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Abstract

We consider dynamic sublinear expectations (i.e., time-consistent
coherent risk measures) whose scenario sets consist of singular mea-
sures corresponding to a general form of volatility uncertainty. We
derive a càdlàg nonlinear martingale which is also the value process of
a superhedging problem. The superhedging strategy is obtained from
a representation similar to the optional decomposition. Furthermore,
we prove an optional sampling theorem for the nonlinear martingale
and characterize it as the solution of a second order backward SDE.
The uniqueness of dynamic extensions of static sublinear expectations
is also studied.
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1 Introduction

Coherent risk measures were introduced in [1] as a way to quantify the risk
associated with a �nancial position. Since then, coherent risk measures and
sublinear expectations (which are the same up to the sign convention) have
been studied by numerous authors; see [15, 29, 30] for extensive references.
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Most of these works consider the case where scenarios are probability mea-
sures absolutely continuous with respect to a given reference probability (im-
portant early exceptions are [14, 26]). The present paper studies dynamic
sublinear expectations and superhedging under volatility uncertainty, which
is naturally related to singular measures. The concept of volatility uncer-
tainty was introduced in �nancial mathematics by [2, 11, 21] and has recently
received considerable attention due to its relation to G-expectations [27, 28]
and second order backward stochastic di�erential equations [6, 32], called
2BSDEs for brevity.

Any (static) sublinear expectation ℰ∘0 , de�ned on the set of bounded
measurable functions on a measurable space (Ω,ℱ), has a convex-dual rep-
resentation

ℰ∘0 (X) = sup
P∈P

EP [X] (1.1)

for a certain set P of measures which are �-additive as soon as ℰ∘0 satis�es
certain continuity properties (cf. [15, Section 4]). The elements of P can
be seen as possible scenarios in the presence of uncertainty and hence (1.1)
corresponds to the worst-case expectation. In this paper, we take Ω to be
the canonical space of continuous paths and P to be a set of martingale laws
for the canonical process, corresponding to di�erent scenarios of volatilities.
For this case, P is typically not dominated by a �nite measure and (1.1)
was studied in [5, 10, 11] by capacity-theoretic methods. We remark that
from the pricing point of view, the restriction to the martingale case entails
no loss of generality in an arbitrage-free setting. An example with arbitrage
was studied in [13].

While any set of martingale laws gives rise to a static sublinear expec-
tation via (1.1), we are interested in dynamic sublinear expectations; i.e.,
conditional versions of (1.1) satisfying a time-consistency property. If P is
dominated by a probability P∗, a natural extension of (1.1) is given by

ℰ∘,P∗t (X) = ess supP∗
P ′∈P(ℱ∘t ,P∗)

EP
′
[X∣ℱ∘t ] P∗-a.s.,

where P(ℱ∘t , P∗) = {P ′ ∈ P : P ′ = P∗ on ℱ∘t } and F∘ = {ℱ∘t } is the
�ltration generated by the canonical process. Such dynamic expectations
are well-studied; in particular, time consistency of ℰ∘,P∗ can be characterized
by a stability property of P (see [7]). In the non-dominated case, we can
similarly consider the family of random variables {ℰ∘,Pt (X), P ∈ P}. Since
a reference measure is lacking, it is not straightforward to construct a single
random variable ℰ∘t (X) such that

ℰ∘t (X) = ℰ∘,Pt (X) := ess supP

P ′∈P(ℱ∘t ,P )
EP

′
[X∣ℱ∘t ] P -a.s. for all P ∈ P. (1.2)

This problem of aggregation has been solved in several examples. In par-
ticular, the G-expectations and random G-expectations [23] (recalled in
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Section 2) correspond to special cases of (1.2). The construction of G-
expectations is based on a PDE, which directly yields random variables
de�ned for all ! ∈ Ω. The random G-expectations are de�ned pathwise
using regular conditional probability distributions. A general study of ag-
gregation problems is presented in [31]; see also [4]. However, the study of
aggregation is not an object of the present paper. In view of the diverse
approaches, we shall proceed axiomatically and start with a given aggre-
gated family {ℰ∘t (X), t ∈ [0, T ]}. Having in mind the example of (random)
G-expectations, this family is assumed to be given in the raw �ltration F∘
and without any regularity in the time variable.

The main goal of the present paper is to provide basic technology for
the study of dynamic sublinear expectations under volatility uncertainty as
stochastic processes. Given the family {ℰ∘t (X), t ∈ [0, T ]}, we construct
a corresponding càdlàg process ℰ(X), called the ℰ-martingale associated
with X, in a suitably enlarged �ltration F (Proposition 4.5). We use this
process to de�ne the sublinear expectation at stopping times and prove an
optional sampling theorem for ℰ-martingales (Theorem 4.10). Furthermore,
we obtain a decomposition of ℰ(X) into an integral of the canonical process
and an increasing process (Proposition 4.11), similarly as in the classical op-
tional decomposition [19]. In particular, the ℰ-martingale yields the dynamic
superhedging price of the �nancial claim X and the integrand ZX yields the
superhedging strategy. We also provide a connection between ℰ-martingales
and 2BSDEs by characterizing (ℰ(X), ZX) as the minimal solution of such a
backward equation (Theorem 4.16). Our last result concerns the uniqueness
of time-consistent extensions and gives conditions under which (1.2) is indeed
the only possible extension of the static expectation (1.1). In particular, we
introduce the notion of local strict monotonicity to deal with the singularity
of the measures (Proposition 5.3).

To obtain our results, we rely on methods from stochastic optimal con-
trol and the general theory of stochastic processes. Indeed, from the point
of view of dynamic programming, ℰ∘t (X) is the value process of a control
problem de�ned over a set of measures, and time consistency corresponds
to Bellman's principle. Taking the control representation (1.2) as our start-
ing point allows us to consider the measures P ∈ P separately in many
arguments and therefore to apply standard arguments of the general theory.

The remainder of this paper is organized as follows. In Section 2 we
detail the setting and notation. Section 3 relates time consistency to a past-
ing property. In Section 4 we construct the ℰ-martingale and provide the
optional sampling theorem, the decomposition, and the characterization by
a 2BSDE. Section 5 studies the uniqueness of time-consistent extensions.
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2 Preliminaries

We �x a constant T > 0 and let Ω = {! ∈ C([0, T ];Rd) : !0 = 0} be the
canonical space of continuous paths equipped with the uniform topology. We
denote by B the canonical process Bt(!) = !t, by P0 the Wiener measure
and by F∘ = {ℱ∘t }0≤t≤T , ℱ∘t = �(Bs, s ≤ t) the raw �ltration generated
by B. As in [10, 23, 33, 32] we shall use the so-called strong formulation of
volatility uncertainty in this paper; i.e., we consider martingale laws induced
by stochastic integrals of B under P0. More precisely, we de�ne PS to be
the set of laws

P� := P0 ∘ (X�)−1, where X�
t :=

(P0)∫ t

0
�1/2
s dBs, t ∈ [0, T ] (2.1)

and � ranges over all F∘-progressively measurable processes with values in
S>0
d satisfying

∫ T
0 ∣�t∣ dt < ∞ P0-a.s. Here S>0

d ⊂ ℝd×d denotes the set of
strictly positive de�nite matrices and the stochastic integral in (2.1) is the
Itô integral under P0, constructed in F∘ (cf. [36, p. 97]). We remark that PS
coincides with the set denoted by PS in [31].

The basic object in this paper is a nonempty set P ⊆ PS which represents
the possible scenarios for the volatility. For t ∈ [0, T ], we de�ne L1

P(ℱ∘t ) to
be the space of ℱ∘t -measurable random variables X satisfying

∥X∥L1
P

:= sup
P∈P
∥X∥L1(P ) <∞,

where ∥X∥L1(P ) := E[∣X∣]. More precisely, we take equivalences classes with
respect to P-quasi-sure equality so that L1

P(ℱ∘t ) becomes a Banach space.
(Two functions are equal P-quasi-surely, P-q.s. for short, if they are equal
up to a P-polar set. A set is called P-polar if it is a P -nullset for all P ∈ P.)
We also �x a nonempty subset ℋ of L1

P := L1
P(ℱ∘T ) whose elements play the

role of �nancial claims. We emphasize that in applications, ℋ is typically
smaller than L1

P . The following is a motivating example for many of the
considerations in this paper.

Example 2.1. (i) Given real numbers 0 ≤ a ≤ a < ∞, the associated
G-expectation (for dimension d = 1) corresponds to the choice

P =
{
P� ∈ PS : a ≤ � ≤ a P0 × dt-a.e.

}
, (2.2)

cf. [10, Section 3]. Here the symbol G refers to the function

G(
) :=
1

2
sup
a≤a≤a

a
.

If X = f(BT ) for a su�ciently regular function f , then ℰ∘,Gt (X) is de�ned
via the solution of the nonlinear heat equation −∂tu − G(uxx) = 0 with
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boundary condition u∣t=T = f . In [27], the mapping ℰ∘,Gt is extended to
random variables of the form X = f(Bt1 , . . . , Btn) by a stepwise evaluation
of the PDE and �nally to the ∥ ⋅ ∥L1

P
-completion ℋ of the set of all such

random variables. For X ∈ ℋ, the G-expectation then satis�es

ℰ∘,Gt (X) = ess supP

P ′∈P(ℱ∘t ,P )
EP

′
[X∣ℱ∘t ] P -a.s. for all P ∈ P,

which is of the form (1.2). The space ℋ coincides with the ∥⋅∥L1
P
-completion

of Cb(Ω), the set of bounded continuous functions on Ω, and is strictly smaller
than L1

P as soon as a ∕= a.
(ii) The random G-expectation corresponds to the case where a, a are

random processes instead of constants and is directly constructed from a set
P of measures (cf. [23]). In this case the space ℋ is the ∥ ⋅ ∥L1

P
-completion

of UCb(Ω), the set of bounded uniformly continuous functions on Ω. If a is
�nite-valued and uniformly bounded, ℋ coincides with the space from (i).

