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In this talk, we will study the properties of endomorphism rings and introduce Tate modules for abelian

varieties following mainly §5 of Dembélé’s notes.

1 Endomorphism ring of an abelian variety

Let A, B be abelian varieties over a field k and consider the set of homomorphisms of abelian varieties

Hom(A,B). If f, g ∈ Hom(A,B), then we have a homomorphism f + g by pointwise addition. This gives

Hom(A,B) the stucture of an abelian group with the trivial morphism as the identity element. With A = B,

we see that End(A) has a natural ring stucture with composition as multiplication.

Lemma 1.1. Let A,B be abelian varieties over a field k. Then the group Hom(A,B) is torsion-free, i.e. for

f ∈ Hom(A,B) and 0 ̸= n ∈ Z, n · f = 0 implies that f = 0.

Proof. We know that n · f = f ◦ [n]A. For n ̸= 0, we know that [n]A is an isogeny, which is in particular

surjective. Thus, if n · f = 0, then f = 0.

2 The isogeny category

Define a category Isog as follows. The objects are abelian varieties. For two abelian varieties A and B, we

put

HomIsog(A,B) = Hom(A,B)⊗Z Q.

We also write

Hom0(A,B) := HomIsog(A,B), End0(A) := EndIsog(A).

If f : A→ B is an isogeny, then there exists an isogeny g : B → A such that gf = [n], for some n explain .

It follows that 1
ng is the inverse to f in Isog. In other words, isogenies are isomorphisms in Isog. In fact,

Isog is an abelian category 1.

Theorem 2.1 (Poincaré reducibility). Let A be an abelian variety, and let B be an abelian subvariety. Then

there exists an abelian subvariety C such that B ∩ C is finite and B × C → A is an isogeny.

1A category A is abelian if it is additive, if all kernels and cokernels exist, and if the natural map Coim(f) → Im(f) is an

isomorphism for all morphisms f of A. ”the category that snake lemma works”.
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Proof. proof details Let i : B ↪→ A be the inclusion and i∨ : A∨ → B∨ its dual. Let λ : A → A∨ be a

polarization on A. Then, let

X = ker(i∨ ◦ λ),

let C be the reduced subscheme of the zero component of X. Then C is an abelian variety2. From the

theorem of dimension of fibres of morphisms, we know that

dimC ≥ dimA− dimB.

The restriction of i∨ ◦ λ to B is λ|B , whose kernel is finite since λ is an isogeny. Thus, B ∩ C is finite and

B × C → A is an isogeny.

Definition 2.1. Let A be a non-zero abelian variety X over a field k. We say that A is simple if the only

subvarieties of A are 0 and A.

Note that an abelian variety that is simple over the ground field k need not be simple over an extension

of k. Therefore, we will always specify by saying k-simple.

If we consider the simple abelian varieties to be the simple objects of the category Isog, Poincaré’s

theorem shows that Isog is semi-simple as an abelian category.

From the formalism of abelian categories, we know that:

1. The decomposition (up to isogeny) into a product of simple abelian varieties is unique (up to isogeny).

2. If A is a simple abelian variety then End0(A) is a division algebra over Q.

In particular,

Proposition 2.1. Let A be a non-zero abelian variety over k. Then A is isogenous to a product of k-simple

abelian varieties. More precisely, there exists k-simple abelian varieties B1, . . . , Br, which are pairwise non

k-isogenous, and positive integers n1, . . . , nr such that A is k-isogenous to Bn1
1 × · · ·×Bnr

r , which we denote

by

A ∼k Bn1
1 × · · · ×Bnr

r .

Up to permutation, the Bi’s are unique up to k-isogenies, and the corresponding multiplicities ni are uniquely

determined.

Proof. Repetitively apply Poincare reducibility proves the existence of a decomposition. The uniqueness of

decomposition follows from the fact that a homomorphism between two simle abelian varieties is either zero

or an isogeny

Corollary 2.1.1. Let A be an abelian variety defined over k.

1. If A is a simple abelian variety then End0k(A) is a division algebra.

2. If A ∼k Bn1
1 × · · · ×Bnr

r , we have

End0k(A) = Mn1
(D1)× · · · ×Mnr

(Dr),

where Di = End0k(Bi).

2definition used:
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Proof. (i) Since End0k(A) consists only of isogenies, which are invertible. Thus, End0k(A) is a division algebra.

In fact, we can say more about End0k(A) when A is k-simple using the Albert classification.

Let A be a k-simple abelian variety of dimension g. Let D = End0k(A) and let F be the center of D. Let

ι : D → D, x 7→ x†

be the Rosati involution3 on A. Let F † = {x ∈ D | x† = x} be the fixed elements of the involution. If fact,

F † is a totally real subfield of F . Let e = [F : Q] and e† = [F † : Q]. Let d ≥ 1 be such that [D : F ] = d2.

Theorem 2.2 (Albert classification). Let A and D be as above. Then D is isomorphic to an algebra of one

of the following four types:

1. D = F = F †, and the Rosati involution is the identity map. In this case, e | g.

2. F = F †, and D is a totally indefinite quaternion division algebra over F . i.e., for any embedding

σ : F → R, one has that D ⊗σ R ∼= M2(R). In this case 2e | g.

3. F = F †, and D is a totally definite quaternion division algebra over F . i.e., for any embedding

σ : F → R, one has that D ⊗σ R ∼= H, where H is the Hamiltonian quaternion algebra. In this case

e2 | g.

