Endomorphism Rings and Tate modules

Vivian Yu

February 13, 2024

In this talk, we will study the properties of endomorphism rings and introduce Tate modules for abelian varieties following mainly $\S 5$ of Dembélé's notes.

1 Endomorphism ring of an abelian variety

Let A, B be abelian varieties over a field k and consider the set of homomorphisms of abelian varieties $\operatorname{Hom}(A, B)$. If $f, g \in \operatorname{Hom}(A, B)$, then we have a homomorphism $f+g$ by pointwise addition. This gives $\operatorname{Hom}(A, B)$ the stucture of an abelian group with the trivial morphism as the identity element. With $A=B$, we see that $\operatorname{End}(A)$ has a natural ring stucture with composition as multiplication.

Lemma 1.1. Let A, B be abelian varieties over a field k. Then the group $\operatorname{Hom}(A, B)$ is torsion-free, i.e. for $f \in \operatorname{Hom}(A, B)$ and $0 \neq n \in \mathbb{Z}, n \cdot f=0$ implies that $f=0$.

Proof. We know that $n \cdot f=f \circ[n]_{A}$. For $n \neq 0$, we know that $[n]_{A}$ is an isogeny, which is in particular surjective. Thus, if $n \cdot f=0$, then $f=0$.

2 The isogeny category

Define a category Isog as follows. The objects are abelian varieties. For two abelian varieties A and B, we put

$$
\operatorname{Hom}_{\mathbf{I s o g}}(A, B)=\operatorname{Hom}(A, B) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

We also write

$$
\operatorname{Hom}^{0}(A, B):=\operatorname{Hom}_{\mathbf{I s o g}}(A, B), \quad \operatorname{End}^{0}(A):=\operatorname{End}_{\mathbf{I s o g}}(A)
$$

If $f: A \rightarrow B$ is an isogeny, then there exists an isogeny $g: B \rightarrow A$ such that $g f=[n]$, for some n explain. It follows that $\frac{1}{n} g$ is the inverse to f in Isog. In other words, isogenies are isomorphisms in Isog. In fact, Isog is an abelian category ${ }^{1}$.

Theorem 2.1 (Poincaré reducibility). Let A be an abelian variety, and let B be an abelian subvariety. Then there exists an abelian subvariety C such that $B \cap C$ is finite and $B \times C \rightarrow A$ is an isogeny.

[^0]Proof. proof details Let $i: B \hookrightarrow A$ be the inclusion and $i^{\vee}: A^{\vee} \rightarrow B^{\vee}$ its dual. Let $\lambda: A \rightarrow A^{\vee}$ be a polarization on A. Then, let

$$
X=\operatorname{ker}\left(i^{\vee} \circ \lambda\right)
$$

let C be the reduced subscheme of the zero component of X. Then C is an abelian variety ${ }^{2}$. From the theorem of dimension of fibres of morphisms, we know that

$$
\operatorname{dim} C \geq \operatorname{dim} A-\operatorname{dim} B
$$

The restriction of $i^{\vee} \circ \lambda$ to B is $\left.\lambda\right|_{B}$, whose kernel is finite since λ is an isogeny. Thus, $B \cap C$ is finite and $B \times C \rightarrow A$ is an isogeny.

Definition 2.1. Let A be a non-zero abelian variety X over a field k. We say that A is simple if the only subvarieties of A are 0 and A.

Note that an abelian variety that is simple over the ground field k need not be simple over an extension of k. Therefore, we will always specify by saying k-simple.

If we consider the simple abelian varieties to be the simple objects of the category Isog, Poincarés theorem shows that Isog is semi-simple as an abelian category.

From the formalism of abelian categories, we know that:

1. The decomposition (up to isogeny) into a product of simple abelian varieties is unique (up to isogeny).
2. If A is a simple abelian variety then $\operatorname{End}^{0}(A)$ is a division algebra over \mathbb{Q}.