3 Time Consistency and Pasting

In this section, we consider time consistency as a property of the set P ⊆ PS
and obtain some auxiliary results for later use. The set ℋ ⊆ L1

P is �xed
throughout. Moreover, we let T (F∘) be the set of all F∘-stopping times
taking �nitely many values; this choice is motivated by the applications in
the subsequent section. However, the results of this section hold true also if
T (F∘) is replaced by an arbitrary set of F∘-stopping times containing � ≡ 0;
in particular, the set of all stopping times and the set of all deterministic
times. Given A ⊆ ℱ∘T and P ∈ P, we use the standard notation

P(A, P ) = {P ′ ∈ P : P ′ = P on A}.

At the level of measures, time consistency can then be de�ned as follows.

De�nition 3.1. The set P is F∘-time-consistent on ℋ if

ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[

ess supP
′

P ′′∈P(ℱ∘� ,P ′)
EP

′′
[X∣ℱ∘� ]

∣∣∣∣ℱ∘�] = ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[X∣ℱ∘� ] P -a.s.

(3.1)
for all P ∈ P, X ∈ ℋ and � ≤ � in T (F∘).

This property embodies the principle of dynamic programming (e.g.,
[12]). We shall relate it to the following notion of stability, also called m-
stability, fork-convexity, stability under concatenation, etc.

De�nition 3.2. The set P is stable under F∘-pasting if for all P ∈ P,
� ∈ T (F∘), Λ ∈ ℱ∘� and P1, P2 ∈ P(ℱ∘� , P ), the measure P̄ de�ned by

P̄ (A) := EP
[
P1(A∣ℱ∘� )1Λ + P2(A∣ℱ∘� )1Λc

]
, A ∈ ℱ∘T (3.2)

is again an element of P.
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As F∘ is the only �ltration considered in this section, we shall sometimes
omit the quali�er �F∘�.

Lemma 3.3. The set PS is stable under pasting.

Proof. Let P, P1, P2, �,Λ, P̄ be as in De�nition 3.2. Using the notation (2.1),
let �, �i be such that P� = P and P�

i
= Pi for i = 1, 2. Setting

�̄u(!) :=

1[[0,�(X�)]](u)�u(!) + 1]]�(X�),T ]](u)
[
�1
u(!)1Λ(X�(!)) + �2

u(!)1Λc(X
�(!))

]
,

we have P̄ = P �̄ ∈ PS by the arguments in [33, Appendix].

The previous proof also shows that the set appearing in (2.2) is stable
under pasting. The following result is classical.

Lemma 3.4. Let � ∈ T (F∘), X ∈ L1
P and P ∈ P. If P is stable under

pasting, then there exists a sequence Pn ∈ P(ℱ∘� , P ) such that

ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[X∣ℱ∘� ] = lim

n→∞
EPn [X∣ℱ∘� ] P -a.s.,

where the limit is increasing P -a.s.

Proof. It su�ces to show that the family {EP ′ [X∣ℱ∘� ] : P ′ ∈ P(ℱ∘� , P )} is P -
a.s. upward �ltering (cf. [22, Proposition VI-1-1]). Given P1, P2 ∈ P(ℱ∘� , P ),
we set

Λ :=
{
EP1 [X∣ℱ∘� ] > EP2 [X∣ℱ∘� ]

}
∈ ℱ∘�

and de�ne P̄ (A) := EP
[
P1(A∣ℱ∘� )1Λ + P2(A∣ℱ∘� )1Λc

]
. Then P̄ = P on ℱ∘�

and P̄ ∈ P by the stability. Moreover,

EP̄ [X∣ℱ∘� ] = EP1 [X∣ℱ∘� ] ∨ EP2 [X∣ℱ∘� ] P -a.s.,

showing that the family is upward �ltering.

To relate time consistency to stability under pasting, we introduce the
following closedness property.

De�nition 3.5. We say that P is maximally chosen for ℋ if P contains all
P ∈ PS satisfying EP [X] ≤ supP ′∈P E

P ′ [X] for all X ∈ ℋ.

If P is dominated by a reference probability P∗, then P can be identi�ed
with a subset of L1(P∗) by the Radon-Nikodym theorem. If furthermore
ℋ = L∞(P∗), the Hahn-Banach theorem implies that P is maximally chosen
if and only if P is convex and closed for weak topology of L1(P∗). Along these
lines, the following result can be seen as a generalization of [7, Theorem 12];
in fact, we merely replace functional-analytic arguments by algebraic ones.
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Proposition 3.6. With respect to the �ltration F∘, we have:

(i) If P is stable under pasting, then P is time-consistent on L1
P .

(ii) If P is time-consistent on ℋ and maximally chosen for ℋ, then P is

stable under pasting.

Proof. (i) This implication is standard; we provide the argument for later
reference. The inequality �≥� in (3.1) follows by considering P ′′ := P ′ on
the left hand side. To see the converse inequality, �x an arbitrary P ∈ P
and choose a sequence Pn ∈ P(ℱ∘� , P ) ⊆ P(ℱ∘� , P ) as in Lemma 3.4. Then
monotone convergence yields

EP
[

ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[X∣ℱ∘� ]

∣∣∣∣ℱ∘�] = lim
n→∞

EPn [X∣ℱ∘� ]

≤ ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[X∣ℱ∘� ] P -a.s.

(ii) Let P be time-consistent and let P, P1, P2, �,Λ, P̄ be as in De�ni-
tion 3.2. For any X ∈ ℋ, we have

EP̄ [X] = EP
[
EP1 [X∣ℱ∘� ]1Λ + EP2 [X∣ℱ∘� ]1Λc

]
≤ EP

[
ess supP

P ′′∈P(ℱ∘� ,P )
EP

′′
[X∣ℱ∘� ]

]
≤ sup

P ′∈P
EP

′
[

ess supP
′

P ′′∈P(ℱ∘� ,P ′)
EP

′′
[X∣ℱ∘� ]

]
= sup

P ′∈P
EP

′
[X],

where the last equality uses (3.1) with � ≡ 0. Since P is maximally chosen
and P̄ ∈ PS by Lemma 3.3, we conclude that P̄ ∈ P.

4 ℰ-Martingales

As discussed in the introduction, our starting point in this section is a given
family {ℰ∘t (X), t ∈ [0, T ]} of random variables which will serve as a raw
version of the ℰ-martingale to be constructed. We recall that the sets P ⊆ PS
and ℋ ⊆ L1

P are �xed.

Assumption 4.1. Throughout Section 4, we assume that

(i) for all X ∈ ℋ and t ∈ [0, T ], there exists an ℱ∘t -measurable random
variable ℰ∘t (X) such that

ℰ∘t (X) = ess supP

P ′∈P(ℱ∘t ,P )
EP

′
[X∣ℱ∘t ] P -a.s. for all P ∈ P. (4.1)

(ii) the set P is stable under F∘-pasting.
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The �rst assumption was discussed in the introduction; cf. (1.2). With
the motivating Example 2.1 in mind, we ask for (4.1) to hold at determin-
istic times rather than at stopping times. The second assumption is clearly
motivated by Proposition 3.6(ii), and Proposition 3.6(i) shows that P is
time-consistent in the sense of De�nition 3.1. (We could assume the latter
property directly, but stability under pasting is more suitable for applica-
tions.) In particular, we have

ℰ∘s (X) = ess supP

P ′∈P(ℱ∘s ,P )
EP

′
[ℰ∘t (X)∣ℱ∘s ] P -a.s. for all P ∈ P, (4.2)

0 ≤ s ≤ t ≤ T and X ∈ ℋ. If we assume that ℰ∘t (X) is again an element
of the domain ℋ, this amounts to {ℰ∘t } being time-consistent (at determin-
istic times) in the sense that the semigroup property ℰ∘s ∘ ℰ∘t = ℰ∘s is satis-
�ed. However, ℰ∘t (X) need not be in ℋ in general; e.g., for certain random
G-expectations. Inspired by the theory of viscosity solutions, we introduce
the following extended notion of time consistency, which is clearly implied
by (4.2).

De�nition 4.2. A family (Et)0≤t≤T of mappings Et : ℋ → L1
P(ℱ∘t ) is called

F∘-time-consistent at deterministic times if for all 0 ≤ s ≤ t ≤ T and X ∈ ℋ,

Es(X) ≤ (≥)Es(') for all ' ∈ L1
P(ℱ∘t ) ∩ℋ such that Et(X) ≤ (≥)'.

One can give a similar de�nition for stopping times taking countably
many values. (Note that E� (X) is not necessarily well de�ned for a general
stopping time � .)

Remark 4.3. If Assumption 4.1 is weakened by requiring P to be stable only
under F∘-pastings at deterministic times (i.e., De�nition 3.1 holds with T (F∘)
replaced by the set of deterministic times), then all results in this section
remain true with the same proofs, except for Theorem 4.10, Lemma 4.15 and
the last statement in Theorem 4.16.

4.1 Construction of the ℰ-Martingale

Our �rst task is to turn the collection {ℰ∘t (X), t ∈ [0, T ]} of random variables
into a reasonable stochastic process. As usual, this requires an extension of
the �ltration. We denote by

F+ = {ℱ+
t }0≤t≤T , ℱ+

t := ℱ∘t+

the minimal right continuous �ltration containing F∘; i.e., ℱ∘t+ :=
∩
s>tℱ∘s

for 0 ≤ t < T and ℱ∘T+ := ℱ∘T . We augment F+ by the collection NP of
(P,ℱ∘T )-polar sets to obtain the �ltration

F = {ℱt}0≤t≤T , ℱt := ℱ∘t+ ∨NP .
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Then F is right continuous and a natural analogue of the �usual augmen-
tation� that is standard in the case where a reference probability is given.
More precisely, if P is dominated by some probability measure, then one
can �nd a minimal dominating measure P∗ (such that every P-polar set is
a P∗-nullset) and then F coincides with the P∗-augmentation of F+. We re-
mark that F is in general strictly smaller than the P-universal augmentation∩
P∈P F∘

P
, which seems to be too large for our purposes. Here F∘P denotes

the P -augmentation of F∘.
Since F and F+ di�er only by P-polar sets, they can be identi�ed for

most purposes; note in particular that ℱT = ℱ+
T = ℱ∘T P-q.s. We also recall

the following result (e.g., [17, Theorem 1.5], [31, Lemma 8.2]), which shows
that F and F∘ di�er only by P -nullsets for each P ∈ P.

