recall the Rosati involutionα† onEnd(A)⊗Q
defined by λ−1◦α∨◦λ. Over an algebraically closed field, themap sendingL 7→ λ−1◦λL identi-
fiesNS(A)⊗Ql with the subgroup ofEnd(A)⊗Q fixed by †. Similarly,H2(A,Ql) = ∧2H1(A,Ql)
can be identified with the subgroup of End(Vl(A)) fixed under the Rosati involution. Making
these identifications, we see that the Tate isogeny theorem implies the Tate conjecture in the
case of divisors on abelian varieties.

The semisimplicity of the Galois representation on étale cohomology and numerical equiv-
alence coinciding with homological equivalence are also generally bunched together with the
Tate conjecture. Among other things, these would implymost of Grothendieck’s standard con-
jectures, as well as the BSD conjecture for function fields.

2 The moduli space of abelian varieties

We will now give a brief introduction to the classical story of moduli of abelian varieties over
C. However this moduli space exists over Z, and many of the AWS projects are about under-
standing its various stratifications in characteristic p.
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2.1 The Riemann bilinear relations

Working over C, it can be shown that any connected compact complex Lie group (including
complex abelian varieties) is a torus, i.e. of the form Cg/Λ for some lattice Λ. Then the period
matrix Π is a g × 2g matrix where the 2g columns correspond to the coordinates of the lattice

vectors. One can check that Π indeed defines a period matrix if and only if
[
Π

Π

]
is invertible.

By taking a change of basis, one can make Π look like
[
Ig Ω

]
. Then the previous condition

amounts to ℑ(Ω) being invertible.

Now a fundamental question is: when does Π determine an abelian variety? This is an-
swered by the Riemann bilinear relations.

Theorem 2.1. The period matrixΠ determines an abelian variety if and only if there exists a skew
symmetric matrix E such that

i) ΠE−1ΠT = 0

ii) iΠE−1Π
T is positive-definite.

The matrix E can be interpreted as the imaginary part of a Riemann form or a polarization
H. A polarization H with respect to Λ is a positive-definite Hermitian form with ℑH integer-
valued on Λ. We recoverH from E by

H(u, v) = E(iu, v) + iE(u, v).

Using linear algebra, Riemann’s bilinear relations are equivalent to there existing a polariza-
tion.

Why does a polarization, or Riemann’s bilinear relations give a complex torus the structure
of an abelian variety? In other words, how are they related to projectivity?

First, assume we have an embedding A = Cg/Λ ⊂ Pn. Recall that Hk(A,Z) ∼=
∧k(Λ∗).

Then one can take the pullback of the generator ofH2(Pn,Z) toH2(A,Z), or equivalently the
first Chern class of the line bundle defining the embedding, which gives a skew-symmetric
integer-valued form on Γ. This turns out to be the matrix A defining the (imaginary part of)
the polarization. Furthermore, this cohomology class is the restriction of the Kähler form on
Pn, which has an explicit representative giving the positive-definite Hermitian condition.

On the other hand, given a polarization, one can construct a projective embedding using
theta functions arising from the polarization. This is more analytically involved, and gives a
concrete realization of the abstract proof of projectivity over arbitrary fields in [1]. Finally,
we remark that in the case of Jacobians, Riemann’s bilinear relations can be understood very
concretely, with properties of the intersection pairing on the homology of a Riemann surface
give rise to a natural polarization.

2.2 Ag(C)

Given a polarization H with imaginary part E, we can write E =
(

0 D
−D 0

)
where D is diag-

onal. If D can be taken to be Ig, then we call this a principal polarization. Recall that such
that polarizations are associated to period lattices

[
Ig Ω

]
. Writing a principal polarization

in the standard symplectic form, the Riemann bilinear relations say that Ω is symmetric and
has positive-definite imaginary part. The set of such matrices is known as h, the Siegel upper
half-space.
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Any point in the Siegel upper half-space determines a principally polarized abelian variety,
and one can check that two are isomorphic if they are related by the action of the symplectic
group. Recall Sp2g(C) consists of the invertible matrices which preserve the symplectic form

(i.e.MTJM = J). The action ofM =

[
A B
C D

]
onΩ ∈ hg is given byΩ 7→ (AΩ+B)(CΩ+D)−1.

Then we can define the moduli space of principally polarized abelian varieties by

Ag = Sp2g(Z)\hg.

This is the classical complex construction, but Mumford was able to give an algebraic con-
struction of Ag over an arbitrary base. There are of course also stacky versions.
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