4. F is a CM extension of F † and D is a division algebra with center F . In this case e†d2 | g if char(k) = 0

and e†d | g if char(k) > 0.

3 The Tate module of an abelian variety

Let A/k be an abelian variety of dimension g and let n be an integer such that (char(k), n) = 1. We have

an isomorphism of abelian groups corollary 1.18 :

A[n](k̄) = (Z/nZ)2g.

Let ℓ ̸= char(k) be a prime. The ℓ-adic Tate module of A:

Tℓ(A) := lim←−A[ℓn]

is defined by the inverse limit of the groups A[ℓn](k̄), where the transition maps are multiplication by ℓ.

Thus, we have an isomorphism

Tℓ(A) ∼= Z2g
ℓ .

The Tate module comes equipped with a Galois action by the absolute Galois group Gk = Gal(k̄/k) which is

compatible with the inverse limit. Upon picking a basis, this action can be thought of as a homomorphism

ρ : Gk → GL2g(Zℓ).

If f : A→ B is a homomorphism of abelian varieties, then f induces a Zℓ-linear Gk-equivariant map

Tℓf : Tℓ(A)→ Tℓ(B).

3for x ∈ D, the Rosati involution associated to a polarization is x† = ϕ−1 ◦ x∨ ◦ ϕ
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Lemma 3.1. Let A and B be abelian varieties over a field k, and f ∈ Hom(A,B). Let ℓ be as above. If Tℓ(f)

is divisible by ℓm in HomZℓ
(Tℓ(A), Tℓ(B)) then f is divisible by ℓm in Hom(A,B).

Proof. If Tℓ(f) is divisible by ℓm, we know that f vanishes on A[ℓm](k̄). Since (n, char(k)) = 1, we know

that A[ℓm] is an etale group scheme. Thus, f is zero on A[ℓm] and ker[ℓm]A = A[ℓm] ⊂ ker(f). Therefore, f

factors through [ℓm]A.

The Tate module construction can be applied to Gm. In this case, if (n, char(k)) = 1, then the k̄-points

of Gm[n] are just the group n-th roots of unity, which is isomorphic to Z/nZ. Thus, we have a group

isomorphism

Tℓ(Gm) ∼= Zℓ.

The Galois action of Gk gives a representation

ε : Gk → GL1(Zℓ) = Z×
ℓ ,

which is just the cyclotomic character we are familiar with. One often writes Zℓ(1) for Tℓ(Gm).

4 The Weil pairings

Proposition 4.1. Let A/k be an abelian variety and n > 0 an integer such that (n, char(k)) = 1. Then

there exists a pairing

en : A[n]×A∨[n]→ µn

that is

1. Bilinear

2. Non-degnerate

3. Galois equivariant: en(σx, σy) = σen(x, y) for σ ∈ Gk.

4. Compatibility: if x ∈ A[nm] and y ∈ A∨[n], then enm(x, y) = en(mx, y).

Let λ : A→ A∨ be a polarization on A4. Then, we obtain the pairing

eλn : A[n]×A[n]→ µn

(x, y) 7→ en(x, λ(y)).

We call en and eλn Weil pairings. Note that eλn satisfies the same properties as en. Moreover, we have an

additional property does it come from property of dual :

eλn(x, x) = 1 =⇒ eλn(x, y) = eλn(y, x)
−1,

which we call alternating.

The Weil pairing also behaves well under isogenies. In particular,

4A polarization is an isogeny ϕ : A → A∨ associated with an ample line bundle
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Proposition 4.2. Let f : A → B be an isogeny of polarized varieties, where λA and λB are the respective

polarizations. Then we have

eλB
n (f(x), y) = eλA

n (x, f∨(y)), for all x ∈ A[n], y ∈ B[n].

The compatibility condition allows us to take inverse limit of the eλℓn ’s to obtain a pairing on the Tate

module:

eλ : Tℓ(A)× Tℓ(A)→ Zℓ(1).

This pairing satisfies the same properties as en.

The following propositions show how the Tate module is relevant in the study of morphisms.

Proposition 4.3. Let A/k be an abelian variety. The degree map

End0(A)→ Q

c⊗ ϕ 7→ cdeg(ϕ)

is a homogeneous polynomial function5of degree 2g on End0(A). i.e.

deg(nϕ) = n2g deg(ϕ).

Corollary 4.0.1. Let the notations be as in the proposition above. There is a polynomial Pϕ(X) ∈ Q[X] of

degree 2g such that for all n ∈ Q,

Pϕ(n) = deg(ϕ− [n]A).

We see that Pϕ is monic and it has integer coefficients when ϕ ∈ End(A). We call Pϕ the characteristic

polynomial of ϕ and we define the trace of ϕ by the equation

Pϕ(X) = X2g − Tr(ϕ)X2g−1 + · · ·+ deg(ϕ).

Proposition 4.4. Let A be as above and let ϕ ∈ End(A). For ℓ as before, Pϕ(X) is the characteristic

polynomial of ϕ acting on Vℓ(A) = Tℓ(A)⊗Qℓ. Hence, the trace and degree of ϕ are the trace and determinant

of ϕ acting on Vℓ(A).

5Note that this definition is only well defined for End instead of for End0 due to the ”homogeneous polynomial” behavior.
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