Lemma 4.4. Let P ∈ P. Then F∘P is right continuous and in particular

contains F. Moreover, (P,B) has the predictable representation property;

i.e., for any right continuous (F∘P , P )-local martingale M there exists an

F∘P -predictable process Z such that M = M0 + (P )
∫
Z dB, P -a.s.

Proof. We sketch the argument for the convenience of the reader. We de�ne
a predictable process ât = d⟨B⟩t/dt taking values in S>0

d P × dt-a.e., note
that (â)−1/2 is square-integrable for B by its very de�nition, and consider
Wt := (P )

∫ t
0 (âu)−1/2 dBu. Let FW be the raw �ltration generated byW . Since

W is a P -Brownian motion by Lévy's characterization, the P -augmentation

FW
P
is right continuous and W has the representation property. Moreover,

as P ∈ PS , [31, Lemma 8.1] yields that FW
P

= F∘P . Thus F∘P is also right
continuous and B has the representation property since any integral of W is
also an integral of B.

We deduce from Lemma 4.4 that for P ∈ P, any (local) (F∘, P )-martingale
is a (local) (F, P )-martingale. In particular, this applies to the canonical pro-
cess B. Note that Lemma 4.4 does not imply that F and F∘ coincide up to
P-polar sets. E.g., consider the set

A :=
{

lim sup
t→0

t−1⟨B⟩t = lim inf
t→0

t−1⟨B⟩t = 1
}
∈ ℱ∘0+. (4.3)

Then the lemma asserts that P (A) ∈ {0, 1} for all P ∈ P, but not that this
number is the same for all P . Indeed, P�(A) = 1 for � ≡ 1 but P�(A) = 0
for � ≡ 2.

We can now state the existence and uniqueness of the stochastic process
derived from {ℰ∘t (X), t ∈ [0, T ]}. For brevity, we shall say that Y is an
(F,P)-supermartingale if Y is an (F, P )-supermartingale for all P ∈ P;
analogous notation will be used in similar situations.
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Proposition 4.5. Let X ∈ ℋ. There exists an F-optional process (Yt)0≤t≤T
such that all paths of Y are càdlàg and

(i) Y is the minimal (F,P)-supermartingale with YT = X; i.e., if S is

a càdlàg (F,P)-supermartingale with ST = X, then S ≥ Y up to a

P-polar set.

(ii) Yt = ℰ∘t+(X) := limr↓t ℰ∘r (X) P-q.s. for all 0 ≤ t < T , and YT = X.

(iii) Y has the representation

Yt = ess supP

P ′∈P(ℱt,P )
EP

′
[X∣ℱt] P -a.s. for all P ∈ P. (4.4)

Any of the properties (i),(ii),(iii) characterizes Y uniquely up to P-polar
sets. The process Y is denoted by ℰ(X) and called the (càdlàg) ℰ-martingale
associated with X.

Proof. We choose and �x representatives for the classes ℰ∘t (X) ∈ L1
P(ℱ∘t )

and de�ne the ℝ ∪ {±∞}-valued process Y by

Yt(!) := lim sup
r∈(t,T ]∩ℚ, r→t

ℰ∘r (X)(!) for 0 ≤ t < T and YT (!) := X(!)

for all ! ∈ Ω. Since each ℰ∘r (X) is ℱ∘r -measurable, Y is adapted to F+ and
in particular to F. Let N be the set of ! ∈ Ω for which there exists t ∈ [0, T )
such that limr∈(t,T ]∩ℚ, r→t ℰ∘r (X)(!) does not exist as a �nite real number.
For any P ∈ P, (4.2) implies the (F∘, P )-supermartingale property

ℰ∘s (X) ≥ EP [ℰ∘t (X)∣ℱ∘s ] P -a.s., 0 ≤ s ≤ t ≤ T.

Thus the standard modi�cation argument for supermartingales (see [9, The-
orem VI.2]) yields that P (N) = 0. As this holds for all P ∈ P, the set N is
P-polar and thus N ∈ ℱ0. We rede�ne Y := 0 on N . Then all paths of Y
are �nite-valued and càdlàg. Moreover, the resulting process is F-adapted
and therefore F-optional by the càdlàg property. Of course, rede�ning Y
on N does not a�ect the P -almost sure properties of Y . In particular, [9,
Theorem VI.2] shows that Y is an (F, P )-supermartingale.

Let P ′ ∈ P(ℱt, P ). Using the above observation with P ′ instead of P ,
we also have that Y is an (F, P ′)-supermartingale. As X = YT , this yields
that EP

′
[X∣ℱt] = EP

′
[YT ∣ℱt] ≤ Yt P

′-a.s., and also P -a.s. because P ′ = P
on ℱt. Since P ′ ∈ P(ℱt, P ) was arbitrary, we conclude that

Yt ≥ ess supP

P ′∈P(ℱt,P )
EP

′
[X∣ℱt] P -a.s. (4.5)

To see the converse inequality, consider a strictly decreasing sequence tn ↓ t
of rationals. Then ℰ∘tn(X) → Yt P -a.s. by the de�nition of Yt, but as
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EP [ℰ∘tn(X)] ≤ ℰ∘0 (X) < ∞, the backward supermartingale convergence the-
orem [9, Theorem V.30] shows that this convergence holds also in L1(P ) and
hence

Yt = lim
n→∞

EP [ℰ∘tn(X)∣ℱt] in L1(P ) and P -a.s. (4.6)

Here the convergence in L1(P ) holds by the L1(P )-continuity of EP [ ⋅ ∣ℱt]
and then the convergence P -a.s. follows since the sequence on the right hand
side is monotone by the supermartingale property. For �xed n, let Pnk ∈
P(ℱ∘tn , P ) be a sequence as in Lemma 3.4. Then monotone convergence
yields

EP [ℰ∘tn(X)∣ℱt] = EP
[

ess supP

P ′∈P(ℱ∘tn ,P )
EP

′
[X∣ℱ∘tn ]

∣∣∣∣ℱt]
= lim

k→∞
EP

n
k [X∣ℱt]

≤ ess supP

P ′∈P(ℱt,P )
EP

′
[X∣ℱt] P -a.s.,

since Pnk ∈ P(ℱt, P ) for all k and n; indeed, we have Pnk ∈ P(ℱ∘tn , P ) and
P(ℱ∘tn , P ) ⊆ P(ℱ∘t+, P ) since tn > t, moreover, P(ℱ∘t+, P ) = P(ℱt, P ) since
ℱ∘t+ and ℱt coincide up to P-polar sets. In view of (4.6), the inequality
converse to (4.5) follows and (iii) is proved.

To see the minimality property in (i), let S be an (F,P)-supermartingale
with ST = X. Exactly as in (4.5), we deduce that

St ≥ ess supP

P ′∈P(ℱt,P )
EP

′
[X∣ℱt] P -a.s. for all P ∈ P.

By (iii) the right hand side is P -a.s. equal to Yt. Hence St ≥ Yt P-q.s. for
all t and S ≥ Y P-q.s. when S is càdlàg

Finally, if Y and Y ′ are processes satisfying (i) or (ii) or (iii), then they
are P -modi�cations of each other for all P ∈ P and thus coincide up to a
P-polar set as soon as they are càdlàg.

One can ask whether ℰ(X) is a P-modi�cation of {ℰ∘t (X), t ∈ [0, T ]};
i.e., whether

ℰt(X) = ℰ∘t (X) P-q.s. for all 0 ≤ t ≤ T.

It is easy to see that ℰ(X) is a P-modi�cation as soon as there exists some

càdlàg P-modi�cation of the family {ℰ∘t (X), t ∈ [0, T ]}, and this is the case
if and only if t 7→ EP [ℰ∘t (X)] is right continuous for all P ∈ P. We also
remark that Lemma 4.4 and the argument given for (4.5) yield

ℰt(X) ≤ ℰ∘t (X) P-q.s. for all 0 ≤ t ≤ T (4.7)

and so the question is only whether the converse inequality holds true as well.
The answer is positive in several important cases; e.g., for the G-expectation
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when X is su�ciently regular [35, Theorem 5.3] and the sublinear expec-
tation generated by a controlled stochastic di�erential equation [24, Theo-
rem 5.1]. The proof of the latter result yields a general technique to approach
this problem in a given example. However, the following (admittedly degen-
erate) example shows that the answer is negative in a very general case; this
re�ects the fact that the set P(ℱt, P ) in the representation (4.4) is smaller
than the set P(ℱ∘t , P ) in (4.1).

Example 4.6. We shall consider aG-expectation de�ned on a set of irregular
random variables. Let a = 1, a = 2 and let P be as in (2.2). We take
ℋ = L1

P(ℱ∘0+) and de�ne

ℰ∘t (X) :=

{
supP∈P E

P [X], t = 0,

X, 0 < t ≤ T

for X ∈ ℋ. Then {ℰ∘t } trivially satis�es (4.1) since X is ℱ∘t -measurable for
all t > 0. As noted after Lemma 3.3, the second part of Assumption 4.1 is
also satis�ed. Moreover, the càdlàg ℰ-martingale is given by

ℰt(X) = X, t ∈ [0, T ].

Consider X := 1A, where A is de�ned as in (4.3). Then ℰ∘0 (X) = 1 and
ℰ0(X) = 1A are not equal P 2-a.s. (i.e., the measure P� for � ≡ 2). In fact,
there is no càdlàg P-modi�cation since {ℰ∘t (X)} coincides P 2-a.s. with the
deterministic function t 7→ 1{0}(t).