In particular,
Proposition 2.1. Let A be a non-zero abelian variety over k. Then A is isogenous to a product of k-simple abelian varieties. More precisely, there exists k-simple abelian varieties B_{1}, \ldots, B_{r}, which are pairwise non k-isogenous, and positive integers n_{1}, \ldots, n_{r} such that A is k-isogenous to $B_{1}^{n_{1}} \times \cdots \times B_{r}^{n_{r}}$, which we denote by

$$
A \sim_{k} B_{1}^{n_{1}} \times \cdots \times B_{r}^{n_{r}}
$$

Up to permutation, the B_{i} 's are unique up to k-isogenies, and the corresponding multiplicities n_{i} are uniquely determined.

Proof. Repetitively apply Poincare reducibility proves the existence of a decomposition. The uniqueness of decomposition follows from the fact that a homomorphism between two simle abelian varieties is either zero or an isogeny

Corollary 2.1.1. Let A be an abelian variety defined over k.

1. If A is a simple abelian variety then $\operatorname{End}_{k}^{0}(A)$ is a division algebra.
2. If $A \sim_{k} B_{1}^{n_{1}} \times \cdots \times B_{r}^{n_{r}}$, we have

$$
\operatorname{End}_{k}^{0}(A)=M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)
$$

where $D_{i}=\operatorname{End}_{k}^{0}\left(B_{i}\right)$.

[^1]Proof. (i) Since $\operatorname{End}_{k}^{0}(A)$ consists only of isogenies, which are invertible. Thus, $\operatorname{End}_{k}^{0}(A)$ is a division algebra.

In fact, we can say more about $\operatorname{End}_{k}^{0}(A)$ when A is k-simple using the Albert classification.
Let A be a k-simple abelian variety of dimension g. Let $D=\operatorname{End}_{k}^{0}(A)$ and let F be the center of D. Let

$$
\iota: D \rightarrow D, x \mapsto x^{\dagger}
$$

be the Rosati involution ${ }^{3}$ on A. Let $F^{\dagger}=\left\{x \in D \mid x^{\dagger}=x\right\}$ be the fixed elements of the involution. If fact, F^{\dagger} is a totally real subfield of F. Let $e=[F: \mathbb{Q}]$ and $e^{\dagger}=\left[F^{\dagger}: \mathbb{Q}\right]$. Let $d \geq 1$ be such that $[D: F]=d^{2}$.

Theorem 2.2 (Albert classification). Let A and D be as above. Then D is isomorphic to an algebra of one of the following four types:

1. $D=F=F^{\dagger}$, and the Rosati involution is the identity map. In this case, $e \mid g$.
2. $F=F^{\dagger}$, and D is a totally indefinite quaternion division algebra over F. i.e., for any embedding $\sigma: F \rightarrow \mathbb{R}$, one has that $D \otimes_{\sigma} \mathbb{R} \cong M_{2}(\mathbb{R})$. In this case $2 e \mid g$.
3. $F=F^{\dagger}$, and D is a totally definite quaternion division algebra over F. i.e., for any embedding $\sigma: F \rightarrow \mathbb{R}$, one has that $D \otimes_{\sigma} \mathbb{R} \cong \mathbb{H}$, where \mathbb{H} is the Hamiltonian quaternion algebra. In this case $e^{2} \mid g$.
4. F is a $C M$ extension of F^{\dagger} and D is a division algebra with center F. In this case $e^{\dagger} d^{2} \mid g$ if char $(k)=0$ and $e^{\dagger} d \mid g$ if $\operatorname{char}(k)>0$.