We remark that the phenomenon appearing in the previous example is
due to the presence of singular measures rather than the fact that P is
not dominated. In fact, one can give a similar example involving only two
measures.

Finally, let us mention that the situation is quite di�erent if we assume
that the given sublinear expectation is already placed in the larger �ltration
F (i.e., Assumption 4.1 holds with F∘ replaced by F), which would be in line
with the paradigm of the �usual assumptions� in standard stochastic analysis.
In this case, the arguments in the proof of Proposition 4.5 show that ℰ(X)
is always a P-modi�cation. This result is neat, but not very useful, since the
examples are typically constructed in F∘.

4.2 Stopping Times

The direct construction of G-expectations at stopping times is an unsolved
problem. Indeed, stopping times are typically fairly irregular functions and it
is unclear how to deal with this in the existing constructions (see also [20]).
On the other hand, we can easily evaluate the càdlàg process ℰ(X) at a
stopping time � and therefore de�ne the corresponding sublinear expecta-
tion at � . In particular, this leads to a de�nition of G-expectations at general
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stopping times. We show in this section that the resulting random variable
ℰ� (X) indeed has the expected properties and that the time consistency ex-
tends to arbitrary F-stopping times; in other words, we prove an optional
sampling theorem for ℰ-martingales. Besides the obvious theoretical interest,
the study of ℰ(X) at stopping times will allow us to verify integrability con-
ditions of the type �class (D)�; cf. Lemma 4.15 below. We start by explaining
the relations between the stopping times of the di�erent �ltrations.

Lemma 4.7. (i) Let P ∈ P and let � be an F-stopping time taking countably

many values. Then there exists an F∘-stopping time �∘ (depending on P )
such that � = �∘ P -a.s. Moreover, for any such �∘, the �-�elds ℱ� and ℱ∘�∘
di�er only by P -nullsets.

(ii) Let � be an F-stopping time. Then there exists an F+-stopping time

�+ such that � = �+ P-q.s. Moreover, for any such �+, the �-�elds ℱ� and

ℱ+
�+

di�er only by P-polar sets.

Proof. (i) Note that � is of the form � =
∑

i ti1Λi for Λi = {� = ti} ∈ ℱti
forming a partition of Ω. Since F ⊆ F∘P by Lemma 4.4, we can �nd Λ∘i ∈ ℱ∘ti
such that Λi = Λ∘i P -a.s. and the �rst assertion follows by taking

�∘ := T1(∪iΛ∘i )c +
∑
i

ti1Λ∘i
.

Let A ∈ ℱ� . By the �rst part, there exists an F∘-stopping time (�A)∘

such that (�A)∘ = �A := �1A + T1Ac P -a.s. Moreover, we choose A′ ∈ ℱ∘T
such that A = A′ P -a.s. Then

A∘ :=
(
A′ ∩ {�∘ = T}

)
∪ {(�A)∘ = �∘ < T}

satis�es A∘ ∈ ℱ∘�∘ and A = A∘ P -a.s. A similar but simpler argument shows
that for given Λ ∈ ℱ∘�∘ we can �nd Λ′ ∈ ℱ� such that Λ = Λ′ P -a.s.

(ii) If � is an F- (resp. F+-) stopping time, we can �nd �n taking count-
ably many values such that �n decreases to � and since F (F+) is right
continuous, ℱ�n (ℱ+

�n) decreases to ℱ� (ℱ+
� ). As a result, we may assume

without loss of generality that � takes countably many values.
Let � =

∑
i ti1Λi , where Λi ∈ ℱti . The de�nition of F shows that there

exist Λ+
i ∈ ℱ

+
ti
such that Λi = Λ+

i P-q.s. and the �rst part follows. The proof
of the second part is as in (i); we now have quasi-sure instead of almost-sure
relations.

If � is a stopping time taking �nitely many values (ti)1≤i≤N , we can
de�ne ℰ∘�(X) :=

∑N
i=1 ℰ∘ti(X)1{�=ti}. We have the following generalization

of (4.1).

Lemma 4.8. Let � be an F∘-stopping time taking �nitely many values. Then

ℰ∘�(X) = ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[X∣ℱ∘� ] P -a.s. for all P ∈ P.
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Proof. Let P ∈ P and Y ∘t := ℰ∘t (X). Moreover, let (ti)1≤i≤N be the values
of � and Λi := {� = ti} ∈ ℱ∘ti .

(i) We �rst prove the inequality �≥�. Given P ′ ∈ P, it follows from (4.2)
that {Y ∘ti}1≤i≤N is a P ′-supermartingale in (ℱ∘ti)1≤i≤N and so the (discrete-

time) optional sampling theorem [9, Theorem V.11] implies Y ∘� ≥ EP
′
[X∣ℱ∘� ]

P ′-a.s. In particular, this also holds P -a.s. for all P ′ ∈ P(ℱ∘� , P ), hence the
claim follows.

(ii) We now show the inequality �≤�. Note that � =
∑N

i=1 ti1Λi and that
(Λi)1≤i≤N form an ℱ∘�-measurable partition of Ω. It su�ces to show that

Y ∘ti1Λi ≤ ess supP

P ′∈P(ℱ∘� ,P )
EP

′
[X∣ℱ∘� ]1Λi P -a.s. for 1 ≤ i ≤ N.

In the sequel, we �x i and show that for each P ′ ∈ P(ℱ∘ti , P ) there exists
P̄ ∈ P(ℱ∘� , P ) such that

P̄ (A ∩ Λi) = P ′(A ∩ Λi) for all A ∈ ℱ∘T . (4.8)

In view of (4.1) and EP
′
[X∣ℱ∘� ]1Λi = EP

′
[X∣ℱ∘ti ]1Λi P

′-a.s., it will then
follow that

Y ∘ti1Λi = ess supP

P ′∈P(ℱ∘ti ,P )
EP

′
[X1Λi ∣ℱ∘ti ] ≤ ess supP

P̄∈P(ℱ∘� ,P )

EP̄ [X1Λi ∣ℱ∘� ] P -a.s.

as claimed. Indeed, given P ′ ∈ P(ℱ∘ti , P ), we de�ne

P̄ (A) := P ′(A ∩ Λi) + P (A ∖ Λi), A ∈ ℱ∘T , (4.9)

then (4.8) is obviously satis�ed. If Λ ∈ ℱ∘� , then Λ∩Λi = Λ∩{� = ti} ∈ ℱ∘ti
and P ′ ∈ P(ℱ∘ti , P ) yields P ′(Λ ∩ Λi) = P (Λ ∩ Λi). Hence P̄ = P on ℱ∘� .
Moreover, we observe that (4.9) can be stated as

P̄ (A) = EP
[
P ′(A∣ℱ∘ti)1Λi + P (A∣ℱ∘ti)1Λci

]
, A ∈ ℱ∘T ,

which is a special case of the pasting (3.2) applied with P2 := P . Hence
P̄ ∈ P by Assumption 4.1 and we have P̄ ∈ P(ℱ∘� , P ) as desired.

For the next result, we recall that stability under pasting refers to stop-
ping times with �nitely many values rather than general ones (De�nition 3.2).

Lemma 4.9. The set P is stable under F-pasting.

Proof. Let � ∈ T (F), then � is of the form

� =
∑
i

ti1Λi , Λi := {� = ti} ∈ ℱti ,

where ti ∈ [0, T ] are distinct and the sets Λi form a partition of Ω. Moreover,
let Λ ∈ ℱ� and P1, P2 ∈ P(ℱ� , P ), then we have to show that the measure
EP
[
P1( ⋅ ∣ℱ� )1Λ + P2( ⋅ ∣ℱ� )1Λc

]
is an element of P.
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(i) We start by proving that for any A ∈ ℱ� there exists A′ ∈ ℱ∘T ∩ ℱ�
such that A = A′ holds P(ℱ� , P )-q.s. Consider the disjoint union

A =
∪
i

(A ∩ Λi).

Here A ∩ Λi ∈ ℱti since A ∈ ℱ� . As F ⊆ F∘P by Lemma 4.4, there exist a
set Ai ∈ ℱ∘ti and a P -nullset Ni, disjoint from Ai, such that

A ∩ Λi = Ai ∪Ni. (4.10)

(It is not necessary to subtract another nullset on the right hand side.) We
de�ne A′ := ∪iAi, then A′ ∈ ℱ∘T and clearly A = A′ P -a.s. Let us check that
the latter also holds P(ℱ� , P )-q.s. For this, it su�ces to show that A′ ∈ ℱ� .
Indeed, by the construction of (4.10),

Ai ∩ {� = tj} =

{
Ai ∈ ℱ∘ti ⊆ ℱti , i = j,

∅ ∈ ℱtj , j ∕= i;

i.e., each set Ai is in ℱ� . Hence, A′ ∈ ℱ� , which completes the proof of (i).
For later use, we de�ne the F∘-stopping time

(�A)∘ := T1(A′)c +
∑
i

ti1Ai

and note that (�A)∘ = �A holds P(ℱ� , P )-q.s.
(ii) Using the previous construction for A = Ω, we see in particular that

there exist Λ∘i ∈ ℱ∘ti such that Λ∘i = Λi holds P(ℱ� , P )-q.s. We also de�ne
the F∘-stopping time

�∘ := T1(∪iΛ∘i )c +
∑
i

ti1Λ∘i

which P(ℱ� , P )-q.s. satis�es �∘ = � .
(iii) We can now show that ℱ∘�∘ and ℱ� may be identi�ed (when P, P1, P2

are �xed). Indeed, if A ∈ ℱ� , we let A′ be as in (i) and set

A∘ :=
(
A′ ∩ {�∘ = T}

)
∪ {(�A)∘ = �∘ < T}.

Then A∘ ∈ ℱ∘�∘ and A = A∘ holds P(ℱ� , P )-q.s. Conversely, given A∘ ∈ ℱ∘�∘ ,
we �nd A ∈ ℱ� such that A = A∘ holds P(ℱ� , P )-q.s. We conclude that

EP
[
P1( ⋅ ∣ℱ� )1Λ + P2( ⋅ ∣ℱ� )1Λc

]
= EP

[
P1( ⋅ ∣ℱ∘�∘)1Λ∘ + P2( ⋅ ∣ℱ∘�∘)1(Λ∘)c

]
.

The right hand side is an element of P by the stability under F∘-pasting.

We can now prove the optional sampling theorem for ℰ-martingales; in
particular, this establishes the F-time-consistency of {ℰt} along general F-
stopping times.
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Theorem 4.10. Let 0 ≤ � ≤ � ≤ T be stopping times, X ∈ ℋ, and let

ℰ(X) be the càdlàg ℰ-martingale associated with X. Then

ℰ�(X) = ess supP

P ′∈P(ℱ� ,P )
EP

′
[ℰ� (X)∣ℱ�] P -a.s. for all P ∈ P (4.11)

and in particular

ℰ�(X) = ess supP

P ′∈P(ℱ� ,P )
EP

′
[X∣ℱ�] P -a.s. for all P ∈ P. (4.12)

Moreover, there exists for each P ∈ P a sequence Pn ∈ P(ℱ�, P ) such that

ℰ�(X) = lim
n→∞

EPn [X∣ℱ�] P -a.s. (4.13)

with an increasing limit.

Proof. Fix P ∈ P and let Y := ℰ(X).
(i) We �rst show the inequality �≥� in (4.12). By Proposition 4.5(i),

Y is an (F, P ′)-supermartingale for all P ′ ∈ P(ℱ�, P ). Hence the (usual)
optional sampling theorem implies the claim.

(ii) In the next two steps, we show the inequality �≤� in (4.12). In view
of Lemma 4.7(ii) we may assume that � is an F+-stopping time, and then
(�+ 1/n)∧ T is an F∘-stopping time for each n ≥ 1. For the time being, we
also assume that � takes �nitely many values. Let

Dn := {k2−n : k = 0, 1, . . . } ∪ {T}

and de�ne
�n(!) := inf{t ∈ Dn : t ≥ �(!) + 1/n} ∧ T.

Each �n is an F∘-stopping time taking �nitely many values and �n(!) de-
creases to �(!) for all ! ∈ Ω. Since the range of {�, (�n)n} is countable, it
follows from Proposition 4.5(ii) that ℰ∘�n(X)→ Y� P -a.s. Since ∥X∥L1

P
<∞,

the backward supermartingale convergence theorem [9, Theorem V.30] im-
plies that this convergence holds also in L1(P ) and that

Y� = lim
n→∞

EP [ℰ∘�n(X)∣ℱ�] P -a.s., (4.14)

where, by monotonicity, the P -a.s. convergence holds without passing to
a subsequence. By Lemma 4.8 and Lemma 3.4, there exists for each n a
sequence (Pnk )k≥1 in P(ℱ∘�n , P ) such that

ℰ∘�n(X) = ess supP

P ′∈P(ℱ∘�n ,P )
EP

′
[X∣ℱ∘�n ] = lim

k→∞
EP

n
k [X∣ℱ∘�n ] P -a.s.,

where the limit is increasing. Moreover, using that

ℱ+
�n+1 =

{
A ∈ ℱ∘T : A ∩ {�n+1 < t} ∈ ℱ∘t for 0 ≤ t ≤ T

}
,
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the fact that �n > �n+1 on {�n < T} is seen to imply that ℱ+
�n+1 ⊆ ℱ∘�n .

Together with � ≤ �n+1 and Lemma 4.7(ii) we conclude that

ℱ� ⊆ ℱ�n+1
P-q.s.

= ℱ+
�n+1 ⊆ ℱ∘�n and hence P(ℱ�, P ) ⊇ P(ℱ∘�n , P )

(4.15)
for all n. Now monotone convergence yields

EP [ℰ∘�n(X)∣ℱ�] = lim
k→∞

EP
n
k [X∣ℱ�] ≤ ess supP

P ′∈P(ℱ� ,P )
EP

′
[X∣ℱ�] P -a.s.

In view of (4.14), this ends the proof of (4.12) for � taking �nitely many
values.

(ii') Now let � be general. We approximate � by the decreasing sequence
�n := inf{t ∈ Dn : t ≥ �} ∧ T of stopping times with �nitely many values.
Then ℰ�n(X) ≡ Y�n → Y� P -a.s. since Y is càdlàg. The same arguments as
for (4.14) show that

Y� = lim
n→∞

EP [ℰ�n(X)∣ℱ�] P -a.s. (4.16)

By the two previous steps we have the representation (4.12) for �n. As in
Lemma 3.4, it follows from the stability under F-pasting (Lemma 4.9) that
there exists for each n a sequence (Pnk )k≥1 in P(ℱ�n , P ) ⊆ P(ℱ�, P ) such
that

ℰ�n(X) = ess supP

P ′∈P(ℱ�n ,P )
EP

′
[X∣ℱ�n ] = lim

k→∞
EP

n
k [X∣ℱ�n ] P -a.s.,

where the limit is increasing and hence

EP [ℰ�n(X)∣ℱ�] = lim
k→∞

EP
n
k [X∣ℱ�] ≤ ess supP

P ′∈P(ℱ� ,P )
EP

′
[X∣ℱ�] P -a.s.

Together with (4.16), this completes the proof of (4.12).
(iii) We now prove (4.13). Since � is general, the claim does not follow

from the stability under pasting. Instead, we use the construction of (ii').
Indeed, we have obtained Pnk ∈ P(ℱ�n , P ) such that

Y� = lim
n→∞

lim
k→∞

EP
n
k [X∣ℱ�] P -a.s.

Fix n. Since �n is an F-stopping time taking �nitely many values and since
ℱ� ⊆ ℱ�n , it follows from the stability under F-pasting (applied to �n) that
the set {EP ′ [X∣ℱ�] : P ′ ∈ P(ℱ�n , P )} is P -a.s. upward �ltering, exactly as
in the proof of Lemma 3.4. In view of P(ℱ�n , P ) ⊆ P(ℱ�n+1 , P ), it follows
that for each N ≥ 1 there exists P (N) ∈ P(ℱ�N , P ) such that

EP
(N)

[X∣ℱ�] = max
1≤n≤N

max
1≤k≤n

EP
n
k [X∣ℱ�] P -a.s.
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Since P(ℱ�N , P ) ⊆ P(ℱ�, P ), this yields the claim.
(iv) To prove (4.11), we �rst express ℰ�(X) and ℰ� (X) as essential

suprema by using (4.12) both for � and for � . The inequality �≤� is then
immediate. The converse inequality follows by a monotone convergence argu-
ment exactly as in the proof of Proposition 3.6(i), except that the increasing
sequence is now obtained from (4.13) instead of Lemma 3.4.

4.3 Decomposition and 2BSDE for ℰ-Martingales

The next result contains the semimartingale decomposition of ℰ(X) under
each P ∈ P and can be seen as an analogue of the optional decomposition [19]
used in mathematical �nance. In the context of G-expectations, such a
result has also been referred to as �G-martingale representation theorem�; see
[16, 34, 35, 37]. Those results are ultimately based on the PDE description
of the G-expectation and are more precise than ours; in particular, they
provide a single increasing process K rather than a family (KP )P∈P (but
see Remark 4.17). On the other hand, we obtain an L1-theory whereas those
results require more integrability for X.

Proposition 4.11. Let X ∈ ℋ. There exist

(i) an F-predictable process ZX with
∫ T

0 ∣Z
X
s ∣2 d⟨B⟩s <∞ P-q.s.,

(ii) a family (KP )P∈P of FP -predictable processes such that all paths of

KP are càdlàg nondecreasing and EP [∣KP
T ∣] <∞,

such that

ℰt(X) = ℰ0(X) +
(P )∫ t

0
ZXs dBs −KP

t for all 0 ≤ t ≤ T, P -a.s. (4.17)

for all P ∈ P. The process ZX is unique up to {ds × P, P ∈ P}-polar sets

and KP is unique up to P -evanescence.

Proof. We shall use arguments similar to the proof of [33, Theorem 4.5].
Let P ∈ P. It follows from Proposition 4.5(i) that Y := ℰ(X) is an

(FP , P )-supermartingale. We apply the Doob-Meyer decomposition in the

�ltered space (Ω,FP , P ) which satis�es the usual conditions of right continu-

ity and completeness. Thus we obtain an (FP , P )-local martingale MP and

an FP -predictable increasing integrable process KP , càdlàg and satisfying
MP

0 = KP
0 = 0, such that

Y = Y0 +MP −KP .

By Lemma 4.4, (P,B) has the predictable representation property in FP .
Hence there exists an FP -predictable process ZP such that

Y = Y0 +
(P )∫

ZP dB −KP .
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The next step is to replace ZP by a process ZX independent of P . Re-
calling that B is a continuous local martingale under each P , we have∫

ZP d⟨B⟩P = ⟨Y,B⟩P = BY −
(P )∫

B dY −
(P )∫

Y− dB P -a.s. (4.18)

(Here and below, the statements should be read componentwise.) The last
two integrals are Itô integrals under P , but they can also be de�ned pathwise
since the integrands are left limits of càdlàg processes which are bounded
path-by-path. This is a classical construction from [3, Theorem 7.14]; see
also [18] for the same result in modern notation. To make explicit that
the resulting process is F-adapted, we recall the procedure for the example∫
Y− dB. One �rst de�nes for each n ≥ 1 the sequence of F-stopping times

�n0 := 0 and �ni+1 := inf{t ≥ �ni : ∣Yt − Y�ni ∣ ≥ 2−n}. Then one de�nes In by

Int := Y�nk (Bt −B�nk ) +

k−1∑
i=0

Y�ni (B�ni+1
−B�ni ) for �nk < t ≤ �nk+1, k ≥ 0;

clearly In is again F-adapted and all its paths are càdlàg. Finally, we de�ne

It := lim sup
n→∞

Int , 0 ≤ t ≤ T.