3 The Tate module of an abelian variety

Let A / k be an abelian variety of dimension g and let n be an integer such that $(\operatorname{char}(k), n)=1$. We have an isomorphism of abelian groups corollary 1.18:

$$
A[n](\bar{k})=(\mathbb{Z} / n \mathbb{Z})^{2 g}
$$

Let $\ell \neq \operatorname{char}(k)$ be a prime. The ℓ-adic Tate module of A :

$$
T_{\ell}(A):=\lim _{\longleftarrow} A\left[\ell^{n}\right]
$$

is defined by the inverse limit of the groups $A\left[\ell^{n}\right](\bar{k})$, where the transition maps are multiplication by ℓ. Thus, we have an isomorphism

$$
T_{\ell}(A) \cong \mathbb{Z}_{\ell}^{2 g}
$$

The Tate module comes equipped with a Galois action by the absolute Galois group $G_{k}=\operatorname{Gal}(\bar{k} / k)$ which is compatible with the inverse limit. Upon picking a basis, this action can be thought of as a homomorphism

$$
\rho: G_{k} \rightarrow G L_{2 g}\left(\mathbb{Z}_{\ell}\right)
$$

If $f: A \rightarrow B$ is a homomorphism of abelian varieties, then f induces a \mathbb{Z}_{ℓ}-linear G_{k}-equivariant map

$$
T_{\ell} f: T_{\ell}(A) \rightarrow T_{\ell}(B)
$$

[^2]Lemma 3.1. Let A and B be abelian varieties over a field k, and $f \in \operatorname{Hom}(A, B)$. Let ℓ be as above. If $T_{\ell}(f)$ is divisible by ℓ^{m} in $\operatorname{Hom}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A), T_{\ell}(B)\right)$ then f is divisible by ℓ^{m} in $\operatorname{Hom}(A, B)$.

Proof. If $T_{\ell}(f)$ is divisible by ℓ^{m}, we know that f vanishes on $A\left[\ell^{m}\right](\bar{k})$. Since $(n, \operatorname{char}(k))=1$, we know that $A\left[\ell^{m}\right]$ is an etale group scheme. Thus, f is zero on $A\left[\ell^{m}\right]$ and $\operatorname{ker}\left[\ell^{m}\right]_{A}=A\left[\ell^{m}\right] \subset \operatorname{ker}(f)$. Therefore, f factors through $\left[\ell^{m}\right]_{A}$.

The Tate module construction can be applied to \mathbf{G}_{m}. In this case, if $(n, \operatorname{char}(k))=1$, then the \bar{k}-points of $\mathbf{G}_{m}[n]$ are just the group n-th roots of unity, which is isomorphic to $\mathbb{Z} / n \mathbb{Z}$. Thus, we have a group isomorphism

$$
T_{\ell}\left(\mathbf{G}_{m}\right) \cong \mathbb{Z}_{\ell}
$$

The Galois action of G_{k} gives a representation

$$
\varepsilon: G_{k} \rightarrow G L_{1}\left(\mathbb{Z}_{\ell}\right)=\mathbb{Z}_{\ell}^{\times}
$$

which is just the cyclotomic character we are familiar with. One often writes $\mathbb{Z}_{\ell}(1)$ for $T_{\ell}\left(\mathbf{G}_{m}\right)$.

4 The Weil pairings

Proposition 4.1. Let A / k be an abelian variety and $n>0$ an integer such that $(n, \operatorname{char}(k))=1$. Then there exists a pairing

$$
e_{n}: A[n] \times A^{\vee}[n] \rightarrow \mu_{n}
$$

that is

1. Bilinear
2. Non-degnerate
3. Galois equivariant: $e_{n}(\sigma x, \sigma y)=\sigma e_{n}(x, y)$ for $\sigma \in G_{k}$.
4. Compatibility: if $x \in A[n m]$ and $y \in A^{\vee}[n]$, then $e_{n m}(x, y)=e_{n}(m x, y)$.