Then I is again F-adapted and it is a consequence of the Burkholder-Davis-
Gundy inequalities that

sup
0≤t≤T

∣∣∣∣Int − (P )∫ t

0
Y− dB

∣∣∣∣→ 0 P -a.s.

for each P . Thus, outside a P-polar set, the limsup in the de�nition of I
exists as a limit uniformly in t and I has càdlàg paths. Since P-polar sets
are contained in ℱ0, we may rede�ne I := 0 on the exceptional set. Now
I is càdlàg F-adapted and coincides with the Itô integral (P )

∫
Y− dB up to

P -evanescence, for all P ∈ P.
We proceed similarly with the integral (P )

∫
B dY and obtain a de�nition

for the right hand side of (4.18) which is F-adapted, continuous and inde-
pendent of P . Thus we have de�ned ⟨Y,B⟩ simultaneously for all P ∈ P,
and we do the same for ⟨B⟩. Let â = d⟨B⟩/dt be the (left) derivative in time
of ⟨B⟩, then â is F∘-predictable and S>0

d -valued P × dt-a.e. for all P ∈ P
by the de�nition of PS . Finally, ZX := â−1d⟨Y,B⟩/dt is an F-predictable
process such that

Y = Y0 +
(P )∫

ZX dB −KP P -a.s. for all P ∈ P.

We note that the integral is taken under P ; see also Remark 4.17 for a way
to de�ne it for all P ∈ P simultaneously.
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The previous proof shows that a decomposition of the type (4.17) ex-
ists for all càdlàg (F,P)-supermartingales, and not just for ℰ-martingales.
As a special case of Proposition 4.11, we obtain a representation for sym-
metric ℰ-martingales. The following can be seen as a generalization of the
corresponding results for G-expectations given in [34, 35, 37].

Corollary 4.12. Let X ∈ ℋ be such that −X ∈ ℋ. The following are

equivalent:

(i) ℰ(X) is a symmetric ℰ-martingale; i.e., ℰ(−X) = −ℰ(X) P-q.s.
(ii) There exists an F-predictable process ZX with

∫ T
0 ∣Z

X
s ∣2 d⟨B⟩s < ∞

P-q.s. such that

ℰt(X) = ℰ0(X) +

∫ t

0
ZXs dBs for all 0 ≤ t ≤ T, P-q.s.,

where the integral can be de�ned universally for all P and
∫
ZX dB is

an (F, P )-martingale for all P ∈ P.
In particular, any symmetric ℰ-martingale has continuous trajectories P-q.s.

Proof. The implication (ii)⇒(i) is clear from Proposition 4.5(iii). Con-
versely, given (i), Proposition 4.5(i) yields that both ℰ(X) and −ℰ(X) are
P-supermartingales, hence ℰ(X) is a (true) P-martingale. It follows that
the increasing processes KP have to satisfy KP ≡ 0 and (4.17) becomes
ℰ(X) = ℰ0(X) + (P )

∫
ZX dB. In particular, the stochastic integral can be

de�ned universally by setting
∫
ZX dB := ℰ(X)− ℰ0(X).

Remark 4.13. (a) Without the martingale condition in Corollary 4.12(ii),
the implication (ii)⇒(i) would fail even for P = {P0}, in which case Corol-
lary 4.12 is simply the Brownian martingale representation theorem.

(b) Even if it is symmetric, ℰ(X) need not be a P-modi�cation of the fam-
ily {ℰ∘t (X), t ∈ [0, T ]}; in fact, the ℰ-martingale in Example 4.6 is symmetric.
However, the situation changes if the symmetry assumption is imposed di-
rectly on {ℰ∘t (X)}. We call {ℰ∘t (X)} symmetric if ℰ∘t (−X) = −ℰ∘t (X) P-q.s.
for all t ∈ [0, T ].

∙ If {ℰ∘t (X)} symmetric, then ℰ(X) is a symmetric ℰ-martingale and a

P-modi�cation of {ℰ∘t (X)}.

Indeed, the assumption implies that {ℰ∘t (X)} is an (F∘, P )-martingale for
each P ∈ P and so the process ℰ(X) of right limits (cf. Proposition 4.5(ii))
is the usual càdlàg P -modi�cation of {ℰ∘t (X)}, for all P .

Next, we represent the pair (ℰ(X), ZX) from Proposition 4.11 as the
solution of a 2BSDE. The following de�nition is essentially from [32].

De�nition 4.14. Let X ∈ L1
P and consider a pair (Y,Z) of processes with

values in ℝ× ℝd such that Y is càdlàg F-adapted while Z is F-predictable
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and
∫ T

0 ∣Zs∣
2 d⟨B⟩s < ∞ P-q.s. Then (Y,Z) is called a solution of the

2BSDE (4.19) if there exists a family (KP )P∈P of FP -adapted increasing
processes satisfying EP [∣KP

T ∣] <∞ such that

Yt = X −
(P )∫ T

t
Zs dBs +KP

T −KP
t , 0 ≤ t ≤ T, P -a.s. for all P ∈ P

(4.19)
and such that the following minimality condition holds for all 0 ≤ t ≤ T :

ess infP
P ′∈P(ℱt,P )

EP
′[
KP ′
T −KP ′

t

∣∣ℱt] = 0 P -a.s. for all P ∈ P. (4.20)

We note that (4.20) is essentially the ℰ-martingale condition (4.4): if the
processes KP can be aggregated into a single process K and KT ∈ ℋ, then
−K = ℰ(−KT ). Regarding the aggregation of (KP ), see also Remark 4.17.

A second notion is needed to state the main result. A càdlàg process
Y is said to be of class (D,P) if the family {Y�}� is uniformly integrable
under P for all P ∈ P, where � runs through all F-stopping times. As an
example, we have seen in Corollary 4.12 that all symmetric ℰ-martingales
are of class (D,P). (Of course, it is important here that we work with a �nite
time horizon T .) For p ∈ [1,∞), we de�ne ∥X∥LpP =: supP∈P E[∣X∣p]1/p as

well as ℋp := {X ∈ ℋ : ∣X∣p ∈ ℋ}.

Lemma 4.15. If X ∈ ℋp for some p ∈ (1,∞), then ℰ(X) is of class (D,P).

Proof. Let P ∈ P. If � is an F-stopping time, Jensen's inequality and (4.12)
yield that

∣ℰ�(X)∣p ≤ ess supP

P ′∈P(ℱ� ,P )
EP

′
[∣X∣p∣ℱ�] = ℰ�(∣X∣p) P -a.s.

In particular, ∥ℰ�(X)∥pLp(P ) ≤ E
P [ℰ�(∣X∣p)] and thus Lemma 4.4 yields

∥ℰ�(X)∥pLp(P ) ≤ E
P [ℰ�(∣X∣p)∣ℱ0] ≤ ess supP

P ′∈P(ℱ0,P )
EP

′
[ℰ�(∣X∣p)∣ℱ0] P -a.s.

The right hand side P -a.s. equals ℰ0(∣X∣p) by (4.11), so we conclude with (4.7)
that

∥ℰ�(X)∥pLp(P ) ≤ ℰ0(∣X∣p) ≤ sup
P ′∈P

EP
′
[∣X∣p] = ∥X∥p

LpP
<∞ P -a.s.

Therefore, the family {ℰ�(X)}� is bounded in Lp(P ) and in particular uni-
formly integrable under P . This holds for all P ∈ P.

We can now state the main result of this section.
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Theorem 4.16. Let X ∈ ℋ.
(i) The pair (ℰ(X), ZX) is the minimal solution of the 2BSDE (4.19); i.e.,

if (Y,Z) is another solution, then ℰ(X) ≤ Y P-q.s.
(ii) If (Y,Z) is a solution of (4.19) such that Y is of class (D,P), then

(Y,Z) = (ℰ(X), ZX).

In particular, if X ∈ ℋp for some p > 1, then (ℰ(X), ZX) is the unique

solution of (4.19) in the class (D,P).
Proof. (i) Let P ∈ P. To show that (ℰ(X), ZX) is a solution, we only have
to show that KP from the decomposition (4.17) satis�es the minimality con-
dition (4.20). We denote this decomposition by ℰ(X) = ℰ0(X) +MP −KP .

It follows from Proposition 4.5(i) that ℰ(X) is an (FP , P )-supermartingale.
As KP ≥ 0, we deduce that

ℰ0(X) +MP ≥ ℰ(X) ≥ EP [X∣FP ] P -a.s.,

where EP [X∣FP ] denotes the càdlàg (FP , P )-martingale with terminal value
X. HenceMP is a local P -martingale bounded from below by a P -martingale
and thus MP is an (F, P )-supermartingale by a standard argument using
Fatou's lemma. This holds for all P ∈ P. Therefore, (4.4) yields

0 = ℰt(X)− ess supP

P ′∈P(ℱt,P )
EP

′
[X∣ℱt]

= ess infP
P ′∈P(ℱt,P )

EP
′[ℰt(X)− ℰT (X)

∣∣ℱt]
= ess infP

P ′∈P(ℱt,P )
EP

′[
MP ′
t −MP ′

T +KP ′
T −KP ′

t

∣∣ℱt]
≥ ess infP

P ′∈P(ℱt,P )
EP

′[
KP ′
T −KP ′

t

∣∣ℱt] P -a.s. for all P ∈ P.

SinceKP ′ is nondecreasing, the last expression is also nonnegative and (4.20)
follows. Thus (ℰ(X), ZX) is a solution.

To prove the minimality, let (Y,Z) be another solution of (4.19). It
follows from (4.19) that Y is a local (F, P )-supermartingale for all P ∈ P.
As above, the integrability of X implies that Y0 + (P )

∫
Z dB is bounded

below by a P -martingale. Noting also that Y0 is P -a.s. equal to a constant
by Lemma 4.4, we deduce that (P )

∫
Z dB and Y are (F, P )-supermartingales.

Since Y is càdlàg and YT = X, the minimality property in Proposition 4.5(i)
shows that Y ≥ ℰ(X) P-q.s.

(ii) If in addition Y is of class (D,P), then (P )
∫
Z dB is a true P -martingale

by the Doob-Meyer theorem and we have

0 = ess infP
P ′∈P(ℱt,P )

EP
′[
KP ′
T −KP ′

t

∣∣ℱt]
= Yt − ess supP

P ′∈P(ℱt,P )
EP

′
[X∣ℱt]

= Yt − ℰt(X) P -a.s. for all P ∈ P.
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The last statement in the theorem follows from Lemma 4.15.

Remark 4.17. If we use axioms of set theory stronger than the usual ZFC,
such as the Continuum Hypothesis, then the integrals {(P )

∫
Z dB}P∈P can

be aggregated into a single (universally measurable) continuous process, de-
noted by

∫
Z dB, for any Z which is B-integrable under all P ∈ P. This

follows from a recent result on pathwise stochastic integration, cf. [25]. In
Proposition 4.11, we can then aggregate the family (KP )P∈P of increasing
processes into a single process K by setting K := ℰ0(X)−ℰ(X) +

∫
ZX dB.

Moreover, we can strengthen Theorem 4.16 by asking for a universal process
K the De�nition 4.14 of the 2BSDE.

4.4 Application to Superhedging and Replication

We now turn to the interpretation of the previous results for the super-
hedging problem. Let H be an ℝd-valued F-predictable process satisfying∫ T

0 ∣Hs∣2 d⟨B⟩s <∞ P-q.s. Then H is called an admissible trading strategy

if (P )
∫
H dB is a P -supermartingale for all P ∈ P. (We do not insist that

the integral be de�ned without reference to P , since this is not necessary
economically. But see also Remark 4.17.) As usual in continuous-time �-
nance, this de�nition excludes �doubling strategies�. We have seen in the
proof of Theorem 4.16 that ZX is admissible for X ∈ ℋ. The minimality
property in Proposition 4.5(i) and the existence of the decomposition (4.17)
yield the following conclusion: ℰ0(X) is the minimal ℱ0-measurable initial
capital which allows to superhedge X; i.e., ℰ0(X) is the P-q.s. minimal ℱ0-
measurable random variable �0 such that there exists an admissible strategy
H satisfying

�0 +

(P )∫ T

0
Hs dBs ≥ X P -a.s. for all P ∈ P.

Moreover, the �overshoot� KP for the strategy ZX satis�es the minimality
condition (4.20).

As seen in Example 4.6, the ℱ0-superhedging price ℰ0(X) need not be
a constant, and therefore it is debatable whether it is a good choice for a
conservative price, in particular if the raw �ltration F∘ is seen as the initial
information structure for the model. Indeed, the following illustration shows
that knowledge of ℱ0 can be quite signi�cant. Consider a collection (ai) of
positive constants and P = {P� : � ≡ ai for some i}. (Such a set P can
indeed satisfy the assumptions of this section.) In this model, knowledge of
ℱ0 completely removes the volatility uncertainty since ℱ0 contains the sets

Ai :=
{

lim sup
t→0

t−1⟨B⟩t = lim inf
t→0

t−1⟨B⟩t = ai

}
∈ ℱ∘0+
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which form a P-q.s. partition of Ω. Hence, one may want to use the more
conservative choice

x = ℰ∘0 (X) = sup
P∈P

EP [X] = inf{y ∈ ℝ : y ≥ ℰ0(X)}

as the price. This value can be embedded into the ℰ-martingale as follows.
Let ℱ0− be the smallest �-�eld containing the P-polar sets, then ℱ0− is
trivial P-q.s. If we adjoin ℱ0− as a new initial state to the �ltration F, we
can extend ℰ(X) by setting

ℰ0−(X) := sup
P∈P

EP [X], X ∈ ℋ.

The resulting process {ℰt(X)}t∈[−0,T ] satis�es the properties from Proposi-
tion 4.5 in the extended �ltration and in particular the constant x = ℰ0−(X)
is the ℱ0−-superhedging price of X. (Of course, all this becomes super�uous
in the case where ℰ(X) is a P-modi�cation of {ℰ∘t (X)}.)

In the remainder of the section, we discuss replicable claims and adopt
the previously mentioned conservative choice.

De�nition 4.18. A random variable X ∈ ℋ is called replicable if there exist
a constant x ∈ ℝ and an F-predictable process H with

∫ T
0 ∣Hs∣2 d⟨B⟩s <∞

P-q.s. such that

X = x+

(P )∫ T

0
Ht dBt P -a.s. for all P ∈ P (4.21)

and such that (P )
∫
H dB is an (F, P )-martingale for all P ∈ P.

The martingale assumption is needed to avoid strategies which �throw
away� money. Moreover, as in Corollary 4.12, the stochastic integral can nec-
essarily be de�ned without reference to P , by setting

∫
H dB := ℰ(X)− x.

The following result is an analogue of the standard characterization of repli-
cable claims in incomplete markets (e.g., [8, p. 182]).

Proposition 4.19. Let X ∈ ℋ be such that −X ∈ ℋ. The following are

equivalent:

(i) ℰ(X) is a symmetric ℰ-martingale and ℰ0(X) is constant P-q.s.
(ii) X is replicable.

(iii) There exists x ∈ ℝ such that EP [X] = x for all P ∈ P.

Proof. The equivalence (i)⇔(ii) is immediate from Corollary 4.12 and the
implication (ii)⇒(iii) follows by taking expectations in (4.21). Hence we
prove (iii)⇒(ii). By (4.7) we have ℰ0(−X) ≤ supP∈P E

P [−X] = −x and
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similarly ℰ(X) ≤ x. Thus, given P ∈ P, the decompositions (4.17) of
ℰ(−X) and ℰ(X) show that

−X ≤ −x+

(P )∫ T

0
Z−X dB and X ≤ x+

(P )∫ T

0
ZX dB P -a.s. (4.22)

Adding the inequalities yields 0 ≤ (P )
∫ T

0 (Z−X + ZX) dB P -a.s. As we
know from the proof of Theorem 4.16 that the integrals of ZX and Z−X

are supermartingales, it follows that (P )
∫ T

0 Z−X dB = −(P )
∫ T

0 ZX dB P -a.s.

Now (4.22) yields that X = x + (P )
∫ T

0 ZX dB. In view of (iii), this integral
is a supermartingale with constant expectation, hence a martingale.

5 Uniqueness of Time-Consistent Extensions

In the introduction, we have claimed that {ℰ∘t (X)} as in (1.2) is the natural
dynamic extension of the static sublinear expectation X 7→ supP∈P E

P [X].
In this section, we add some substance to this claim by showing that the
extension is unique under suitable assumptions. (We note that by Propo-
sition 3.6, the question of existence is essentially reduced to the technical
problem of aggregation.)

The setup is as follows. We �x a nonempty set P of probability measures
on (Ω,ℱ∘T ); it is not important whether P consists of martingale laws. On the
other hand, we impose additional structure on the set of random variables.
In this section, we consider a chain of vector spaces (ℋt)0≤t≤T satisfying

ℝ = ℋ0 ⊆ ℋs ⊆ ℋt ⊆ ℋT =: ℋ ⊆ L1
P , 0 ≤ s ≤ t ≤ T.

We assume that X,Y ∈ ℋt implies X ∧ Y,X ∨ Y ∈ ℋt, and XY ∈ ℋt if in
addition Y is bounded. As before, ℋ should be seen as the set of �nancial
claims. The elements of ℋt will serve as �test functions�; the main example
to have in mind is ℋt = ℋ ∩ L1

P(ℱ∘t ). We consider a family (Et)0≤t≤T of
mappings

Et : ℋ → L1
P(ℱ∘t )

and think of (Et) as a dynamic extension of E0. Our aim is to �nd conditions
under which E0 already determines the whole family (Et), or more precisely,
determines Et(X) up to a P-polar set for all X ∈ ℋ and 0 ≤ t ≤ T .
De�nition 5.1. The family (Et)0≤t≤T is called (ℋt)-positively homogeneous

if for all t ∈ [0, T ] and X ∈ ℋ,

Et(X') = Et(X)' P-q.s. for all bounded nonnegative ' ∈ ℋt.

Note that this property excludes trivial extensions of E0. Indeed, given
E0, we can always de�ne the (time-consistent) extension

Et(X) :=

{
E0(X), 0 ≤ t < T,

X, t = T,
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but this family (Et) is not (ℋt)-positively homogeneous for nondegenerate
choices of (ℋt).

To motivate the next de�nition, we �rst recall that in the classical setup
under a reference measure P∗, strict monotonicity of E0 is the crucial condi-
tion for uniqueness of extensions; i.e., X ≥ Y P∗-a.s. and P∗{X > Y } > 0
should imply that E0(X) > E0(Y ). In our setup with singular measures,
the corresponding condition is too strong. E.g., for E0(⋅) = supP∈P E

P [ ⋅ ],
it is completely reasonable to have random variables X ≥ Y satisfying
E0(X) = E0(Y ) and P1{X > Y } > 0 for some P1 ∈ P, since the suprema
can be attained at some P2 ∈ P whose support is disjoint from {X > Y }.
In the following de�nition, we allow for an additional localization by a test
function.

De�nition 5.2. We say that E0 is (ℋt)-locally strictly monotone if for every
t ∈ [0, T ] and any X,Y ∈ ℋt satisfying X ≥ Y P-q.s. and P (X > Y ) > 0
for some P ∈ P, there exists f ∈ ℋt such that 0 ≤ f ≤ 1 and

E0(Xf) > E0(Y f).

Here the delicate point is the regularity required for f . Indeed, one is
tempted to try f := 1{X>Y+�} (for some constant � > 0), but in applications
the de�nition of ℋt may exclude this choice and require a more re�ned
construction. We defer this task to Proposition 5.5 and �rst show how local
strict monotonicity yields uniqueness.