Let $\lambda: A \rightarrow A^{\vee}$ be a polarization on A^{4}. Then, we obtain the pairing

$$
\begin{aligned}
e_{n}^{\lambda}: A[n] \times A[n] & \rightarrow \mu_{n} \\
(x, y) & \mapsto e_{n}(x, \lambda(y)) .
\end{aligned}
$$

We call e_{n} and e_{n}^{λ} Weil pairings. Note that e_{n}^{λ} satisfies the same properties as e_{n}. Moreover, we have an additional property does it come from property of dual :

$$
e_{n}^{\lambda}(x, x)=1 \Longrightarrow e_{n}^{\lambda}(x, y)=e_{n}^{\lambda}(y, x)^{-1}
$$

which we call alternating.
The Weil pairing also behaves well under isogenies. In particular,

[^3]Proposition 4.2. Let $f: A \rightarrow B$ be an isogeny of polarized varieties, where λ_{A} and λ_{B} are the respective polarizations. Then we have

$$
e_{n}^{\lambda_{B}}(f(x), y)=e_{n}^{\lambda_{A}}\left(x, f^{\vee}(y)\right), \quad \text { for all } x \in A[n], y \in B[n]
$$

The compatibility condition allows us to take inverse limit of the $e_{\ell^{n}}^{\lambda}$'s to obtain a pairing on the Tate module:

$$
e^{\lambda}: T_{\ell}(A) \times T_{\ell}(A) \rightarrow \mathbb{Z}_{\ell}(1)
$$

This pairing satisfies the same properties as e_{n}.
The following propositions show how the Tate module is relevant in the study of morphisms.
Proposition 4.3. Let A / k be an abelian variety. The degree map

$$
\begin{aligned}
\operatorname{End}^{0}(A) & \rightarrow \mathbb{Q} \\
c \otimes \phi & \mapsto c \operatorname{deg}(\phi)
\end{aligned}
$$

is a homogeneous polynomial function ${ }^{5}$ of degree $2 g$ on $\operatorname{End}^{0}(A)$. i.e.

$$
\operatorname{deg}(n \phi)=n^{2 g} \operatorname{deg}(\phi)
$$

Corollary 4.0.1. Let the notations be as in the proposition above. There is a polynomial $P_{\phi}(X) \in \mathbb{Q}[X]$ of degree $2 g$ such that for all $n \in \mathbb{Q}$,

$$
P_{\phi}(n)=\operatorname{deg}\left(\phi-[n]_{A}\right)
$$

We see that P_{ϕ} is monic and it has integer coefficients when $\phi \in \operatorname{End}(A)$. We call P_{ϕ} the characteristic polynomial of ϕ and we define the trace of ϕ by the equation

$$
P_{\phi}(X)=X^{2 g}-\operatorname{Tr}(\phi) X^{2 g-1}+\cdots+\operatorname{deg}(\phi)
$$

Proposition 4.4. Let A be as above and let $\phi \in \operatorname{End}(A)$. For ℓ as before, $P_{\phi}(X)$ is the characteristic polynomial of ϕ acting on $V_{\ell}(A)=T_{\ell}(A) \otimes \mathbb{Q}_{\ell}$. Hence, the trace and degree of ϕ are the trace and determinant of ϕ acting on $V_{\ell}(A)$.

[^4]
[^0]: ${ }^{1}$ A category \mathcal{A} is abelian if it is additive, if all kernels and cokernels exist, and if the natural map $\operatorname{Coim}(f) \rightarrow \operatorname{Im}(f)$ is an isomorphism for all morphisms f of \mathcal{A}. "the category that snake lemma works".

[^1]: ${ }^{2}$ definition used:

[^2]: ${ }^{3}$ for $x \in D$, the Rosati involution associated to a polarization is $x^{\dagger}=\phi^{-1} \circ x^{\vee} \circ \phi$

[^3]: ${ }^{4}$ A polarization is an isogeny $\phi: A \rightarrow A^{\vee}$ associated with an ample line bundle

[^4]: ${ }^{5}$ Note that this definition is only well defined for End instead of for End ${ }^{0}$ due to the "homogeneous polynomial" behavior.