Proposition 5.3. Let E0 be (ℋt)-locally strictly monotone. Then there ex-

ists at most one extension of E0 to a family (Et)0≤t≤T which is (ℋt)-positively
homogeneous and satis�es Et(ℋ) ⊆ ℋt and E0 ∘ Et = E0 on ℋ.

Proof. Let (Et) and (Ẽt) be two such extensions and suppose for contradic-
tion that Et(X) ∕= Ẽt(X) for some X ∈ ℋ; i.e., there exists P ∈ P such that
either P{Et(X) > Ẽt(X)} > 0 or P{Et(X) < Ẽt(X)} > 0. Without loss of
generality, we focus on the �rst case. De�ne

' :=
([
Et(X)− Ẽt(X)

]
∨ 0
)
∧ 1.

Then ' ∈ ℋt, since ℋt is a lattice containing the constant functions; more-
over, 0 ≤ ' ≤ 1 and {' = 0} = {Et(X) ≤ Ẽt(X)}. Setting X ′ := X' and
using the positive homogeneity, we arrive at

Et(X ′) ≥ Ẽt(X ′) and P
{
Et(X ′) > Ẽt(X ′)

}
> 0.

By local strict monotonicity there exists f ∈ ℋt such that 0 ≤ f ≤ 1 and
E0

(
Et(X ′)f

)
> E0

(
Ẽt(X ′)f

)
. Now E0 = E0 ∘ Et yields that

E0(X ′f) = E0

(
Et(X ′)f

)
> E0

(
Ẽt(X ′)f

)
= Ẽ0(X ′f),

which contradicts E0 = Ẽ0.

26



We can extend the previous result by applying it on dense subspaces.
This relaxes the assumption that Et(ℋ) ⊆ ℋt and simpli�es the veri�cation
of local strict monotonicity since one can choose convenient spaces of test
functions. Consider a chain of spaces (ℋ̂t)0≤t≤T satisfying the same assump-
tions as (ℋt)0≤t≤T and such that ℋ̂T is a ∥ ⋅ ∥L1

P
-dense subspace of ℋ. We

say that (Et)0≤t≤T is L1
P-continuous if

Et :
(
ℋ, ∥ ⋅ ∥L1

P

)
→
(
L1
P(ℱ∘t ), ∥ ⋅ ∥L1

P

)
is continuous for every t. We remark that the motivating example (ℰ∘t ) from
Assumption 4.1 satis�es this property (it is even Lipschitz continuous).

Corollary 5.4. Let E0 be (ℋ̂t)-locally strictly monotone. Then there ex-

ists at most one extension of E0 to an L1
P-continuous family (Et)0≤t≤T on

ℋ which is (ℋ̂t)-positively homogeneous and satis�es Et(ℋ̂T ) ⊆ ℋ̂t and

E0 ∘ Et = E0 on ℋ̂T .

Proof. Proposition 5.3 shows that Et(X) is uniquely determined forX ∈ ℋ̂T .
Since ℋ̂T ⊆ ℋ is dense and Et is continuous, Et is also determined on ℋ.

In our last result, we show that E0(⋅) = supP∈P E
P [ ⋅ ] is (ℋt)-locally

strictly monotone in certain cases. The idea here is that we already have an
extension (Et) (as in Assumption 4.1), whose uniqueness we try to establish.
We denote by Cb(Ω) the set of bounded continuous functions on Ω and by
Cb(Ωt) the ℱ∘t -measurable functions in Cb(Ω), or equivalently the bounded
functions which are continuous with respect to ∥!∥t := sup0≤s≤t ∣!s∣. Simi-
larly, UCb(Ω) and UCb(Ωt) denote the sets of bounded uniformly continuous
functions. We also de�ne L1

c,P to be the closure of Cb(Ω) in L1
P , while L∞c,P

denotes the P-q.s. bounded elements of L1
c,P . Finally, L∞c,P(ℱ∘t ) is obtained

similarly from Cb(Ωt), while L∞uc,P(ℱ∘t ) is the space obtained when starting
from UCb(Ωt) instead of Cb(Ωt).

Proposition 5.5. Let E0(⋅) = supP∈P E
P [ ⋅ ]. Then E0 is (ℋt)-locally

strictly monotone for each of the cases

(i) ℋt = Cb(Ωt),

(ii) ℋt = UCb(Ωt),

(iii) ℋt = L∞c,P(ℱ∘t ),

(iv) ℋt = L∞uc,P(ℱ∘t ).

Together with Corollary 5.4, this yields a uniqueness result for extensions.
Before giving the proof, we indicate some examples covered by this result;
see also Example 2.1. The domain of (Et) is ℋ = L1

uc,P in both cases. (This

statement implicitly uses the fact that L1
uc,P = L1

c,P when P is tight; cf. the
proof of [23, Proposition 5.2].)
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(a) Let (Et) be the G-expectation as introduced in [27, 28]. Then Corol-
lary 5.4 applies: if ℋ̂t is any of the spaces in (i)�(iv), the invariance property
Et(ℋ̂T ) ⊆ ℋ̂t is satis�ed and ℋ̂T is dense in ℋ.

(b) Using the construction given in [23], the G-expectation can be ex-
tended to the case when there is no �nite upper bound for the volatility. This
corresponds to a possibly in�nite function G (and then P need not be tight).
Here Corollary 5.4 applies with ℋ̂t = UCb(Ωt) since Et(ℋ̂T ) ⊆ ℋ̂t is satis�ed
by the remark stated after [23, Corollary 3.6], or also with ℋt = L∞uc,P(ℱ∘t ).

Proof of Proposition 5.5. Fix t ∈ [0, T ]. All topological notions in this proof
are expressed with respect to d(!, !′) := ∥! − !′∥t. Let X,Y ∈ ℋt be such
that X ≥ Y P-q.s. and P∗(X > Y ) > 0 for some P∗ ∈ P. By translating and
multiplying with positive constants, we may assume that 1 ≥ X ≥ Y ≥ 0.
We prove the cases (i)�(iv) separately.

(i) Choose � > 0 small enough so that P∗{X ≥ Y + 2�} > 0 and let

A1 := {X ≥ Y + 2�}, A2 := {X ≤ Y + �}.

Then A1 and A2 are disjoint closed sets and

f(!) :=
d(!,A2)

d(!,A1) + d(!,A2)
(5.1)

is a continuous function satisfying 0 ≤ f ≤ 1 as well as f = 0 on A2 and
f = 1 on A1. It remains to check that

E0(Xf) > E0(Y f), i.e., sup
P∈P

EP [Xf ] > sup
P∈P

EP [Y f ].

If E0(Y f) = 0, the observation that E0(Xf) ≥ EP∗ [Xf ] ≥ 2�P∗(A1) > 0
already yields the proof.

Hence, we may assume that E0(Y f) > 0. For " > 0, let P" ∈ P be
such that EP" [Y f ] ≥ E0(Y f) − ". Since X > Y + � on {f > 0} and since
0 ≤ Y ≤ 1, we have Xf ≥ (Y + �)f ≥ (Y + �Y )f and therefore

E0(Xf) ≥ lim sup
"→0

EP" [(Y + �Y )f ]

= lim sup
"→0

(1 + �)EP" [Y f ]

= (1 + �)E0(Y f).

As � > 0 and E0(Y f) > 0, this ends the proof of (i).
(ii) The proof for this case is the same; we merely have to check that the

function f de�ned in (5.1) is uniformly continuous. Indeed, Z := X − Y is
uniformly continuous since X and Y are. Thus there exists " > 0 such that
∣Z(!) − Z(!′)∣ < � whenever d(!, !′) ≤ ". We observe that d(A1, A2) ≥ "
and hence that the denominator in (5.1) is bounded away from zero. One
then checks by direct calculation that f is Lipschitz continuous.
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(iii) We recall that L∞P (ℱ∘t ) coincides with the set of bounded P-quasi
continuous functions (up to modi�cation); cf. [10, Theorem 25]. That is, a
bounded ℱ∘t -measurable function ℎ is in L∞P (ℱ∘t ) if and only if for all " > 0
there exists a closed set Λ ⊆ Ω such that P (Λ) > 1 − " for all P ∈ P and
such that the restriction ℎ∣Λ is continuous.

For � > 0 small enough, we have P∗({X ≥ Y + 2�}) > 0. Then, we can
�nd a closed set Λ ⊆ Ω such that X and Y are continuous on Λ and

(1 + �)E0(1Λc) < �2E0(1{X≥Y+2�}∩Λ). (5.2)

De�ne the disjoint closed sets

A1 := {X ≥ Y + 2�} ∩ Λ, A2 := {X ≤ Y + �} ∩ Λ,

and let f be the continuous function (5.1). We distinguish two cases. Sup-
pose �rst that �E0(Y f) ≤ (1 + �)E0(1Λc); then, using (5.2),

E0(Xf) ≥ 2�E0(1A1) > (1 + �)�−1E0(1Λc) ≥ E0(Y f)

and we are done. Otherwise, we have �E0(Y f) > (1 + �)E0(1Λc). Moreover,
E0(Xf1Λ) ≥ (1 + �)E0(Y f1Λ) can be shown as in (i); we simply replace f
by f1Λ in that argument. Using the subadditivity of E0, we deduce that

E0(Xf) + (1 + �)E0(Y f1Λc) ≥ E0(Xf1Λ) + (1 + �)E0(Y f1Λc)

≥ (1 + �)E0(Y f1Λ) + (1 + �)E0(Y f1Λc)

≥ (1 + �)E0(Y f)

and hence

E0(Xf)−E0(Y f) ≥ �E0(Y f)−(1+�)E0(Y f1Λc) ≥ �E0(Y f)−(1+�)E0(1Λc).

The right hand side is strictly positive by assumption.
(iv) The proof is similar to the one for (iii): we use [23, Proposition 5.2]

instead of [10, Theorem 25] to �nd Λ, and then the observation made in the
proof of (ii) shows that the resulting function f is uniformly continuous.
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